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Abstract

In the present paper we establish that the space expβ X of compact subsets of a Tychonoff
space X is superparacompact iff X is so. Further, we prove the Tychonoff map expβ f :
expβ X → expβ Y is superparacompact iff a given map f : X → Y is superparacompact.

1. Introduction

In the present paper under space we mean a topological T1-space, under compact a Hausdorff compact space and under map a continuous
map.
A collection ω of subsets of a set X is said [1] to be star-countable (respectively, star-finite) if each element of ω intersects at most a
countable (respectively, finite) set of elements of ω . A collection ω of subsets of a set X refines a collection Ω of subsets of X if for each
element A ∈ ω there is an element B ∈Ω such that A⊂ B. They also say that ω is a refinement of Ω.
A finite sequence of subsets M0, ...,Ms of a set X is [2] a chain connecting sets M0 and Ms, if Mi−1∩Mi 6=∅ for i = 1, ...,s. A collection
ω of subsets of a set X is said to be connected if for any pair of sets M, M

′ ⊂ X there exists a chain in ω connecting sets M and M
′
. The

maximal connected subcollections of ω are called components of ω . A star-finite open cover of a space X is said to be a finite-component
cover if the number of elements of each component is finite. A space X is said to be superparacompact if every open cover of X has a
finite-component cover which refines it.
Note that any compact space is superparacompact, and any superparacompact space is strongly paracompact. Infinite discrete space is
superparacompact, but it is not compact. Real line is strongly paracompact, but it is not superparacompact.
For a collection ω = {Oα : α ∈ A} of subsets of a space X we suppose [ω] = [ω]X = {[Oα ]X : α ∈ A}. For a space X , its some subspace W
and a set B⊂ X \W they say [2] that an open cover λ of the space W pricks out the set B in X if B∩ (∪[λ ]X ) =∅.
The following criterion plays a key role in investigation the class of superparacompact spaces.

Theorem 1.1. [3] A Tychonoff space X is superparacompact iff for every closed set F in βX lying in the growth βX \X there exists a
finite-component cover λ of X pricking out F in βX (i. e. F ∩ (∪[λ ]βX ) =∅).

D.Buhagiar and T.Miwa offered the following criterion of superparacompactness.

Theorem 1.2. [4] A Tychonoff space X is superparacompact iff for every closed set F in perfect compactification bX lying in the growth
bX \X there is a finite-component cover λ of X pricking out F in bX (i. e. F ∩ (∪[λ ]bX ) =∅).

Let us recall a notion of the perfect compactification. For a topological space X and its subset A a set FrX A = [A]X ∩ [X \A]X = [A]X \ IntX A
is called [5] a boundary of A.
Let vX be a compact extension of a Tychonoff space X . If H ⊂ X is an open set in X , then by O(H) (or by OvX (H)) we denote a maximal
open set in vX satisfying OvX (H)∩X = H. It is easy to see that

OvX (H) =
⋃

Γ∈τvX ,
Γ∩X=H

Γ,
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where τvX is the topology of the space vX .
A compactification vX of a Tychonoff space X is called perfect with respect to an open set H in X , if the equality [FrX H]vX = FrvX OvX (X)
holds. If vX is perfect with respect to every open set in X , then it is called a perfect compactification of the space X ([1], P. 232). A
compactification vX of a space X is perfect iff for any two disjoint open sets U1 and U2 in X the equality O(U1

⋃
U2) = O(U1)

⋃
O(U2) is

carried out. The Stone-Cěch compactification βX of X is perfect. The equality O(U1
⋃

U2) = O(U1)
⋃

O(U2) is satisfied for every pair of
open sets U1 and U2 in X iff X is normal, and the compactification vX coincides with the Stone-Cěch compactification βX , i. e. vX ∼= βX .
Let X be a space. By expX we denote a set of all nonempty closed subsets of X . A family of sets of the view

O〈U1, ...,Un〉= {F ∈ expX : F ⊂
n⋃

i=1
Un,F ∩U1 6=∅, ...,F ∩Un 6=∅}

forms a base of a topology on expX , where U1, . . . ,Un are open nonempty sets in X . This topology is called the Vietoris topology. A space
expX equipped with Vietoris topology is called hyperspace of X . For a compact space X its hyperspace expX is also a compact space (for
details, see [6], [7], [8]).
Note for any space X it is well known that

[O〈U1, ...,Un〉]expX = O〈[U1]X , ..., [Un]X 〉 .

Let f : X → Y be continuous map of compacts, F ∈ expX . We put

(exp f )(F) = f (F).

