

Strong Roman Domination Number of Complementary Prism Graphs

Doost Ali Mojdeh¹, Ali Parsian², Iman Masoumi^{2,*}

¹Department of Mathematics, University of Mazandaran, Babolsar, Iran. ²Department of Mathematics, Tafresh University, Tafresh, Iran.

Received: 26-10-2018 • Accepted: 19-02-2019

ABSTRACT. Let G = (V, E) be a simple graph with vertex set V = V(G), edge set E = E(G) and from maximum degree $\Delta = \Delta(G)$. Also let $f : V \to \{0, 1, ..., \lceil \frac{\Delta}{2} \rceil + 1\}$ be a function that labels the vertices of G. Let $V_i = \{v \in V : f(v) = i\}$ for i = 0, 1 and let $V_2 = V - (V_0 \cup V_1) = \{w \in V : f(w) \ge 2\}$. A function f is called a strong Roman dominating function (StRDF) for G, if every $v \in V_0$ has a neighbor w, such that $w \in V_2$ and $f(w) \ge 1 + \lceil \frac{1}{2} |N(w) \cap V_0| \rceil$. The minimum weight, $\omega(f) = f(V) = \sum_{v \in V} f(v)$, over all the strong Roman dominating functions of G, is called the strong Roman domination number of G and we denote it by $\gamma_{StR}(G)$. An StRDF of minimum weight is called a $\gamma_{StR}(G)$ -function. Let \overline{G} be the complement of G. The complementary prism $G\overline{G}$ of G is the graph formed from the disjoint union G and \overline{G} by adding the edges of a perfect matching between the corresponding vertices of G and \overline{G} . In this paper, we investigate some properties of Roman, double Roman and strong Roman domination number of $G\overline{G}$.

2010 AMS Classification: 05C69.

Keywords: Strong Roman domination, double Roman domination, Roman domination, prism, complementary prism, differential of a graph.

1. INTRODUCTION

Let G = (V, E) be a simple undirected graph with the set of vertices V = V(G) of order n = |V| and the set of edges E = E(G). We refer the reader to [16] for any terminology and notation not here in. We denote minimum degree of a graph G with $\delta(G)$ and maximum degree with $\Delta(G)$. The open neighborhood of a vertex $v \in V$ is the set $N(v) = \{u : uv \in E(G)\}$. The open neighborhood of a set $S \subseteq V$ is the set $N(S) = \bigcup_{v \in S} N(v)$. The closed neighborhood of a set $S \subseteq V$ is the set $N[S] = N(S) \bigcup S$. Let E_v be the set of edges incident with v in G that is, $E_v = \{uv \in E(G) : u \in N(v)\}$. We denote the degree of v by $d_G(v) = |E_v|$. A vertex of degree zero is called an isolated vertex. A set $M \subseteq E(G)$ is called a matching if no two edges of M have a common end vertex. If M is a matching in a graph G with the property that every vertex of G is incident with an edge of M, then M is a perfect matching in G. The vertex chromatic number $\chi(G)$ of G is the minimum integer k such that G is k-colorable.

A complementary prism of G, denoted by $G\overline{G}$, is the graph obtained by taking a copy of G and a copy of its complement \overline{G} and then joining corresponding vertices by an edge. According to the definition of complementary prism of G, it is easy to see that $G\overline{G}$, contains a perfect matching. We note that complementary prisms are a generalization of

*Corresponding Author

Email addresses: damojdeh@umz.ac.ir (D. A. Mojdeh), parsianali@yahoo.com (A. Parsian), i_masoumi@yahoo.com (I. Masoumi)

the Petersen graph. For example, the graph $C_5\overline{C_5}$ is the Petersen graph. Also if $G = K_n$ the graph $K_n\overline{K_n}$ is the corona $K_n \circ K_1$, where the corona $H \circ K_1$, of a graph H is the graph obtained from H by attaching a pendent edge to each vertex of H. For notational convenience, we let $V(\overline{G}) = \overline{V}$. Also, note that $V(G\overline{G}) = V \cup \overline{V}$. To simplify our discussion of complementary prisms, we say simply G and \overline{G} to refer to the subgraph copies of G and \overline{G} , respectively, in $G\overline{G}$. Also, for a vertex v of G, we let \overline{v} be the corresponding vertex in \overline{G} , and for a set $X \subseteq V$, we let \overline{X} be the corresponding set of vertices in \overline{V} . Further, for any function f on $G\overline{G}$, we let $\omega(f_V)$ denote the weight of f on G, and $\omega(f_{\overline{V}})$ denote the weight of f on \overline{G} . Clearly, $G\overline{G}$ is isomorphic to $\overline{G}G$, so our results stated in terms of G also apply to \overline{G} unless otherwise stated. A complementary prism is a specific case of complementary product of graphs introduced by Haynes et al. [12] in 2009. Haynes et al. ([10–12]) studied some parameters of complementary prism of graphs such as the vertex independence number, the chromatic number, the domination number, total domination number, independent domination number.

