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Abstract
Fuzzy clustering has become an important research field in pattern
recognition and data analysis. As supporting unsupervised mode of
learning, fuzzy clustering brings about unique opportunities to reveal
structural relationships in data. Fuzzy c-means clustering is one of
the widely preferred clustering algorithms in the literature. However,
fuzzy c-means clustering algorithm has a major drawback that it can
get trapped at some local optima. In order to overcome this short-
coming, this study employs a new generation metaheuristic algorithm.
Weighted Superposition Attraction Algorithm (WSA) is a novel swarm
intelligence-based method that draws inspiration from the superposi-
tion principle of physics in combination with the attracted movement
of agents. Due to its high converging capability and practicality, WSA
algorithm has been employed in order to enhance performance of fuzzy-
c means clustering. Comprehensive experimental study has been con-
ducted on publicly available datasets obtained from UCI machine learn-
ing repository. The results point out significant improvements over the
traditional fuzzy c-means algorithm.
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1. Introduction
Clustering is a prominent task of unsupervised machine learning and is defined as

a process of grouping similar objects. Generally speaking, clustering aims to discover
natural groupings of data points or instances based on the similarities [21]. Objects
in the same cluster are said to be more similar than those in different groups. In this
regard, a certain criterion is optimized in order to distribute objects into different clusters.
A plethora of clustering methods has been developed in the literature during the past
quarter-century and one can see that clustering has played a critical role in different
application domains of science and engineering such as data mining, machine learning,
fault diagnosis, pattern recognition and fault diagnosis [18].

Clustering algorithms can be classified into two categories, namely, hard (crisp) and
fuzzy clustering. Typical hard clustering algorithms are ISODATA, LVQ, k-means clus-
tering [23]. Hard clustering algorithms are easy to implement and practical. Despite
the fact that hard clustering algorithms have played a central role in many application
domains, they assume that clusters are strictly separated and overlapping between clus-
ters are not allowed. In hard clustering algorithms, membership values of an object to
clusters are either zero or one. On the other hand, fuzzy clustering algorithms assign
membership degrees between objects and the different groups of the dataset [29].

Fuzzy c-means (FCM), proposed by Bezdek [7], is one of the most widely used fuzzy
clustering methods. In FCM method, fuzzy memberships are distributed to clusters for
each pattern. Unlike the hard clustering algorithms, degree of belongingness to a cluster
is expressed by membership value between [0,1]. In fact, hard clustering algorithms can
be seen as a special case of the fuzzy clustering algorithm in which an object takes the
value of 1 as a membership degree for a cluster and a membership of 0 for the rest of
the clusters. By utilizing maximum membership degrees for each cluster, crisp cluster
structure can easily be obtained. The main advantage of using FCM is that when the
clusters are overlapping in nature due to the dataset characteristics, FCM is generally
more successful as a result of higher level information processing [28].

In FCM clustering, as with the K-means clustering [16], number of clusters are known
a priori and objects are distributed in c clusters by iteratively minimizing an optimization
criterion. The major drawback of these algorithms is that results are largely dependent on
the initial cluster centers [2]. Also, they often can get trapped at local optima. Recently,
many extensions and improvements have been reported in order to overcome deficiencies
of the traditional FCM algorithm. Pimentel and de Souza [30] proposed multivariate
memberships for FCM algorithm. Here, memberships are represented in a matrix form,
varying one feature to another and one cluster to another. A weighted multivariate FCM
method for handling interval-valued data is proposed by Pimentel and de Souza [31]. In
the study, weights of each variable differ from one cluster to another. Zhaoet al. [38]
proposed optimal selection based suppressed FCM algorithm with self-tuning capability
in order to improve image segmentation performance. Zhanget al. [36] proposed a genetic
algorithm and gradient-based optimization strategy for interval weighted FCM algorithm.
Each attribute was weighted by interval values in order to obtain a reasonable data
partition. Sabzekar and Naghibzadeh [32] proposed relaxed constraints support vector
machines in order to solve the problem of FCM that data points assigned to some clusters
might have low membership values. In order to solve the problem of assigning data points
to clusters with low confidence, noise-aware implementation of supper vector machines
was proposed.

Nature inspired metaheuristic approaches have also been employed in clustering ap-
plications. Many metaheuristic-based clustering approaches have been brought into the
literature including ant colony optimization [33], simulated annealing [19], particle swarm
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optimization (PSO) [22], artificial bee colony algorithm [37] to name a few. Especially
swarm intelligence-based metaheuristics have enjoyed a visible position in the literature.
Nayak et al. [26] proposed a hybrid chemical reaction based metaheuristic within FCM
algorithm and performance metrics such as rate of error, inner and inter cluster distances,
and etc. are calculated. Filho et al. [15] integrated self-adaptive PSO algorithm with
FCM in order to achieve better results. Belacel et al. [6] combined variable neighborhood
search with FCM clustering in order to obtain better quality results. For more informa-
tion regarding metaheuristic-based enhancements of FCM algorithm can be found in
[25, 1]

Weighted Superposition Attraction (WSA) algorithm is a recent swarm intelligence
based metaheuristic developed by Baykasolu and Akpinar [3], [4]. WSA is inspired from
the natural phenomenon of superposition principle and field attraction. WSA was de-
signed to solve unconstrained and constrained global optimization problems. Recently,
Baykasolu and Özsoydan [5] implemented WSA algorithm for dynamic binary optimiza-
tion problems. Özbakr and Turna [27] evaluated performance of WSA algorithm for
hard clustering and the results are compared with the other state of the art methods.
In this study, WSA algorithm is carried out in order to model and solve fuzzy clustering
problem. The contribution of the paper is twofold:

• WSA algorithm is implemented for enhancing traditional FCM first time in the
literature. Comprehensive computational analysis is provided in order to test
the performance of the WSA algorithm.

• WSA algorithm is further improved with the quantum particles [11] that perform
local search within an intensifying quantum cloud.

The rest of the paper is organized as follows: Brief overview of the FCM algorithm and
the performance metrics are given in Section 2. In Section 3, building blocks of the WSA
algorithm are introduced. In Section 4, details of the proposed method are given. Finally,
a comprehensive computational study and concluding remarks are given in Section 5 and
Section 6, respectively.

2. Fuzzy c-means clustering
Fuzzy c-means clustering algorithm is one of the widely used objective function-based

clustering techniques. The fundamental aspect in fuzzy clustering is to determine the
similarity measure, in which distances between pair of data points are calculated. In
fuzzy c-means clustering, patterns are treated as vectors in the Euclidean space. Fuzzy
c-means algorithm attempts to find the most representative vector, which is considered
as the prototype or centroid of the cluster, and thereby the grade of memberships of data
points in each cluster are obtained. Various cluster validity measures are designed in
order to assess the clustering results. Compactness and separation indices are considered
in calculating cluster validity. In the next section, details of computational steps are
given based on [7, 8].