This equality defines a map exp f : expX → expY . For a continuous map f the map exp f is continuous. Really, it follows from the formula

(exp f )−1O〈U1, ...,Um〉= O〈 f−1(U1), ..., f−1(Um)〉

what one can check directly. Note that if f : X → Y is an epimorphism, then exp f is also an epimorphism.
For a Tychonoff space X we put

expβ X = {F ∈ expβX : F ⊂ X}.

It is clear, that expβ X ⊂ expX . Consider the set expβ X as a subspace of the space expX . For a Tychonoff spaces X the space expβ X is also
a Tychonoff space with respect to the induced topology.
For a continuous map f : X → Y of Tychonoff spaces we put

expβ f = (expβ f )|expβ X ,

where β f : βX → βY is the Stone-Cěch compactification [5] of f (it is unique).
As it is well-known the action of functors on various categories of topological spaces and their continuous maps is one of the main problems
of theory of covariant functors, in the present paper we investigate the action of the functor exp (the construction of taking of a hyperspace of
a given space) on superparacompact spaces (section 2) and superparacompact maps (section 3).

2. Hyperspace of superparacompact spaces

It is well known that for a Tychonoff space X the set expβ X is everywhere dense in expβX , i. e. expβX is a compactification of the space
expβ X . We claim expβX is a perfect compactification of expβ X . At first we will prove the following technical statement.

Lemma 2.1. Let γX be a compact extension of a space X and, V and W be disjoint open sets in γX. Let V X = X ∩V and W X = X ∩W.
Then the following equality is true:

[X \V X ]γX ∩ [X \W X ]γX = [X \ (V X ∪W X )]γX .

Proof. It is clear that [X \V X ]γX ∩ [X \W X ]γX ⊃ [X \(V X ∪W X )]γX . Let x ∈ [X \V X ]γX ∩ [X \W X ]γX . Then each open neighbourhood Ox in
γX of x intersects with the sets X \V X and X \W X . Hence, Ox 6⊂V X and Ox 6⊂W X . Therefore, since V X ∩W X =∅, we have Ox 6⊂V X ∪W X ,
i. e. Ox∩X \ (V X ∪W X ) 6=∅. By virtue of arbitrariness of the neighbourhood Ox we conclude that x ∈ [X \ (V X ∪W X )]γX .

Theorem 2.2. For a Tychonoff space X the space expβX is a perfect compactification of the space expβ X.

Proof. It is enough to consider basic open sets. Let U1 and U2 be disjoint open sets in X . Since βX is perfect compactification of X we have
OβX (U1∪U2) = OβX (U1)∪OβX (U2). Consider open sets

O〈Ui〉= {F : F ∈ expβ X ,F ⊂Ui}, i = 1, 2

in expβ X . It is clear, that O〈U1〉∩O〈U2〉=∅. We will show that

OexpβX (O〈U1〉∪O〈U2〉) = OexpβX (O〈U1〉)∪OexpβX (O〈U2〉).

The inclusion ⊃ follows from the definition of the set O(H) (see [1], P. 234). That is why it is enough to show the inverse inclusion. Let
Φ ⊂ βX be a closed set such that Φ /∈ OexpβX (O〈U1〉)∪OexpβX (O〈U2〉). Then Φ ∈ expβX \OexpβX (O〈Ui〉), i = 1, 2. From [1] (see, P.
234) we have

expβX \OexpβX (O〈Ui〉) = [expβ X \O〈Ui〉]expβX , i = 1, 2.
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Hence Φ ∈ [expβ X \O〈Ui〉]expβX , i = 1, 2. Since O〈U1〉∩O〈U2〉=∅ by Lemma 2.1 we have

[expβ X \O〈U1〉]expβX ∩ [expβ X \O〈U2〉]expβX = [expβ X \O(〈U1〉∪O〈U2〉)]expβX .

Therefore, Φ ∈ [expβ X \OexpβX (O〈U1〉∪O〈U2〉)]expβX , what is equivalent Φ ∈ expβX \OexpβX (〈U1〉∪ 〈U2〉) (see [1], P. 234). In other
words, Φ /∈ OexpβX (〈U1〉∪ 〈U2〉). Thus, we have established that inclusion OexpβX (〈U1〉∪ 〈U2〉)⊂ OexpβX (O〈U1〉)∪OexpβX (O〈U2〉) is
also fair.