Let G = (V, E) be a graph, $X \subseteq V$ and B(X) be the set of vertices in V - X that have a neighbor in the set X. We define the differential of a set X to be $\partial(X) = |B(X)| - |X|$ [14], and the differential of a graph to be equal to $\partial(G) = \max \{\partial(X) : X \subseteq V\}$. A set D satisfying $\partial(D) = \partial(G)$ is called a ∂ -set or differential set. One of the variations of the differential of a graph is the B-differential of a graph. We denote this parameter with $\Psi(G)$ and we define $\Psi(G) = \max \{|B(X)| : X \subseteq V\}$ [14]. We define the B-differential of a set $X \subseteq V(G)$ to be $\Psi(X) = |B(X)|$ [14]. A set X satisfying $\Psi(X) = \Psi(G)$ is called a $\Psi(G)$ -set or B-differential set.

A set $S \subseteq V$ is a dominating set if N[S] = V. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of *G*. A dominating set $S \subseteq V$ is called a $\gamma(G)$ -set if $|S| = \gamma(G)$ [16].

For a graph G = (V, E), let $f : V \to \{0, 1, 2\}$ be a function, and let $f = (V_0, V_1, V_2)$ be the ordered partition of Vinduced by f, where $V_i = \{v \in V(G) : f(v) = i\}$. A Roman dominating function (or just an RDF) on graph G is a function $f : V \to \{0, 1, 2\}$ such that if $v \in V_0$ for some $v \in V$, then there exists a vertex $w \in N(v)$ such that f(w) = 2. The weight of a Roman dominating function is the sum $w_f = \sum_{v \in V(G)} f(v)$, and the minimum weight of w_f for every Roman dominating function f on G is called Roman domination number of G. We denote this number with $\gamma_R(G)$. A Roman dominating function of G with weight $\gamma_R(G)$ is called a γ_R -function of G. For more on Roman domination number see for example [5,6].

Let $f : V \to \{0, 1, 2, 3\}$ be a function, and let $f = (V_0, V_1, V_2, V_3)$ be the ordered partition of V induced by f, where $V_i = \{v \in V(G) : f(v) = i\}$. A double Roman dominating function (or just a DRDF) on graph G is a function $f : V \to \{0, 1, 2, 3\}$ such that the following conditions are met:

(a) if f(v) = 0, then vertex v must have at least two neighbors in V_2 or one neighbor in V_3 .

(b) if f(v) = 1, then vertex v must have at least one neighbor in $V_2 \bigcup V_3$.

The weight of a double Roman dominating function is the sum $w_f = \sum_{v \in V(G)} f(v)$, and the minimum weight of w_f for every double Roman dominating function f on G is called double Roman domination number of G. We denote this number with $\gamma_{dR}(G)$. A double Roman dominating function of G with weight $\gamma_{dR}(G)$ is called a γ_{dR} -function of G [4].

Also let $f: V \to \{0, 1, ..., \lceil \frac{\Delta}{2} \rceil + 1\}$ be a function that labels the vertices of *G*. Let $V_i = \{v \in V : f(v) = i\}$ for i = 0, 1and let $V_2 = V - (V_0 \cup V_1) = \{w \in V : f(w) \ge 2\}$. A function *f* is called a strong Roman dominating function (StRDF) for *G*, if every $v \in V_0$ has a neighbor *w*, such that $w \in V_2$ and $f(w) \ge 1 + \lceil \frac{1}{2} |N(w) \cap V_0|\rceil$. The minimum weight, $\omega(f) = f(V) = \sum_{v \in V} f(v)$, over all the strong Roman dominating functions of *G*, is called the strong Roman domination number of *G* and we denote it by $\gamma_{StR}(G)$. An StRDF of minimum weight is called a $\gamma_{StR}(G)$ -function [2].

The following results are useful for the proofs of our main contributions in this paper.

Theorem A [14]. For any graph *G* of order *n*, $\Psi(G) = n - \gamma(G)$.

Theorem B [3]. If *G* is a graph of order *n*, then $\gamma_R(G) = n - \partial(G)$.

Theorem C [2]. If *G* a graph of order *n*, then $\gamma_{StR}(G) \ge \lceil \frac{n+1}{2} \rceil$.

Theorem D [6]. If G is a connected graph of order n, then $\gamma_R(G) \leq \frac{4n}{5}$.

Theorem E [9]. If a graph *G* has no isolated vertices, then $\gamma(G) \leq \frac{n}{2}$.

Theorem F [15]. Let G be a graph without isolated vertices. Then $\gamma_{dR}(G) \leq 2n - \Psi(G) - \partial(G)$.

Theorem G [13]. Let G be a graph. Then $G\overline{G}$ is even order and connected.