2.1. Fuzzy c-means algorithm. The collection of N data y1,y2, . . . ,yN is partitioned
into c clusters in the fuzzy c-means clustering, where 1 < c < N . As a result, a collection
of cluster centers v1,v2, . . . ,vc and a partition matrix, U = [uik], i = 1, 2, . . . c and
k = 1, 2, . . . , N are constructed. The partition matrix satisfies the following conditions:
uik ∈ [0, 1],

∑c
i=1 uik = 1∀k, and 0 <

∑N
k=1 uik < N ∀i. The objective function of the

fuzzy c-means clustering algorithm is as follows:

(2.1) Jm =

c∑
i=1

N∑
k=1

um
ik∥vi − yk∥

2
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where symbol ∥·∥represents a distance function, and m (m > 1) denotes a fuzzification
coefficient. The fuzzification coefficient is usually taken as m = 2. The fuzzification
coefficient influences the shape and overlapping of the membership function. Fuzzification
coefficient higher than two yields spiky membership functions, which exhibits rippling
effect. This behavior is highly influential on the results of fuzzy models.

The Euclidean distance from data point yk to cluster center vi is expressed as:

(2.2) ∥vi − yk∥
2 =

n∑
j=1

(ykj − vij)
2

The minimization of objective function given in Eq. 2.1 can be attained by an iterative
algorithm. For that aim, the cluster centers are updated as given in Eq. 2.3.

(2.3) vi =

N∑
k=1

um
ikyk

N∑
k=1

um
ik

The partition matrix is updated as given in Eq. 2.4.

(2.4) uik =
1

c∑
h=1

(
∥vi−yk∥
∥vh−yk∥

) 2
m−1

The Eqs. 2.3-2.4 are iterated, and vi and uik are updated towards the direction
that minimize the objective function Jm. When the vi and uik lie within the tolerance,
iteration is stopped. The pseudocode of the fuzzy c-means clustering algorithm is given
in Algorithm 1.

Algorithm 1 A pseudo code of the fuzzy c-means clustering
1: define number of clusters c, tolerance ε
2: initialize partition matrix randomly
3: continue_iter ←− 1
4: while continue_iter = 1 do
5: update cluster centers via Eq. 2.3
6: update partition matrix via Eq. 2.4
7: calculate objective function Jm

8: if
∥∥vt+1 − vt

∥∥ ≤ ε or
∥∥ut+1 − ut

∥∥ ≤ ε then
9: continue_iter ←− 0

10: end if
11: end while

Although fuzzy c-means clustering has been implemented in wide variety of problems,
FCM algorithm might be trapped at local optimal solutions due to its gradient based
strategy. This entails the use of alternative methods, such as heuristics or stochastic
search algorithms. Moreover, although the performance of clustering algorithm is assessed
by using the objective function given in Eq. 1, there is a need for other measures to
reveal detailed performance analysis. In the next section, cluster validity measures are
introduced.

2.2. Cluster validity measures. Cluster validity measures are employed to evaluate
clustering results. Significant number of approaches are devoted to test the quality of
fuzzy partitioning. Two important criteria being used to evaluate clustering performance
are compactness and separation. Compactness measures closeness of cluster elements.
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Variance can be an example of compactness. If the elements in the cluster have low
variance, this indicates closeness of the data points in that cluster. On the other hand,
separation is related to how distinct the clusters are. Separation measures are based
on the distances between different clusters. For instance, distance between centers of
different clusters can be a good example of separation measures.

In this study, we have selected partition coefficient, partition entropy, validity index
of Chen and Linkens, validity index of Fukuyama and Sugeno, and the validity index of
Xie and Beni.

2.2.1. Partition coefficient. The partition coefficient validity (VPC) index is defined as
[9]:

(2.5) VPC =
1

N

c∑
i=1

N∑
j=1

u2
ij

VPC index evaluates the relative amount of membership being shared between pairs of
subsets in partition matrix. The value of the index ranges in [1/c,1]. Cluster performance
is high if the VPC index is maximized.

2.2.2. Partition entropy. Partition entropy VPE is defined as [10]:

(2.6) PE = − 1

N

c∑
i=1

N∑
j=1

uij logb(uij)

where b is the base of the logarithm. PE takes its minimum value when the cluster
structure is optimal.

2.2.3. Chen and Linkens validity index. Validity index of the Chen and Linkens V P is
defined as [13]:

(2.7) VP =
1

N

N∑
k=1

max(uik)
i

− 1

K

c−1∑
i=1

c∑
j=i+1

[
1

N

N∑
k=1

min(uik, ujk)

]

where K =
∑c−1

i=1 i. The first term represents the compactness within a cluster. When
the kth pattern xk is closer to the cluster center, then the maximum membership grades
max(uik)

i

approach to 1. The second term makes use of intersection of two fuzzy sets

and indicates separation measure. Here, fuzzy separation between vi and vj . If data
point xk is close to the cluster center vi, then min(uik, ujk) approaches to 0, as a result
of that ith and jth center can said to be clearly separated. Conversely, if the value of
min(uik, ujk) is close to 1/c, then it means that xk belongs to the all clusters with equal
memberships and clusters are not well separated. V P indicates optimal cluster number
when it is maximized

2.2.4. Fukuyama and Sugeno index. The validity index of Fukuyama and Sugeno is
defined as [17]:

(2.8) VFS = Jm(u, v)−Km(u, v) =

c∑
i=1

N∑
j=1

um
ij

∥∥yj − vi

∥∥2 −
c∑

i=1

N∑
j=1

um
ij∥vi − v̄∥2

where v̄ =
∑c

i=1 vi/c. The first term is the compactness of the representation of data in
terms of cluster centers. The second term is related to separation that is expected to be
maximized. Therefore, minimum VFS indicates high quality of clustering.
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2.2.5. Xie and Beni index. Xie and Beni index is calculated as [35]:

(2.9) VXB =
Jm(u, v)/n

Sep(v)
=

c∑
i=1

N∑
j=1

um
ij

∥∥yj − vi

∥∥2

nmin
i,j
∥vi − vj∥2

In the numerator part of the VXB compactness of fuzzy partition is calculated, whereas
the denominator part stands for strength of separation between clusters. Therefore,
minimization of the index implies high performance of clustering.

3. Weighted Superposition Attraction Algorithm
In this section, first, the building blocks of WSA algorithm is described.

3.1. Initialization of agents. Initialization phase of WSA algorithm comprises of pa-
rameters setting and generating initial solutions. Parameters and their definitions will
be given in subsequent sections where relevant. Initial positions of agents are determined
randomly within the range of boundaries as given in Eq. 3.1.

(3.1) xij = xmin
j + rand(0, 1)(xmax

j − xmin
j )

where i = 1, 2, . . . , nPop, j = 1, 2, . . . , D. The expressions rand(0,1), xij , xmin
ij and

xmax
ij represent a uniform distributed random number ∈ [0, 1], the value of the ith agent

at the jth dimension, lower and upper bounds for the jth dimension, respectively. Num-
ber of search agents are denoted as nPop and number of optimization parameters are
represented by D.