Lemma 2.3. Let U1, . . . , Un; V1, . . . , Vm be open subsets of a space X. Then O〈U1, . . . , Un〉∩O〈V1, . . . , Vm〉 6=∅ iff for each i ∈ {1, . . . ,n}
and for each j ∈ {1, . . . ,m} there exists, respectively j(i) ∈ {1, . . . ,m} and i( j) ∈ {1, . . . ,n}, such that Ui∩V j(i) 6=∅ and Ui( j)∩V j 6=∅.

Proof. Assume that for every i ∈ {1, . . . ,n} there exists j(i) ∈ {1, . . . ,m} such that Ui∩V j(i) 6=∅ and for every j ∈ {1, . . . ,m} there exists
i( j) ∈ {1, . . . ,n} such that Ui( j)∩V j 6=∅. For any pair (i, j) ∈ {1, . . . ,n}×{1, . . . ,m} for which Ui∩V j 6=∅, choose a point xi j ∈Ui∩V j

and make a closed set F consisting of these points. Then F ⊂
n⋃

i=1
Ui and F ⊂

m⋃
j=1

V j. Besides, F ∩Ui 6= ∅, i = 1, . . . , n, and F ∩V j 6= ∅,

j = 1, . . . , m. Therefore, F ∈ O〈U1, . . . , Un〉∩O〈V1, . . . , Vm〉.

Suppose there exists i0 ∈ {1, . . . ,n} such that Ui0 ∩V j =∅ for all j ∈ {1, . . . ,m}. Then Ui0 ∩
m⋃

j=1
V j =∅ and for each F ∈ O〈U1, ..., Un〉

we have F 6⊂
m⋃

j=1
V j. Hence, F /∈ O〈V1, ..., Vm〉. Similarly, every Γ ∈ O〈V1, ..., Vm〉 lies in

m⋃
j=1

V j what implies Γ∩Ui0 = ∅. From here

Γ /∈ O〈U1, ..., Un〉. Thus, O〈U1, ..., Un〉∩O〈V1, ..., Vm〉=∅.

Lemma 2.4. Let υ be a finite-component cover of a Tychonoff space X. Then the family expβ υ = {O〈U1, . . . , Un〉 : Ui ∈ υ , i = 1, . . . , n; n∈
N} is a finite-component cover of the space expβ X.

Proof. Let O〈G1, . . . , Gk〉 be an element of expβ υ . Each Gi ∈ υ intersects with finite elements of υ . Let |{α : Gi∩Uα 6=∅, Uα ∈ υ}|= ni,
i = 1, 2, . . . , k. Denote γ = {Gi ∩U j : Gi ∩U j 6= ∅, i = 1, 2, . . . , k, U j ∈ υ}. Then |γ| ≤ n1 · . . . ·nk. Therefore, the set O〈G1, . . . , Gk〉

crosses not more then
k
∏
i=1

ni elements of expβ υ . It means that the collection expβ υ is star-finite.

Let F ∈ expβ X . There is a subfamily υF ⊂ υ such that F ⊂
⋃

U∈υF

U . From a cover {F ∩U : U ∈ υF , F ∩U 6=∅} of the compact F it is

possible to allocate a finite subcover {F ∩Ui : i = 1, . . . ,m}. We have F ∈ O〈U1, . . . , Um〉. So, the family expβ υ is a cover of expβ X . On
the other hand by the definition of Vietoris topology the cover expβ υ is open. Thus, expβ υ is a star-finite open cover of expβ X .
We will show now that all components of the expβ υ are finite.

Let M = O〈G1, . . . , Gs〉 and M
′
= O〈G′1, . . . , G

′
t〉 be arbitrary elements of expβ υ . Further, let γGiG

′
j
= {U i j

l : l = 1, 2, . . . , ni j} be the

maximal chain of υ connecting Gi and G
′
j, i = 1, 2, . . . , s; j = 1, 2, . . . , t. By definition these sets satisfy the following properties:

(1) U i j
1 = Gi, i = 1, . . . , s; j = 1, . . . , t;

(2) U i j
ni j = G

′
j, i = 1, . . . , s; j = 1, . . . , t;

(3) U i j
l ∩U i j

l+1 6=∅, l = 1, . . . ,ni j−1; i = 1, . . . , s; j = 1, . . . , t.

If s< t we have O〈G1, . . . ,Gs〉=O〈U1 j
1 , . . . ,U s j

1 , U i1(s+1)
1 , . . . ,U it−st

1 〉, where j = 1, . . . , t and i1, . . . , it−s ∈{1, . . . ,s}. Further, O〈G′1, . . . ,G
′
t〉=

O〈U i1
ni1
, . . . ,U it

nit
〉, i = 1, . . . ,s. Thus, the cover expβ υ has a chain connecting the given sets M = O〈G1, . . . , Gs〉 and M

′
= O〈G′1, . . . , G

′
t〉.