Theorem H [8]. For any graph G, $\gamma(G\overline{G}) \leq \gamma(G) + \gamma(\overline{G})$. **Theorem I [6].** For any graph G, $\gamma(G) + \gamma(\overline{G}) \leq n + 1$.

Theorem J [7]. Let G be a graph. Then the following hold.

(1) $\gamma(\overline{G}) \le \delta(G) + 1.$

(2) $\gamma(G) \leq \chi(G)$.

Theorem K [2]. Let *G* be a graph of order *n*. Then $\gamma_{StR}(G) \le n - \lfloor \frac{\Delta}{2} \rfloor$.

2. γ_R and γ_{dR} of complementary prism of a graph

In this section we investigate Roman domination number of $(G\overline{G})$ and double Roman domination number of $(G\overline{G})$.

Theorem 2.1. For any graph G, $\Psi(G) \leq \partial(G\overline{G}) \leq \partial(G) + \partial(\overline{G})$.

Proof. Let $X \subseteq V(G)$ be a $\Psi(G)$ -set on graph G. We consider the set Y = X as a subset of $V(G\overline{G})$, that is $Y \subseteq V(G\overline{G})$. Thus, by the definition differential of graphs, $\partial(G\overline{G}) \ge \partial_{G\overline{G}}(Y) = |B_{G\overline{G}}(Y)| - |Y| = |B_{G\overline{G}}(X)| - |X|$. Now by the definition of $G\overline{G}$, we have $|B_{G\overline{G}}(X)| = |B_G(X)| + |\overline{X}|$. Hence, $\partial(G\overline{G}) \ge \partial_{G\overline{G}}(X) = |\overline{X}| + |B_G(X)| - |X| = |B_G(X)| = \Psi(X) = \Psi(G)$. Now to prove the second part of inequality. Suppose that a set $Y = X \cup Z \subseteq V(G\overline{G})$ is a $\partial(G\overline{G})$ -set on graph $G\overline{G}$ such that $X \subseteq V(G)$ and $Z \subseteq V(\overline{G})$. We have $\partial(X) \le \partial(G)$, $\partial(Z) \le \partial(\overline{G})$ and $|B(X \cup Z)| \le |B(X)| + |B(Z)|$. Also we have $\partial(G\overline{G}) = \partial(Y) = \partial(X \cup Z) = |B(X \cup Z)| - |X \cup Z|$. Since $X \cap Z = \emptyset$, we conclude $\partial(G\overline{G}) = \partial(Y) = |B(X \cup Z)| - |X \cup Z| = |B(X \cup Z)| - |X| - |Z| \le \partial(X) + \partial(Z) \le \partial(G) + \partial(\overline{G})$.

Theorem 2.2. For any graph G of order n, $\gamma_R(G\overline{G}) \leq n + \gamma(G)$.

Proof. By Theorems A, B and Theorem 2.1 we have $\gamma_R(G\overline{G}) = 2n - \partial(G\overline{G}) \le 2n - \Psi(G) = 2n - (n - \gamma(G)) = n + \gamma(G)$. \Box

As an immediate result, we will improve the bound of γ_R in Theorem D for complementary prism of a graph GG.

Corollary 2.3. If G is a graph with no isolated vertices, then $\gamma_R(G\overline{G}) \leq \frac{3n}{2}$.

Proof. By Theorem 2.1 and Theorem E, the result holds.

We now establish the relation between double Roman domination number of complementary prism of a graph G and domination number of G.

Theorem 2.4. For any graph G of order n, $\gamma_{dR}(\overline{GG}) \leq 2n + 1 + \gamma(G)$.

Proof. By Theorem G, the graph $G\overline{G}$ is connected. Thus, it has no isolated vertex. Now according to the Theorem F, we have $\gamma_{dR}(G\overline{G}) \leq 4n - \Psi(G\overline{G}) - \partial(G\overline{G})$. But by Theorems A, 2.1, we conclude

$$\gamma_{dR}(G\overline{G}) \leq 4n - (2n - \gamma(G\overline{G})) - \Psi(G) = 4n - (2n - \gamma(G\overline{G})) - (n - \gamma(G))$$

$$= n + \gamma(GG) + \gamma(G).$$

On the other hand, by Theorems H, I we have $\gamma_{dR}(G\overline{G}) \le n + \gamma(G) + \gamma(\overline{G}) + \gamma(G) \le n + n + 1 + \gamma(G) = 2n + 1 + \gamma(G)$. \Box

Corollary 2.5. Let G be a graph of order n and without isolated vertex. Then $\gamma_{dR}(\overline{GG}) \leq 2n + \gamma(\overline{G})$.

Proof. By Theorem E, we have $\gamma(G) \leq \frac{n}{2}$. Thus, by previous Theorem, we have $\gamma_{dR}(\overline{GG}) \leq n + 2\gamma(G) + \gamma(\overline{G}) \leq n + 2\frac{n}{2} + \gamma(\overline{G}) = 2n + \gamma(\overline{G})$.