After initialization, fitness of each solution vector (agent) is evaluated and global best
solution is assigned. Then, population of search agents are subjected to repeat cycles of
the search processes until the termination criterion (maximum number of iterations) is
met. Subsequent to initialization stage, each iteration is initialized by the superposition
generation phase.

3.2. Superposition generation. Guidance of the search process is one of the key steps
in any metaheuristic optimization algorithm. The questions like how to choose moving
patterns, or how to generate neighborhood solutions should be properly answered when
designing an effective search algorithm. In WSA algorithm, movement of search agents
are guided by a solution vector so called superposition which is indeed a physical term
stating that the individual responses caused by more than one stimuli at a given place
and time may be modeled as a single response. According to superposition principle,
each currently discovered point by an agent is considered as stimuli in WSA algorithm.
Each solution exerts attraction over the other agents in proportion to its fitness value.
WSA algorithm is able to combine each stimulus (discovered point) in number of different
ways. Initially, the attractiveness of each agent is transformed into weights. For this aim,
the agents of the population are ranked according to their fitness values in ascending
and descending order for minimization and maximization problems, respectively. Then,
weights of the agents are calculated based on the Eq. 3.2.

(3.2) weight(i) = i−τ

where i = 1, 2, . . . , nPop. The weight of the ith-ranked agent is represented by weight(i).
The parameter τ ∈ [0, 1] determines relative differences of the weight values. The Eq.
3.2 states that lower the rank of an agent, the higher the weight it will be assigned.

The weights of agents might be used in different ways to generate superposition. The
first proposed approach is to calculate weighted sum of the agents position vectors in order
to form superposition [3, 4]. However, weighted sum does not always lead to good quality
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solutions, especially when each locus of the agent position stores only positive values.
Another way to generate superposition is to employ roulette wheel selection [5]. Weights
of agents in the population here create selection pressure, which means that the agent
with a relatively higher weight has more chance of acting on the corresponding dimension
of the superposition. The superposition generation steps of [5] can be summarized as
follows: First, uniform random numbers are generated for each dimension. These random
numbers are interpreted as threshold values for the candidate agents which are subjected
to roulette wheel selection procedure. The agents whose weights are greater or equal
to the generated random numbers (thresholds) for the corresponding dimension undergo
roulette wheel selection. Roulette wheel selection is conducted based on fitness values
of the chosen agents. The winner agent transfers its position value to the corresponding
dimension of the superposition. This procedure is followed till all the dimensions are
filled up.

A motivating example of the superposition generation mechanism is illustrated in
Table 1. As given in the Table 1, weights are calculated with respect to different τ
values. Suppose that the τ value is determined as 0.70 and generated random numbers
for each dimension are 0.60, 0.36, 0.38, 0.32, 0.56, 0.33, and 0.80, respectively. According
to these threshold values, the solution agents, which will undergo roulette wheel selection,
are highlighted with gray color in Table 1. For instance, considering the first dimension,
the first two agents compete in the roulette selection. Consequently, let us assume that
the first agent wins the competition. Thus, the first dimension of the superposition
becomes 0.25, which is indicated with star symbol. Similarly, the second dimension of
the superposition turns out to be 5.32 as the first agent is selected in the roulette wheel
selection against second, third, and forth agents. The same procedure is repeated for the
rest of the dimensions.

Table 1. Randomized superposition determination procedure for WSA

weight
ranks dimensions τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9

1 0.25* 5.32* 2.15 0.20 0.18* 0.45 1.44* 1.000 1.000 1.000 1.000 1.000
2 0.18 4.48 3.45 0.23* 0.13 1.21* 3.30 0.933 0.812 0.707 0.615 0.535
3 0.45 3.45 8.63* 0.30 0.12 1.63 6.12 0.895 0.719 0.577 0.463 0.372
4 0.96 7.45 2.14 0.28 0.09 2.44 2.15 0.870 0.659 0.500 0.378 0.287
5 0.15 6.48 6.45 0.16 0.21 0.16 3.22 0.851 0.617 0.447 0.324 0.234
6 0.48 2.14 3.15 0.48 0.06 1.32 1.45 0.835 0.584 0.408 0.285 0.199
7 0.54 6.47 6.25 0.54 0.54 0.48 2.63 0.823 0.557 0.377 0.256 0.173
8 0.14 3.15 3.48 0.32 0.14 1.33 3.85 0.812 0.535 0.353 0.233 0.153

random numbers 0.60 0.36 0.38 0.32 0.56 0.33 0.80
superposition 0.25 5.32 8.63 0.23 0.18 1.21 1.44

It should be emphasized here that the first ranked agent is always a candidate for
the roulette wheel selection as any power of unity is equal to unity again. Chances of
other candidates are determined via τ value. That is to say, lower values of τ give nearly
equal chances to candidate agents. Increasing the τ value, the algorithm tends to exhibit
greedy behavior that better solutions are given higher probabilities in the roulette wheel
selection.

3.3. Search mechanism. Neighborhood generation and moving of agents are crucial
steps in directing an effective search. Prior to details of movement of agents, the concept
of step length is introduced first.

3.3.1. Step sizing. Determination of a proper step length contributes to have high level
of intensification in the search process. Various approaches have been proposed for step
length determination. These approaches can be categorized under the rubric of adaptive
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and variable step sizing strategies. WSA algorithm follows variable step length strategy,
which begins with an initial step length and changes the step length as the search pro-
gresses by using a proportional rule. The proportional rule requires a randomly generated
number and a user defined parameter λ. The step size updating function is given in Eq.
3.3.

(3.3) sl(t+ 1) =

{
sl(t)− e−t/(t+1) × φstep × sl(t), if r ≤ λ

sl(t) + e−t/(t+1) × φstep × sl(t), if r > λ

where t is the iteration number and φstep is a user defined parameter. The step sizing
function given in Eq. 3.3 has a decreasing trend as the iterations continue, however,
step length increases for some iterations during the search process. Due to this property,
WSA is able to intensively explore the search space without trapping into local extremum
points. General behavior of step size parameters is illustrated in Figure 1. Figure 1.a

(a) Behavior of ϕ (b) Behavior of λ

Figure 1. General behavior of the step sizing function

shows behavior of φ during the search process. The step length dramatically reduces as
the φ value increases. On the other hand, small φ values give rise to gentle decrements in
the step length. Effect of another parameter λ on step length is visualized in Figure 1.b.
Small λ values bring about frequent increments in the step length, while high λ values
produce consistent decrements of the step length. As the step length directly affects
the intensification ability of the search algorithm, φ and λ values should be properly
determined.

3.3.2. Moving of agents. The present study introduces new move mechanisms for WSA
that differ from the first introduced ones [3, 4]. The proposed moves are given in the
following.

Once the superposition is generated and the step lengths are calculated, each agent
decides on its movement. Two types of movements are defined in the WSA algorithm.
The first movement is moving towards superposition, and the second one is performing
random walk. In the former case, each agent comes to its decision by comparing its
own fitness with the fitness of the superposition. An agent certainly moves towards
superposition if the fitness of the superposition is better than the agents fitness. The
movement equation is given as in Eq. 3.4:

(3.4) xi = xi + sl × (xsp − xi) + α (rand− 0.5)
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where xi = {x1,x2, . . . ,xN} represents position vector of the ith agent, xsp is the position
vector of the superposition, α is the randomization parameter and rand is a random
number uniformly distributed in [0,1].

