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Abstract. Let G = (V, E) be a simple graph with vertex set V = V(G), edge set E = E(G) and from maximum
degree ∆ = ∆(G). Also let f : V → {0, 1, ..., d ∆

2 e + 1} be a function that labels the vertices of G. Let Vi =

{v ∈ V : f (v) = i} for i = 0, 1 and let V2 = V − (V0
⋃

V1) = {w ∈ V : f (w) ≥ 2}. A function f is called
a strong Roman dominating function (StRDF) for G, if every v ∈ V0 has a neighbor w, such that w ∈ V2 and
f (w) ≥ 1 + d 1

2 |N(w)
⋂

V0|e. The minimum weight, ω( f ) = f (V) = Σv∈V f (v), over all the strong Roman dominating
functions of G, is called the strong Roman domination number of G and we denote it by γS tR(G). An StRDF of
minimum weight is called a γS tR(G)-function. Let G be the complement of G. The complementary prism GG of
G is the graph formed from the disjoint union G and G by adding the edges of a perfect matching between the
corresponding vertices of G and G. In this paper, we investigate some properties of Roman, double Roman and
strong Roman domination number of GG.

2010 AMS Classification: 05C69.

Keywords: Strong Roman domination, double Roman domination, Roman domination, prism, complementary prism,
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1. Introduction

Let G = (V, E) be a simple undirected graph with the set of vertices V = V(G) of order n = |V | and the set of
edges E = E(G). We refer the reader to [16] for any terminology and notation not here in. We denote minimum
degree of a graph G with δ(G) and maximum degree with ∆(G). The open neighborhood of a vertex v ∈ V is the
set N(v) = {u : uv ∈ E(G)}. The open neighborhood of a set S ⊆ V is the set N(S ) =

⋃
v∈S N(v). The closed

neighborhood of a set S ⊆ V is the set N[S ] = N(S )
⋃

S . Let Ev be the set of edges incident with v in G that is,
Ev = {uv ∈ E(G) : u ∈ N(v)}. We denote the degree of v by dG(v) = |Ev|. A vertex of degree zero is called an isolated
vertex. A set M ⊆ E(G) is called a matching if no two edges of M have a common end vertex. If M is a matching in a
graph G with the property that every vertex of G is incident with an edge of M, then M is a perfect matching in G. The
vertex chromatic number χ(G) of G is the minimum integer k such that G is k-colorable.
A complementary prism of G, denoted by GG, is the graph obtained by taking a copy of G and a copy of its comple-
ment G and then joining corresponding vertices by an edge. According to the definition of complementary prism of
G, it is easy to see that GG, contains a perfect matching. We note that complementary prisms are a generalization of
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the Petersen graph. For example, the graph C5C5 is the Petersen graph. Also if G = Kn the graph KnKn is the corona
Kn ◦ K1, where the corona H ◦ K1, of a graph H is the graph obtained from H by attaching a pendent edge to each
vertex of H. For notational convenience, we let V(G) = V . Also, note that V(GG) = V ∪ V . To simplify our discussion
of complementary prisms, we say simply G and G to refer to the subgraph copies of G and G, respectively, in GG.
Also, for a vertex v of G, we let v be the corresponding vertex in G, and for a set X ⊆ V , we let X be the corresponding
set of vertices in V . Further, for any function f on GG, we let ω( fV ) denote the weight of f on G, and ω( fV ) denote
the weight of f on G. Clearly, GG is isomorphic to GG, so our results stated in terms of G also apply to G unless
otherwise stated. A complementary prism is a specific case of complementary product of graphs introduced by Haynes
et al. [12] in 2009. Haynes et al. ( [10–12]) studied some parameters of complementary prism of graphs such as the
vertex independence number, the chromatic number, the domination number, total domination number, independent
domination number and Roman domination number.

Let G = (V, E) be a graph, X ⊆ V and B(X) be the set of vertices in V − X that have a neighbor in the set X. We
define the differential of a set X to be ∂(X) = |B(X)| − |X| [14], and the differential of a graph to be equal to ∂(G) =max
{∂(X) : X ⊆ V}. A set D satisfying ∂(D) = ∂(G) is called a ∂-set or differential set. One of the variations of the
differential of a graph is the B-differential of a graph. We denote this parameter with Ψ(G) and we define Ψ(G) =max
{|B(X)| : X ⊆ V} [14]. We define the B-differential of a set X ⊆ V(G) to be Ψ(X) = |B(X)| [14]. A set X satisfying
Ψ(X) = Ψ(G) is called a Ψ(G)-set or B-differential set.

