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ABSTRACT 
 

 The gross calorific value (GCV) is an essential thermal property of coal which indicates the amount of heat energy that could 

be released by burning a specific quantity. The primary objective of the presented study is to develop new GCV prediction 

models using support vector machines (SVMs) combined with feature selection algorithm. For this purpose, the feature selector 

RReliefF is applied to the dataset consisting of proximate and ultimate analysis variables to determine the importance of each 
predictor of GCV. In this way, seven different hybrid input sets (data models) were constructed. The prediction performance of 

models was computed by using the square of multiple correlation coefficient (R2), root mean square error (RMSE), and mean 

absolute percentage error (MAPE). Considering all the results obtained from this study, the predictor variables moisture (M) and 

ash (A) obtained from the proximate analysis and carbon (C), hydrogen (H) and sulfur (S) obtained from the ultimate analysis 

were found to be the most relevant variables in predicting GCV of coal, while the predictor variables volatile matter (VM) from 

the proximate analysis and nitrogen (N) from the ultimate analysis did not have a positive effect on the prediction accuracy. The 

SVM-based model using the predictor variables M, A, C, H, and S yielded the highest R2 and the lowest RMSE and MAPE with 

0.998, 0.22 MJ/kg, and 0.66%, respectively. For comparison purposes, multilayer perceptron and radial basis function network 

were also used to predict GCV. 
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ÖZELLİK SEÇİMİ İLE BİRLEŞTİRİLMİŞ DESTEK VEKTÖR MAKİNELERİNİ 

KULLANARAK KÖMÜRÜN ÜST ISIL DEĞERİNİN KISA VE ELEMENTEL 

ANALİZ DEĞİŞKENLERİNDEN TAHMİNİ 
 

ÖZET 
 

 Üst ısıl değer (GCV), kömürün belirli bir miktarı yakıldığında açığa çıkan ısı enerjisi miktarını gösteren temel bir termal 

özelliğidir. Sunulan çalışmanın ana amacı, özellik seçimi algoritması ile destek vektör makineleri (SVM'ler) kullanarak yeni 

GCV tahmin modelleri geliştirmektir. Bu amaçla, literatürde ilk kez, özellik seçici RRelief-F algortiması, GCV'nin her bir tahmin 

edici değişkeninin önemini belirlemek için kısa ve elementel analiz değişkenlerinden oluşan veri kümesine uygulanmıştır. Bu 

şekilde, yedi farklı karma giriş seti (veri modelleri) oluşturulmuştur. Sunulan modellerin tahmin performansı, çoklu korelasyon 
katsayısının karesi (R2), kök ortalama kare hatası (RMSE) ve ortalama mutlak yüzde hatası (MAPE) ile hesaplanmıştır. Bu 

çalışmadan elde edilen tüm sonuçlar değerlendirildiğinde, kısa analizden elde edilen nem (M) ve kül (A) ile elementel analizden 

elde edilen karbon (C), hidrojen (H) ve kükürt (S) değişkenleri kömürün GCV'sini tahmin etmede en uygun değişkenler olarak 

belirlenirken, kısa analizden elde edilen uçucu madde (VM) ile elementel analizden elde edilen nitrojenin (N) tahmin etme 

doğruluğu üzerinde olumlu bir etkiye sahip olmadığı görülmüştür. M, A, C, H ve S tahmin edici değişkenlerini kullanan SVM-

tabanlı model, en yüksek R2 ve en düşük RMSE ve MAPE değerlerini sırasıyla 0,998, 0,22 Mj/kg ve % 0,66 olarak vermiştir. 

Ayrıca, karşılaştırma amacıyla GCV’yi tahmin etmek için çok katmanlı algılayıcı ve radyal temelli fonksiyon ağı kullanılmıştır. 