If the fitness of the superposition is worse than an agent, then an agent may move
towards the superposition or perform a random walk. This type of decision is made
based upon generating a random number and comparing its value with the ef(xi)−f(xsp).
Here, fitness values of the superposition and ith agent are denoted by f(xsp) and f(xi),
respectively. If the randomly generated number is lower than or equal to the obtained
value, agent moves towards the superposition. Otherwise, agent performs a random walk.

Preliminary work showed that the randomness parameter α play a critical role in
finding good quality of solutions and it was seen that the performance of the proposed
WSA might further be improved with the decreasing values of levels of α. Thus, by
using the proposed formulation for α (Eq. 3.5), local optima traps are avoided at the
prior iterations, whereas the effect of randomness can be decreased so as to encourage
intensification towards the end.

(3.5) α(t+ 1) = α(t)− e−t/(t+1) × φrandomness × α(t)

As described earlier, agents might search for randomly selected points if it does not
follow superposition. In this situation, number of different ways can be considered for
performing random walk. In this study, Gaussian random numbers are used for perform-
ing random walk as given in Eq. 3.6:

(3.6) xi = xi + sl ×N(0, 1)

where N(0, 1) denotes Gaussian random number with mean value of 0 and standard
deviation of 1.

3.4. Quantum particles based local search. The use of quantum particles was pro-
posed by Blackwell and Branke [12] within the context of metaheuristic search algorithms
as a means for maintaining a certain level of diversity in the population. However, it is
modified as an intensifying local search procedure in the present work.

Quantum particles of Blackwell and Branke [12] have been indeed inspired by the
atomic models, in which a number of electrons orbit a small ball of nucleons. Distinc-
tive feature of the quantum particles is that the particles do not orbit in deterministic
paths, similar to the particle behavior in quantum physics, they are distributed within a
probability cloud around the nucleus.

In our implementation, global best solution found so far is considered as the nucleus,
and quantum particles are used for performing an intensive local search around the best
solution. Generating one quantum particle is given in Algorithm 2.

Algorithm 2 A pseudo code for generating quantum particles
1: define input parameters rcloud
2: generate random Gaussian vector g = {g1, g2, . . . , gd} from N(0, 1)

3: calculate spatial distance of gi to the origin dist =
√∑d

i=1 g
2
i

4: generate a uniform number u ∈ [0, 1]
5: xq = xgb + g× rcloud × d

√
u/dist

6: repair infeasibilities in boundary constraints

There are two important parameters of the quantum particles namely, number of
quantum particles and quantum radius, which are denoted by nQuantum and rcloud,
respectively. Through the quantum particle generations, rcloud parameter is gradually
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decreased (Eq. 3.7) so that the particles are tightly clustered around the global best
solution. In Eq. 3.7, q is the local search counter and the maximum value of q will
be equal to nQuantum. Thus, while a quantum particle is generated with the cloud
rcloud(q), the next quantum particle will be generated with the rcloud(q + 1), which is
smaller than rcloud(q). The speed of decrement can be tuned via the parameter φquantum.
Figure 2 illustrates quantum particle generation strategy.

(3.7) rcloud(q + 1) = rcloud(q)− e−l/(l+1) × φquantum × rcloud(q)

Figure 2. Quantum particles located around nucleus

In the Figure 2, The global best solution (xgb) is represented by star symbol and
considered as the nucleus. The first quantum particle is shown by xq=1 is distributed
around the nucleus within the diameter of r1. Then, rcloud is reduced and the second
quantum particle xq=2 is located at the region within the diameter of r2. This process
continues and the quantum particles are drawn together around the nucleus in the latter
generations.

4. Fuzzy clustering via WSA
This section presents the implementation details of the WSA algorithm for optimizing

FCM clustering. As mentioned earlier, main disadvantage of the traditional FCM algo-
rithm is that it is prone to getting trapped at local optima. In order to escape from local
optima, WSA algorithm is used to optimize cluster centers so that best cluster centers
are sought for minimization of the objective function.

In the WSA-based optimization of FCM clustering, cluster centers are v = [vij ]c×s

considered as decision variables and encoded as position of agents. The total of c × s
decision variables are encoded. The position vector of the ith search agent is represented
by:

(4.1) xi =
[
xi,1, xi,2, . . . , xi,s, . . . , xi,c×(s−1)+1, xi,c×(s−1)+2, . . . , xi,c×s

]
where s denotes number of features in the dataset and the first s elements represent first
cluster, and the following s elements represent the second cluster and so on. By this way,
cluster centers v lend themselves to fitness function evaluations. The cluster centers can
be obtained by decoding search agents.
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The position vector of each search agent is decoded in order to obtain cluster centers.
When the cluster centers are acquired as a result of decoding procedure, fuzzy partition
matrix is calculated. Then, fuzzy partition matrix, cluster centers and data points are
used to calculate objective function Jm. Based on the objective function of the FCM
clustering, fitness function is defined as:

(4.2) f =
1

Jm + 1

where f represents fitness function to be maximized.
Finally, putting all things together, a pseudo code for the proposed WSA algorithm

is presented in Algorithm 3.

Algorithm 3 A pseudo code for the proposed WSA
1: read data
2: define input parameters
3: initialize population of nPop solution vectors xi, i = 1, . . . , nPop
4: evaluate fitness of each solution vector f (xi)
5: find the global best solution xgb

6: while t < maxIter do
7: sort the solution vectors in ascending order
8: assign weights
9: generate a superposition xsp via roulette-wheel (Table 1)

10: evaluate fitness of superposition f (xsp)
11: for i=1:nPop do
12: if xsp < xi then
13: // move towards the superposition (Eq. 3.4)
14: xi ←− superWalk (xsp,xi)
15: else
16: if rand ∈ [0, 1] ≤ e(f(xi)−f(xsp)) then
17: // move towards the superposition (Eq. 3.4)
18: xi ←− superWalk (xsp,xi)
19: else
20: // perform random walk (Eq. 3.6)
21: xi ←− randomWalk(xi)
22: end if
23: end if
24: Update global best solution
25: end for
26: //Local search based on quantum particles
27: quantumCloud ←− initial_quantumCloud
28: for q=1:nQuantum do
29: xq ←− quantumWalk (xgb, quantumCloud)
30: if xq ≤ xgb then
31: update the global best solution
32: end if
33: update quantumCloud (Eq. 3.7)
34: end for
35: update sl (Eq. 3.3), update α (Eq. 3.5)
36: end while
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5. Experimental study
In this section, results of the experimental study are given. Total of 12 datasets are

used to evaluate performance of the proposed WSA algorithm. The datasets used in the
present study are described in the following.

5.1. Datasets. The datasets obtained from UCI machine learning repository [24] are
used to evaluate performance of the proposed WSA algorithm in fuzzy clustering. There
is no missing value in these datasets, and they are characterized by number of instances,
number of attributes, and number of clusters as given in Table 2.

