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Abstract
In this paper, new sufficient conditions are obtained for oscillation of second-order neutral
delay differential equations of the form

d
dt

[
r(t) d

dt
[x(t) + p(t)x(τ(t))]

]
+ q(t)G

(
x(σ(t))

)
= 0 for t ≥ t0,

under the assumptions
∫ ∞ 1

r(η)dη = ∞ and
∫ ∞ 1

r(η)dη < ∞ for various ranges of the
bounded neutral coefficient p. Unlike most of the previous results, τ ′ is allowed to be
oscillatory. Further, some illustrative examples showing applicability of the new results
are included.
Mathematics Subject Classification (2010). 34C10, 34C15, 34K11

Keywords. Oscillation, nonoscillation, nonlinear, delay argument, second-order neutral
differential equation

1. Introduction
This article is concerned with sufficient conditions for oscillation of a nonlinear neutral

second-order delay differential equation
d
dt

[
r(t) d

dt
[x(t) + p(t)x(τ(t))]

]
+ q(t)G

(
x(σ(t))

)
= 0 for t ≥ t0. (1.1)

We also suppose that the following assumptions hold:
(A1) r ∈ C([t0, ∞), (0, ∞)), p ∈ C([t0, ∞),R) and q ∈ C([t0, ∞), [0, ∞)), where q is not

identically zero eventually;
(A2) G ∈ C(R,R) satisfies uG(u) > 0 for u ̸= 0;
(A3) τ, σ ∈ C([t0, ∞),R) such that τ(t), σ(t) ≤ t for t ≥ t0, τ(t), σ(t) → ∞ as t → ∞ with

differentiable or invertible τ when necessary.
Our investigation on the asymptotic behavior of solutions depend on the following two
possible conditions:
(C1)

∫ ∞ 1
r(η)dη = ∞;

(C2)
∫ ∞ 1

r(η)dη < ∞.
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Baculikova et al. [1] have studied the linear counterpart of (1.1),

d
dt

[
r(t) d

dt
[x(t) + p(t)x(τ(t))]

]
+ q(t)x(σ(t)) = 0 (1.2)

when 0 ≤ p(t) ≤ p0 < ∞ and (C1) hold. The authors have obtained sufficient conditions
for oscillation of solutions of (1.2) through some comparison results, where the comparison
results are unpredictable. In [5], Džurina have studied (1.2) when 0 ≤ p(t) ≤ p0 < ∞ and
(C1) holds true. He has established sufficient condition for oscillation of solutions of (1.2)
by comparison techniques. In another paper [10], Karpuz et al. have considered the linear
equation

dn

dtn
[x(t) + p(t)x(τ(t))] + q(t)x(σ(t)) = 0,

and established some new oscillation results based on comparison theorems when −1 <
p(t) < 0 and 0 < p(t) < 1 for all large t. In [15], under various ranges of p, Santra studied
oscillatory behaviour of the solutions of the following neutral differential equations

d
dt

[x(t) + p(t)x(t − τ)] + q(t)G
(
x(t − σ)

)
= 0

and
d
dt

[x(t) + p(t)x(t − τ)] + q(t)G
(
x(t − σ)

)
= f(t). (1.3)

Also, sufficient conditions are obtained for existence of bounded positive solutions of (1.3).
The motivation of the present work come from the above studies. Hence, in this work, an
attempt is made to study the more general form of (1.2) without making any comparison.
It seems that our method is the next alternative to the works [1, 5] and [10], when p is
bounded. Here, we are connected to both (C1) and (C2).

The neutral differential equations find numerous applications in natural sciences and
technology. For instance, they are frequently used for the study of distributed networks
containing lossless transmission lines (see for e.g [7]). In this paper, we restrict our atten-
tion to study (1.1), which includes a class of nonlinear functional differential equations of
neutral type. In this direction we refer the reader to some of the works ([2–4,6,8,11–14,17])
and the references cited therein.