Corollary 2.6. Let G be a graph of order n and without isolated vertex. Then

- $\gamma_{dR}(G\overline{G}) \leq 2n + \delta(G) + 1.$
- $\gamma_{dR}(G\overline{G}) \leq 2n + \chi(G).$

Proof. By Theorem 2.4 and Theorem J, the result holds.

3. γ_{StR} of complementary prism of a graph

In this section we establish upper bound of strong Roman domination number of complementary prism of a graph. We compare the strong Roman domination number of complementary prism of a graph and the strong Roman domination number of the graph. First we study some special graphs.

Theorem 3.1. Let P_n be a path with vertices v_1, v_2, \ldots, v_n and $\overline{P_n}$ with vertices $\overline{v_1}, \overline{v_2}, \ldots, \overline{v_n}$. Then $\gamma_{StR}(P_n\overline{P_n}) = n + \lceil \frac{n}{3} \rceil + 1$.

Proof. Let $f = (V_0, V_1, V_2)$ be a $\gamma_{StR}(P_n)$ -function on P_n . If $n \equiv 0 \pmod{3}$, then f can be chosen in such a way that $V_1 = \emptyset$, $V_2 = \{v_i : i = 3t + 2, 0 \le t \le \frac{n-3}{3}\}$ and $V_0 = V - V_2$. We define a function $g = (V'_0, V'_1, V'_2)$ on $P_n \overline{P_n}$ by

$$g(v) = \begin{cases} 1, & \text{if } v \in \overline{V_2}; \\ f(v) & v \in V_0 \cup V_1 \cup V_2; \\ \frac{n-\frac{n}{2}}{2} + 1 & \text{for } v = \overline{v_1} \\ 0, & \text{otherwise.} \end{cases}$$

Clearly, g is a StRDF on $P_n \overline{P_n}$. Hence,

$$\gamma_{StR}(P_n\overline{P_n}) \le \omega(g) = \frac{n}{3} + \frac{2n}{3} + \frac{n - \frac{n}{3}}{2} + 1 = n + \frac{n}{3} + 1$$

Conversely, it is well known that the least value that must be assigned to the vertices of $\overline{P_n}$ and P_n in $P_n\overline{P_n}$ by any StRDF are $1 + \lceil \frac{1}{2}(\frac{2n}{3}+1) \rceil + \frac{n}{3}$ and $\frac{2n}{3}$ respectively or $1 + \lceil \frac{1}{2}(n-1) \rceil$ and *n* respectively. Therefore $\gamma_{StR}(P_n\overline{P_n}) \ge n + \frac{n}{3} + 1$ and thus $\gamma_{StR}(P_n\overline{P_n}) = n + \frac{n}{3} + 1$.

If $n \equiv 1 \pmod{3}$, then f can be chosen in such a way that $V_1 = \{v_n\}, V_2 = \{v_i : i = 3t + 2, 0 \le t \le \frac{n-4}{3}\}$ and $V_0 = V - V_2 \cup V_1$. If $n \equiv 2 \pmod{3}$, then f can be chosen in such a way that $V_1 = \emptyset, V_2 = \{v_i : i = 3t + 2, 0 \le t \le \frac{n-2}{3}\}$ and $V_0 = V - V_2$.

Thus we define a function $h = (V_0'', V_1'', V_2'')$ on $P_n \overline{P_n}$ by

$$h(v) = \begin{cases} 1, & v \in \overline{V_2}; \\ f(v) & v \in V_0 \cup V_1 \cup V_2; \\ \lceil \frac{n - \lceil \frac{n}{3} \rceil + 1}{2} \rceil + 1 & \text{for } v = \overline{v_1} \\ 0, & \text{otherwise.} \end{cases}$$

Clearly, *h* is a StRDF on $P_n \overline{P_n}$. Hence,

$$\gamma_{StR}(P_n\overline{P_n}) \le \omega(h) = \lceil \frac{n}{3} \rceil - 1 + \lceil \frac{2n}{3} \rceil + \lceil \frac{n - \lceil \frac{n}{3} \rceil + 1}{2} \rceil + 1 = n + \lceil \frac{n}{3} \rceil + 1.$$

Conversely, it can be proved that like the first part. Thus the proof is completed.

It can be easily verified $\gamma_{StR}(C_3\overline{C_3}) = 5$. In the follow we investigate the $\gamma_{StR}(C_n\overline{C_n})$ for $n \ge 4$.