Table 2. Characteristics of datasets

dataset number of instances number of attributes number of clusters
Balance scale 625 4 3

Cmc 1473 9 3
Glass 214 9 6

Haberman 306 3 2
Hayesroth 160 5 3

Heart (Statlog) 270 13 2
Iris 150 4 3

Lenses 24 4 3
Magic04 19020 10 2

Robot Navigation 5456 2 4
Spect 80 22 2
Wine 178 13 3

Brief description of the datasets can be summarized as follows [24]:
Balance scale weight and distance database was generated based on psychological

experiments reported by Siegler [34]. Total of 625 samples are classified as having the
balance scale tip to the right, left, or balanced. The attributes are left-weight, left-
distance, right-weigh, and right-distance.

Contraceptive method choice dataset (cmc) is a subset of 1987 National Indonesia
contraceptive prevalence survey. In this dataset, there are 9 attributes and the goal is
to predict the current contraceptive method choice of women based on the demographic
and socio-economic factors.

Glass dataset belongs to the USA Forensic Science Service, in which glasses are char-
acterized by 9 attributes. The motivation is that a glass left can give valuable information
in terms of criminological evidence at the scene of a crime. There are six classes and 214
instances.

Habermans survival dataset is concerned with survival of patients who had undergone
surgery for breast cancer. The collected data belongs to University of Chicagos Billings
hospital and instances were collected between 1958 and 1970. There are 306 instances, 3
attributes, and 2 clusters in the dataset.

Hayesroth dataset is based on the work of [20], where attributes are defined as name,
hobby, age, educational level, and marital status. The goal is to classify objects into
classes that take nominal value between 1 and 3.

Heart (Statlog) dataset has 13 representative attributes and 270 instances. The goal
is to predict absence or presence of heart disease depending on the indicators given in
attributes.
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Iris dataset is one of the most commonly used dataset in the pattern recognition
field. Iris dataset has 150 instances and 4 attributes which are representing sepal length,
sepal width, petal length, and petal width in centimeters. There are 3 classes as Setosa,
Versicolor, and Virginica, with 50 samples per class.

Lenses dataset has 24 instances and 4 attributes. Each instance represents a patient
with age, spectacle prescription, being astigmatic or not, and tear production rate infor-
mation. The goal is to classify patients for hard, soft, or no contact lenses categories.

Magic Gamma (magic04) dataset involves instances that are related to high energy
gamma particles observed by Cherenkov gamma telescope. There are 19020 instances
and 10 attributes in the dataset. There are two classes which are gamma and hadron.

Wall-following robot navigation (Robot Navigation) dataset comprises of sensor data
and robot move classes. In the present study, 2 ultrasound readings are used as attributes
and four classes are used for number of clusters. There are 5456 instances in the dataset.

SPECT Heart dataset (Spect) is based on cardiac single proton emission computed
tomography images. Patients are classified as normal or abnormal. There are 80 instances
and 22 attributes.

Wine dataset shows results of chemical analysis of wines grown in Italy. These wines
are derived from three different cultivars. There are 13 constituents found in each type
of wines. The dataset contains 178 instances and 3 classes.

5.2. Fine tuning of parameters. It is known that the performance of a stochastic
search algorithm heavily depends on the used values of parameters. Therefore, first, the
parameters of WSA are tuned in a step by step manner to find appropriate values for
them. Throughout fine tuning tests, a medium-size dataset, namely glass dataset is used.

It is clear that the upcoming values of sl are indeed dependent to initial value of sl that
is denoted by sl(1). As the parameter sl is highly influential factor in the performance of
metaheuristic optimization, the parameters sl(1) and φstep are tuned by fixing the rest
of the parameters. Obtained results are given in Table 3.

Table 3. Tuning of sl(1) and φstep

φstep=0.001 φstep=0.0001 φstep=0.00001
sl(1) best sl(1) best sl(1) best
0.1 165.0008506678658 0.1 162.9152808105720 0.1 162.7137662313837
0.5 160.1182663761601 0.5 157.7969927908699 0.5 159.5885258464963
0.8 159.4083777664926 0.8 158.8175975713733 0.8 158.4077071732732
0.9 157.8895222947028 0.9 157.5080298140393 0.9 158.3259830770111
1 157.3176492840064 1 156.6663350043063 1 157.8450722453701

1.1 156.9728330368572 1.1 157.7604209100807 1.1 159.1657531874061
1.2 157.6056963796496 1.2 158.7602132363775 1.2 158.8447250143040
1.5 157.4825978440570 1.5 160.6263498169422 1.5 160.9497977501265
2 157.9689968605096 2 211.8619918738082 2 234.3812022421562
3 181.5139850792915 3 313.5116043978085 3 330.8144636874062
5 352.8221653355770 5 322.9584472646028 5 327.2212187033614

It is again clear that upcoming values of α depend on the initial value of this parameter
α(1). Fixing the values of sl(1) and φstep to 1.00 and 0.0001, respectively (Table 3),
varying values for α(1) and φrandomness are tested. Obtained results for these parameters
are given in Table 4.

According to the results of Table 4, the proposed WSA can achieve better results
while α(1) and φrandomness are fixed to 0.05 and 0.001, respectively.
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Table 4. Tuning of α(1) and φrandomness

φrandomness = 0.001 φrandomness = 0.0001 φrandomness = 0.00001

sl(1) best sl(1) best sl(1) best
0 557.6814051755958 0 557.6814051755958 0 557.6814051755958

0.05 154.1597167350611 0.05 154.2290187052191 0.05 155.8121939085336
0.1 154.2092076125439 0.1 154.3157878545660 0.1 154.3749566095637
0.5 154.9364345965384 0.5 157.0216036382375 0.5 156.7409020343351
0.6 155.2312214822992 0.6 160.0692016716831 0.6 157.7692235639947
0.8 156.4727733394877 0.8 161.4094908196177 0.8 161.9529180806684
0.9 157.0137549584548 0.9 162.4027908280079 0.9 163.2516572684658
1 157.8092511779108 1 164.7461657222427 1 164.4016999273107
2 167.0668923236167 2 177.7129988173032 2 179.6105190632742
3 174.5040637869102 3 188.9542627575888 3 201.3224817191195
5 197.2488612799824 5 223.0493406420312 5 222.4804497545378
7 217.4706711473002 7 231.1562167624101 7 252.1146553423424
10 251.5662116210819 10 311.0214867170516 10 300.5899867746922

The next test is devoted to finding appropriate values for nPop andτ . It is clear
that they have simultaneous effects of the generated superposition. Therefore, they were
simultaneously analyzed in Table 5. As one can see from Table 5 that better results can
be obtained when for nPop and τ are fixed to 20 and 0.50, respectively.