By a solution to equation (1.1), we mean a function x ∈ C([Tx, ∞),R), where Tx ≥ t0,
such that rz′ ∈ C1([Tx, ∞),R), where

z(t) := x(t) + p(t)x(τ(t)) for t ≥ Tx, (1.4)

and satisfies (1.1) on the interval [Tx, ∞). A solution x of (1.1) is said to be proper if
x is not identically zero eventually, i.e., sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. We
assume that (1.1) possesses such solutions. A solution of (1.1) is called oscillatory if it has
arbitrarily large zeros on [Tx, ∞); otherwise, it is said to be nonoscillatory. (1.1) itself is
said to be oscillatory if all of its solutions are oscillatory.

Remark 1.1. When the domain is not specified explicitly, all functional inequalities
considered in this paper are assumed to hold eventually, i.e., they are satisfied for all t
large enough.

2. Sufficient conditions for oscillation
In this section, sufficient conditions are obtained for oscillatory and asymptotic be-

haviour of second order nonlinear neutral differential equations of the form (1.1).
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2.1. Oscillation under the condition (C1)
Lemma 2.1. Assume that (C1) and (A1)–(A3) hold. If x is an eventually positive solution
of (1.1) such that the companion function z defined by (1.4) is also eventually positive,
then z satisfies

z′(t) > 0 and (rz′)′(t) < 0 for all large t. (2.1)

Proof. Suppose that x(t) > 0 and z(t) > 0 for t ≥ t1, where t ≥ t0. By (A3), we may
assume without loss of generality that x(σ(t)) > 0 for t ≥ t1. From (1.1) and (A2), it
follows that

(rz′)′(t) = −q(t)G
(
x(σ(t))

)
< 0 for t ≥ t1. (2.2)

Consequently, rz′ is nonincreasing on [t1, ∞) and thus either z′(t) < 0 or z′(t) > 0 for
t ≥ t2, where t2 ≥ t1. If z′(t) < 0, then there exists ε > 0 such that r(t)z′(t) ≤ −ε for
t ≥ t2, which yields upon integration over [t2, t) ⊂ [t2, ∞) after dividing through by r that

z(t) ≤ z(t2) − ε

∫ t

t2

1
r(η)

dη for t ≥ t2. (2.3)

In view of (C1), letting t → ∞ in (2.3) yields z(t) → −∞, which is a contradiction.
Therefore, z′(t) > 0 for t ≥ t2. This completes the proof. �
Remark 2.2. It follows from Lemma 2.1 that limt→∞ z(t) > 0, i.e., there exists ε > 0
such that z(t) ≥ ε for all large t.

Lemma 2.3. Assume that (C1) and (A1)–(A3) hold. If x is an eventually positive solution
of (1.1) such that the companion function z defined by (1.4) is bounded, then z satisfies
(2.1) for all large t.

Proof. The proof can be obtained from the proof of Lemma 2.1. �
Theorem 2.4. Let 0 ≤ p(t) ≤ p < 1 for t ≥ t0, where p is a constant. Assume that (C1)
and (A1)–(A3) hold. Furthermore, assume that the followings hold:
(A4) G is a nondecreasing function;
(A5)

∫ ∞ q(η)dη = ∞.
Then, every solution of (1.1) is oscillatory.

Proof. Suppose the contrary that x is a nonoscillatory solution of (1.1). Then, there
exists t1 ≥ t0 such that either x(t) > 0 or x(t) < 0 for t ≥ t1. Assume that x(t) > 0,
x(τ(t)) > 0 and x(σ(t)) > 0 for t ≥ t1. Clearly, z defined by (1.4) is positive on [t1, ∞).
By Lemma 2.1 and Remark 2.2, there exists ε > 0 such that z(t) ≥ ε for t ≥ t2, where
t2 ≥ t1. On the other hand, z being increasing implies that

(1 − p)z(t) ≤
(
1 − p(t)

)
z(t) ≤ z(t) − p(t)z(τ(t))

=x(t) − p(t)p(τ(t))x(τ(τ(t))) ≤ x(t)

for t ≥ t3, where t3 ≥ t2. Consequently, x(t) ≥ (1 − p)ε > 0 for t ≥ t3. From (2.2), we
have

(rz′)′(t) + G
(
(1 − p)ε

)
q(t) ≤ 0 for t ≥ t3.