 

Anahtar kelimeler: Kömürün üst ısıl değeri, Özellik seçimi, Destek vektör makinesi, Yapay sinir ağları 
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1. INTRODUCTION 
 

 As a fossil fuel, coal is critical energy supplier material in many industries such as electricity generation, cement making, and 
coke generation for iron and steelmaking [1]. The reasons why coal is mostly used in energy generation to its abundance, and 

financial advantages and it is expected to remain the dominant energy source for the near future [2]–[4]. In particular, coal is 

projected to remain the mainstay of electricity generation in many major economies - especially where coal is the main indigenous 

and economically viable, source of energy [2]. Since coal is mostly used as an energy source, its heating capacity is important, and 

it is called as calorific value. The calorific value measured according to American Society for Testing and Materials (ASTM) 

standards is called gross calorific value (GCV) and sometimes higher heating value (HHV). 

 It can be said that the GCV is a function of coal compositions that can be obtained by proximate or ultimate analysis. Moisture 

(M), ash (A), volatile matter (VM), and fixed carbon (FC) are the variables of the proximate analysis. On the other hand, carbon 

(C), hydrogen (H), nitrogen (N), sulfur (S), and oxygen (O) are the coal compositions of the ultimate analysis [5]. The determination 

of GCV of coals with quick and accurate prediction models is one of the interesting studies in the literature. Engineers, designers, 

manufacturers, and researchers interested in the GCV of materials want to determine it in an easy and fast way within an acceptable 

tolerance. Therefore, a number of attempts have been made in the literature in order to develop a representative regression model 
[6]. Using several linear and nonlinear regression methods, researchers have developed models for GCV prediction based on 

proximate analysis results [1], [4], [7]–[11] and ultimate analysis results [5], [9], [10], [12], [13] as well as both analysis results 

[11], [14], [15]. 

 The primary purpose of this study is to develop new GCV prediction models using proximate and ultimate analysis variables of 

coal. For this purpose, for the first time in the literature, the SVM and feature selection algorithm RRelief-F [16] have been used 

together to develop new GCV prediction models by identifying the relevant and irrelevant determinants of GCV. The main reason 

for using the feature selector is to determine and exclude unnecessary variables of the proximate and/or ultimate analysis from the 

dataset. Thus, the purpose is to increase the overall prediction accuracy when it is possible, to reduce the complexity of the developed 

prediction model as well as to decrease the cost of the calculation required to create the prediction model. The aforementioned 

feature selection algorithm was applied to the dataset to create several hybrid data models. In addition to these data models, two 

other data models that use only proximate and ultimate analysis variables were constructed separately for comparison purposes. To 
reveal the performance of the SVM on GCV prediction, two other artificial neural networks (ANNs) methods, namely, multilayer 

perceptron (MLP) and radial basis function network (RBFN) were also used to predict GCV on the dataset utilized. By calculating 

performance metrics square of multiple correlation coefficient (R2), root mean square error (RMSE) and mean absolute percentage 

error (MAPE) of each developed model, the overall performance of SVM on GCV prediction were compared to that of MLP and 

RBFN. 

 

 

2. DATASET GENERATION 
 

 The dataset used in this study was produced from the COALQUAL Version 3.0 database presented under U.S. Geological 

Survey Energy Resources Program [17]. The database consists of the analysis results of 6690 coal samples in as-received basis and 

includes proximate and ultimate analysis results as well as GCV of the samples. All analyses applied to the samples were made in 

accredited testing laboratories in accordance with ASTM standards. In order to provide consistency of the presented results, 15 

samples where the validation status of proximate analysis and/or ultimate analysis was “Incomplete Data” were removed from the 

database.  

 In the proximate analysis, the values of M, A, and VM variables are obtained by measuring in the laboratory environment. On 

the other hand, the values of M, A, and VM variables are used to calculate FC variable by Equation 1. Similarly, in the ultimate 

analysis, while the values of C, H, N, and S variables are measured in the laboratory environment, the value of O variable is 
calculated by Equation 2. 

𝐹𝐶 = 100 − (𝑀 + 𝐴 + 𝑉𝑀) (1) 

𝑂 = 100 − (𝐶 + 𝐻 + 𝑁 + 𝑆 +𝑀 + 𝐴) (2) 

 In general, the values of the predictor variables used to form the dataset are expected to be obtained by measuring, not by 

calculating. If the value of a predictor variable depends only on the other predictor variables, the inclusion of that variable to the 

model does not produce a positive effect on the prediction performance of the model [18]. On the contrary, it increases the 

complexity of the model and the cost of the calculation required to create the prediction model. 