Table 5. Tuning of τ and nPop

nPop=15 nPop=20 nPop=25
τ best τ best τ best

0.1 163.2384329273312 0.1 165.9652409815041 0.1 154.2919487752122
0.2 163.5769417171133 0.2 154.2583721869968 0.2 154.2317009506931
0.3 155.4251137006843 0.3 154.1671873610296 0.3 154.1647376413734
0.4 154.2187703226765 0.4 154.1767479911774 0.4 154.1644531842730
0.5 154.7646289752577 0.5 154.1597167350611 0.5 154.1792165112592
0.6 154.1637529009309 0.6 154.1796126808663 0.6 154.1612183527501
0.7 154.1617916662650 0.7 154.1695894032582 0.7 154.1613007545423
0.8 154.1752374780770 0.8 154.1589153712213 0.8 154.1625626171038
0.9 154.6190886930279 0.9 154.1973253299350 0.9 154.1552273570345

The final test is devoted to finding the values of the quantum based local search
parameters. All obtained results are given in Table 6. It is clear from this table that
the efficient of WSA can be increased when of rcloud and φquantum are fixed to 1.00 and
0.70, respectively. The final parameter nQuantum is arbitrarily used as 50.

5.3. Performance evaluation of WSA. It is clear that a total of 70 fitness function
evaluations are performed for each iteration in the proposed WSA. The termination crite-
rion is determined as maximum number of iterations, which is equal to 2000. Therefore,
140,000 function evaluations are performed in total. All of the experiments are conducted
on a PC with Intel I7 2.4 Ghz processor and 16 GB RAM and all results are evaluated
over 30 independent replications. The resulting the objective function values are given
in Table 7.
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Table 6. Tuning of rcloud and φquantum

φquantum = 0.3 φquantum = 0.5 φquantum = 0.7

rcloud(1) best rcloud(1) best rcloud(1) best
0.01 154.1459871311321 0.01 162.5798261770892 0.01 154.9584394786354
0.05 154.1459934004529 0.05 154.1459876669529 0.05 154.1643027186621
0.1 154.1460010842752 0.1 154.1459868608848 0.1 154.1459872860223
0.2 154.1460345576582 0.2 154.1459868678999 0.2 154.1627937265761
0.3 154.1460896990897 0.3 154.1459876127277 0.3 154.1459902231412
0.5 154.1461861404444 0.5 154.1459928507705 0.5 154.1463733331513
0.7 154.1470005609310 0.7 154.1459871846886 0.7 154.1460082767046
1 159.9709013996618 1 154.1459872012569 1 154.1459868575310
2 162.9652576795842 2 154.1459890228997 2 154.1459870680219
3 162.9579731415267 3 154.1459897462816 3 154.1518714951608
5 162.6928536855918 5 154.1459912747030 5 154.1459870251029
10 163.1065324170578 10 162.9478662601923 10 162.5799215805601

According to resulting objective function values, WSA algorithm outranked classical
FCM algorithm in all instances. Although small differences are observed in the best
values of the results, the WSA algorithm produces smaller standard deviation in general.
Also note that these smaller deviations can have great impact on the final outcomes in
different application domains.

As the results are validated for objective function, performance of the WSA algorithm
in terms of other metrics is examined. In Table 8, results for the partition coefficient index
are given. According to resulting partition coefficient indices, WSA performance is better
in 50% of the instances which are glass, haberman, heart, magic04, robot navigation, and
spect. On the other hand, in balance scale, cmc, hayesroth, iris, lenses and wine datasets,
traditional FCM yields slightly better results in comparison with the WSA.

Similarly, partition entropy indices are calculated for the WSA and traditional FCM
results as given in the Table 9.

In 58% of the instances, partition entropy indices produced by WSA algorithm surpass
traditional FCM results. On the other hand, 42% of the all instances, traditional FCM
algorithm exhibits better performance with a very small differences.

In Table 10, resulting Chen and Linkens indices are given.
According to Chen and Linkens index, WSA has better performance in glass, haber-

man, heart, magic04, robot navigation, and spect datasets. Hence, WSA has better
performance in 50% of the instances in terms of Chen and Linkens index.

Results of Fukuyama and Sugeno indices are given in Table 11.
As in the case with Chen and Linkens index, WSA performs better in 50% of the

instances with respect to Fukuyama and Sugeno index. In the glass, haberman, heart,
magic04, robot navigation and spect datasets, WSA shows better performance. On the
other hand, in the balance scale, cmc, hayesroth, iris, lenses and wine datasets, traditional
FCM algorithm exhibits better performance with slight differences.

In Table 12, results of Xie-Beni index are given.
According to Xie-Beni index, 67% of the instances, WSA outperforms the traditional

FCM algorithm. FCM algorithm has better performance in balance scale, cmc, hayesroth
and wine datasets.

In order to see the convergence behavior of the proposed approach, related plots for
glass, haberman, iris, lenses, spect and wine datasets are illustrated in Figure 3. All data
points in this figure are the average values over 30 runs.

As one see from Figure 3 that WSA seems to be converging to promising values only
within 50 iterations for haberman, iris, lenses, and spect datasets, which demonstrates
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Table 7. Results of objective function value

data sets perf. WSA FCM
balance scale best 1.66666666692E+03 1.66666755513E+03

mean 1.66666667028E+03 1.66666921515E+03
std 2.50345720401E-06 1.09842913759E-03

cmc best 1.73842759127E+04 1.73842759180E+04
mean 1.73842759127E+04 1.73842759199E+04
std 1.46768266630E-11 1.24825465112E-06

glass best 1.54145986857E+02 1.54145990128E+02
mean 1.55519457468E+02 1.54145994304E+02
std 3.06519928090E+00 4.46033077336E-06

haberman best 2.15826290765E+04 2.15826290781E+04
mean 2.15826290765E+04 2.15826290794E+04
std 4.16440504685E-12 8.75034743197E-07

hayesroth best 1.63710527427E+04 1.63710527517E+04
mean 1.63710527427E+04 1.63710527544E+04
std 1.04000478825E-11 1.53420562635E-06

heart best 4.06868096383E+05 4.06868096385E+05
mean 4.06868096383E+05 4.06868096386E+05
std 3.45377482473E-10 7.84870753214E-07

iris best 6.05057106295E+01 6.05057110091E+01
mean 6.05057106295E+01 6.05057153801E+01
std 8.23781666227E-14 1.35229394782E-06

lenses best 1.05468487416E+01 1.05468614506E+01
mean 1.05468487416E+01 1.05468676584E+01
std 4.93691014313E-15 3.61749698204E-06

magic04 best 1.33807543985E+08 1.33807543985E+08
mean 1.33807544030E+08 1.33807543985E+08
std 2.47113959284E-01 1.48075292333E-06

robot navigation best 3.43077123303E+02 3.63698734051E+02
mean 3.44607388717E+02 3.63871478848E+02
std 3.61791975887E+00 9.46146008998E-01

spect best 1.43701203586E+02 1.43701205491E+02
mean 1.43701203586E+02 1.43701206711E+02
std 2.23231956931E-13 1.02093341694E-06

wine best 1.79608275957E+06 1.79608275958E+06
mean 1.79608275957E+06 1.79608275958E+06
std 5.72207146093E-08 2.03331614535E-06

