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ABSTRACT

In this paper, we classify the ruled surfaces with a pseudo null base curve in Minkowski 3-space
as spacelike, timelike and lightlike surfaces and obtain the corresponding striction curve and
distribution parameter. In particular, we give some examples of lightlike developable surfaces with
pseudo null base curve. As an application, we show that pseudo null curve and it’s frame vectors
generate new solutions of the Da Rios vortex filament equation.
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1. Introduction

The theory of the ruled surfaces plays an important role in Riemannian and semi-Riemannian differential
geometry. The ruled surfaces also appear in many areas in computer aided geometric designs, surface
approximations and tool path planning ([11, 12]). Besides, the spatial geometry of the ruled surfaces has been
applied in the study of rational design problems in spatial mechanisms ([16]).

In Minkowski spaces, different properties of the ruled surfaces have been investigated (see, for example,
[1, 4, 6, 8, 9, 14, 17]). The special kind of ruled surfaces in Minkowski 3-space are the null scrolls, having
different physical applications, such as photon surfaces and Willmore surfaces ([2, 7]). In general relativity,
lightlike hypersurfaces are of great importance, because they are models of event, Cauchy’s and Kruskal’s
horizonts.

Da Rios vortex filament equation, obtained under localized induction approximation (LIA), represents a
model for the motion of one-dimensional vortex filament in an incompressible, inviscid three-dimensional
fluid. If α(s, t) is a non-null curve with non-null principal normal in Minkowski 3-space, then the motion
satisfying the vortex filament equation generates a spacelike or a timelike Hasimoto surface in [5].

In papers dealing with the ruled surfaces in Minkowski spaces, the case when the base curve of the surface
is a pseudo null curve, i.e. a spacelike curve whose principal normal vector N(s) and binormal vector B(s) are
null vectors, is not considered. This situation motivated us to introduce the mentioned the class of surfaces
in Minkowski 3-space. We obtain the striction curve and the distribution parameter of such surfaces and
classify them as spacelike, timelike and lightlike. We give some examples of lightlike developable surfaces
in Minkowski 3-space, such as tangent surface, principal normal surface and binormal surface over pseudo
null base curve. As an application, we show that pseudo null curve and it’s frame vectors {T,N,B} generate
new solutions of the Da Rios vortex filament equation.

2. Preliminaries

The Minkowski 3-space E3
1 is the Euclidean 3-space E3 provided with the standard flat metric given by

g = −dx21 + dx22 + dx23,
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where (x1, x2, x3) is a rectangular coordinate system of E3
1. Since g is an indefinite metric, recall that a

vector v ∈ E3
1 can have one of three causal characters: it can be spacelike if g(v, v) > 0 or v = 0, timelike if

g(v, v) < 0 and null (lightlike) if g(v, v) = 0 and v 6= 0. In particular, the norm (length) of a vector v is given
by ‖v‖ =

√
|g(v, v)| and two vectors v and w are said to be orthogonal, if g(v, w) = 0. Next, recall that an

arbitrary curve α = α(s) in E3
1, is said to be spacelike, timelike or null (lightlike), if all of its velocity vectors α′(s)

are respectively spacelike, timelike or null (lightlike) for all s, respectively.
In Minkowski 3-space, a spacelike curve whose principal normal vectorN and binormal vectorB are linearly

independent null vectors, is called pseudo null curve. The Frenet formulae of pseudo null curve α have the form
([15])  T ′

N ′

B′

 =

 0 κ 0
0 τ 0
−κ 0 −τ

 T
N
B

 , (2.1)

where the first curvature κ(s) = 0 if α is pseudo null straight line or κ(s) = 1 in all other cases. The second
curvature τ(s) is arbitrary function of arclength parameter s of α. In particular, the following conditions are
satisfied

g(T, T ) = 1, g(N,N) = g(B,B) = 0,
g(T,N) = g(T,B) = 0, g(N,B) = 1.