 As it is given in Equations 1 and 2, the value of FC directly depends on the values of the other proximate analysis variables, and 

the value of O depends on the other ultimate analysis variables, as well as the proximate analysis values of M and A, respectively. 
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Therefore, the proximate analysis variable FC and the ultimate analysis variable O are not included in the dataset. As a result, the 

dataset was generated using 6675 analysis results of the coal samples, and the proximate variables M, A and VM and the ultimate 

variables C, H, N, and S were determined as predictor variables to predict the target variable GCV.  

 The detailed information regarding the COALQUAL database can be found on the official website at 

http://ncrdspublic.er.usgs.gov/coalqual/. 

 The descriptive statistics of the generated dataset are given in Table 1. The scatter plots of target variable GCV according to the 

predictor variables are shown in Figure 1. 

 
Table 1. Overview of the utilized dataset 

Category 
Type of 

Analysis 
Variable Name Minimum Maximum Mean 

Standard 

Deviation 

Predictor 

variables 

Proximate 

M (%) 0.40 52.50 8.15 9.99 

A (%) 0.90 54.70 11.79 7.29 

VM (%) 3.00 55.70 32.00 6.55 

Ultimate 

C (%) 22.52 88.20 65.06 12.46 

H (%) 0.21 9.12 4.32 0.79 

N (%) 0.20 5.60 1.27 0.34 

S (%) 0.06 20.90 1.95 1.80 

Target variable - GCV (Mj/kg) 8.81 36.25 26.89 5.36 

 
 

 

3. METHODOLOGY AND PREDICTION MODELS 
 

3.1. Methodology 

 
 In this study, the dataset composed of 6675 entries and described in detail in Section 2 was considered for experimental purposes. 

By conducting the RRelief-F algorithm for regression [16], the importance of each predictor variable in the utilized dataset was 
calculated separately and sorted in descending order according to the score of each predictor variable. Table 2 shows the ranking 

scores of each predictor variable calculated by the RRelief-F algorithm for the dataset used. Seven hybrid data models (Model 1 to 

7) were created to predict GCV of coals by removing the variable, which had the lowest score from the list of predictor variables 

one by one and in order. In order to determine and clarify the effect of hybrid data models generated by the RRelief-F algorithm on 

the prediction accuracy, two other data models (Model 8 and 9), which were composed of proximate and ultimate analysis variables 

were constructed separately. Table 3 gives the data models and the predictor variables that each data model has. 

 

Table 2. RRelief-F scores of the predictor variables for the utilized dataset. 

Predictor Variable RRelief-F Score 

C 0.0105140 

A 0.0038385 

H 0.0037461 

M 0.0029118 

S 0.0020134 

VM 0.0015223 

N 0.0007616 
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Figure 1. The scatter plots of GCV according to the predictor variables for the dataset. 
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Table 3. Overview of data models developed for GCV prediction 

Type of Analysis Model Name Predictor Variables 

Hybrid (obtained with 

RRelief-F algorithm) 

Model 1 C, A, H, M, S, VM, N 

Model 2 C, A, H, M, S, VM 

Model 3 C, A, H, M, S 

Model 4 C, A, H, M 

Model 5 C, A, H 

Model 6 C, A 

Model 7 C 

Ultimate Model 8 C, H, S, N 

Proximate Model 9 A, M, VM 

 

 In this study, primarily, SVM-based prediction models were developed to predict the GCV of coal by using data models given 

in Table 3. In order to evaluate the prediction performance of the SVM-based models, the accuracy of these prediction models was 

compared with those of ANN-based prediction models. The choice of these machine learning methods for predicting GCV of coal 

is based on several factors. In the past, many studies [19]–[21] that showed the superiority of SVM over other regression methods 
were presented. Moreover, there are several studies using SVM with different datasets and data models [1], [4], [22]–[24]to predict 

the GCV of coals. On the other hand, ANNs have been widely used to solve real-world problems in different areas [18], [25], [26]. 

In this study, for comparison purposes, two types of ANNs, namely MLP and RBFN, were used to predict the GCV of coal. MLP 

is a well-known and most commonly used ANN method. In addition, RBFN is one of the other popular ANN methods and has been 

used successfully in the GCV prediction of coals from the proximate analysis results [18]. 