the convergences capability of this algorithm. On the other hand, for larger scales data
sets such as glass and vine datasets, it takes more time to achieve the printed results.
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Table 8. Results of partition coefficient index

data sets perf. WSA FCM
balance scale best 3.34427658408E-01 3.34664395310E-01

mean 3.34416440477E-01 3.33910515014E-01
std 7.00175699474E-06 2.27587210299E-04

cmc best 7.02434860790E-01 7.02435917288E-01
mean 7.02434858636E-01 7.02434598879E-01
std 1.54956139927E-09 9.22869715277E-07

glass best 6.07024829976E-01 4.93019240193E-01
mean 5.03391035693E-01 4.93015298402E-01
std 2.78562676871E-02 1.26170132007E-06

haberman best 7.39772409625E-01 7.39772167168E-01
mean 7.39772407122E-01 7.39772097489E-01
std 1.43170113425E-09 5.09930306272E-08

hayesroth best 7.98825832426E-01 7.98825841114E-01
mean 7.98825832366E-01 7.98825833369E-01
std 3.58949503447E-11 7.72481965946E-09

heart best 7.12624906009E-01 7.12624717599E-01
mean 7.12624898628E-01 7.12624650031E-01
std 3.55730457951E-09 4.04123699363E-08

iris best 7.83397490182E-01 7.83401609679E-01
mean 7.83397486489E-01 7.83392012133E-01
std 1.84519743304E-09 3.10835603583E-06

lenses best 4.23129963924E-01 4.23133866511E-01
mean 4.23129957420E-01 4.23129354508E-01
std 2.45481611147E-09 2.28936683179E-06

magic04 best 6.56310749897E-01 6.56310638081E-01
mean 6.56310402064E-01 6.56310630978E-01
std 1.57238821077E-06 4.73454231025E-09

robot navigation best 7.62723441074E-01 6.92469967570E-01
mean 7.59247820424E-01 6.91073239905E-01
std 1.30906943295E-02 6.88041432555E-03

spect best 5.75772453635E-01 5.75727924009E-01
mean 5.75772436531E-01 5.75716208030E-01
std 9.19721153255E-09 8.77043402433E-06

wine best 7.90939872268E-01 7.90940039156E-01
mean 7.90939863176E-01 7.90939844886E-01
std 6.64530797983E-09 1.56317767490E-07

Finally, in order to demonstrate what intuition suggests, either parametric or non-
parametric statistical tests are crucially required. Particularly, non-parametric tests are
encouraged by Derracet al. [14] while comparing the performances of stochastic search
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Table 9. Results of partition entropy index

data sets perf. WSA FCM

balance scale
best 1.58236705532E+00 1.58237029056E+00
mean 1.58239115857E+00 1.58365381141E+00
std 1.50551573528E-05 5.07868748689E-04

cmc
best 7.76350641279E-01 7.76348351582E-01
mean 7.76350646284E-01 7.76350788363E-01
std 3.44288449963E-09 1.99151821234E-06

glass
best 1.16718020985E+00 1.43726385270E+00
mean 1.41748136975E+00 1.43728122595E+00
std 6.12891607344E-02 9.86853921895E-06

haberman
best 5.96806315308E-01 5.96806704068E-01
mean 5.96806320517E-01 5.96806838216E-01
std 3.01439109739E-09 9.46968854744E-08

hayesroth
best 5.32679515135E-01 5.32679483959E-01
mean 5.32679515555E-01 5.32679510423E-01
std 2.56664024969E-10 2.78531916182E-08

heart
best 6.49284121541E-01 6.49284478422E-01
mean 6.49284135748E-01 6.49284581587E-01
std 6.84184555184E-09 6.77863661882E-08

iris
best 5.70573735708E-01 5.70571830994E-01
mean 5.70573743343E-01 5.70579878999E-01
std 3.83115437467E-09 2.43239265544E-06

lenses
best 1.39120694367E+00 1.39119847324E+00
mean 1.39120695785E+00 1.39120609392E+00
std 5.35122298253E-09 4.44766750970E-06

magic04
best 7.48445423462E-01 7.48445626533E-01
mean 7.48446034209E-01 7.48445637596E-01
std 2.74317104109E-06 7.54379479268E-09

robot navigation
best 6.74226306568E-01 8.47503440696E-01
mean 6.84387406744E-01 8.56075585829E-01
std 3.36061851042E-02 2.49929136507E-02

spect
best 8.80170342006E-01 8.80250592345E-01
mean 8.80170371680E-01 8.80273118437E-01
std 1.60954903870E-08 1.58237462082E-05

wine
best 5.48812203163E-01 5.48811931652E-01
mean 5.48812217562E-01 5.48812260733E-01
std 1.04112993084E-08 2.49733889491E-07

algorithms. Because, the safe use of parametric tests is dependent to several conditions,
which are not fulfilled in the present work.

In this regard, the non-parametric sign test, which is appropriate for pair-wise com-
parisons is applied here. In this test, first, the control algorithm that seems to be outper-
forming the alternative algorithm is assigned with the number of wins, which is simply the
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Table 10. Results of Chen and Linkens index

data sets perf. WSA FCM

balance scale
best 6.72562208620E-03 2.36987589319E-02
mean 5.35950135625E-03 1.82933974914E-02
std 8.99879369166E-04 2.58934720546E-03

cmc
best 7.21245225621E-01 7.21246117416E-01
mean 7.21245223718E-01 7.21244944890E-01
std 1.35752243614E-09 7.64643542571E-07

glass
best 6.93216617085E-01 5.70296985406E-01
mean 5.82413904614E-01 5.70283070841E-01
Std 3.15312199482E-02 8.70419409257E-06

haberman
best 6.36294394332E-01 6.36294069611E-01
mean 6.36294391355E-01 6.36293961470E-01
std 1.67316432660E-09 7.43562895525E-08

hayesroth
best 8.11560041151E-01 8.11560043418E-01
mean 8.11560041041E-01 8.11560040949E-01
std 4.20784034292E-11 2.58155402703E-09

heart
best 6.02110904240E-01 6.02110714096E-01
mean 6.02110896182E-01 6.02110657947E-01
std 3.82658971352E-09 3.68558490200E-08

iris
best 8.01544415177E-01 8.01561168345E-01
mean 8.01544410325E-01 8.01525001707E-01
std 3.18282680557E-09 1.09273279155E-05

lenses
best 3.56057710604E-01 3.56091608478E-01
mean 3.56057696206E-01 3.56082862761E-01
std 5.54873613812E-09 1.04712609529E-05

magic04
best 4.97407995118E-01 4.97407812994E-01
mean 4.97407417084E-01 4.97407801828E-01
std 2.63261242250E-06 8.56419981569E-09

robot navigation
best 8.05704291152E-01 7.40361007694E-01
mean 8.03120126643E-01 7.38753954660E-01
std 1.19355184754E-02 7.84839815961E-03

spect
best 3.00982613914E-01 3.00882228799E-01
mean 3.00982572877E-01 3.00854768786E-01
std 2.03913783918E-08 2.06582624412E-05

