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ABSTRACT. Let G be a finite group. The main supergraph S(G) is a graph
with vertex set G in which two vertices  and y are adjacent if and only if
o(x)|o(y) or o(y)|o(z). In an earlier paper, the main properties of this graph
was obtained. The aim of this paper is to investigate the Hamiltonianity,

Eulerianness and 2-connectedness of this graph.
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1. Introduction

Let G be a finite group and « € G. The order of z is denoted by o(x) and the
least common multiple of all element orders in G is the exponent of G which is
denoted by Exp(G). If there is an element a € G such that o(a) = Exzp(G), then G
is called full exponent. The set of all element orders of G is denoted by 7. (G) and
the set of all prime factors of |G| is denoted by 7(G). Set Z;(G) to be the set of all
elements of G of order ¢ and Q;(G) = |Z;(G)|. Also nse(G) = {Q;i(G)]i € m(G)}.
An FEPPO-group is a group that all elements have prime power order and an EPO-
group is a group with elements of prime order.

Throughout this paper graph means simple graph. Suppose I' is such a graph.
The number of vertices adjacent to x is the degree of x and is denoted by degr(z).
If the graph I' can not be disconnected by removing less than k vertices, then I is
called k-connected. It is clear that every Hamiltonian graph is 2-connected. A set
of all vertices in I' such that no two of which are adjacent is an independent set
for T. The independent number of I', a(T"), is the cardinality of an independent
set with maximum size. A set S of vertices of a graph I' is a vertex cover for T,

if every edge of I' has at least one vertex in S as an endpoint. The vertex cover
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number, §(T'), is the size of a minimum vertex cover of graph. In the graph T’ with
n vertices always we have «(T') + 8(T) = n.

The directed power graph of a group G is a graph with vertex set G and there
is a directed edge connecting x to y if and only if y is a power of x. This directed
graph was introduced in the seminal paper of Kelarev and Quinn in 1999 [13]. In
the mentioned paper, the authors considered the directed power graph of groups
and gave a complete description of the structure of this graph for a finite abelian
group. The same authors [15], extended their results to all semigroups. We refer
to [14,16], for some properties of the directed power graph of semigroups.

Suppose A is a simple graph and G = {T's}sca is a set of graphs labeled by
vertices of A. Following Sabidussi [20, p. 396], the A-join of G is the graph A with

the following vertex and edge sets:

V(A) = {(zy) |lzeV(4) &yeV(L)},
E(A) = {(z,y)(2,y) | 22’ € E(A) or else x = 2" & yy' € E(T)}.

If A is an p-vertex labeled graph then the A-join of Ay, Ag,..., A, is denoted by
AlA1, Ag, o A

The undirected power graph of a finite group G, P(G), was introduced by
Chakrabarty et al. [4]. This graph has G as its vertex set and two vertices x
and y are adjacent if and only if one is a power of the other. The main properties
of this graph were investigated by Cameron [2] and Cameron and Ghosh [3]. Define
the graph S(G) with vertex set G such that two vertices 2 and y are adjacent if and
only if o(z)|o(y) or o(y)|o(x). This graph is called the main supergraph of P(G).
Some basic properties of this graph are studied in [11]. In [9], the automorphism
group of this graph computed in general and in [10] its eigenvalues and Laplacian
eigenvalues were computed. Set 7.(G) = {a1,...,ar} and define the graph Ag with
vertex set m.(G) and edge set E(Ag) = {zy | =,y € 7e(GQ), z|ly or y|z}. In [8,9],
the authors proved that S(G) = AG[KQal (@) -+ ,KQ%(G)}, where K,, denotes the
complete graph on n vertices.

The proper power graph P*(G) and its proper main supergraph S*(G) are de-
fined as graphs constructed from P(G) and S(G) by removing identity element of
G, respectively.

Suppose G is a finite group, X C G and C' C G — {1}. Following Williams [25],
the prime graph A(G) is a simple graph that vertices are primes dividing the order
of the group. Two vertices p and ¢ are adjacent if and only if G contains an element

of order pg. The commuting graph C(G, X) is a simple graph with vertex set X,



THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP 3

and two vertices x,y € X are adjacent, whenever xy = yx. In this paper, we will
assume that X = G — {1} and the corresponding commuting graph is denoted by
A(G). The directed Cayley graph X (G,C b is a graph with vertex set G and edge
set {(g,h)|g~th € CUC~'}. Tt is well-known that Cayley graphs are regular and
vertex-transitive.