 The generalization ability of the prediction models has been satisfied using 10-fold cross-validation, and the prediction 

performance of presented models was calculated by using R2, RMSE, and MAPE. The formulas of these performance metrics are 

shown in Equations (3) - (5). It should be kept in mind that the lower RMSE and MAPE values and the higher R2 value indicate that 

the prediction model is more accurate. 

 

𝑅2 = 1 −
∑ (𝑌𝑖−𝑌𝑖

′)
2𝑛

𝑖=1

∑ (𝑌𝑖−�̅�)
2𝑛

𝑖=1

 (3) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑖 − 𝑌𝑖

′)
2𝑛

𝑖=1  (4) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑌𝑖−𝑌𝑖
′|

𝑌𝑖

𝑛
𝑖=1  (5) 

 

 In Equations (3) – (5), the target value is represented with 𝑌, the predicted value is represented by 𝑌′, the mean of 𝑌 is 

represented by �̅� and the number of entries in a testing subset is given by n. 

 As stated above, in this study, 10-fold cross-validation was applied to each prediction model separately to strengthen the stability 

and reliability of the presented results. In k-fold cross-validation, the original data set is randomly partitioned into k equal size 

subsets. Of the k subsets, a single subset is retained as the testing data to validate the model, and the remaining k-1 subsets are used 
as training data. This procedure is repeated k times (the folds), with each of the k subsets used exactly once as the testing data. The 

advantage of this method is that all instances are used for both training and testing, and each instance is used for testing exactly 

once. The reported value of the given performance metrics for each prediction model was computed by taking the average of the 

values of the performance metrics obtained from each fold. 

 All the experiments in this study, including manipulating, analyzing, and modeling the data presented were done using DTREG 

[27], a predictive modeling software that implements the most widely used types of machine learning methods. 

 

3.2. SVM-based prediction models 
 

 The performance of the SVM model for a given regression problem is directly related to the values of the model parameters. 

The value of epsilon (ε), the value of capacity (C), the type of kernel function, and the parameter of the kernel function, if any, 
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should be determined carefully. Choosing the type of kernel function and determining the optimal parameter values of this function 

are very important for creating SVM-based models [28]. Kernel functions commonly used in SVM are generally divided into four 

categories as linear, polynomial, radial basis function (RBF) and sigmoid kernels. In the literature, the RBF kernel has mostly been 

used to present satisfactory generalization capabilities [21], [29], [30]. For this reason, in this study, RBF was used as the kernel 

function. In the RBF kernel function, the parameter γ must also be optimized. In order to develop SVM-based models with 

satisfactory prediction accuracy, the most appropriate triple of (C, ε, γ) needs to be revealed for the given regression problem.  

 The prediction accuracy of SVM is very sensitive to the selection of the parameters, and there is no rule or formula based on a 

mathematical model for obtaining the exact desired values of those parameters. For this purpose, a suitable parameter optimization 
algorithm should be used to find the optimal values of the parameters used for SVM-based models, so that good generalization 

performance could be achieved. Therefore, one needs an effective search algorithm to find the best values of these parameters. The 

grid search (GS) [31] is one of the most commonly used algorithms for optimizing the parameters of SVM. The value of each 

parameter is changed within a pre-defined range. The range of each parameter is divided by the number of steps on a logarithmic 

scale, and the GS tries each set of hyper-parameters severally. At the end of the search process, the parameters that provide the 

highest accuracy are selected as optimized parameters. 

 The range of the hyper-parameters, the number of steps and the scale type of the hyper-parameters utilized in each SVM-based 

model are shown in Table 4. 

 

3.3. ANN-based prediction models 
 

 An artificial neural network (ANN) is a flexible mathematical structure, which is capable of identifying complex nonlinear 

relationships between input and output data [32]. ANNs have been widely applied to solve many difficult problems in different 

areas. There are many types of ANNs for modeling function approximation of the problems. Two types of neural networks, MLP 

and RBFN, were used to verify the utility of the proposed prediction models in this study. 