A set S ⊆ V is a dominating set if N[S ] = V . The domination number γ(G) is the minimum cardinality of a domi-
nating set of G. A dominating set S ⊆ V is called a γ(G)-set if |S | = γ(G) [16].

For a graph G = (V, E), let f : V → {0, 1, 2} be a function, and let f = (V0,V1,V2) be the ordered partition of V
induced by f , where Vi = {v ∈ V(G) : f (v) = i}. A Roman dominating function (or just an RDF) on graph G is a
function f : V → {0, 1, 2} such that if v ∈ V0 for some v ∈ V , then there exists a vertex w ∈ N(v) such that f (w) = 2.
The weight of a Roman dominating function is the sum w f =

∑
v∈V(G) f (v), and the minimum weight of w f for every

Roman dominating function f on G is called Roman domination number of G. We denote this number with γR(G).
A Roman dominating function of G with weight γR(G) is called a γR-function of G. For more on Roman domination
number see for example [5, 6].

Let f : V → {0, 1, 2, 3} be a function, and let f = (V0,V1,V2,V3) be the ordered partition of V induced by f ,
where Vi = {v ∈ V(G) : f (v) = i}. A double Roman dominating function (or just a DRDF) on graph G is a function
f : V → {0, 1, 2, 3} such that the following conditions are met:

(a) if f (v) = 0, then vertex v must have at least two neighbors in V2 or one neighbor in V3.
(b) if f (v) = 1 , then vertex v must have at least one neighbor in V2

⋃
V3.

The weight of a double Roman dominating function is the sum w f =
∑

v∈V(G) f (v), and the minimum weight of w f

for every double Roman dominating function f on G is called double Roman domination number of G. We denote this
number with γdR(G). A double Roman dominating function of G with weight γdR(G) is called a γdR-function of G [4].

Also let f : V → {0, 1, ..., d∆
2 e + 1} be a function that labels the vertices of G. Let Vi = {v ∈ V : f (v) = i} for i = 0, 1

and let V2 = V − (V0
⋃

V1) = {w ∈ V : f (w) ≥ 2}. A function f is called a strong Roman dominating function (StRDF)
for G, if every v ∈ V0 has a neighbor w, such that w ∈ V2 and f (w) ≥ 1 + d 1

2 |N(w)
⋂

V0|e. The minimum weight,
ω( f ) = f (V) = Σv∈V f (v), over all the strong Roman dominating functions of G, is called the strong Roman domination
number of G and we denote it by γS tR(G). An StRDF of minimum weight is called a γS tR(G)-function [2].

The following results are useful for the proofs of our main contributions in this paper.

Theorem A [14]. For any graph G of order n, Ψ(G) = n − γ(G).

Theorem B [3]. If G is a graph of order n, then γR(G) = n − ∂(G).
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Theorem C [2]. If G a graph of order n, then γS tR(G) ≥ d n+1
2 e.

Theorem D [6]. If G is a connected graph of order n, then γR(G) ≤ 4n
5 .

Theorem E [9]. If a graph G has no isolated vertices, then γ(G) ≤ n
2 .

Theorem F [15]. Let G be a graph without isolated vertices. Then γdR(G) ≤ 2n − Ψ(G) − ∂(G).

Theorem G [13]. Let G be a graph. Then GG is even order and connected.

Theorem H [8]. For any graph G, γ(GG) ≤ γ(G) + γ(G).
Theorem I [6]. For any graph G, γ(G) + γ(G) ≤ n + 1.

Theorem J [7]. Let G be a graph. Then the following hold.
(1) γ(G) ≤ δ(G) + 1.
(2) γ(G) ≤ χ(G).

Theorem K [2]. Let G be a graph of order n. Then γS tR(G) ≤ n − b∆
2 c.

2. γR and γdR of complementary prism of a graph

In this section we investigate Roman domination number of (GG) and double Roman domination number of (GG).

Theorem 2.1. For any graph G, Ψ(G) ≤ ∂(GG) ≤ ∂(G) + ∂(G).