(2.2)

Recall that the vector product of two vectors u = (u1, u2, u3) and v = (v1, v2, v3) in E3
1 is defined by

u× v = (u3v2 − u2v3, u3v1 − u1v3, u1v2 − u2v1).

Therefore, for pseudo null curve with positively oriented frame {T,N,B}, the next relations are satisfied:

T ×N = N, N ×B = T, B × T = B. (2.3)

Lemma 2.1. Let u, v and w be the vectors in Minkowski space E3
1. Then:

(i) g(u× v, w) = det(u, v, w),
(ii) u× (v × w) = −g(u,w)v + g(u, v)w,

(iii) g(u× v, u× v) = −g(u, u)g(v, v) + g(u, v)
2
.

Lemma 2.2. In Minkowski 3-space, the following properties are satisfied ([10]):
(i) two timelike vectors are never orthogonal;
(ii) two null vectors are orthogonal if and only if they are linearly dependent;
(iii) timelike vector is never orthogonal to a null vector.

Definition 2.1. A surface S in a Minkowski 3-space is called a timelike (spacelike), if the induced metric on S is
indefinite (positive definite Riemannian) metric.

In particular, a spacelike or a timelike surface in Minkowski 3-space is also called a non-degenerate surface.

Definition 2.2. A surface S in a Minkowski 3-space is called a lightlike (null, degenerate), if the induced metric
on S is degenerate.

In Euclidean 3-space, a surface S is called developable surface, if it’s Gaussian curvature K is zero at each
point of the surface. Namely, S is developable surface if and only if the Gauss map of the surface is singular
at any point of S. Developable surfaces in E3 (cylindrical surfaces, conical surfaces and tangent surfaces over
a curve) are the ruled surfaces. Analogously, in Minkowski 3-space a surface S is called developable surface, if
the corresponding RP 2-valued Gauss map is singular at each point ([3]). Developable surfaces, whose normal
vector field is always lightlike, are called lightlike developables. Such surfaces are parts of one of the following
surfaces: lightlike plane, lightcone, tangent surface over a curve lying in lightlike plane and tangent surface
over a null curve ([3]).

3. Ruled surfaces in E3
1

Ruled surfaces are swept out by the motion of a straight line in E3
1. More formally, the image of the map

φ : I ×R→ E3
1 defined by

φ(s, t) = α(s) + te(s), s ∈ I, t ∈ R (3.1)
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E. Nešović, U. Öztürk, E. B. Koç Öztürk and K. İlarslan

is called a ruled surface in E3
1 where α : I ⊂ R→ E3

1 is a regular curve and e : I ⊂ R→ E3
1 is a vector field

along α. The curve α(s) and the vector field e(s) are respectively called the base curve (or a generating
curve) and the director curve (or the director vector filed). The rulings of a ruled surface are the straight lines
t −→ α(s) + te(s). If the tangent plane of the ruled surface is constant along a fixed ruling, the ruled surface

is called the developable surface ([13]). Tangent planes of such surfaces depend on only one parameter. All other
ruled surfaces are called the skew surfaces.

Definition 3.1. A ruled surface S with parametrization (3.1) is said to be

cylindrical , if e(s)× e′(s) =
−→
0 ,

non − cylindrical , if e(s)× e′(s) 6= −→0 .
(3.2)

Definition 3.2. If there exists a common perpendicular to two preceding rulings of a skew surface, then the
foot of the common perpendicular on the main ruling is called a central ( striction) point. The locus of the central
points is called the striction curve.