43

Theorem 3.2. For any cycle C_n , $\gamma_{StR}(C_n\overline{C_n}) = \begin{cases} n + \lceil \frac{n}{3} \rceil + 2, & \text{if } n \equiv 0 \pmod{3}, \\ n + \lceil \frac{n}{3} \rceil + 1, & \text{otherwise.} \end{cases}$

Proof. Let $f = (V_0, V_1, V_2)$ be a γ_{StR} -function on C_n and $n \equiv 0 \pmod{3}$, $(n \ge 4)$. Then f can be chosen in such a way that $V_1 = \emptyset$, $V_2 = \{v_i : i = 3t + 2, 0 \le t \le \frac{n-3}{3}\}$ and $V_0 = V - V_2$. We define a function g on $C_n \overline{C_n}$ by

$$g(v) = \begin{cases} 1, & v \in \overline{V_2}, \text{ and } v = \overline{v_n} \\ f(v), & v \in V_2, \\ \lceil \frac{n-2-\lceil \frac{n}{3} \rceil}{2} \rceil + 1 & v = \overline{v_1}; \\ 0, & \text{otherwise.} \end{cases}$$

g is a StRDF on $C_n\overline{C_n}$. Thus $\gamma_{StR}(C_n\overline{C_n}) \le \omega(g) = \frac{n}{3} + 1 + \frac{2n}{3} + \lceil \frac{n-2-(\frac{n}{3}-1)}{2} \rceil + 1 = n + \lceil \frac{n}{3} \rceil + 2$. Conversely, it is well known that the least value that must be assigned to the vertices of $\overline{C_n}$ and C_n in $C_n\overline{C_n}$ by any StRDF are $1 + \lceil \frac{1}{2}(n-2) - (\frac{n}{3}-1) \rceil + \frac{n}{3} + 1$ and $\frac{2n}{3}$ respectively or $1 + \lceil \frac{1}{2}(n-2) \rceil$ and n+1 respectively. Therefore $\gamma_{StR}(C_n\overline{C_n}) \ge n + \frac{n}{3} + 2$ and thus $\gamma_{StR}(C_n\overline{C_n}) = n + \frac{n}{3} + 2 = n + \lceil \frac{n}{3} \rceil + 2$.

Now similar to the proof of the first part and using Theorem 3.1, one can prove $\gamma_{StR}(C_n \overline{C_n}) = n + \lceil \frac{n}{3} \rceil + 1$ if $n \equiv 1 \pmod{3}$ or $n \equiv 2 \pmod{3}$.

Theorem 3.3. For any complete graph K_n , $\gamma_{StR}(K_n\overline{K_n}) = n + \lceil \frac{n}{2} \rceil$

Proof. Let v be a vertex in G. Clearly, degv = n - 1. Now we define a function f on $G\overline{G}$ by $f(v) = \lceil \frac{n}{2} \rceil + 1$, $f(\overline{v}) = 0$ for $\overline{v} \in \overline{V}$, f(x) = 1 for any $x \in \overline{V} - \{\overline{v}\}$ and 0 otherwise. Thus f is a StRDF of $G\overline{G}$. So, we conclude $\gamma_{StR}(G\overline{G}) \leq \omega(f) = n - 1 + \lceil \frac{n}{2} \rceil + 1 = n + \lceil \frac{n}{2} \rceil$. Now to see that for any StRDF on $G\overline{G}$ has at least weight $\geq n + \lceil \frac{n}{2} \rceil$. Let f be a StRDF of $G\overline{G}$. For any vertex $\overline{v} \in \overline{V}$, we have either $f(\overline{v}) = 0$ or $f(\overline{v}) = 1$. If $f(\overline{v}) = 0$ and k vertices of K_n has value 0, and n - (k + 1) vertices has value 1, then n - 1 vertices of $\overline{K_n}$ assigned by value 1. Therefore $\omega(f) = n - 1 + n - (k + 1) + \lceil \frac{k+1}{2} \rceil + 1 = 2n - k - 1 + \lceil \frac{k+1}{2} \rceil \geq n + \lceil \frac{n}{2} \rceil$. Thus $\gamma_{StR}(K_n\overline{K_n}) = n + \lceil \frac{n}{2} \rceil$. If for any $v \in \overline{V}$ f(v) = 1, then it is simply verified that $\omega(f) \geq n + \lceil \frac{n}{2} \rceil$. Anyway $\gamma_{StR}(K_n\overline{K_n}) = n + \lceil \frac{n}{2} \rceil$.

A. Alhashim and others observed in the article [1] that for any graph G, $\gamma_R(G\overline{G}) \leq \gamma_R(G) + \gamma_R(\overline{G})$. But in general, this proposition for the parameter γ_{StR} is not correct. For example, this inequality is not true for the graph $G = K_3 + K_3$, because we have $\overline{G} = K_{3,3}$, $\gamma_{StR}(G\overline{G}) = 10$, $\gamma_{StR}(G) = 4$ and $\gamma_{StR}(\overline{G}) = 5$. In the next Theorem, we prove the correct form of this inequality for the parameter γ_{StR} .