Proof. Let X ⊆ V(G) be a Ψ(G)-set on graph G. We consider the set Y = X as a subset of V(GG), that is Y ⊆ V(GG).
Thus, by the definition differential of graphs, ∂(GG) ≥ ∂GG(Y) = |BGG(Y)| − |Y | = |BGG(X)| − |X|. Now by the definition
of GG, we have |BGG(X)| = |BG(X)| + |X|. Hence, ∂(GG) ≥ ∂GG(X) = |X| + |BG(X)| − |X| = |BG(X)| = Ψ(X) = Ψ(G).
Now to prove the second part of inequality. Suppose that a set Y = X ∪ Z ⊆ V(GG) is a ∂(GG)-set on graph GG such
that X ⊆ V(G) and Z ⊆ V(G). We have ∂(X) ≤ ∂(G), ∂(Z) ≤ ∂(G) and |B(X ∪ Z)| ≤ |B(X)| + |B(Z)|. Also we have
∂(GG) = ∂(Y) = ∂(X ∪Z) = |B(X ∪Z)| − |X ∪Z|. Since X ∩Z = ∅, we conclude ∂(GG) = ∂(Y) = |B(X ∪Z)| − |X ∪Z| =
|B(X ∪ Z)| − |X| − |Z| ≤ |B(X)| + |B(Z)| − |X| − |Z| = ∂(X) + ∂(Z) ≤ ∂(G) + ∂(G). �

Theorem 2.2. For any graph G of order n, γR(GG) ≤ n + γ(G).

Proof. By Theorems A, B and Theorem 2.1 we have γR(GG) = 2n−∂(GG) ≤ 2n−Ψ(G) = 2n−(n−γ(G)) = n+γ(G). �

As an immediate result, we will improve the bound of γR in Theorem D for complementary prism of a graph GG.

Corollary 2.3. If G is a graph with no isolated vertices, then γR(GG) ≤ 3n
2 .

Proof. By Theorem 2.1 and Theorem E, the result holds. �

We now establish the relation between double Roman domination number of complementary prism of a graph G
and domination number of G.

Theorem 2.4. For any graph G of order n, γdR(GG) ≤ 2n + 1 + γ(G).

Proof. By Theorem G, the graph GG is connected. Thus, it has no isolated vertex. Now according to the Theorem F,
we have γdR(GG) ≤ 4n − Ψ(GG) − ∂(GG). But by Theorems A, 2.1, we conclude

γdR(GG) ≤ 4n − (2n − γ(GG)) − Ψ(G) = 4n − (2n − γ(GG)) − (n − γ(G))

= n + γ(GG) + γ(G).
On the other hand, by Theorems H, I we have γdR(GG) ≤ n+γ(G)+γ(G)+γ(G) ≤ n+n+1+γ(G) = 2n+1+γ(G). �
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Corollary 2.5. Let G be a graph of order n and without isolated vertex. Then γdR(GG) ≤ 2n + γ(G).

Proof. By Theorem E, we have γ(G) ≤ n
2 . Thus, by previous Theorem, we have γdR(GG) ≤ n + 2γ(G) + γ(G) ≤

n + 2 n
2 + γ(G) = 2n + γ(G). �

Corollary 2.6. Let G be a graph of order n and without isolated vertex. Then

• γdR(GG) ≤ 2n + δ(G) + 1.
• γdR(GG) ≤ 2n + χ(G).

Proof. By Theorem 2.4 and Theorem J, the result holds. �

3. γS tR of complementary prism of a graph

In this section we establish upper bound of strong Roman domination number of complementary prism of a graph.
We compare the strong Roman domination number of complementary prism of a graph and the strong Roman domina-
tion number of the graph. First we study some special graphs.

Theorem 3.1. Let Pn be a path with vertices v1, v2, . . . , vn and Pn with vertices v1, v2, . . . , vn. Them γS tR(PnPn) =

n + d n
3 e + 1.

Proof. Let f = (V0,V1,V2) be a γS tR(Pn)-function on Pn. If n ≡ 0 (mod 3), then f can be chosen in such a way that
V1 = ∅, V2 = {vi : i = 3t + 2, 0 ≤ t ≤ n−3

3 } and V0 = V − V2. We define a function g = (V ′0,V
′
1,V

′
2) on PnPn by

g(v) =


1, if v ∈ V2;
f (v) v ∈ V0 ∪ V1 ∪ V2;
n− n

3
2 + 1 for v = v1

0, otherwise.