It is known that the striction curve ᾱ can be written in terms of the base curve α as

ᾱ(s) = α(s)− g(α′(s), e′(s))

g(e′(s), e′(s))
e(s), (3.3)

where g(e′(s), e′(s)) 6= 0. Consequently, the parametrization of the ruled surface in terms of the striction line
reads

φ(s, u) = ᾱ(s) + ue(s), s ∈ I, u ∈ R. (3.4)

The distribution parameter (Drall) of the ruled surface with parametrization (3.4) reads

D(s) =
g (ᾱ′(s)× e(s), e′(s))

g(e′(s), e′(s))
, (3.5)

where g(e′(s), e′(s)) 6= 0.
The unit normal vector field on non-degenerate surface φ(s, u) is given by

η(s, u) =
φs × φu
‖φs × φu‖

. (3.6)

4. Striction curve and distribution parameter

In this section, we give the necessary and the sufficient conditions for the ruled surfaces with pseudo null
base curve to be the cylindrical surface with non-constant rulings. We also determine the striction curve and
distribution parameter of the corresponding cylindrical and non-cylindrical ruled surfaces. Throughout this
section, let R0 denote R\{0}.

Consider the ruled surface S in Minkowski 3-space with parametrization

φ : I ×R→ E3
1

(s, t)→ φ(s, t) = α(s) + te(s),
(4.1)

where α(s) is a non-geodesic pseudo null base curve parameterized by arclength parameter s and e(s) a non-
constant director vector. Note that there exists a nice relation between the director vector field e along α and
the Frenet frame {T,N,B} of α. Namely, director vector e can be represented in the form

e(s) = a(s)T (s) + b(s)N(s) + c(s)B(s), (4.2)

where a(s), b(s) and c(s) are some scalar functions in arclength parameter s of α. By taking the derivative of
the equation (4.2) with respect to s and using the Frenet equations (2.1), we get

e′(s) = [a′(s)− c(s)]T (s) + [a(s) + b′(s) + b(s)τ(s)]N(s)
+[c′(s)− c(s)τ(s)]B(s).

(4.3)
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Theorem 4.1. The ruled surface with parametrization (4.1) and the rulings e given by (4.2) is cylindrical surface, if and
only if it’s rulings are given by:
(i) e(s) = b(s)N(s), where b(s) 6= 0 is some scalar function;
(ii) e(s) = a0T (s) + b(s)N(s), where

b(s) = e−
∫
τ(s)ds(c0 − a0

∫
e
∫
τ(s)dsds),

a0 ∈ R0 and c0 ∈ R;
(iii) e(s) = a(s)T (s) + b0N(s), where a(s) satisfies Bernoulli’s differential equation

a2(s)− b0a′(s) + b0a(s)τ(s) = 0,

and b0 ∈ R0;
(iv) e(s) = a(s)T (s) + b(s)N(s), where a(s) and b(s) are non-zero functions satisfying differential equation

a2 + ab′ − ba′ + abτ = 0;

(v) e(s) = a0T (s) + b0N(s), where a0, b0 ∈ R0 and τ(s) = −a0/b0;
(vi) e(s) = a(s)T (s) + b(s)N(s) + c(s)B(s), where a(s), b(s), c(s) are some non-zero differentiable functions satisfying
the system of equations:

b(c′ − cτ)− c(a+ b′ + bτ) = 0,
a(a+ b′ + bτ)− b(a′ − c) = 0,

c(a′ − c)− a(c′ − cτ) = 0.
(4.4)

Proof. Assume that the ruled surface with parametrization (4.1) is cylindrical surface. By using the relations
(4.2) and (4.3) we find

e× e′ = [b(c′ − cτ)− c(a+ b′ + bτ)]T + [a(a+ b′ + bτ)− b(a′ − c)]N
+[c(a′ − c)− a(c′ − cτ)]B.

