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Abstract. Let G be a finite group. The main supergraph S(G) is a graph

with vertex set G in which two vertices x and y are adjacent if and only if

o(x)|o(y) or o(y)|o(x). In an earlier paper, the main properties of this graph

was obtained. The aim of this paper is to investigate the Hamiltonianity,

Eulerianness and 2-connectedness of this graph.
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1. Introduction

Let G be a finite group and x ∈ G. The order of x is denoted by o(x) and the

least common multiple of all element orders in G is the exponent of G which is

denoted by Exp(G). If there is an element a ∈ G such that o(a) = Exp(G), then G

is called full exponent. The set of all element orders of G is denoted by πe(G) and

the set of all prime factors of |G| is denoted by π(G). Set Ξi(G) to be the set of all

elements of G of order i and Ωi(G) = |Ξi(G)|. Also nse(G) = {Ωi(G)|i ∈ πe(G)}.
An EPPO-group is a group that all elements have prime power order and an EPO-

group is a group with elements of prime order.

Throughout this paper graph means simple graph. Suppose Γ is such a graph.

The number of vertices adjacent to x is the degree of x and is denoted by degΓ(x).

If the graph Γ can not be disconnected by removing less than k vertices, then Γ is

called k-connected. It is clear that every Hamiltonian graph is 2-connected. A set

of all vertices in Γ such that no two of which are adjacent is an independent set

for Γ. The independent number of Γ, α(Γ), is the cardinality of an independent

set with maximum size. A set S of vertices of a graph Γ is a vertex cover for Γ,

if every edge of Γ has at least one vertex in S as an endpoint. The vertex cover
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number, β(Γ), is the size of a minimum vertex cover of graph. In the graph Γ with

n vertices always we have α(Γ) + β(Γ) = n.

The directed power graph of a group G is a graph with vertex set G and there

is a directed edge connecting x to y if and only if y is a power of x. This directed

graph was introduced in the seminal paper of Kelarev and Quinn in 1999 [13]. In

the mentioned paper, the authors considered the directed power graph of groups

and gave a complete description of the structure of this graph for a finite abelian

group. The same authors [15], extended their results to all semigroups. We refer

to [14,16], for some properties of the directed power graph of semigroups.

Suppose A is a simple graph and G = {Γa}a∈A is a set of graphs labeled by

vertices of A. Following Sabidussi [20, p. 396], the A-join of G is the graph ∆ with

the following vertex and edge sets:

V (∆) = {(x, y) | x ∈ V (A) & y ∈ V (Γx)},

E(∆) = {(x, y)(x′, y′) | xx′ ∈ E(A) or else x = x′ & yy′ ∈ E(Γx)}.

If A is an p-vertex labeled graph then the A-join of ∆1,∆2, . . . ,∆p is denoted by

A[∆1,∆2, . . . ,∆p].

The undirected power graph of a finite group G, P(G), was introduced by

Chakrabarty et al. [4]. This graph has G as its vertex set and two vertices x

and y are adjacent if and only if one is a power of the other. The main properties

of this graph were investigated by Cameron [2] and Cameron and Ghosh [3]. Define

the graph S(G) with vertex set G such that two vertices x and y are adjacent if and

only if o(x)|o(y) or o(y)|o(x). This graph is called the main supergraph of P(G).

Some basic properties of this graph are studied in [11]. In [9], the automorphism

group of this graph computed in general and in [10] its eigenvalues and Laplacian

eigenvalues were computed. Set πe(G) = {a1, . . . , ak} and define the graph ∆G with

vertex set πe(G) and edge set E(∆G) = {xy | x, y ∈ πe(G), x|y or y|x}. In [8,9],

the authors proved that S(G) = ∆G[KΩa1
(G), . . . ,KΩak

(G)], where Kn denotes the

complete graph on n vertices.

The proper power graph P∗(G) and its proper main supergraph S∗(G) are de-

fined as graphs constructed from P(G) and S(G) by removing identity element of

G, respectively.