Theorem 3.4. Let G be a simple graph of order n. Then we have

$$\gamma_{StR}(G\overline{G}) - \gamma_{StR}(G) \le n.$$

Proof. Let $f = (V_0, V_1, V_2)$ be a γ_{StR} -function on G. We define an function g on $G\overline{G}$ by $g = (V'_0, V'_1, V'_2)$ such that

$$V'_{0} = \{ w \in V(\overline{G}) : w \in N_{G\overline{G}}(V_{2}) \} \cup V_{0}$$
$$V'_{1} = \{ w \in V(\overline{G}) : w \in N_{G\overline{G}}(V_{1} \cup V_{0}) \} \cup V_{1}$$
$$V'_{2} = V_{2},$$

where $V_2 = \{v \in G | f(v) \ge 2\} = U_2 \cup U_3 \cup \ldots \cup U_{\lceil \frac{\Delta(G)}{2} \rceil + 1}$ and $U_i = \{v \in V(G) | f(v) = i\}$. Clearly, g is an StRDF on $G\overline{G}$. Since $V'_2 = \{v \in V(G\overline{G}) | g(v) \ge 2\}$, hence $V'_2 = V''_2 \cup V''_3 \cup \ldots \cup V''_{\lceil \frac{\Delta}{2} \rceil + 1}$ where $V''_i = \{v \in V(G\overline{G}) | g(v) = i\}$ and $\Delta = \Delta(G\overline{G})$. Thus we have $\gamma_{StR}(G\overline{G}) \le \omega(g) = |V'_1| + 2|V''_2| + 3|V''_3| + \ldots + (\lceil \frac{\Delta}{2} \rceil + 1)|V''_{\lceil \frac{\Delta}{2} \rceil + 1}|$. By definition of StRDF g, we have

 $|V_1'| = |V_0| + |V_1|$

and

$$2|V_{2}''| + 3|V_{3}''| + \dots + (\lceil \frac{\Delta}{2} \rceil + 1)|V_{\lceil \frac{\Delta}{2} \rceil + 1}''| \le |U_{2}| + \dots + |U_{\lceil \frac{\Delta(G)}{2} \rceil + 1}| + \gamma_{StR}(G).$$

Thus, we conclude

$$\gamma_{StR}(G\overline{G}) \le |V_0| + |V_1| + |U_2| + \dots + |U_{\lceil \frac{\Delta(G)}{2} \rceil + 1}| + \gamma_{StR}(G) \le n + \gamma_{StR}(G).$$

Corollary 3.5. Let G be a simple graph of order n. If every vertex of G has odd degree, then

 $\gamma_{StR}(G\overline{G}) - \gamma_{StR}(G) \le n - 1.$

Proof. Since each vertex of G is odd degree, by using the notations of the proof of Theorem 3.4, we have $V_2'' = U_2, \ldots, V_{\lceil \frac{A}{2} \rceil + 1}'' = U_{\lceil \frac{A(G)}{2} \rceil + 1}$ and for any vertex v in $V_2' = V_2$, g(v) = f(v). Thus

$$\begin{split} \gamma_{StR}(G\overline{G}) &\leq \omega(g) = |V_1'| + 2|V_2''| + 3|V_3''| + \dots + (\lceil \frac{\Delta}{2} \rceil + 1)|V_{\lceil \frac{\Delta}{2} \rceil + 1}'| \\ &= |V_0| + |V_1| + 2|U_2| + 3|U_3| + \dots + (\lceil \frac{\Delta(G)}{2} \rceil + 1)|U_{\lceil \frac{\Delta(G)}{2} \rceil + 1}| \\ &= |V_0| + \gamma_{StR}(G) \leq n - 1 + \gamma_{StR}(G). \end{split}$$

Theorem 3.6. For any graph G with maximum degree $\Delta = \Delta(G)$, $2 \le \gamma_{StR}(G\overline{G}) \le 2n - \Delta + \lceil \frac{\Delta+1}{2} \rceil - 1$ and the bounds are sharp.

Proof. Let *v* be a vertex of *G* with $degv = \Delta$. We establish a function *f* on $G\overline{G}$ by $f(v) = \lceil \frac{\Delta+1}{2} \rceil + 1$, f(x) = 0 for any $x \in N_{G\overline{G}}(v)$ and f(y) = 1 otherwise. The function *f* is a StRDF on $G\overline{G}$ and $\omega(f) = \lceil \frac{\Delta+1}{2} \rceil + 1 + 2n - (\Delta + 2)$. Thus, $\gamma_{StR}(G\overline{G}) \leq \omega(f) = \lceil \frac{\Delta+1}{2} \rceil + 2n - \Delta - 1$. Since the lower bound is trivial, the result is proved. For upper bound sharpness, let $G = K_n$, and using of Theorem 3.3, for lower bound sharpness, consider $G = K_1$. Thus the proof is completed. \Box

Using Theorem C, we establish a lower bound for strong domination number of $G\overline{G}$ in terms of order of G.