(4.5)

The condition e× e′ =
−→
0 implies the system of equations (4.4). If a = b = 0, or b = c = 0, or a = 0, b 6= 0, c 6= 0,

or b = 0, a 6= 0, c 6= 0, the system (4.4) implies a contradiction. Now we consider the remain cases.
(i) If a = c = 0, the system of equations (4.4) is satisfied for each b. Hence the ruling is given by e = bN .
(ii) If a = a0 = constant 6= 0, c = 0, the system (4.4) implies the first order linear differential equation

b′ + bτ + a0 = 0,

whose general solution reads

b(s) = e−
∫
τ(s)ds(c0 − a0

∫
e
∫
τ(s)ds ds)

where c0 ∈ R is the constant of integration. Thus e(s) = a0T (s) + b(s)N(s).
(iii) If b = b0 = constant 6= 0, c = 0, the system (4.4) implies Bernoulli’s differential equation

a2(s)− b0a′(s) + b0a(s)τ(s) = 0,

so the ruling has the form e(s) = a(s)T (s) + b0N(s).
(iv) If a 6= constant, b 6= constant, c = 0, from (4.4) we get differential equation

a2 + ab′ − ba′ + abτ = 0,

and the ruling is given by e(s) = a(s)T (s) + b(s)N(s).
(v) If a = a0 ∈ R0, b = b0 ∈ R0, c = 0, the system implies τ = −a0/b0. Hence α is pseudo null helix and the ruling
is given by e(s) = a0T (s) + b0N(s).
(vi) If a 6= 0, b 6= 0, c 6= 0 are some differential functions satisfying (4.4), the ruling has the form e(s) =
a(s)T (s) + b(s)N(s) + c(s)B(s).

In what follows we determine the striction curve ᾱ and the distribution parameter D of the ruled surface
with the parametrization (4.1). The striction curve ᾱ in terms of the base curve α is given by the relation (3.3).
It has a geometric property that it is orthogonal to the ruling e, namely g(ᾱ′, e′) = 0. The relation (3.3) and
Theorem 4.1 imply the next theorem.
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Theorem 4.2. Let S be a cylindrical ruled surface in E3
1 with the parametrization (4.1). Then the following relations

hold:
(i) If e(s) = b(s)N(s), the base curve α is the striction curve;
(ii) If e(s) = a0T (s) + b(s)N(s), the base curve α is the striction curve;
(iii) If e(s) = a(s)T (s) + b0N(s), the striction curve is given by

ᾱ = α− 1

a′
e,

where a′ 6= 0;
(iv) If e(s) = a(s)T (s) + b(s)N(s), the striction curve is given by

ᾱ = α− 1

a′
e,

where a′ 6= 0;
(v) If e(s) = a0T (s) + b0N(s), the base curve α is the striction curve;
(vi) If e(s) = a(s)T + b(s)N(s) + c(s)B(s), where a, b, c are some non-zero differentiable functions satisfying the system
of equations (4.4) and g(e′, e′) 6= 0, the striction curve is given by

ᾱ = α− a′ − c
(a′ − c)2 + 2[c′ − cτ ][a+ b′ + bτ ]

e.

Without loss of generality, we may assume that the rulings of S satisfy the condition

g(e(s), e(s)) = constant, (4.6)

for all s ∈ I . Differentiating the relation (4.6) with respect to s, we obtain

g(e(s), e′(s)) = 0, (4.7)

which means that e and e′ are the orthogonal vectors. Hence they can not be both timelike vectors. Also, one
of them can not be timelike vector and another one null vector. In the next theorem for the striction curve ᾱ of
non-cylindrical ruled surface, we include the remained possibilities for e and e′.

Theorem 4.3. Let S be a non-cylindrical ruled surface in E3
1 with the parametrization (4.1) and e′ is a non-null vector.

Then the following relations hold:
(i) If e is a null vector and e′ is a spacelike vector, the striction curve of S is given by

ᾱ = α− a′ − c
(a′ − c)2 + 2[c′ − cτ ][a+ b′ + bτ ]

e. (4.8)

(ii) If e is a spacelike vector and e′ is a spacelike or a timelike vector, or e is a timelike vector and e′ is a spacelike vector,
the striction curve of S is given by (4.8).