Suppose G is a finite group, X ⊆ G and C ⊆ G− {1}. Following Williams [25],

the prime graph Λ(G) is a simple graph that vertices are primes dividing the order

of the group. Two vertices p and q are adjacent if and only if G contains an element

of order pq. The commuting graph C(G,X) is a simple graph with vertex set X,
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and two vertices x, y ∈ X are adjacent, whenever xy = yx. In this paper, we will

assume that X = G − {1} and the corresponding commuting graph is denoted by

∆(G). The directed Cayley graph
−−−−−→
X(G,C) is a graph with vertex set G and edge

set {(g, h)|g−1h ∈ C ∪ C−1}. It is well-known that Cayley graphs are regular and

vertex-transitive.

Suppose Γ1 and Γ2 are two graphs. The Cartesian product Γ1 and Γ2, Γ1�Γ2,

is a graph with vertex set V (Γ1) × V (Γ2) such that two vertices (a, b) and (x, y)

are adjacent in Γ1�Γ2 if a = x and by ∈ E(H) or b = y and ax ∈ E(G). The

tensor product Γ1 × Γ2 of graphs Γ1 and Γ2 is a graph with the same vertex set

V (Γ1)×V (Γ2) and two vertices (a, b) and (x, y) are adjacent in Γ1×Γ2 if and only

if by ∈ E(H) and ax ∈ E(G).

Let Γ be a graph and M ⊆ V (Γ). M is called a module if for any x /∈ M ,

M ⊆ N(x) or M ∩ N(x) = ∅. The trivial modules are empty set, singletons and

the whole set V . A graph in which all modules are trivial is said to be primitive. A

strong module is a module M such that for any other module M ′, either M∩M ′ = ∅
or M ⊆ M ′ or M ′ ⊆ M . We now assume that M and M ′ two disjoint modules.

If any vertex of M is adjacent to all vertices of M ′, then we say M and M ′ are

adjacent, and if there is no an edge such that one of its end points is belong to M

and another in M ′ then we say M and M ′ are non-adjacent.

For a module M , if M ⊂ S and there is no module M ′ such that M ⊂M ′ ⊂ S,

then the module M is maximal with respect to a set S of vertices. We shall assume

S = V , if the set S is not specified. Let for 1 ≤ i ≤ k, Mi be a module of graph

Γ and P = {M1, . . . ,Mk} be a partition of the vertex set of a graph, then P is a

modular partition of Γ. A non-trivial modular partition P = {M1, . . . ,Mk} which

only contains maximal strong modules is a maximal modular partition. Notice that

each graph has a unique maximal modular partition. Quotient graph whose vertices

are modules belonging to the modular partition P of graph Γ is denoted by Γ/P .

In this graph, two vertices of Γ/P are adjacent if and only if the corresponding

modules are adjacent in Γ [7].

Theorem 1.1. (Modular Decomposition Theorem)[5,6] For any graph Γ, one of

the following three conditions is satisfied:

• Γ is not connected.

• Γ is not connected.

• Γ and Γ are connected and the quotient graph Γ/P , with P the maximal

modular partition of Γ, is a primitive graph.



4 A. HAMZEH AND A. R. ASHRAFI

Throughout this paper we refer to [19] for group theory concepts and for graph

theoretical concepts and notations, we refer to [24]. For the sake of completeness,

in what follows we mention the presentation of the dihedral group D2n, the semi-

dihedral group SD8n, the dicyclic group T4n and the group V8n.

D2n = 〈a, b | an = b2 = e, bab = a−1〉,

SD8n = 〈a, b | a4n = b2 = e, bab = a2n−1〉,

T4n = 〈a, b | a2n = 1, an = b2, b−1ab = a−1〉,

V8n = 〈a, b | a2n = b4 = e, aba = b−1, ab−1a = b〉.

It is easy to see the dicyclic group T4n has order 4n and the groups SD8n and V8n

have order 8n.

2. Main results

A vertex in a graph Γ is said to be even, if its degree is an even integer. There

is a condition for Eulerian of a graph Γ which states that Γ is Eulerian if and only

if all of its degrees are even.