Integrating the last inequality over the interval [t3, t) ⊂ [t3, ∞), we get

G
(
(1 − p)ε

) ∫ t

t3
q(η)dη ≤ r(t3)z′(t3) for all t ≥ t3.

This contradicts (A5).
If x(t) < 0 for t ≥ t1, then we set y(t) := −x(t) for t ≥ t1 in (1.1). Using (A4), we find

d
dt

[
r(t) d

dt
[y(t) + p(t)y(τ(t))]

]
+ q(t)H

(
y(σ(t))

)
= 0 for t ≥ t1,
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where H(u) := −G(−u) for u ∈ R. Clearly, H also satisfies (A2) and (A4). Then,
proceeding as above, we find the same contradiction. This completes the proof. �

Theorem 2.5. Let 1 ≤ p(t) ≤ p for t ≥ t0, where p is a constant. Assume that (C1) and
(A1)–(A4) hold. Furthermore, assume that the following conditions hold:
(A6) there exists λ > 0 such that

G(u) + G(v) ≥ λG(u + v) for u, v ≥ 0

and
G(u) + G(v) ≤ λG(u + v) for u, v ≤ 0;

(A7)
G(uv) ≤ G(u)G(v) for u, v ≥ 0

and
G(uv) ≥ G(u)G(v) for u, v ≤ 0;

(A8) τ(σ(t)) = σ(τ(t)) for t ≥ t0;
(A9)

∫ ∞ Q(η)dη = ∞, where

Q(t) := min{q(t), q(τ(t))τ ′(t)} for t ≥ t0.

Then, every solution of (1.1) is oscillatory.

Proof. Without loss of generality, suppose the contrary that x is an eventually positive
solution of (1.1). Then, there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0
for t ≥ t1. Clearly, z defined by (1.4) is positive on [t1, ∞). By Lemma 2.1 and Remark 2.2,
there exists ε > 0 such that z(t) ≥ ε for t ≥ t2, where t2 ≥ t1. Let us define

w(t) := r(t)z′(t) + G(p)r(τ(t))z′(τ(t)) > 0 for t ≥ t3,

where t3 ≥ t2. From (1.1), we compute that

0 =(rz′)′(t) + q(t)G
(
x(σ(t))

)
+ G(p)τ ′(t)

[
(rz′)′(τ(t)) + q(τ(t))G

(
x(σ(τ(t)))

)]
=w′(t) + q(t)G

(
x(σ(t))

)
+ q(τ(t))τ ′(t)G(p)G

(
x(τ(σ(t)))

)
for t ≥ t4, where t4 ≥ t3. Using (A6) and (A7), we obtain

0 ≥w′(t) + Q(t)G
(
x(σ(t))

)
+ G

(
px(τ(σ(t)))

)
≥w′(t) + λQ(t)G

(
x(σ(t)) + px(τ(σ(t)))

)
≥w′(t) + λQ(t)G

(
x(σ(t)) + p(σ(t))x(τ(σ(t)))

)
=w′(t) + λQ(t)G

(
z(σ(t))

)
(2.4)

for t ≥ t4. Consequently,

w′(t) + λQ(t)G(ε) ≤ 0 for t ≥ t4,

which upon integration over the interval [t4, t) ⊂ [t4, ∞) yields that

λG(ε)
∫ t

t4
Q(η)dη ≤ w(t4) for all t ≥ t4.

This contradicts (A9). Thus, x(t) > 0 for t ≥ t1 cannot hold.
The case where x is eventually negative is very similar and we omit it here. Thus, the

theorem is proved. �

Let us give an important example for Theorem 2.5, where the results in [1–5, 12, 16]
cannot be applied because of the limitation inf{τ ′(t) : t ≥ t0} > 0. Further, the results
in [8, 13] cannot be applied either because of the nonlinear form of the delay τ .
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Example 2.6. Consider the differential equation
d2

dt2 [x(t) + 2x(t − sin(π
2 t) − 1)] + x(t − 4) = 0 for t ≥ 0, (2.5)

where r(t) :≡ 1, p(t) :≡ 2, τ(t) := t − sin(π
2 t) − 1, q(t) :≡ 1, σ(t) := t − 4 and G(u) := u

for t ≥ 0 and u ∈ R. We have
τ(σ(t)) = t − sin(π

2 t) − 5 = σ(τ(t)) and τ ′(t) = 1 − π
2 cos(π

2 t) for t ≥ 0.