The striction curve ᾱ is related to the distribution parameter D by the equation ᾱ′ × e = De′. By using
Theorem 4.2, we easily obtain the next theorem.

Theorem 4.4. Let S be a cylindrical ruled surface in E3
1 with the parametrization (4.1). Then the following statements

hold:

(i) If e(s) = b(s)N(s), then the distribution parameter

D = b/(b′ + bτ),

where b′ + bτ 6= 0;
(ii) If e(s) = a0T (s) + b(s)N(s), then the distribution parameter

D = b/(a0 + b′ + bτ),

where a0 + b′ + bτ 6= 0;
(iii) If e(s) = a(s)T (s) + b0N(s), then the distribution parameter D = 0.
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(iv) If e(s) = a(s)T (s) + b(s)N(s), then the distribution parameter D = 0.
(v) If e(s) = a0T (s) + b0N(s), then the distribution parameter

D = b0/(a0 + b0τ),

where a0 + b0τ 6= 0;
(vi) If e(s) = a(s)T (s) + b(s)N(s) + c(s)B(s), where a, b, c 6= 0 are some differentiable functions satisfying the system
of equations (4.4), then the distribution parameter D = 0.

The next theorem and corollary can be proved by using Theorem 4.3.

Theorem 4.5. Let S be a non-cylindrical ruled surface in E3
1 with the parametrization (4.1) and e′ is a non-null vector.

Then the following statements hold:
(i) If e is a null vector satisfying and g(e, T ) = 0, then the distribution parameter D = 0;
(ii) If e is a null vector satisfying and g(e, T ) 6= 0, then the distribution parameter is given by

D =
bc′ − cb′ − ac− 2bcτ

(a′ − c)2 + 2[c′ − cτ ][a+ b′ + bτ ]
; (4.9)

(iii) If e is a spacelike vector and e′ is a spacelike or a timelike vector, or e is a timelike vector and e′ is a spacelike vector,
then the distribution parameter is given by the relation (4.9).

Proof. (i) Assume that e is a null vector satisfying and g(e, T ) = 0. By using the relation (4.2) we get a = 0.
Since S is a non-cylindrical surface, the condition g(e, e) = 0 implies b = 0. Hence e = cB, c 6= 0 and therefore
e′ = −cT + (c′ − cτ)B. By using (2.3) it follows that e× e′ = −ce, c 6= 0. Consequently, g(ᾱ′, e× e′) = 0, and thus
D(s) = 0.
(ii) Assume that e is a null vector satisfying and g(e, T ) 6= 0. Then the relation (4.2) implies a 6= 0 and hence
b 6= 0 and c 6= 0. From (3.3) and (4.5) we get

g(ᾱ′, e× e′) = g(T, e× e′) = bc′ − cb′ − ac− 2bcτ.

By using the (3.5) and the last relation, we obtain case (ii) of the theorem.
(iii) The proof is analogous to the proof of statement (ii).

5. The spacelike, timelike and lightlike ruled surfaces with a pseudo null base curve

In this section, we classify the cylindrical and non-cylindrical ruled surfaces with a pseudo null base curve
as spacelike, timelike and lightlike surfaces.

Let us first classify a non-cylindrical ruled surfaces with parametrization (4.1). We distinguish two cases: (I)
e′ is a non-null vector; (II) e′ is a null vector.
(I) e′ is a non-null vector. The parametrization of S in terms of the striction curve ᾱ reads

φ(s, u) = ᾱ(s) + ue(s), s ∈ I, u ∈ R. (5.1)

By taking the partial derivatives of the relation (5.1) with respect to s and u respectively, we obtain

φs = ᾱ′(s) + ue′(s), φu = e(s).

By using the last relation we find

φs × φu = (ᾱ′(s) + ue′(s))× e(s) = D(s)e′(s) + ue′(s)× e(s), (5.2)

where D(s) is the distribution parameter of S.
Lemma 2.1 and the relations (4.7) and (5.2) imply

g(φs × φu, φs × φu) = g(e′(s), e′(s))[D2(s)− u2g(e(s), e(s))].