Suppose I'; and I'y are two graphs. The Cartesian product I'y and T'y, I';0s,
is a graph with vertex set V(I'y) x V(I'z) such that two vertices (a,b) and (z,y)
are adjacent in T'1Oy if a = 2 and by € E(H) or b = y and ax € E(G). The
tensor product I'y X 'y of graphs I'; and I’y is a graph with the same vertex set
V(') x V(I'y) and two vertices (a,b) and (z,y) are adjacent in I'y x T'g if and only
if by € E(H) and az € E(G).

Let T be a graph and M C V(T'). M is called a module if for any = ¢ M,
M C N(x) or M N N(x) =0. The trivial modules are empty set, singletons and
the whole set V. A graph in which all modules are trivial is said to be primitive. A
strong module is a module M such that for any other module M’, either MNM' = ()
or M C M’ or M’ C M. We now assume that M and M’ two disjoint modules.
If any vertex of M is adjacent to all vertices of M’, then we say M and M’ are
adjacent, and if there is no an edge such that one of its end points is belong to M
and another in M’ then we say M and M’ are non-adjacent.

For a module M, if M C S and there is no module M’ such that M c M’ C S,
then the module M is maximal with respect to a set S of vertices. We shall assume
S =V, if the set S is not specified. Let for 1 < i < k, M; be a module of graph
I and P = {M;,..., My} be a partition of the vertex set of a graph, then P is a
modular partition of I'. A non-trivial modular partition P = {Mj, ..., M)} which
only contains maximal strong modules is a maximal modular partition. Notice that
each graph has a unique maximal modular partition. Quotient graph whose vertices
are modules belonging to the modular partition P of graph I" is denoted by I'/P.
In this graph, two vertices of I'/P are adjacent if and only if the corresponding

modules are adjacent in T' [7].

Theorem 1.1. (Modular Decomposition Theorem)[5,6] For any graph T', one of

the following three conditions is satisfied:

e I is not connected.
o T is not connected.
o I' and T are connected and the quotient graph T'/P, with P the mazimal

modular partition of T', is a primitive graph.
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Throughout this paper we refer to [19] for group theory concepts and for graph
theoretical concepts and notations, we refer to [24]. For the sake of completeness,
in what follows we mention the presentation of the dihedral group Ds,,, the semi-

dihedral group SDsg,,, the dicyclic group Ty, and the group Vg,.

Dy, = f{a,b|a™=b*=¢, bab=a""),
SDg, = {a,b|a*™ =0b*=e, bab=a’*"""),
Tin = {a,b]|a®™ =1,a" =b* b tab=a""),
Van = (a,b]a® =b*=¢, aba=0b"" ab la=10).

It is easy to see the dicyclic group Ty, has order 4n and the groups SDg, and Vg,

have order 8n.

2. Main results

A vertex in a graph I' is said to be even, if its degree is an even integer. There
is a condition for Eulerian of a graph I which states that I' is Eulerian if and only

if all of its degrees are even.

Theorem 2.1. Let G be a finite group. The graph S(G) is Eulerian if and only if

G is an odd order group.

Proof. Suppose G is a group of order n. Then the degree of identity has to be
n — 1 and so n is odd. Conversely, suppose n is odd and 7.(G) = {ai,...,axr}.
Choose the non-identity vertex x in S(G) and assume that o(x) = a;. Then
degs(a () = Qa, (G) + > Q0 (G).
aslaj2e or (aj|a; & aiFa;)
If k;, 1 <4 < k, denotes the number of cyclic subgroups of order a; then Q,,(G) =
k¢(a;), that ¢ is the Euler’s totient function. Since G has odd order, it does not
have involutions and ¢(m), m > 3, is even. Thus for each a;, a; € 7.(G), Qq, (G) is

even. Therefore, degree of every vertex in S(G) is even and S(G) is Eulerian. O

In the next theorem, the relationship between connectedness of S*(G) and A(G)

is studied.

Theorem 2.2. ([11]) If the prime graph of a group G is disconnected then S8*(G)

is disconnected. In particular, S(G) is not Hamiltonian.

Theorem 2.3. Let G be a finite group. If Ag is Hamiltonian then S(G) will be

Hamiltonian.
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Proof. Suppose Ag is Hamiltonian and 7' : e ~ a; ~ ... ~ a ~ e is a Hamiltonian
cyclein Ag. Set Z(G) = {41, Ti2, ..., Tig, (¢)}- We construct a Hamiltonian cycle
T" in S(G) as follows:

!
T: ewxll’\‘--~N1'19a1(G)Nlew---Nm2Qa2(G)N~-~N
Tkl N...NJL‘;CQ%(G) ~ €,

and so S§(G) is Hamiltonian, as desired. O

Corollary 2.4. The main supergraph of the power graph of the following simple
groups are not Hamiltonian:

(1) 2Fy4(q), where ¢ = 2*™+L and m > 1;

(2) 2G2(q), where ¢ = 3>™*L and m > 0;

(3) Ai(q), A2(q), B2(q), Ca(q) and S4(q), where q is an odd prime power;

(4) Fu(2™), m > 1 and Us(q), where q is a prime power.