Note that τ ′ is oscillatory and Q(t) := min{1, 1 − π
2 cos(π

2 t)} for t ≥ 0. Obviously, Q

is a periodic function with a period of 4. Further,
∫ 4

0 Q(η)dη = 2, which shows that∫ ∞ Q(η)dη = ∞. Then, all the assumptions of Theorem 2.5 holds. Hence, every solution
of (2.5) oscillates.

Theorem 2.7. Let −1 ≤ p(t) ≤ 0 for t ≥ t0. Assume that (C1) and (A1)–(A5) hold.
Then, every unbounded solution of (1.1) oscillates.

Proof. Without loss of generality, suppose the contrary that x is an eventually positive
unbounded solution of (1.1). Then, there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and
x(σ(t)) > 0 for t ≥ t1. Proceeding as in the proof of Lemma 2.1, we see rz′ is nonincreasing
and z is monotonic on [t2, ∞), where t2 ≥ t1. We have the following two possible cases.
Case 1. Let z(t) > 0 for t ≥ t2. By Lemma 2.1, (2.1) holds for t ≥ t3. Clearly, z(t) ≤ x(t)
for t ≥ t3 implies

(rz′)′(t) + q(t)G(z(σ(t))) ≤ 0 for t ≥ t3, (2.6)
where t4 ≥ t3. Further, by Lemma 2.1 and Remark 2.2, there exists ε > 0 such that
z(t) ≥ ε for t ≥ t4. Consequently, it follows from (2.6) that

(rz′)′(t) + G(ε)q(t) ≤ 0 for t ≥ t4.

Integrating the last inequality over [t4, t) ⊂ [t4, ∞), we have

G(ε)
∫ t

t4
q(η)dη ≤ r(t4)z′(t4) for t ≥ t4.

This contradicts (A5).
Case 2. Let z(t) < 0 for t ≥ t2. As x is unbounded, there exists T ≥ t2 such that x(T ) =
max{x(η) : t2 ≤ η ≤ T}. Then, from (1.4), we have x(T ) ≤ z(T ) + x(τ(T )) < x(T ),
which is a contradiction.
The case where x is an eventually negative unbounded solution is similar and we omit it
here. Thus, the proof is complete. �
Theorem 2.8. Let −1 < −p ≤ p(t) ≤ 0 for t ≥ t0, where p is a constant. Assume
that (C1) and (A1)–(A5) hold. Then, every bounded solution of (1.1) either oscillates or
converges to zero asymptotically.

Proof. Without loss of generality, let x be an eventually positive bounded solution of
(1.1). Then, there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0 for t ≥ t1.
By Lemma 2.3, there exists t2 ≥ t1 such that z′(t) > 0 for t ≥ t2. Consequently, we have
the following two possible cases.
Case 1. Let z(t) > 0 for t ≥ t2. Proceeding as in Case 1 in the proof of Theorem 2.7, we
get a contradiction.
Case 2. Let z(t) < 0 for t ≥ t2. Then, limt→∞ z(t) exits. Thus, we have

0 ≥ lim
t→∞

z(t) = lim sup
t→∞

z(t) = lim sup
t→∞

[x(t) + p(t)x(τ(t))]

≥ lim sup
t→∞

[x(t) − px(τ(t))] ≥ lim sup
t→∞

x(t) + lim inf
t→∞

[−px(τ(t))]

=(1 − p) lim sup
t→∞

x(t),
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i.e., lim supt→∞ x(t) = 0 (since 0 < p < 1) and hence limt→∞ x(t) = 0.
The case where x is an eventually negative bounded solution is omitted since it can be
dealt similarly. This completes the proof. �

Combining Theorem 2.5 and Theorem 2.7, we have the following corollary.

Corollary 2.9. Let −1 < −p ≤ p(t) ≤ 0 for t ≥ t0, where p is a constant. Assume that
(C1) and (A1)–(A5) hold. Then, every solution of (1.1) either oscillates or converges to
zero asymptotically.