By using the last relation, we may determine the causal character of the normal vector field φs × φu on S, which
allows us to classify the surface S with parametrization (5.1) as spacelike, timelike, or lightlike surface.
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Theorem 5.1. The non-cylindrical ruled surface S with the parametrization (5.1) and the non-null vector e′ is a spacelike
surface in E3

1, if and only if one of the following statements hold:
(i) e and e′ are spacelike vectors, D(s) = 0 or D(s) 6= 0 and |D(s)| < |u|||e(s)||;
(ii) e is a spacelike vector, e′ is a timelike vector and |D(s)| > |u|||e(s)||.

Theorem 5.2. The non-cylindrical ruled surface S with the parametrization (5.1) and the non-null vector e′ is a timelike
surface in E3

1, if and only if one of the following statements hold:
(i) e is a timelike vector and e′ is a spacelike vector;
(ii) e and e′ are spacelike vectors and |D(s)| > |u|||e(s)||;
(iii) e is a null vector, e′ is a spacelike vector and D(s) 6= 0;
(iv) e is a spacelike vector, e′ is a timelike vector and |D(s)| < |u|||e(s)||.

Theorem 5.3. The non-cylindrical ruled surface S with the parametrization (5.1) and the non-null vector e′ is a lightlike
surface in E3

1, if and only if e is a null vector, e′ is a spacelike vector and D(s) = 0.

(II) e′ is a null vector. Then e is a spacelike vector. Assume that the ruled surface S has the parametrization
(4.1). By taking the partial derivatives of the relation (4.1) with respect to s and t respectively, we get

φs = α′ + te′ = T + te′, (5.3)
φt = e. (5.4)

Without loss of generality, we may assume that

g(e, e) = 1. (5.5)

By using the relations (5.3), (5.4) and (5.5), we obtain that the coefficients of the first fundamental form of S are
given by

E = g(φs, φs) = 1 + 2t(a′(s)− c(s)),
F = g(φs, φt) = a(s),

G = g(φt, φt) = 1.

The last three relations yield

g(φs × φt, φs × φt) = −EG+ F 2 = a2 − 1− 2t(a′ − c). (5.6)

Depending on the causal character of the normal vector field φs × φt, we classify these surfaces in the following
way.

Theorem 5.4. Let S be a non-cylindrical ruled surface in E3
1 with the parametrization (4.1) such that g(e, e) = 1 and

g(e′, e′) = 0. Then:
(i) S is a spacelike surface, if and only if a2(s)− 1− 2t(a′(s)− c(s)) < 0;
(ii) S is a timelike surface if and only if a2(s)− 1− 2t(a′(s)− c(s)) > 0;
(iii) S is a lightlike surface if and only if it has the spacelike rulings given by e(s) = ±T (s), or by e(s) = ±T (s) +
b(s)N(s), where b′(s) + b(s)τ(s) + 1 6= 0.

Corollary 5.1. Every tangent surface φ(s, t) = α(s) + tT (s) over the pseudo null curve in Minkowski 3-space is the
lightlike non-cylindrical ruled surface with the spacelike rulings.

The tangent surface over a curve lying in the lightlike plane in Minkowski 3-space is a lightlike developable
surface ([3]). Since every pseudo null curve lies in a lightlike plane, it follows that the tangent surface over the
pseudo null curve is an example of the lightlike developable surface with the spacelike rulings (Figure 1).
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Figure 1. Tangent surface φ(s, t) over the pseudo null circle

Theorems 5.3 and 5.4 imply the next results.

Corollary 5.2. The non-cylindrical ruled surface S with the pseudo null base curve is a lightlike surface in E3
1 if and only

if it has the spacelike rulings given by e(s) = ±T (s), or by e(s) = ±T (s) + b(s)N(s), where b′(s) + b(s)τ(s) + 1 6= 0,
or the lightlike rulings given by e(s) = c(s)B(s), where c(s) 6= 0 is some scalar function in s.