 

3.3.1. MLP-based prediction models 
 

 MLP, which is composed of one input layer, one or more hidden layers, and one output layer, is a flexible, general-purpose, and 

most widely used network within ANN methods. Finding the optimal number of neurons in each hidden layer is one of the most 

important issue of MLP. If an insufficient number of neurons or more than necessary neurons are used, the created network will be 

unable to model data, and its performance will be poor. There is no theoretical approach to determine the optimal number of neurons 

in the hidden layer, which varies with the type and complexity of the problem. 

 For this study, one hidden layer was used to construct the MLP network. The logistic transfer function was set as the activation 

function in the hidden layer as well as the output layer. The training method of the MLP network is the scaled conjugate gradient 
algorithm. The optimal number of neurons in the hidden layer was found by comparing the prediction performance of the networks 

generated using each value in the range of neurons given in Table 4. This approach, which is computationally expensive due to 

having to build many models, is a highly effective method for finding the optimal number of neurons. 

 

3.3.2. RBFN-based prediction models 
 

 RBFN is a special case of multilayer feed-forward neural network consisting of three layers including one input layer, one hidden 
layer, and one output layer; and is different in terms of node characteristics and learning algorithm [33]. The neurons in the hidden 

layer contain RBF transfer functions whose outputs are inversely proportional to the distance from the center of the neuron [27]. 

 Four different parameters are determined in the training phase of the RBFN model. These parameters are the number of neurons 

in the hidden layer, the center points of each hidden-layer RBF function, the radius (spread) of each RBF function in each dimension, 

and the weights applied to the RBF function outputs as they are passed to the output layer [27].  

 For this study, the optimal number of neurons in the hidden layer was found by comparing the prediction performance of the 

networks generated using each value in the range of neurons given in Table 4. The algorithm developed by Sheng Chen et al. [34] 

was used as the training method in the RBFN model. This method determines the optimal center points and spreads for each neuron 

with an evolutionary approach. Ridge regression is utilized for the computation of the optimal weights between the neurons in the 

hidden layer and the output layer. The optimal regularization Lambda parameter that minimizes the generalized prediction error is 

computed by an iterative procedure developed by M. J. L. Orr [35] [27]. 
 The flowchart of the regression-based prediction model using SVM, MLP, and RBFN is illustrated in Figure 2. 
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Table 4. Values of the utilized parameters for the regression methods 

Method Parameter Value 

SVM 

Capacity (C) [0.1, 10000] 

Epsilon () [0.0001, 100] 

Gamma () [0.001, 50] 

Number of steps for GS 15 

Scale type of the hyper-parameters for GS Logarithmic-scaled 

MLP 

Number of neurons in the hidden layer [2, 15] 

Hidden layer/output layer transfer function Logistic 

Training method Scaled conjugate gradient 

RBFN 

Maximum number of neurons in the hidden layer 200 

The radius (spread) of each RBF function in each dimension [0.01, 100] 

Regularization parameter (Lambda) [0.001, 10] 

Training method 
Orthogonal forward selection 

[34] 

 

 

4. RESULTS AND DISCUSSION 
 

4.1. Results 
 
 To determine the effectiveness of the presented GCV prediction models based on the hybrid, proximate and ultimate analysis 

variables, experiments were conducted on the data models (Model 1 to 9) using SVM, MLP, and RBFN methods. Tables 5 – 7 show 

the R2, RMSE, and MAPE values obtained from GCV prediction models generated by each data model and regression method. 

 

Table 5. Performance measures of SVM-based models for GCV prediction. 

Data 

Model 
Predictor Variables 

Training Set Testing Set 

R2 
RMSE 

(Mj/kg) 

MAPE 

(%) 
R2 

RMSE 

(Mj/kg) 

MAPE 

(%) 

Model 1 C, A, H, M, S, VM, N 0.998 0.21 0.62 0.998 0.22 0.65 

Model 2 C, A, H, M, S, VM 0.998 0.22 0.62 0.998 0.22 0.66 

Model 3 C, A, H, M, S 0.998 0.22 0.63 0.998 0.22 0.66 

Model 4 C, A, H, M 0.996 0.30 0.86 0.996 0.31 0.90 

Model 5 C, A, H 0.996 0.35 1.00 0.995 0.36 1.03 

Model 6 C, A 0.992 0.46 1.29 0.992 0.47 1.31 

Model 7 C 0.986 0.62 1.68 0.989 0.56 1.68 

Model 8 C, H, S, N 0.998 0.25 0.72 0.998 0.26 0.75 

Model 9 A, M, VM 0.986 0.60 1.74 0.986 0.61 1.78 
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Figure 2. Flowchart of the models based on the hybrid data models generated by the RRelief-F algorithm 
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Table 6. Performance measures of MLP-based models for GCV prediction. 