Clearly, g is a StRDF on PnPn. Hence,

γS tR(PnPn) ≤ ω(g) =
n
3

+
2n
3

+
n − n

3

2
+ 1 = n +

n
3

+ 1

Conversely, it is well known that the least value that must be assigned to the vertices of Pn and Pn in PnPn by any
StRDF are 1 + d 1

2 ( 2n
3 + 1)e+ n

3 and 2n
3 respectively or 1 + d 1

2 (n−1)e and n respectively. Therefore γS tR(PnPn) ≥ n + n
3 + 1

and thus γS tR(PnPn) = n + n
3 + 1.

If n ≡ 1 (mod 3), then f can be chosen in such a way that V1 = {vn}, V2 = {vi : i = 3t + 2, 0 ≤ t ≤ n−4
3 } and

V0 = V −V2 ∪V1. If n ≡ 2 (mod 3), then f can be chosen in such a way that V1 = ∅, V2 = {vi : i = 3t + 2, 0 ≤ t ≤ n−2
3 }

and V0 = V − V2.
Thus we define a function h = (V ′′0 ,V

′′
1 ,V

′′
2 ) on PnPn by

h(v) =


1, v ∈ V2;
f (v) v ∈ V0 ∪ V1 ∪ V2;
d

n−d n
3 e+1
2 e + 1 for v = v1

0, otherwise.

Clearly, h is a StRDF on PnPn. Hence,

γS tR(PnPn) ≤ ω(h) = d
n
3
e − 1 + d

2n
3
e + d

n − d n
3 e + 1
2

e + 1 = n + d
n
3
e + 1.

Conversely, it can be proved that like the first part. Thus the proof is completed. �

It can be easily verified γS tR(C3C3) = 5. In the follow we investigate the γS tR(CnCn) for n ≥ 4.
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Theorem 3.2. For any cycle Cn, γS tR(CnCn) =

{
n + d n

3 e + 2, if n ≡ 0 (mod 3) ,
n + d n

3 e + 1, otherwise.

Proof. Let f = (V0,V1,V2) be a γS tR-function on Cn and n ≡ 0 (mod 3), (n ≥ 4). Then f can be chosen in such a way
that V1 = ∅, V2 = {vi : i = 3t + 2, 0 ≤ t ≤ n−3

3 } and V0 = V − V2. We define a function g on CnCn by

g(v) =


1, v ∈ V2, and v = vn,
f (v), v ∈ V2,
d

n−2−d n
3 e

2 e + 1 v = v1;
0, otherwise.

g is a StRDF on CnCn. Thus γS tR(CnCn) ≤ ω(g) = n
3 + 1 + 2n

3 + d
n−2−( n

3−1)
2 e + 1 = n + d n

3 e + 2.
Conversely, it is well known that the least value that must be assigned to the vertices of Cn and Cn in CnCn by any
StRDF are 1 + d 1

2 (n − 2) − ( n
3 − 1)e + n

3 + 1 and 2n
3 respectively or 1 + d 1

2 (n − 2)e and n + 1 respectively. Therefore
γS tR(CnCn) ≥ n + n

3 + 2 and thus γS tR(CnCn) = n + n
3 + 2 = n + d n

3 e + 2.
Now similar to the proof of the first part and using Theorem 3.1, one can prove γS tR(CnCn) = n + d n

3 e + 1 if n ≡
1 (mod 3) or n ≡ 2 (mod 3). �

Theorem 3.3. For any complete graph Kn, γS tR(KnKn) = n + d n
2 e

Proof. Let v be a vertex in G. Clearly, degv = n − 1. Now we define a function f on GG by f (v) = d n
2 e + 1,

f (v) = 0 for v ∈ V , f (x) = 1 for any x ∈ V − {v} and 0 otherwise. Thus f is a StRDF of GG. So, we conclude
γS tR(GG) ≤ ω( f ) = n − 1 + d n

2 e + 1 = n + d n
2 e. Now to see that for any StRDF on GG has at least weight ≥ n + d n

2 e.
Let f be a StRDF of GG. For any vertex v ∈ V , we have either f (v) = 0 or f (v) = 1. If f (v) = 0 and k vertices
of Kn has value 0, and n − (k + 1) vertices has value 1, then n − 1 vertices of Kn assigned by value 1. Therefore
ω( f ) = n − 1 + n − (k + 1) + d k+1