The case s > t is analogously.
Now using Lemma 2.1 and calculating directly we find that each maximal chain of expβ υ connecting the sets M = O〈G1, . . . , Gs〉 and

M
′
= O〈G′1, . . . , G

′
t〉 has no more than

t
s

∏
i=1,
j=1

ni j elements. Thus, all components of expβ υ is finite.

Theorem 2.5. For a Tychonoff space X its hyperspace expβ X is superparacompact iff X is superparacompact.

Proof. As the superparacompactness is inherited to the closed subsets [2], the superparacompactness of expβ X implies superparacompactness
of the closed subset X ⊂ expβ X .
Let Ω be an open cover of expβ X . For each element G ∈Ω there exists OG〈U1, . . . ,Un〉 such that OG〈U1, . . . ,Un〉 ⊂ G, where U1, . . . ,Un

are open sets in X . We can choose sets G ∈Ω so that a collection of sets OG〈U1, . . . , Un〉 forms a cover of expβ X , what we denote by Ω
′
. It

is easy to see that a collection ω
′
=

⋃
OG〈U1,...,Un〉∈Ω

′
{U1, . . . , Un} is an open cover of X . There exists a finite-component cover ω of X which

refines ω
′
. Then by Lemma 2.4 the collection

expβ ω = {O〈V1, . . . , Vk〉 : Vi ∈ ω, i = 1, . . . , n; n ∈ N}

is a finite-component cover of expβ X and it refines Ω.
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3. Superparacompactness of the map expβ f

For a continuous map f : (X ,τX )→ (Y,τY ) and O ∈ τY a preimage f−1O is called a tube (above O). Remind, a continuous map f : X→Y is
called [2] a T0-map, if for each pair of distinct points x, x

′ ∈ X , such that f (x) = f (x
′
), at least one of these points has an open neighbourhood

in X which does not contain another point. A continuous map f : X →Y is called totally regular, if for each point x ∈ X and every closed set
F in X not containing x there exists an open neighbourhood O of f (x) such that in the tube f−1O the sets {x} and F are functional separable.
Totally regular T0-map is said to be a Tychonoff map.
Obviously, each continuous map f : X → Y of a Tychonoff space X into a topological space Y is a Tychonoff map. In this case owing to
the set expβ X is a Tychonoff space concerning to Vietoris topology for every Tychonoff space X , the map expβ f : expβ X → expβ Y is a
Tychonoff map.
A continuous, closed map f : X →Y is said to be compact if the preimage f−1y of each point y ∈Y is compact. A continuous map f : X →Y
is compact iff for each point y ∈ Y and every cover ω of the fibre f−1y, consisting of open sets in X , there is an open neighbourhood O of y
in Y such that the tube f−1O can be covered with a finite subfamily of ω .
A compact map b f : b f X→Y is said to be a compactification of a continuous map f : X→Y if X is everywhere dense in b f X and b f |X = f .
On the set of all compactifications of the map f it is possible to introduce a partial order: for the compactifications b1 f : b1 f X → Y and
b2 f : b2 f X → Y of f we put b1 f ≤ b2 f if there is a natural map of b2 f X onto b1 f X . B. A. Pasynkov showed that for each Tychonoff map
f : X→Y there exists its maximal compactification g : Z→Y , which he denoted by β f , and the space Z where this maximal compactification
defines by β f X . To within homeomorphism for a given Tychonoff map f its maximal compactification β f is unique.

Remark 3.1. Note that the maps b1 f , b2 f , β f are compactifications of the map f. The spaces b1 f X, b2 f , β f X are some extensions of X but
they are not obliged to be compactifications.

A Tychonoff map f : X → Y is said to be superparacompact, if for every closed set F in β f X lying in the growth β f X \X there exists a
finite-component cover λ of X pricking out F in β f X (i. e. F ∩ (∪[λ ]β f X ) =∅) [3].
It is easy to see that one can define superparacompactness of a map as follows: a map f : X → Y is superparacompact if for each y ∈ Y and
every open cover ϒ of f−1y in X there exists an open neighbourhood O of y in Y such that ϒ has a finite-component cover υ of f−1O in X
which refines ϒ.