Data 

Model 
Predictor Variables 

Training Set Testing Set 

R2 
RMSE 

(Mj/kg) 

MAPE 

(%) 
R2 

RMSE 

(Mj/kg) 

MAPE 

(%) 

Model 1 C, A, H, M, S, VM, N 0.997 0.26 0.76 0.997 0.26 0.75 

Model 2 C, A, H, M, S, VM 0.997 0.25 0.75 0.997 0.26 0.77 

Model 3 C, A, H, M, S 0.997 0.26 0.75 0.997 0.26 0.76 

Model 4 C, A, H, M 0.995 0.34 1.03 0.995 0.35 1.08 

Model 5 C, A, H 0.995 0.36 1.08 0.995 0.37 1.12 

Model 6 C, A 0.990 0.52 1.46 0.990 0.53 1.46 

Model 7 C 0.986 0.61 1.68 0.986 0.63 1.70 

Model 8 C, H, S, N 0.997 0.26 0.78 0.997 0.27 0.81 

Model 9 A, M, VM 0.986 0.64 1.87 0.985 0.65 1.92 

 

Table 7. Performance measures of RBFN-based models for GCV prediction. 

Data 

Model 
Predictor Variables 

Training Set Testing Set 

R2 
RMSE 

(Mj/kg) 

MAPE 

(%) 
R2 

RMSE 

(Mj/kg) 

MAPE 

(%) 

Model 1 C, A, H, M, S, VM, N 0.998 0.22 0.66 0.998 0.24 0.68 

Model 2 C, A, H, M, S, VM 0.998 0.22 0.65 0.998 0.23 0.68 

Model 3 C, A, H, M, S 0.998 0.23 0.66 0.998 0.23 0.68 

Model 4 C, A, H, M 0.996 0.30 0.91 0.996 0.32 0.94 

Model 5 C, A, H 0.995 0.34 1.02 0.995 0.36 1.04 

Model 6 C, A 0.992 0.46 1.32 0.992 0.47 1.34 

Model 7 C 0.986 0.61 1.68 0.986 0.62 1.69 

Model 8 C, H, S, N 0.998 0.25 0.73 0.997 0.26 0.76 

Model 9 A, M, VM 0.987 0.60 1.73 0.986 0.62 1.78 

 

4.2. Discussion 
 

 The results concerning the training set shown in Tables 5 – 7 were given for information purposes, and all comparisons were 

made with respect to the results of the testing set. According to the results, the following comments can be asserted for the prediction 

of the GCV and the relevant and irrelevant predictors affecting the accuracy of prediction models: 

 

 The results presented in this study reveal that SVM-based models outperform MLP- and RBFN-based models for GCV 

prediction. In more detail, the average RMSE’s of all SVM-based prediction models are 3.71% and 10.83% lower than the 
ones of RBFN-based and MLP-based models, respectively. In addition, in ANN-based prediction models, RBFN-based 

prediction models give lower RMSE’s than the MLP-based prediction models for GCV prediction. It should be noted that the 

performance of the SVM-based and RBFN-based models is almost similar to each other for all data models. 

 The results obtained from the prediction models using data models generated by the RRelief-F algorithm (Model 1 to 7) show 

that the ultimate analysis variable C and N are the most relevant and irrelevant predictors of GCV, irrespective of the regression 

method used, respectively.  

 When the effect of the predictor variables is examined on prediction performance, the inclusion of the predictor variables VM 

and N yields no effect or a negligible effect on prediction, regardless of the regression method utilized. 