wine
best 8.07291425668E-01 8.07291691793E-01
mean 8.07291410621E-01 8.07291380260E-01
std 1.10715004029E-08 2.50419341407E-07

total number of instances (data sets) for which the WSA outranks FCM. Next, according
to total number instances and the number wins, a threshold level is defined based on
the assumed significance level α to decide whether a significant difference exists [38]. All
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Table 11. Results of Fukuyama and Sugeno index

data sets perf. WSA FCM

balance scale
best 1.66656200506E+03 1.66385601714E+03
mean 1.66660447517E+03 1.66539018889E+03
std 2.65035256304E-02 4.80134416726E-01

cmc
best -5.24998955353E+04 -5.25003450336E+04
mean -5.24998938088E+04 -5.24996943298E+04
std 1.04886834248E-03 3.71187010251E-01

glass
best -8.78515544440E+02 -4.98383719602E+02
mean -5.20671558626E+02 -4.98290544993E+02
Std 7.97504711383E+01 4.53819767272E-02

haberman
best 3.67663731222E+03 3.67667523736E+03
mean 3.67663809129E+03 3.67668584663E+03
std 4.47448496040E-04 7.81057119278E-03

hayesroth
best -1.33128931824E+05 -1.33128935184E+05
mean -1.33128930828E+05 -1.33128931056E+05
std 5.87485791566E-04 3.88375103617E-03

heart
best 1.23936322781E+05 1.23936892588E+05
mean 1.23936353656E+05 1.23937057499E+05
std 1.44379388334E-02 1.11372239120E-01

iris
best -4.50503493787E+02 -4.50538297368E+02
mean -4.50503476082E+02 -4.50467567423E+02
std 9.74287782086E-06 1.40857197726E-02

lenses
best 6.22811347164E+00 6.22803857347E+00
mean 6.22811398767E+00 6.22819382489E+00
std 1.94739511761E-07 8.56222979222E-05

magic04
best 9.35561664990E+07 9.35562251187E+07
mean 9.35564338606E+07 9.35562283885E+07
std 1.28513216398E+03 2.38760717123E+00

robot navigation
best -2.25569636828E+03 -1.76694752530E+03
mean -2.21497417675E+03 -1.72431400241E+03
std 1.12750857318E+02 1.55844065111E+02

spect
best 1.30256932848E+02 1.30270296112E+02
mean 1.30256938054E+02 1.30275036843E+02
std 2.70095005998E-06 2.57480901585E-03

wine
best -1.14603505211E+07 -1.14603594335E+07
mean -1.14603486381E+07 -1.14603472125E+07
std 6.31871693584E-01 9.94547418168E+00

obtained results are presented in Table 13, where + and ∼ stand for significant difference
and non-significant difference, respectively.

According to the results of Table 13, it can be concluded that WSA significantly out-
performs FCM in terms objective function value (J), regardless of the α level. However,
considering the rest of performance metrics, although WSA is at least as good as FCM
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Table 12. Results of Xie Beni index

data sets perf. WSA FCM

balance scale
best 3.54146830016E+03 9.10820561093E+01
mean 7.82497747686E+03 8.09707508660E+02
std 4.97216993083E+03 2.45613912957E+03

cmc
best 1.24860610637E-01 1.24857387639E-01
mean 1.24860618254E-01 1.24860908722E-01
std 3.25319691213E-09 2.83636572175E-06

glass
best 3.95912911847E-01 2.35740809265E+00
mean 2.04203202513E+00 2.35772780214E+00
std 7.17051101815E-01 2.56789030274E-04

haberman
best 2.22917469864E-01 2.22917865794E-01
mean 2.22917478808E-01 2.22917991087E-01
std 5.20766600592E-09 9.85294737493E-08

hayesroth
best 5.92920703715E-02 5.92906860659E-02
mean 5.92920720899E-02 5.92923597671E-02
std 1.33590940731E-09 1.28963527951E-06

heart
best 2.56196339538E-01 2.56196798815E-01
mean 2.56196364841E-01 2.56196929580E-01
std 1.18193841455E-08 9.25412552443E-08

iris
best 1.36908139625E-01 1.36909846306E-01
mean 1.36908153252E-01 1.36910937405E-01
std 8.55463329608E-09 1.79343752226E-06

lenses
best 7.26920396501E-01 7.27002697796E-01
mean 7.26920549484E-01 7.33736820813E-01
std 7.52545770229E-08 3.22635567064E-03

magic04
best 5.45443007296E-01 5.45443698923E-01
mean 5.45446341307E-01 5.45443743812E-01
std 1.61084773569E-05 2.93537621959E-08

robot navigation
best 1.65387995591E-01 2.80248786872E-01
mean 1.69595271853E-01 2.80952346961E-01
std 2.09999755581E-02 1.88899772942E-04

spect
best 1.53855861675E+00 1.53997782143E+00
mean 1.53855917087E+00 1.54042998521E+00
std 2.84714882024E-07 2.62887679483E-04

wine
best 1.25659903785E-01 1.25659513073E-01
mean 1.25659951608E-01 1.25659835411E-01
std 1.79791062653E-08 3.72933392789E-07

in the worst case, sign test do not point out significant differences for difference levels of
α. This is indeed a usual circumstance, because WSA uses the value of J in all evalua-
tions. Accordingly, one should recall the no free lunch theorem. Finally, putting things
together, it can be put forward that WSA clearly outperforms FCM for the mentioned
data sets.
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(a) Glass data set (b) Haberman data set

(c) Iris data set (d) Lenses data set

(e) Spect data set (f) Wine data set

Figure 3. Convergence graphs

Table 13. The results of the non-parametric sign test

WSA vs. FCM J PC PE Chen Linkens Fukuyama Xie Beni
wins (+) 12 6 7 6 6 8
losses (-) 0 6 5 6 6 4

outrank ratio 100% 50% 58% 50% 50% 67%
alpha=0.05 + ∼ ∼ ∼ ∼ ∼
alpha=0.1 + ∼ ∼ ∼ ∼ ∼

6. Conclusions
In this study, first time in the literature, WSA algorithm is used to contribute to fuzzy

clustering techniques. In order to test the capability of WSA in tackling fuzzy clustering
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problems, a set of computational experiments on the well-known datasets is carried out.
The performance of the proposed approach is further improved by using a quantum-based
local search procedure that provides and intensifying search with a shrinking quantum
cloud.

Comprehensive experimental study is conducted on the well-known benchmark data
set. The results indicate the superiority of the proposed approach. It is further shown
by non-parametric statistical tests WSA has significant improvements over the tradi-
tional FCM. Additionally, cluster validity indices show that WSA algorithm is as good
as traditional FCM, yet two methods are not able to dominate each other.

It is clear that the developed procedures here can easily be adopted in any other meta-
heuristic. In this regard, hybridizing some building blocks of WSA with other algorithms
is scheduled as the future work. Different performance metrics can also be implemented
for FCM. For instance, validity indices used within the scope of the paper can be consid-
ered as an objective function during the training. Last but not least, different variants
of the FCM can be improved by using proposed algorithm.
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