Corollary 5.3. Every binormal surface φ(s, t) = α(s) + tB(s) over the pseudo null curve in Minkowski 3-space is a
lightlike non-cylindrical ruled surface with the null rulings.

Binormal surface over a pseudo null curve is also an example of the lightlike developable surface, because it
can be reparameterized as the tangent surface over a null curve, which is proved in the next theorem.

Theorem 5.5. Every binormal surface φ(s, t) = α(s) + tB(s) over the pseudo null curve α with the torsion τ(s) 6= 0
can be parameterized as the tangent surface over a null curve (Figure 2).

Proof. Let S be a binormal surface over a pseudo null base curve αwith a parametrization φ(s, t) = α(s) + tB(s).
Denote by γ a null curve lying in S. Then γ is given by

γ(s) = α(s) + t(s)B(s),

where s is arclength parameter of α. The condition g(γ′(s), γ′(s)) = 0 yields t(s) = 1 and thus γ(s) = α(s) +B(s).
Since the vector γ′(s) is collinear with B(s), we may choose Tγ = B(s). Hence by changing the directrix curve
α to a null curve γ, we obtain the lightlike surface with the parametrization

φ(s, t) = γ(s) + tB(s) = γ(s) + tTγ(s),

which represents the tangent surface over a null curve.
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Figure 2. Binormal surface φ(s, t) over the pseudo null helix

Finally, we classify the cylindrical ruled surface C with the parametrization (4.1) as a spacelike, a timelike
and a lightlike surface. By using the relations (4.1) and (4.2), we find that normal vector field on C is given by

φs × φt = T × e = bN − cB.
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The previous relation implies
g(φs × φt, φs × φt) = −2bc.

Therefore, if −2bc > 0 the surface C is timelike, and if −2bc < 0 the surface C is spacelike. Moreover, if b = 0,
the system of equations (4.4) implies a contradition. Hence C is a lightlike surface, if c = 0.

The next two theorems can be proved by using the above relations.

Theorem 5.6. The cylindrical ruled surface C in E3
1 with the parametrization (4.1) is a spacelike (or a timelike) surface, if

and only if it has the rulings of the form e(s) = a(s)T (s) + b(s)N(s) + c(s)B(s), where a, b, c 6= 0 are some differentiable
functions satisfying the system of the equations (4.4) and sgn(b) = sgn(c) ( sgn(b) 6= sgn(c)).

Theorem 5.7. The cylindrical ruled surface C in E3
1 with parametrization (4.1) is a lightlike surface, if and only if it’s

rulings are given by one of the statements (i)-(v) in Theorem 4.1.

Corollary 5.4. Every principal normal surface φ(s, t) = α(s) + tN(s) over the pseudo null curve in Minkowski 3-space
is a lightlike cylindrical ruled surface with the null rulings (Figure 3).
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Figure 3. Principal normal surface φ(s, t) over the pseudo null helix

It is known that the only lightlike generalized cylinders in E3
1 are the lightlike planes ([8]), which represent

lightlike developable surfaces ([3]). Hence the principal normal surface is a part of the lightlike plane and thus
it is a lightlike developable surface.

6. On solutions of Da Rios vortex filament equation

Some classes of ruled surfaces, which are the solutions of Da Rios vortex filament equation are given in [5].
In this section, we show that the pseudo null curve and it’s Frenet frame in Minkowski 3-space generate new
solutions φ(s, t) of Da Rios vortex filament equation

φt = φs × φss. (6.1)

By taking the partial derivatives of the relation (4.1) with respect to s and t respectively and using (4.2), we
obtain

φs = T + te′, φss = N + te′′, φt = e = aT + bN + cB.