 Among the Model 1 to 7, Model 3, which contains the proximate analysis variables M and A; the ultimate analysis variables 

C, H, and S gives the lowest RMSE’s with 0.22 Mj/kg, 0.23 Mj/kg and 0.26 Mj/kg, whereas Model 7 including only the 

ultimate analysis variable C yields the highest RMSE’s with 0.56 Mj/kg, 0.62 Mj/kg and 0.63 Mj/kg for SVM, RBFN, and 
MLP, respectively. 

 The RMSE’s of the prediction models using the best hybrid data model (Model 3) are 18.18%, 13.04%, and 3.84% lower than 

the RMSE’s of the prediction models using the ultimate analysis variables (Model 8) for SVM, RBFN, and MLP, respectively. 
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 The RMSE’s of the prediction models using the best hybrid data model (Model 3) are 177.27%, 169.56%, and 150.00% lower 

than the RMSE’s of the prediction models using the proximate analysis variables (Model 9) for SVM, RBFN, and MLP, 

respectively. 

 

4.3. Comparing the results  
 

 As mentioned previously, the literature includes many studies using linear and nonlinear regression methods for predicting GCV 

of coals based on proximate and ultimate analysis results as well as both analysis results. When an evaluation is made considering 

the scope of these studies, each study differs from each other methodologically, and this difference can be grouped under two main 

headings. Firstly, the dataset utilized by each study may contain different number of samples, may include the results of the analysis 

of coal extracted from different regions and of different quality, and may have different predictor variables depending on the basis 

and/or the type of the analysis. Secondly, each study may use different regression methods, different hyper-parameter optimization 

algorithms concerning each regression method if operable, different hyper-parameters if any, different validation methods with 

various data splitting rules, and different metrics to determine prediction accuracy. Therefore, it is not applicable and reasonable to 

compare the results of the present study one-to-one, directly and in detail with the result of these studies in the literature, especially 
if the dataset used is different. However, without making a direct comparison with other studies, it can be inferred that the results of 

this study are relatively valuable by evaluating the results obtained from other studies.  

 The studies [9, 11] have shown that the predictive models using the ultimate analysis variables yield better results than the 

prediction models using the proximate analysis variables for the same dataset, regardless of which regression method is used. 

Similarly, in the present study, when the performance of the models using only the ultimate and proximate analysis variables was 

investigated, it was found that the models using the ultimate analysis variables (Model 8) were more accurate than the models using 

the proximate analysis variables (Model 9). At the same time, the present study also proved that the RMSE value of the SVM-based 

model using hybrid data obtained with the RRelief-F algorithm (Model 3) was 18.18% lower than that of the developed model using 

the ultimate analysis variables. 

 Hadavandi et al. [23] used a dataset with different coal analyses (proximate, ultimate, various sulfur forms, and petrography) of 

924 coal samples, and developed a new SVM-based prediction model by applying Variable Importance Measurement (VIM). In 
VIM algorithm, the details of which is given in the study [23], the Relative Variable Importance (RVI) score of each input variable 

is calculated by creating SVM-based models. For comparison purposes, the proposed VIM algorithm by Hadavandi et al. [23] 

implemented to the utilized dataset in this study. Firstly, the RVI score of each predictor variable was calculated using SVM 

separately and ranked in descending order in compliance with their scores to find which ones are most important for the modeling. 

Secondly, seven VIM-based data models (VIM Model 1 to 7) were created by removing the variable, which had the lowest score 

one by one and in order. Finally, SVM-based prediction models were developed to predict the GCV of coal by using VIM data 

models. Table 8 gives the RVI scores of the predictor variables. Table 9 shows the VIM data models and the predictor variables that 

each model has as well as the R2, RMSE, and MAPE values of SVM-based GCV prediction models. 

 

Table 8. RVI scores of the predictor variables for the utilized dataset. 

Predictor Variable RVI Score 

C 0,71906232 

S 0,14892001 

H 0,06820786 

M 0,02700789 

A 0,01961223 

N 0,01193847 

VM 0,00525122 

 
Table 9. Performance measures of SVM-based models obtained by VIM for GCV prediction. 