Theorem 2.1. Let G be a finite group. The graph S(G) is Eulerian if and only if

G is an odd order group.

Proof. Suppose G is a group of order n. Then the degree of identity has to be

n − 1 and so n is odd. Conversely, suppose n is odd and πe(G) = {a1, . . . , ak}.
Choose the non-identity vertex x in S(G) and assume that o(x) = ai. Then

degS(G)(x) = Ωai(G) +
∑

ai|aj 6=e or (aj |ai & ai 6=aj)

Ωaj (G).

If ki, 1 ≤ i ≤ k, denotes the number of cyclic subgroups of order ai then Ωai(G) =

kφ(ai), that φ is the Euler’s totient function. Since G has odd order, it does not

have involutions and φ(m), m ≥ 3, is even. Thus for each ai, ai ∈ πe(G), Ωai(G) is

even. Therefore, degree of every vertex in S(G) is even and S(G) is Eulerian. �

In the next theorem, the relationship between connectedness of S∗(G) and Λ(G)

is studied.

Theorem 2.2. ([11]) If the prime graph of a group G is disconnected then S∗(G)

is disconnected. In particular, S(G) is not Hamiltonian.

Theorem 2.3. Let G be a finite group. If ∆G is Hamiltonian then S(G) will be

Hamiltonian.
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Proof. Suppose ∆G is Hamiltonian and T : e ∼ a1 ∼ . . . ∼ ak ∼ e is a Hamiltonian

cycle in ∆G. Set Ξ(G) = {xi1, xi2, . . . , xiΩai
(G)}. We construct a Hamiltonian cycle

T ′ in S(G) as follows:

T ′ : e ∼ x11 ∼ . . . ∼ x1Ωa1
(G) ∼ x21 ∼ . . . ∼ x2Ωa2

(G) ∼ . . . ∼

xk1 ∼ . . . ∼ xkΩak
(G) ∼ e,

and so S(G) is Hamiltonian, as desired. �

Corollary 2.4. The main supergraph of the power graph of the following simple

groups are not Hamiltonian:

(1) 2F4(q), where q = 22m+1 and m ≥ 1;

(2) 2G2(q), where q = 32m+1 and m ≥ 0;

(3) A1(q), A2(q), B2(q), C2(q) and S4(q), where q is an odd prime power;

(4) F4(2m), m ≥ 1 and U3(q), where q is a prime power.

Proof. Apply Theorems 2.34 and 2.35 from [11]. �

It is easy to see that the main supergraph of the power graph of the cyclic group

of order p, p is prime, is Hamiltonian. This simple result and Corollary 2.4 suggest

the following conjecture:

Conjecture 2.5. The main supergraph of the power graph of a non-abelian finite

simple group is not Hamiltonian.

Theorem 2.6. If G is full exponent then S(G) is 2-connected.

Proof. Suppose x is an element of order Exp(G). Then e and x are adjacent to

all elements of the group. This proves that S(G) is 2-connected. �

Theorem 2.7. If G is an abelian group, then S(G) is 2-connected.

Proof. To prove the theorem, it is enough to show that S∗(G) is connected. Choose

non-identity elements x, y ∈ S∗(G). Since G is abelian, xy = yx. If x and y are

adjacent in S(G), then are adjacent in S∗(G) too. This implies that o(x) - o(y) and

o(y) - o(x). Our main proof will consider the following two cases:

(1) o(x) and o(y) are coprime. Since o(xy) = o(x)o(y), o(x) | o(xy) and o(y) |
o(xy). Thus x ∼ xy ∼ y is a path in S∗(G) and so x, y are vertices of a

connected component of S∗(G).

(2) n = (o(x), o(y)) 6= 1. Without loss of generality, we can assume that

o(x) > o(y). Since o(x) ≡ n (mod o(y)), yn = (xy)o(x). On the other hand,
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xo(y) = (xy)o(y) and so y ∼ yn ∼ (xy)o(x) ∼ xy ∼ (xy)o(y) ∼ xo(y) ∼ x is a

path in S∗(G). Hence x and y are in a connected component of S∗(G).