Consequently, φ(s, t) is the solution of Da Rios vortex filament equation (6.1), if

φs × φss = (T + te′)× (N + te′′) = aT + bN + cB.

Applying (2.3) in the last relation, we get

N + t(T × e′′ + e′ ×N) + t2(e′ × e′′) = aT + bN + cB.

The last relation holds for each t, if and only if the next system of equations is satisfied

a = c = 0, b = 1, T × e′′ + e′ ×N = 0, e′ × e′′ = 0.

The above system of equations is satisfied if e(s) = N(s), τ(s) = 0, or τ(s) = 1/(s+ c), c ∈ R. In this way, the
next theorem is proved.
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Theorem 6.1. Let S be a ruled surface in E3
1 with the parametrization (4.1). Then S is a solution of Da Rios vortex

filament equation (6.1), if and only if pseudo null base curve α(s) has the torsion τ(s) = 0 or τ(s) = 1/(s+ c), c ∈ R and
S is the principal normal surface with the parametrization

φ(s, t) = α(s) + tN(s).

Hence the solution φ(s, t) is a part of the lightlike plane. Next we show that Frenet frame {T,N,B} of a
pseudo null curve can generate new solutions of Da Rios vortex filament equation. Consider the ruled surface
with the parametrization

x(s, t) = B(s) + te(s), (6.2)

where B(s) is the binormal vector of the pseudo null curve and the ruling e is given by (4.2). By taking the
partial derivatives of the relation (6.2) with respect to s and t respectively and using (2.1) and (4.2), we obtain

xs = −T − τB + te′,

xss = −N − τ ′B + τT + τ2B + te′′,

xt = e = aT + bN + cB.

The last relation implies

xs × xss = − τT +N − τ ′B + t[−T × e′′ − τB × e′′ − e′ ×N −
τ ′e′ ×B + τe′ × T + τ2e′ ×B] + t2e′ × e′′.

Therefore, x(s, t) is the solution of Da Rios vortex filament equation (6.1), if

− τT +N − τ ′B + t[−T × e′′ − τB × e′′ − e′ ×N −
τ ′e′ ×B + τe′ × T + τ2e′ ×B] + t2[e′ × e′′] = aT + bN + cB.

The last relation implies the system of equations

a = −τ, b = 1, c = −τ ′, e′ × e′′ = 0,

−T × e′′ − τB × e′′ − e′ ×N − τ ′e′ ×B + τe′ × T + τ2e′ ×B = 0.

The above system of equations is satisfied, if

e(s) = −τ(s)T (s) +N(s)− τ ′(s)B(s),

where τ(s) satisfies differential equation ττ ′ − τ ′′ = 0. Consequently, τ(s) = c, or τ(s) = −2/(s+ c), or τ(s) =
tan( s2 + c), c ∈ R. This proves the next theorem.

Theorem 6.2. Let α be a pseudo null curve in E3
1 with the Frenet frame {T,N,B}, torsion τ and S the ruled surface

with the parametrization
x(s, t) = B(s) + te(s).

Then S is the solution of the Da Rios vortex filament equation, if and only if:
(i) α has the torsion τ(s) = c, c ∈ R and S is a spacelike cylindrical ruled surface with constant spacelike rulings given

by (Figure 4)
x(s, t) = B(s) + t[N(s)− τ(s)T (s)];

(ii) α has the torsion τ(s) = −2/(s+ c), and S is a lightlike cylindrical ruled surface with constant null rulings given
by

x(s, t) = B(s) + t[
2

s+ c
T +N(s)− 2

(s+ c)2
B(s)];

(iii) α has the torsion τ(s) = tan( s2 + c), c ∈ R and S is a timelike cylindrical ruled surface with constant timelike
rulings given by

x(s, t) = B(s) + t[− tan(
s

2
+ c)T +N(s)− 1

2 cos2( s2 + c)
B(s)].
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Figure 4. Cylindrical surface x(s, t) over binormalB(s) of pseudo null curve
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