Theorem 2.10. Let −p1 ≤ p(t) ≤ −p2 < −1 for t ≥ t0, where p1 and p2 are constants.
Assume that (C1) and (A1)–(A5) hold. Then, every bounded solution of (1.1) either
oscillates or converges to zero asymptotically.

Proof. Without loss of generality, let x be an eventually positive bounded solution of
(1.1). Then, z defined by (1.4) is also bounded. By Lemma 2.3, z is increasing. Hence,
we have the following two possible cases.
Case 1. Let z(t) > 0 for t ≥ t2. Proceeding as in Case 1 in the proof of Theorem 2.7, we
get a contradiction.
Case 2. Let z(t) < 0 for t ≥ t2. In this case, limt→∞ z(t) exists as a nonpositive finite
value. We claim that limt→∞ z(t) = 0. Otherwise, limt→∞ z(t) < 0, i.e., there exists ε > 0
such that z(t) < −ε for t ≥ t1. Then, we have z(t) ≥ p(t)x(τ(t)) ≥ −p1x(τ(t)) for t ≥ t1,
which implies x(t) ≥ − 1

p1
z(τ−1(t)) ≥ ε

p1
for t ≥ t1. Consequently, (2.2) becomes

(rz′)′(t) + q(t)G
(

ε

p1

)
≤ 0 for t ≥ t1.

Integrating the last inequality over the interval [t1, t) ⊂ [t1, ∞), we get

G

(
ε

p1

) ∫ t

t2
q(η)dη ≤ r(t2)z′(t2) for t ≥ t1.

This contradicts (A5). Therefore, limt→∞ z(t) = 0. Hence,

0 = lim
t→∞

z(t) = lim inf
t→∞

z(t) ≤ lim inf
t→∞

[x(t) − p2x(τ(t))]

≤ lim sup
t→∞

x(t) + lim inf
t→∞

[−p2x(τ(t))]

≤(1 − p2) lim sup
t→∞

x(t),

which implies that lim supt→∞ x(t) = 0 (since p2 > 1). Thus, lim inft→∞ x(t) = 0 and
hence limt→∞ x(t) = 0.
Therefore, any nonoscillatory solution x of (1.1) converges to zero. This completes the
proof of the theorem. �

Example 2.11. Consider the differential equations

d
dt

[
t

d
dt

[x(t) − 3x(e−πt)]
]

+ 4
t
x(t) = 0 for t ≥ 1, (2.7)

where r(t) := t, p(t) :≡ −3, τ(t) := e−πt, q(t) := 4
t , σ(t) := t and G(u) := u for t ≥ 1 and

u ∈ R. It can be easily shown that Theorem 2.10 applies to (2.7). Thus, every bounded
solution oscillates or converges to zero asymptotically. Obviously, x(t) = sin(ln(t)) for
t ≥ 1 is an oscillating solution.
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2.2. Oscillation under the condition (C2)
Remark 2.12. If we set

R(t) :=
∫ ∞

t

1
r(η)

dη for t ≥ t0, (2.8)

then (C2) implies that R(t) → 0 as t → ∞.

Lemma 2.13. Assume that (C2) and (A1)–(A3) hold. If x is an eventually positive solu-
tion of (1.1) such that the companion function z defined by (1.4) is eventually decreasing
and positive, then there exists ε > 0 such that z satisfies

εR(t) ≤ z(t) for all large t, (2.9)

where R is defined in (2.8).

Proof. Suppose that x(t), z(t) > 0 and z′(t) < 0 for t ≥ t1, where t ≥ t0. By (A3), we
may assume without loss of generality that x(σ(t)) > 0 for t ≥ t1. From (1.1) and (A2), we
get (2.2). Consequently, rz′ is nonincreasing on [t1, ∞). Therefore, r(s)z′(s) ≤ r(t)z′(t)
for s ≥ t ≥ t1, which implies

z′(s) ≤ r(t)z′(t)
r(s)

for s ≥ t ≥ t1.

Consequently,

z(s) ≤ z(t) + r(t)z′(t)
∫ s

t

1
r(η)

dη for s ≥ t ≥ t1.