Corollary 3.7. Let G be a graph of order n. Then $\gamma_{StR}(\overline{GG}) \ge n + 1$.

Now we determine the complementary prisms $G\overline{G}$ having small strong Roman domination numbers, namely, the graphs G with $\gamma_{StR}(G\overline{G}) \in \{2, 3, 4, 5\}$.

Theorem 3.8. Let G be a graph. Then,

- 1. $\gamma_{StR}(G\overline{G}) = 2$ if and only if $G = K_1$.
- 2. $\gamma_{StR}(G\overline{G}) = 3$ if and only if $G = K_2$ or $\overline{G} = K_2$.
- 3. For any graph G, $\gamma_{StR}(G\overline{G}) \neq 4$.
- 4. $\gamma_{StR}(G\overline{G}) = 5$ if and only if $G = P_3$ or $G = K_3$.

Proof. (1) If $G = K_1$, then $G\overline{G} = K_2$ and $\gamma_{StR}(K_2) = 2$. Conversely, assume that $\gamma_{StR}(G\overline{G}) = 2$. Then by Corollary 3.7 we have $2 \ge n + 1$. Thus n = 1. Hence we must have $G = K_1$.

(2) If $G = K_2$, then $G\overline{G}$ is isomorphic to the path P_4 and $\gamma_{StR}(P_4) = 3$. Conversely, assume that $\gamma_{StR}(G\overline{G}) = 3$. Then by Corollary 3.7 we have $3 \ge n + 1$. Thus $n \le 2$. But with regard to the first part of the Theorem we must have n = 2. Hence, we conclude $G = K_2$ or $\overline{G} = K_2$.

(3) Let *G* be a graph of order *n* such that $\gamma_{StR}(G\overline{G}) = 4$. Then by 3.7 we have $4 \ge n + 1$. Thus $n \le 3$. But according to the two preceding parts of the Theorem we must have n = 3. Hence, we must have $G = K_3$ or $G = P_3$. Now with simple calculation we have $\gamma_{StR}(G\overline{G}) = 5$. And so it is a contradiction.

(4) If $G = K_3$ or $G = P_3$, then $\gamma_{StR}(G\overline{G}) = 5$. Conversely, assume that $\gamma_{StR}(G\overline{G}) = 5$. Then by Corollary 3.7 we have $5 \ge n + 1$. Thus $n \le 4$. But according to the

preceding parts of the Theorem we must have n = 3 or n = 4. If n = 4, then there are 12 graphs *G* of the order of 4, which with simple calculations for $\gamma_{StR}(\overline{GG})$ we conclude $\gamma_{StR}(\overline{GG}) = 6$. Then we must have n = 3. Hence, $G = K_3$ or $G = P_3$.

Another lower bound for strong Roman domination number of complementary prism of a graph G in terms of order maximum degree and minimum degree is established as follows.

Theorem 3.9. Let G be a graph of order n. Then

$$\gamma_{StR}(G\overline{G}) \ge max\{\gamma_{StR}(G) + \lceil \frac{n-\delta}{2} \rceil, \gamma_{StR}(G) + \lceil \frac{\Delta-1}{2} \rceil + 1, \gamma_{StR}(\overline{G}) + \lceil \frac{n-\delta}{2} \rceil, \gamma_{StR}(\overline{G}) + \lceil \frac{\Delta-1}{2} \rceil + 1\}$$

This bound is sharp.

Proof. Without loss of generality, let $max\{\gamma_{StR}(G), \gamma_{StR}(\overline{G})\} = \gamma_{StR}(G)$. Thus by Theorems C and K, we have $\gamma_{StR}(G\overline{G}) \ge \lceil \frac{2n+1}{2} \rceil = n+1$ and $\gamma_{StR}(G) \le n - \lfloor \frac{\Delta}{2} \rfloor$. Hence, we conclude

$$\gamma_{StR}(G\overline{G}) - \gamma_{StR}(G) \ge n + 1 - (n - \lfloor \frac{\Delta}{2} \rfloor) = \lfloor \frac{\Delta}{2} \rfloor + 1 = \lceil \frac{\Delta - 1}{2} \rceil + 1,$$

On the other hand, for the graph \overline{G} , since $\overline{\Delta} = n - \delta - 1$ by Theorem K we have $\gamma_{StR}(\overline{G}) \leq n - \lfloor \frac{n-\delta-1}{2} \rfloor$. But $\lfloor \frac{n-\delta-1}{2} \rfloor + 1 = \lceil \frac{n-\delta}{2} \rceil + 1 = \lceil \frac{n-\delta}{2} \rceil$. So, we have $\gamma_{StR}(\overline{G}) \leq n - \lceil \frac{n-\delta}{2} \rceil + 1$. Hence,

$$\gamma_{StR}(G\overline{G}) - \gamma_{StR}(\overline{G}) \ge n+1 - (n - \lceil \frac{n-\delta}{2} \rceil + 1) = \lceil \frac{n-\delta}{2} \rceil.$$