Definition 3.2. A compactification b f : b f X → Y of a Tychonoff map f : X → Y is said to be perfect compactification of f if for each point
y ∈ Y and for every disjoint open sets U1 and U2 in X there exists an open neighbourhood O⊂ Y of y such that the equality

Ob f X (U1∪U2)∩b f−1O =
(

Ob f X (U1)∪Ob f X (U2)
)
∩b f−1O

holds.

Let f : X →Y be a continuous map of a Tychonoff space X into a space Y . It is well known there exists a compactification vX of X such that
f has a continuous extension v f : vX → Y on vX . It is clear, v f is a perfect compactification of f .
The following result is an analog of Theorem 1.2 for a case of maps.

Theorem 3.3. Let b f : b f X →Y be a perfect compactification of a Tychonoff map f : X →Y . The map f is superparacompact iff for every
closed set F in b f X lying in the growth b f X \X there exists a finite-component cover λ of X pricking out the set F in b f X.

Proof. The proof is carried out similar to the proof of Theorem 1.1 Π from [2].

Evidently a restriction f |Φ : Φ→ Y of a superparacompact map f : X → Y on the closed subset Φ⊂ X is a superparacompact map.
The following result is a variant of Theorem 2.2 for a case of maps.

Theorem 3.4. Let f : X → Y be a Tychonoff map. Then the map expβ β f : expβ β f X → expβ Y is a perfect compactification of expβ f :
expβ X → expβ Y .

Proof. The proof is similar to the proof of Theorem 2.2. Here the equality

(expβ β f )−1O〈U1, ...,Um〉= O〈β f−1(U1), ...,β f−1(Um)〉

is used.

The following statement is the main result of this section.

Theorem 3.5. The Tychonoff map expβ f : expβ X → expβ Y is superparacompact iff a map f : X → Y is superparacompact.

Proof. Let expβ f : expβ X → expβ Y be a superparacompact map. It implies that f : X → Y is a superparacompact map since X ∼= exp1 X
is closed set in expβ X .
Let now f : X → Y be a superparacompact map. Consider arbitrary Γ ∈ expβ Y and an open cover Ω of (expβ f )−1(Γ) = {F ∈ expβ X :
f (F) = Γ} in expβ X . For each element G ∈Ω there exists OG〈U1, . . . ,Un〉 such that OG〈U1, . . . ,Un〉 ⊂G, where U1, . . . ,Un are open sets in
X . We can choose sets G ∈Ω so that a collection of sets OG〈U1, . . . , Un〉 forms a cover of (expβ f )−1(Γ), what we denote by Ω

′
. It is easy

to see that a collection ω
′
=

⋃
OG〈U1,...,Un〉∈Ω

′
{U1, . . . , Un} is an open cover of f−1Γ in X . For each y ∈ Γ there exists an open neighbourhood

Oy of y in Y such that the collection ωy = {U ∩ f−1Oy : U ∈ ω
′} is an open cover of f−1y in X and ωy has a finite-component cover ω

′
y

of f−1Oy in X which refines ωy. Gather such Oy and construct an open cover {Oy : y ∈ Γ} of Γ in Y . Since Γ ∈ expβ Y by construction
of hyperspace, Γ is a compact subset of Y . Consequently, there exists a finite open subcover γ = {Oy1 , . . . ,Oyn} in Y , which covers Γ. Put
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ω =
⋃

Oyi∈γ

ω
′
yi

. Then ω is an open cover of f−1
( ⋃

U∈ω

U
)

in X . By the construction ω is a finite-component cover, and it refines ω
′
. Hence,

expβ ω is a finite-component cover of (expβ f )−1O〈Oy1 , . . . ,Oyn〉=
〈

f−1Oy1 , . . . , f−1Oyn

〉
in expβ X and it refines Ω.

So, for each Γ ∈ expβ Y and every open cover Ω of (expβ f )−1Γ in expβ X there exists an open neighbourhood O〈Oy1 , . . . ,Oyn〉 of Γ

in expβ Y such that Ω has a finite-component cover expβ ω of (expβ f )−1O〈Oy1 , . . . ,Oyn〉 in expβ X which refines Ω. Thus, the map
expβ f : expβ X → expβ Y is superparacompact.

Corollary 3.6. Let f : X → Y be a superparacompact map and Φ be a closed set in expβ β f X such that Φ ⊂ expβ β f X \ expβ X. Then
there exists a finite-component cover Ω of expβ X pricking out Φ in expβ β f X (i. e. Φ∩ (∪[Ω]expβ β f X ) =∅).

Corollary 3.7. The functor expβ lifts onto category of superparacompact spaces and their continuous maps.
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