Proof. Apply Theorems 2.34 and 2.35 from [11]. O

It is easy to see that the main supergraph of the power graph of the cyclic group
of order p, p is prime, is Hamiltonian. This simple result and Corollary 2.4 suggest

the following conjecture:

Conjecture 2.5. The main supergraph of the power graph of a mon-abelian finite

simple group is not Hamiltonian.
Theorem 2.6. If G is full exponent then S(G) is 2-connected.

Proof. Suppose z is an element of order Exp(G). Then e and z are adjacent to

all elements of the group. This proves that S(G) is 2-connected. O
Theorem 2.7. If G is an abelian group, then S(G) is 2-connected.

Proof. To prove the theorem, it is enough to show that S*(G) is connected. Choose
non-identity elements x,y € $*(G). Since G is abelian, xy = yz. If z and y are
adjacent in S(G), then are adjacent in S*(G) too. This implies that o(x) 1 o(y) and
o(y) t o(z). Our main proof will consider the following two cases:

(1) o(z) and o(y) are coprime. Since o(zy) = o(z)o(y), o(x) | o(xy) and o(y) |
o(zy). Thus x ~ xy ~ y is a path in $*(G) and so z,y are vertices of a
connected component of $*(G).

(2) n = (o(z),0(y)) # 1. Without loss of generality, we can assume that
o(z) > o(y). Since o(z) = n (mod o(y)), y™ = (xy)°®. On the other hand,
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2°W = (2y)°@ and s0 y ~ y" ~ (2y)°® ~ ay ~ (2y)°V) ~ 2°W) ~ 2 s a
path in §*(G). Hence z and y are in a connected component of $*(G).

This proves that §*(G) is connected. O

Lemma 2.8. Let G and H be groups such that (|G|,|H|) = 1. Then S(G x H) =
S(G) x S(H).

Proof. Suppose (z,y) and (a,b) are adjacent vertices in S(G' x H). Then o((z,y)) |
o((a,b)) or o((a,b)) | o((x,y)). Since G and H have coprime order, o(z)o(y) |
o(a)o(b) or o(a)o(b) | o(x)o(y). On the other hand, (o(a),o(y)) = (o(b),o(x)) =
1. Hence o(a)o(b) | o(x)o(y) implies that o(a) | o(x) and o(b) | o(y). Similarly,
o(x)o(y) | o(a)o(b) implies that o(z) | o(a) and o(y) | o(b). Therefor, a, x are
adjacent in S(G), and b, y are adjacent in S(H) which proves that (a,b) and (z,y)
are adjacent in S(G) x S(H). A similar argument as above shows that if (a,b) and
(x,y) are adjacent in S(G) x S(H), then ax € E(S(G)) and by € E(S(H)). O

The proof of the previous lemma shows that in general S(G) xS(H) is a subgraph
of S(Gx H). By [12, Theorem 5.29], if G and H are non-empty graphs, then G x H
is connected if and only if both of G and H are connected and at least one of them
are non-bipartite. Moreover, if G and H are connected and bipartite, then G x H
has exactly two connected components. In the following theorem, we apply this
result to prove that the main supergraph of the power graph of a nilpotent group

is 2-connected.
Theorem 2.9. If G is nilpotent, then S(G) is 2-connected.

Proof. Since G is nilpotent, G = P; x ... X P., where P;’s are all Sylow P;-
subgroups of G. By Lemma 2.8, S(G) 2 S(P; X ... x P.) = S§(P1) x ... x S(P,)
and so S*(G) 2 S*(Py x...x P) =8*(P1) x...xS8*(P,). Since S*(P;), 1 <i<r,
are complete, they are non-bipartite and connected. This shows that S*(G) is

connected, as desired. O

Theorem 2.10. Let G be a finite group. If vy € E(A(G)) then x and y are in the

same component of S*(G).

Proof. By definition, V(A(G)) = V(S*(G)). Suppose, z, y are adjacent vertices
of A(G). So zy = yx. If o(x) |
S*(G). We now assume that o(x) { o(y) and o(y) {1 o(z). We consider two cases
that (o(z),0(y)) =1 or (o(z),0(y)) # 1.