Thus by the assumption $\gamma_{StR}(G) \ge \gamma_{StR}(\overline{G})$ we conclude

$$\gamma_{StR}(G\overline{G}) \geq \gamma_{StR}(G) + \lceil \frac{\Delta - 1}{2} \rceil + 1 \geq \gamma_{StR}(\overline{G}) + \lceil \frac{\Delta - 1}{2} \rceil + 1,$$

Therefore,

$$\gamma_{StR}(G\overline{G}) \ge max\{\gamma_{StR}(\overline{G}) + \lceil \frac{n-\delta}{2} \rceil, \gamma_{StR}(\overline{G}) + \lceil \frac{\Delta-1}{2} \rceil + 1\}.$$

Similarly, by changing the role of \overline{G} with G, we have

$$\gamma_{StR}(\overline{G}G) = \gamma_{StR}(G\overline{G}) \ge max\{\gamma_{StR}(G) + \lceil \frac{n-\delta}{2} \rceil, \gamma_{StR}(G) + \lceil \frac{\Delta-1}{2} \rceil + 1\}.$$

Thus, the result is established, that is,

$$\gamma_{StR}(G\overline{G}) \geq max\{\gamma_{StR}(G) + \lceil \frac{n-\delta}{2} \rceil, \gamma_{StR}(G) + \lceil \frac{\Delta-1}{2} \rceil + 1, \gamma_{StR}(\overline{G}) + \lceil \frac{n-\delta}{2} \rceil, \gamma_{StR}(\overline{G}) + \lceil \frac{\Delta-1}{2} \rceil + 1\}.$$

For sharpness, let $G = K_n$.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this article.

References

- [1] Alhashim, A., Desormeaux, W.J., Haynes, T.W., *Roman domination in complementary prisms*, Australasian journal of combinatorics, **68**(2)(2017), 218–228. 3
- [2] Alvarez-Ruiz, M.P., Mediavilla-Gradolph, T., Sheikholeslami, S.M., Valenzuela-Tripodoro, J.C., Yero, I.G., On the strong Roman domination number of graphs, Discrete Applied Mathematics, 231(2017), 44–59. 1, 1
- Bermudo, S., Fernau, H., Sigarreta, J.M., *The differential and the Roman domination number of a graph*, Applicable Analysis and Discrete Mathematics, 8(2014), 155–171.
- [4] Beeler, R.A., Haynesa, T.W., Hedetniemi, S.T., Double Roman domination, Discrete Applied Mathematics, 211(2016), 23–29. 1
- [5] Cockayne, E.J., Dreyer, P.A., Hedetniemi, S.M., Hedetniemi, S.T., Roman domination in graphs, Discrete Mathematics, 278(2004), 11–22. 1
- [6] Chambers, E.W., Kinnersley, B., Prince, N., West, D.B., External problems for Roman domination, SIAM J. Discret Mathematics, 23(3)(2009), 1575–1586.1

- [7] Desormeaux, W.J., Haynes, T.W., Henning, M.A., Domination parameters of a graph and its complement, Discussiones Mathematicae Graph Theory, 38(2018), 203–215. 1
- [8] Gongora, J.A., Independent Domination in Complementary Prisms, Masters' Thesis, East Tennessee State University, 2009. 1
- [9] Haynes, T.W., Hedetniemi, S.T., Slater, P.J., Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998. 1
- [10] Haynes, T.W., Holmes, K.R.S., Koessler, D.R., Sewell, L., Locating-Domination in Complementary Prisms of Paths and Cycles, Congressus Numerantium, 199(2009), 45–55. 1
- [11] Haynes, T.W., Henning, M.A., Slater, P.J., van der Merwe, L.C., *The complementary product of two graphs*, Bulletin of the Institute of Combinatorics and its Applications, **51**(2007), 21–30. 1
- [12] Haynes, T.W., Henning, M.A., van der Merwe, L.C., *Domination and total domination in complemantary prisms*, Journal of Combinatorial Optimization, **18**(2009), 23–37. 1
- [13] Janseana, P., Ananchuen, N., *Matching extension in complementary prism of regular graphs*, Italian Journal of Pure and Applied Mathematics, **37**(2017), 553–564. 1
- [14] Lewis, J.R., Differentials of Graphs, Masters Thesis, East Tennessee State University, 2004. 1
- [15] Mojdeh, D.A., Parsian, A., Masoumi, I., Characterization of double Roman trees, to appear in Ars Combinatoria, (2018). 1
- [16] West, D.B., Introduction to Graph theory, Second edition, Prentice Hall, USA, 2001. 1