2 e + 1 = 2n − k − 1 + d k+1
2 e ≥ n + d n

2 e. Thus γS tR(KnKn) = n + d n
2 e. If for any v ∈ V

f (v) = 1, then it is simply verified that ω( f ) ≥ n + d n
2 e. Anyway γS tR(KnKn) = n + d n

2 e. �

A. Alhashim and others observed in the article [1] that for any graph G, γR(GG) ≤ γR(G) + γR(G). But in general,
this proposition for the parameter γS tR is not correct. For example, this inequality is not true for the graph G = K3 + K3,
because we have G = K3,3, γS tR(GG) = 10, γS tR(G) = 4 and γS tR(G) = 5. In the next Theorem, we prove the correct
form of this inequality for the parameter γS tR.

Theorem 3.4. Let G be a simple graph of order n. Then we have

γS tR(GG) − γS tR(G) ≤ n.

Proof. Let f = (V0,V1,V2) be a γS tR-function on G. We define an function g on GG by g = (V ′0,V
′
1,V

′
2) such that

V ′0 = {w ∈ V(G) : w ∈ NGG(V2)} ∪ V0

V ′1 = {w ∈ V(G) : w ∈ NGG(V1 ∪ V0)} ∪ V1

V ′2 = V2,

where V2 = {v ∈ G| f (v) ≥ 2} = U2 ∪U3 ∪ . . .∪U
d

∆(G)
2 e+1 and Ui = {v ∈ V(G)| f (v) = i}. Clearly, g is an StRDF on GG.

Since V ′2 = {v ∈ V(GG)| g(v) ≥ 2}, hence V ′2 = V ′′2 ∪V ′′3 ∪. . .∪V ′′
d ∆

2 e+1
where V ′′i = {v ∈ V(GG)| g(v) = i} and ∆ = ∆(GG).

Thus we have γS tR(GG) ≤ ω(g) = |V ′1| + 2|V ′′2 | + 3|V ′′3 | + ... + (d∆
2 e + 1)|V ′′

d ∆
2 e+1
|. By definition of StRDF g, we have

|V ′1| = |V0| + |V1|

and

2|V ′′2 | + 3|V ′′3 | + ... + (d
∆

2
e + 1)|V ′′

d ∆
2 e+1
| ≤

|U2| + ... + |U
d

∆(G)
2 e+1| + γS tR(G).
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Thus, we conclude

γS tR(GG) ≤ |V0| + |V1| + |U2| + ... + |U
d

∆(G)
2 e+1| + γS tR(G) ≤ n + γS tR(G).

�

Corollary 3.5. Let G be a simple graph of order n. If every vertex of G has odd degree, then

γS tR(GG) − γS tR(G) ≤ n − 1.

Proof. Since each vertex of G is odd degree, by using the notations of the proof of Theorem 3.4, we have V ′′2 =

U2, . . . ,V ′′
d ∆

2 e+1
= U

d
∆(G)

2 e+1 and for any vertex v in V ′2 = V2, g(v) = f (v). Thus

γS tR(GG) ≤ ω(g) = |V ′1| + 2|V ′′2 | + 3|V ′′3 | + ... + (d
∆

2
e + 1)|V ′′

d ∆
2 e+1
|

= |V0| + |V1| + 2|U2| + 3|U3| + ... + (d
∆(G)

2
e + 1)|U

d
∆(G)

2 e+1|

= |V0| + γS tR(G) ≤ n − 1 + γS tR(G).
�

Theorem 3.6. For any graph G with maximum degree ∆ = ∆(G), 2 ≤ γS tR(GG) ≤ 2n − ∆ + d∆+1
2 e − 1 and the bounds

are sharp.

Proof. Let v be a vertex of G with degv = ∆. We establish a function f on GG by f (v) = d∆+1
2 e + 1, f (x) = 0 for any

x ∈ NGG(v) and f (y) = 1 otherwise. The function f is a StRDF on GG and ω( f ) = d∆+1
2 e + 1 + 2n − (∆ + 2). Thus,

γS tR(GG) ≤ ω( f ) = d∆+1
2 e+2n−∆−1. Since the lower bound is trivial, the result is proved. For upper bound sharpness,

let G = Kn, and using of Theorem 3.3, for lower bound sharpness, consider G = K1. Thus the proof is completed. �

Using Theorem C, we establish a lower bound for strong domination number of GG in terms of order of G.