As rz′ is nonincreasing, we can find a constant ε > 0 such that r(t)z′(t) ≤ −ε for t ≥ t1. As
a result z(s) ≤ z(t) − ε

∫ s
t

1
r(η)dη for s ≥ t ≥ t1. By letting s → ∞, we get 0 ≤ z(t) − εR(t)

for t ≥ t1, which proves (2.9). �

Theorem 2.14. Let 0 ≤ p(t) ≤ p for t ≥ t0, where p is a constant. Assume that (C2),
(A1)–(A4) and (A6)–(A9) hold. Further, assume

(A10) ∫ ∞

t0

1
r(η)

∫ η

t0
Q(ζ)G

(
εR(σ(ζ))

)
dζdη = ∞ for every ε > 0

and ∫ ∞

t0

1
r(η)

∫ η

t0
Q(ζ)G

(
εR(σ(ζ))

)
dζdη = −∞ for every ε < 0,

where Q is defined in (A9).
Then, every solution of (1.1) is oscillatory.

Proof. Without loss of generality, assume the contrary that x is an eventually positive
solution of (1.1). Proceed as in the proof of Lemma 2.1 to obtain (2.2) for t ≥ t1, i.e., rz′

is nonincreasing on [t2, ∞), where t2 ≥ t1. Recall that z is positive on [t2, ∞). Thus, we
have the following two cases.
Case 1. Let z′(t) > 0 for t ≥ t2. Then, we proceed as in Theorem 2.5 to get a contradic-
tion.
Case 2. Let z′(t) < 0 for t ≥ t2. By Lemma 2.13, we have (2.9) for t ≥ t3, where ε > 0
and t3 ≥ t2. Using (2.9) in (2.4), we have

w′(t) + λQ(t)G
(
εR(σ(t))

)
≤ 0 for t ≥ t3,

where t3 ≥ t2. Integrating the last inequality over the interval [t3, t) ⊂ [t3, ∞), we obtain

λ

∫ t

t3
Q(η)G

(
εR(σ(η))

)
dη ≤ −w(t) ≤ −

(
1 + G(p)

)
r(t)z′(t),
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which implies
λ

1 + G(p)
1

r(t)

∫ t

t3
Q(η)G

(
εR(σ(η))

)
dη ≤ −z′(t) for t ≥ t3.

Again integrating the last inequality over the interval [t3, t) ⊂ [t3, ∞), we obtain
λ

1 + G(p)

∫ t

t3

1
r(η)

∫ η

t3
Q(ζ)G

(
εR(σ(ζ)))dζdη ≤ z(t3) for t ≥ t3,

which contradicts (A10).
The case where x is eventually negative can be dealt similarly, and we omit the details
here. This completes the proof. �
Example 2.15. Consider the differential equations

d
dt

[
et d

dt
[x(t) + 3e−tx(t − 3)]

]
+ e3t(x(t − 1)

)3 = 0 for t ≥ 3, (2.10)

where r(t) := et, R(t) := e−t, p(t) := 3e−t, τ(t) := t − 3, q(t) := e3t, σ(t) := t − 1 and
G(u) := u3 for t ≥ 3 and u ∈ R. Then, all the assumptions of Theorem 2.14 holds. Hence,
every solution of (2.10) oscillates.

Theorem 2.16. Let −1 ≤ p(t) ≤ 0 for t ≥ t0. Assume that (C2) and (A1)–(A5) hold.
Furthermore, assume that

(A11) ∫ ∞

t0

1
r(η)

∫ η

t0
q(ζ)G

(
εR(σ(ζ))

)
dζdη = ∞ for every ε > 0

and ∫ ∞

t0

1
r(η)

∫ η

t0
q(ζ)G

(
εR(σ(ζ))

)
dζdη = −∞ for every ε < 0.

Then, every unbounded solution of (1.1) oscillates.