(1) (o(x),0(y)) = 1. In this case, o(zy) = o(x)o(y). This gives a path x ~

o(y) or o(y) | o(x) then z and y are adjacent in

zy ~y in §*(G), as desired.
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(2) (o(x),0(y)) # 1. Choose the prime number p such that p | o(x) and p | o(y).
If t € G has order p then x ~ ¢ ~ y is a path in S*(G).

This completes the proof. (I
Corollary 2.11. If A(G) is complete then S(G) is 2-connected.

It is clear that if G and H are groups with the same order such that for each
divisor d of |G|, Qq4(G) = Q4(H) then S(G) = S(H). The converse of this result is
not generally correct. To prove, we consider G = Z4 X Z, and H = Zy X Zy X Zs.
Since G and H are 2-groups, S(G) = S(H). But u(G) = 8 < 12 = Q4(H) and
Q2(G) =7 >3 = Q2(H). On the other hand, it is possible to find finite groups
G and H such that S(G) = S(H), but 7.(G) # w.(H). An example is the pair
(G,H) = (Ds,Zs). Finally, it is possible to construct the pair (G, H) of finite
groups such that 7.(G) = w.(H), but S(G) 2 S(H). To see this, it is enough to
assume that G = Doy and H = Z3 X Zy19. In what follows, we prove that in the
group under same specific conditions the equality of spectrum and order implies

that the main supergraph are isomorphic.

Theorem 2.12. (See [1,23]). Suppose G is a finite group and Ga is one of the
following finite groups:

(1) A finite simple group,

(2) A symmetric group Sy, n > 3,

(3) Automorphism group of a sporadic simple group,

then G1 = Gy if and only if |G1| = |G2| and 7.(G1) = m.(G2).

Corollary 2.13. If Gy is a finite group and G is one of the following finite groups:
(1) A finite simple group,
(2) A symmetric group Sp, n > 3,
(3) Automorphism group of a sporadic simple group.

If|G1| = |G2‘ and 7T€(G1) = WE(GQ) then S(Gl) = S(GQ)

In the following result, the finite groups G in which the main supergraph S(G)

is vertex transitive are classified.

Theorem 2.14. Let G be a finite group, then S(G) is a vertex transitive if and
only if G is a p-group. There is no group G such that S(G) is vertex transitive.

Proof. If G is a p-group then S(G) is complete and so it is a Cayley graph. Con-
versely, we assume that S(G) is vertex-transitive, where G has order n. Since

degs(c)(e) =n — 1, S(G) has to be complete and so G is a p-group.
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We now assume that G is a finite group such that S(G; is vertex transitive.
Then each vertex of S(G) will have the in-degree n — 1 and out-degree zero which

is impossible. [

The present authors [11], proved that for each finite group G we have |7(G)| <
a(S(@)) < |me(G)| — 1 with right-hand equality if and only if G is an EPO-group.
Applying this result, we have:

Theorem 2.15. If G is a finite group of order n then n+1—|m.(G)| < B(S(G)) <
n — |w(G)|. The left-hand equality is attained if and only if G is an EPO-group.

Theorem 2.16. Let G be a finite group. S*(G) is complete if and only if G = Z,.

Proof. Suppose S*(G) is a complete graph. Then G is an EPO-group and there
is a unique elements of each order. So, S(G) is a star graph and by [11, Corollary
2.18], G = Z,. The converse is obvious. (]

Theorem 2.17. Let G be a finite group of order> 2. Then G has full exponent if

and only if S*(G) is disconnected.

Proof. If G is full exponent group of order n, n > 2 [11, Theorem 2.15 ], there

are at least two elements of degree n — 1 in S(G). This proves that S*(G) is

disconnected. To prove the converse, we show that if G is not a full exponent group

of order n, n > 2, then §*(G) is connected. Suppose |G| =pi™* ...pp"*. If k=1,

then S(G) is complete and S*(G) is an empty graph, as desired. Suppose k > 2.
Define

Vi={g9€ Gl #0o(g) | p"}.