Data Model Predictor Variables 

Training Set Testing Set 

R2 
RMSE 

(Mj/kg) 

MAPE 

(%) 
R2 

RMSE 

(Mj/kg) 

MAPE 

(%) 

VIM Model 1 C, S, H, M, A, N, VM 0.998 0.21 0.62 0.998 0.22 0.65 

VIM Model 2 C, S, H, M, A, N 0.998 0.23 0.64 0.998 0.23 0.67 

VIM Model 3 C, S, H, M, A 0.998 0.22 0.63 0.998 0.22 0.66 

VIM Model 4 C, S, H, M 0.997 0.27 0.82 0.997 0.28 0.83 
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VIM Model 5 C, S, H 0.996 0.28 0.83 0.996 0.29 0.85 

VIM Model 6 C, S 0.992 0.48 1.20 0.993 0.49 1.20 

VIM Model 7 C 0.986 0.62 1.68 0.989 0.56 1.68 

 

 The following comments and comparisons can be made for the results regarding SVM-based prediction models obtained by 

RRelief-F and VIM algorithms: 

 In VIM algorithm, it is necessary to create total of (m+1) SVM-based models in order to calculate the RVI scores of the 

predictor variables where m is the number of predictor variables. Therefore, the execution time of the VIM algorithm strongly 

depends on the number of predictor variables, and the size and complexity of the dataset. As a result, the VIM algorithm 

consumes extremely much more time since it has to develop (m+1) SVM-based models, while the RRelief-F algorithm 

produces results in less than a second. 

 RRelief-F algorithm and VIM algorithm ranked the variables in a different order as seen in Table 2 and Table 8, respectively. 

Although the variables forming Model 3 and VIM Model 3 are in a different order, they have the same predictor variables (C, 

A, H, M, S). In addition, both algorithms showed similarly that C is the most important variable. 

 When the results of SVM based models given in Table 5 and Table 9 were examined, Model 3 and VIM Model 3, which yield 

the lowest RMSE (0.22 Mj/kg) with the least number of predictor variables, were the best models. 

 Considering that Model 3 and VIM Model 3 are the best models, it was seen that N and VM predictive variables had no effect 

on the accuracy of the prediction models. 

 Considering only N and VM, the results of Model 2 and VIM Model 2 (0.22 Mj/kg and 0.23 Mj/kg) showed that the ranking 

made by the RRelief-F algorithm was more accurate and acceptable than that of the VIM algorithm. 

 As a result, taking into account the results and findings above, it can be concluded that the new hybrid SVM-based model 

provides promising results in predicting GCV of coal. Additionally, when the predictor variables proposed in this study based on 

proximate and ultimate analysis are used, it is considered that the accuracy of the prediction model will increase relatively regardless 

of which dataset will be used. 

 

 

5. CONCLUSIONS 
 

 The aim of this study was to develop new GCV prediction models and bring out the distinctive predictor variables of GCV using 

SVM together with the feature selection algorithm. The dataset was formed by combining the proximate and ultimate analyses 

results of the 6675 coal samples in as-received basis. By applying feature selection algorithm RRelief-F to the dataset, seven hybrid 

data models were created for GCV prediction. In addition to these data models, two data models utilizing proximate and ultimate 

analysis results were also created for comparison purposes. Besides, two different ANN methods named MLP and RBFN were 

applied to the data models in order the make comparison with SVM. 10-fold cross-validation was used to satisfy the generalization 

capability of the developed models. The performances of the SVM-, MLP-, and RBFN-based prediction models were obtained by 

calculating the values of R2, RMSE, and MAPE metrics. 

 Among the presented regression models, SVM-based prediction models performed better than the models developed by using 
MLP or RBFN irrespective of which data model was used. However, it should be taken into account that the prediction performance 

of the RBFN-based prediction models is almost as good as that of SVM-based prediction models. In addition, regardless of the 

regression method used, the same comments can be made for the effect of predictor variables for all the results related to the 

presented regression methods. 

 Considering the performances of all the models presented in this study, the results reveal that, VM and N have no positive effect 

on the performance of GCV prediction. Besides, the SVM-based predictor model that includes the predictor variables M and A 

obtained from the proximate analysis and C, H, and S obtained from the ultimate analysis is the most appropriate model for 

predicting GCV of coal in as-received basis. 
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