Proof. Without loss of generality, let x be an eventually positive unbounded solution of
(1.1). Then, there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0 for t ≥ t1.
Proceeding as in the proof of Lemma 2.1, we see that z and z′ are of single sign on [t2, ∞),
where t2 ≥ t1. Consequently, we have the following two possible cases.
Case 1. Let z(t) > 0 for t ≥ t2. Note that in this case, we have z(t) ≤ x(t) for t ≥ t2.
(a) Let z′(t) > 0 for t ≥ t2. We easily get (2.6). Then, proceeding as in Case 1 in the

proof of Theorem 2.7, we get a contradiction.
(b) Let z′(t) < 0 for t ≥ t2. By Lemma 2.13, we have (2.9) for t ≥ t3, where ε > 0 and

t3 ≥ t2. Using z(t) ≤ x(t) for t ≥ t2 and (2.2), we get
(rz′)′(t) + q(t)G

(
εR(σ(t))

)
≤ 0 for t ≥ t3,

where t3 ≥ t2. The rest of the proof follows similar to Case 2 in the proof of Theorem 2.14.
Case 2. Let z(t) < 0 for t ≥ t2. The proof is similar to Case 2 in the proof of Theorem 2.7.
The proof is therefore completed. �
Theorem 2.17. Let −1 < −p ≤ p(t) ≤ 0 for t ≥ t0, where p is a constant. Assume that
(C2), (A1)–(A5) and (A11) hold. Then, every bounded solution of (1.1) either oscillates
or converges to zero asymptotically.

Proof. Without loss of generality, let x be an eventually positive bounded solution of
(1.1). Then, there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0 for t ≥ t1.
Proceeding as in the proof of Lemma 2.1, we see that z and z′ are of single sign on [t2, ∞),
where t2 ≥ t1. Consequently, we have the following two possible cases.
Case 1. Let z(t) > 0 for t ≥ t2. In this case, we proceed as in Case 1 in the proof of
Theorem 2.16 and get a contradiction.



Oscillation theorems for second-order nonlinear delay differential equations 641

Case 2. Let z(t) < 0 for t ≥ t2. Recalling that z is monotonic, we follow the steps in
Case 2 in the proof of Theorem 2.8 and see that limt→∞ x(t) = 0.
Hence, the proof of the theorem is complete. �

Combining Theorem 2.16 and Theorem 2.17, we have the following corollary.

Corollary 2.18. Let −1 < −p ≤ p(t) ≤ 0 for t ≥ t0, where p is a constant. Assume
that (C2), (A1)–(A5) and (A11) hold. Then, every solution of (1.1) either oscillates or
converges to zero asymptotically.

Theorem 2.19. Let −p1 ≤ p(t) ≤ −p2 < −1 for t ≥ t0, where p1 and p2 are constants.
Assume that (C2), (A1)–(A5) and (A11) hold. Further, assume that

(A12)
∫ ∞

t0
1

r(η)
∫ η

t0
q(ζ)dζdη = ∞.

Then, every bounded solution of (1.1) either oscillates or converges to zero asymptotically.

Proof. Without loss of generality, let x be an eventually positive bounded solution of
(1.1). Then, there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0 for t ≥ t1.
Proceeding as in the proof of Lemma 2.1, we see that z and z′ are of single sign on [t2, ∞),
where t2 ≥ t1. Consequently, we have the following two possible cases.
Case 1. Let z(t) > 0 for t ≥ t2. In this case, we proceed as in Case 1 in the proof of
Theorem 2.16 and get a contradiction.
Case 2. Let z(t) < 0 for t ≥ t2. In this case, limt→∞ z(t) exists as a nonpositive finite
value. We claim that limt→∞ z(t) = 0. Otherwise, limt→∞ z(t) < 0, i.e., there exists ε > 0
such that z(t) < −ε for t ≥ t2. Then, we have z(t) ≥ p(t)x(τ(t)) ≥ −p1x(τ(t)) for t ≥ t2,
which implies x(t) ≥ − 1

p1
z(τ−1(t)) ≥ ε

p1
for t ≥ t2. Consequently, (2.2) becomes

(rz′)′(t) + q(t)G
(

ε

p1

)
≤ 0 for t ≥ t2.

Integrating the last inequality over the interval [t2, t) ⊂ [t2, ∞), we get

− r(t2)z′(t2) + G

(
ε

p1

) ∫ t

t2
q(η)dη ≤ −r(t)z′(t) for t ≥ t2.