Then for each ¢, the graph S*(G) has an induced subgraph isomorphic to m
in such a way that every element x € V; is adjacent to every element y € Vj,
1 # j. Thus the induced subgraph [Uf:1 V] is connected. Suppose z,y ¢ Ule Vi,
o(r) = ¢ ..., and o(y) = ¢1”'...¢", r < s. If (o(x),0(y)) = 1, then
zy € E(S*(G)) as desired. We now assume that d = (o(z),0(y)) # 1. If there
exists a prime number p such that p 1 d then we choose an element z of order p
in G. Sox ~ z ~ y is a path connecting z and y in S(G). Hence, it is enough
to assume that, for any ¢, 1 < i < k, p; | d. Suppose o(x) = p" ...p"* and
o(y) = ;% .. pp%. If o(z) 1 o(y) and o(y) { o(z) then zy € E(S*(G)). Suppose

o(z) | o(y) and choose i such that v; # «;. Then x ~ z; ~ y is a path in S*(G).
This completes the proof. (Il

Theorem 2.18. If G is a full exponent group, then the number of connected com-

ponents of S*(G) is ¢(S*(G)) = p(G) + 1, where p(G) = |{a € Glo(a) = Exzp(G)}]|.
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Proof. Suppose G is a full exponent group of order p;™ ...pg"™*, where, p;, 1 <

1 < k are distinct primes and k£ > 1. Similar to the Theorem 2.17, we define

Vi={g€G1#0(g) | pi"™}-
By Theorem 2.17, the induced subgraph on Ule V; is connected. Suppose z,y ¢
Ule Vi. If o(z),0(y) ¢ {|G|, Exp(G)} then by similar argument as in Theorem
2.17, there exits an element u € Ule Vi, such that x ~ u ~ y is path in §*(G). We
now assume that o(x) € {|G|, Exp(G)}. Then {z} is a component of $*(G) and so

the number of connected components is (G) + 1. (]

Theorem 2.19. Let G be a finite group. Then,

(1) if Exp(G) = m, then ¢(S*(G)) = k¢(m) + 1, where k is the number of
cyclic subgroups of order m in G;

(2) if G is nilpotent, then ¢(S*(G)) = Hle o(G;) + 1, where G;’s are Sylow
subgroups of G;

(3) ¢(8*(G)) = ¢(|G])+1 if and only if the number of cyclic subgroups of order

Ezp(Q) in G is %.

Proof. Apply Theorems 2.2, 2.6, 2.8 and 3.2 from [22]. O

Corollary 2.20. The following hold:

(1) if 2% # n > 3 is an even positive integer then c¢(S*(Day)) = ¢(n) + 1, and
if n is odd then S*(Day) is connected;

(2) if n >3, S*(S,) is connected and if n > 4, then S*(A,,) is connected;

(3) if n = 2%, then c(S*(SDgn)) = 8n — 1 and if n # 2%, then c(S*(SDg,)) =
o(4n) +1;

(4) if n is odd, then S*(Tuyn) is connected and if n = 2%, then c(S*(Tun)) =
4n — 1. If n # 2% and n is an even number, then c¢(S*(Ty,)) = ¢(2n) + 1;

(5) if n is odd, then S*(Vi,) is connected. If n = 2%, then c¢(S*(Van)) = 8n — 1
and if n # 2% and n is an even number, then c¢(S*(Van)) = ¢(2n) + 1.

By the graph structure of S(G) = A(;[Kgal(c), el Kﬂak(G)] and definition of
module, one can see that every Ko, (), 1 <1 <k, in S(G) is a maximal strong
module. Also P = {V(Kq, (¢)):---,V(Kaq,, (c))} is a modular partition of S(G)

and quotient graph S(G)/P is isomorphic to Ag.

Theorem 2.21. Let Gy and G2 be two finite groups. We also assume that these
groups are not full exponent, they are not p-groups, for some prime number p, and
the graphs Ag, and Ag, are primitive. If S*(G1) = 8*(G2), then |G1| = |G| and
nse(Gy) = nse(Ga).
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Proof. By Theorem 1.1, since Ag, and Ag, are primitive, S*(G1), S*(G2), $*(G1)
and m are connected. In addition, each graph has a unique maximal modular
partition and S*(G1) = S*(G2) implies that Ag, = Ag, and so |G1| = |Gz|. This
shows that nse(G1) = nse(Gz), as desired. O

Theorem 2.22. [17,18,21] Suppose G, H are finite groups and one of the following

are satisfied:

e H is a sporadic simple group;
e H is a Mathieu group;

e H is the symmetric group Sy, where v is prime number.

If |G| = |H| and nse(G) = nse(H), then G = H.

Theorem 2.23. Suppose G1 and G2 satisfy the conditions of Theorem 2.21. We

also assume that one of the following conditions are satisfied:

o (51 is a sporadic simple group;
e (1 is a Mathieu group;

o (31 is the symmetric group S, where r is prime number.

If §*(G1) =2 8*(G2), then G1 = Ga.
Proof. Apply Theorems 2.21 and 2.22. O
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