Corollary 3.7. Let G be a graph of order n. Then γS tR(GG) ≥ n + 1.

Now we determine the complementary prisms GG having small strong Roman domination numbers, namely, the
graphs G with γS tR(GG) ∈ {2, 3, 4, 5}.

Theorem 3.8. Let G be a graph. Then,
• 1. γS tR(GG) = 2 if and only if G = K1.
• 2. γS tR(GG) = 3 if and only if G = K2 or G = K2.
• 3. For any graph G, γS tR(GG) , 4.
• 4. γS tR(GG) = 5 if and only if G = P3 or G = K3.

Proof. (1) If G = K1, then GG = K2 and γS tR(K2) = 2.
Conversely, assume that γS tR(GG) = 2. Then by Corollary 3.7 we have 2 ≥ n + 1. Thus n = 1. Hence we must have
G = K1.

(2) If G = K2, then GG is isomorphic to the path P4 and γS tR(P4) = 3.
Conversely, assume that γS tR(GG) = 3. Then by Corollary 3.7 we have 3 ≥ n + 1. Thus n ≤ 2. But with regard to the
first part of the Theorem we must have n = 2. Hence, we conclude G = K2 or G = K2.

(3) Let G be a graph of order n such that γS tR(GG) = 4. Then by 3.7 we have 4 ≥ n + 1. Thus n ≤ 3. But according
to the two preceding parts of the Theorem we must have n = 3. Hence, we must have G = K3 or G = P3. Now with
simple calculation we have γS tR(GG) = 5. And so it is a contradiction.

(4) If G = K3 or G = P3, then γS tR(GG) = 5.
Conversely, assume that γS tR(GG) = 5. Then by Corollary 3.7 we have 5 ≥ n + 1. Thus n ≤ 4. But according to the
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preceding parts of the Theorem we must have n = 3 or n = 4. If n = 4, then there are 12 graphs G of the order of 4,
which with simple calculations for γS tR(GG) we conclude γS tR(GG) = 6. Then we must have n = 3. Hence, G = K3 or
G = P3. �

Another lower bound for strong Roman domination number of complementary prism of a graph G in terms of order
maximum degree and minimum degree is established as follows.

Theorem 3.9. Let G be a graph of order n. Then

γS tR(GG) ≥ max{γS tR(G) + d
n − δ

2
e, γS tR(G) + d

∆ − 1
2
e + 1, γS tR(G) + d

n − δ
2
e, γS tR(G) + d

∆ − 1
2
e + 1}.

This bound is sharp.

Proof. Without loss of generality, let max{γS tR(G), γS tR(G)} = γS tR(G). Thus by Theorems C and K, we have γS tR(GG) ≥
d 2n+1

2 e = n + 1 and γS tR(G) ≤ n − b∆
2 c. Hence, we conclude

γS tR(GG) − γS tR(G) ≥ n + 1 − (n − b
∆

2
c) = b

∆

2
c + 1 = d

∆ − 1
2
e + 1,

On the other hand, for the graph G, since ∆ = n − δ − 1 by Theorem K we have γS tR(G) ≤ n − b n−δ−1
2 c. But

b n−δ−1
2 c + 1 = d n−δ−1−1

2 e + 1 = d n−δ
2 e. So, we have γS tR(G) ≤ n − d n−δ

2 e + 1. Hence,

γS tR(GG) − γS tR(G) ≥ n + 1 − (n − d
n − δ

2
e + 1) = d

n − δ
2
e.

Thus by the assumption γS tR(G) ≥ γS tR(G) we conclude

γS tR(GG) ≥ γS tR(G) + d
∆ − 1

2
e + 1 ≥ γS tR(G) + d

∆ − 1
2
e + 1,

Therefore,

γS tR(GG) ≥ max{γS tR(G) + d
n − δ

2
e, γS tR(G) + d

∆ − 1
2
e + 1}.

Similarly, by changing the role of G with G, we have

γS tR(GG) = γS tR(GG) ≥ max{γS tR(G) + d
n − δ

2
e, γS tR(G) + d

∆ − 1
2
e + 1}.

Thus, the result is established, that is,

γS tR(GG) ≥ max{γS tR(G) + d
n − δ

2
e, γS tR(G) + d

∆ − 1
2
e + 1, γS tR(G) + d

n − δ
2
e, γS tR(G) + d

∆ − 1
2
e + 1}.

For sharpness, let G = Kn. �
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