Again, integrating the last inequality over the interval [t2, t) ⊂ [t2, ∞) after dividing
through by r, we get

− r(t2)z′(t2)
∫ t

t2

1
r(η)

dη + G

(
ε

p1

) ∫ t

t2

1
r(η)

∫ η

t2
q(ζ)dζdη ≤ −z(t) for t ≥ t2,

which contradicts (A12) by (C2). Therefore, limt→∞ z(t) = 0. For the rest of the proof,
we follow the steps in the last part of Case 2 of Theorem 2.10 to get limt→∞ x(t) = 0.
Hence, the proof of the theorem is complete. �

3. Final comments
In this section, we will be giving some simple remarks to conclude the paper.

Remark 3.1. In Theorem 2.4–Theorem 2.19, G is allowed to be linear, sublinear or
superlinear. A prototype of the function G satisfying (A2), (A4), (A6) and (A7) is(

1 + α|u|β
)
|u|γsgn(u) for u ∈ R,

where α ≥ 1 or α = 0 and β, γ > 0 are reals. For verifying (A6), we may take help of the
well-known inequality (see [9, p. 292])

up + vp ≥ h(p)(u + v)p for u, v > 0, where h(p) :=

 1, 0 ≤ p ≤ 1,
1

2p−1 , p ≥ 1.
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Remark 3.2. If the nonlinear term G is an odd function (presented as in Remark 3.1),
it suffices to verify only the first conditions in (A6), (A7), (A10) and (A11).

Remark 3.3. The results of this paper also hold for equations of the form

d
dt

[
r(t) d

dt
[x(t) + p(t)x(τ(t))]

]
+

m∑
i=1

qi(t)Gi
(
x(σi(t))

)
= 0 for t ≥ t0,

where r, p and τ satisfy previously mentioned assumptions and qi, Gi, σi (i = 1, 2, · · · , m)
satisfy the assumptions in (A1)–(A3). In order to extend Theorem 2.4–Theorem 2.19, we
may assume that there exists an index i such that Gi, qi, σi, Qi fulfills (A4)–(A12).

We finalize the paper by presenting two examples, which show how Remark 3.3 can be
applied.

Example 3.4. Consider the differential equation

d
dt

[
e−4t d

dt

[
x(t) − 3

e2 x(t − 1)
]]

+ 8
(
x(t)

)3 + 16e−5tx( t
2) = 0 for t ≥ 1, (3.1)

where r(t) := e−4t, p(t) :≡ − 3
e2 , τ(t) := t − 1, q1(t) :≡ 8, σ1(t) := t, G1(u) := u3,

q2(t) := 16e−5t, σ2(t) = t
2 and G2(u) := u for t ≥ 1 and u ∈ R. All the assumptions

of Corollary 2.9 can be verified with the index i = 1. Hence, due to Remark 3.3, every
solution of (3.1) oscillates or converges to zero asymptotically. Clearly x(t) = e−2t for
t ≥ 1 is a solution satisfying limt→∞ x(t) = 0.

Example 3.5. Consider the differential equation

d
dt

[
1
t2

d
dt

[
x(t) − e−πx(t − π)

]]
+ 4 cosh(π)t

[
e− π

2 (t + 1)x(t − π
2 ) + x(t − π)

]
= 0 for t ≥ 2π,

(3.2)

where r(t) := 1
t2 , R(t) := 1

t , p(t) :≡ e−π, τ(t) := t − π, q1(t) := 4e− π
2 cosh(π)t(t + 1),

σ1(t) = t − π
2 , G1(u) := u, q2(t) := 4 cosh(π)t, σ2(t) := t − π and G2(u) := u for t ≥ 2π

and u ∈ R. All the assumptions of Corollary 2.18 can be verified with the index i = 2. In
particular, for (A11), we have∫ ∞

2π

1
η

∫ η

2π
4 cosh(π)ζ ε

ζ − π
dζdη = ∞ for any ε > 0.

Hence, due to Remark 3.3, every solution of (3.2) oscillates, and such a solution is x(t) =
et sin(t) for t ≥ 2π.
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