This proves that S∗(G) is connected. �

Lemma 2.8. Let G and H be groups such that (|G|, |H|) = 1. Then S(G×H) =

S(G)× S(H).

Proof. Suppose (x, y) and (a, b) are adjacent vertices in S(G×H). Then o((x, y)) |
o((a, b)) or o((a, b)) | o((x, y)). Since G and H have coprime order, o(x)o(y) |
o(a)o(b) or o(a)o(b) | o(x)o(y). On the other hand, (o(a), o(y)) = (o(b), o(x)) =

1. Hence o(a)o(b) | o(x)o(y) implies that o(a) | o(x) and o(b) | o(y). Similarly,

o(x)o(y) | o(a)o(b) implies that o(x) | o(a) and o(y) | o(b). Therefor, a, x are

adjacent in S(G), and b, y are adjacent in S(H) which proves that (a, b) and (x, y)

are adjacent in S(G)×S(H). A similar argument as above shows that if (a, b) and

(x, y) are adjacent in S(G)× S(H), then ax ∈ E(S(G)) and by ∈ E(S(H)). �

The proof of the previous lemma shows that in general S(G)×S(H) is a subgraph

of S(G×H). By [12, Theorem 5.29], if G and H are non-empty graphs, then G×H
is connected if and only if both of G and H are connected and at least one of them

are non-bipartite. Moreover, if G and H are connected and bipartite, then G×H
has exactly two connected components. In the following theorem, we apply this

result to prove that the main supergraph of the power graph of a nilpotent group

is 2-connected.

Theorem 2.9. If G is nilpotent, then S(G) is 2-connected.

Proof. Since G is nilpotent, G ∼= P1 × . . . × Pr, where Pi’s are all Sylow Pi-

subgroups of G. By Lemma 2.8, S(G) ∼= S(P1 × . . . × Pr) = S(P1) × . . . × S(Pr)

and so S∗(G) ∼= S∗(P1× . . .×Pr) = S∗(P1)× . . .×S∗(Pr). Since S∗(Pi), 1 ≤ i ≤ r,
are complete, they are non-bipartite and connected. This shows that S∗(G) is

connected, as desired. �

Theorem 2.10. Let G be a finite group. If xy ∈ E(∆(G)) then x and y are in the

same component of S∗(G).

Proof. By definition, V (∆(G)) = V (S∗(G)). Suppose, x, y are adjacent vertices

of ∆(G). So xy = yx. If o(x) | o(y) or o(y) | o(x) then x and y are adjacent in

S∗(G). We now assume that o(x) - o(y) and o(y) - o(x). We consider two cases

that (o(x), o(y)) = 1 or (o(x), o(y)) 6= 1.

(1) (o(x), o(y)) = 1. In this case, o(xy) = o(x)o(y). This gives a path x ∼
xy ∼ y in S∗(G), as desired.
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(2) (o(x), o(y)) 6= 1. Choose the prime number p such that p | o(x) and p | o(y).

If t ∈ G has order p then x ∼ t ∼ y is a path in S∗(G).

This completes the proof. �

Corollary 2.11. If ∆(G) is complete then S(G) is 2-connected.

It is clear that if G and H are groups with the same order such that for each

divisor d of |G|, Ωd(G) = Ωd(H) then S(G) ∼= S(H). The converse of this result is

not generally correct. To prove, we consider G = Z4 × Z4 and H = Z2 × Z4 × Z2.

Since G and H are 2-groups, S(G) ∼= S(H). But Ω4(G) = 8 < 12 = Ω4(H) and

Ω2(G) = 7 > 3 = Ω2(H). On the other hand, it is possible to find finite groups

G and H such that S(G) ∼= S(H), but πe(G) 6= πe(H). An example is the pair

(G,H) = (D8, Z8). Finally, it is possible to construct the pair (G,H) of finite

groups such that πe(G) = πe(H), but S(G) � S(H). To see this, it is enough to

assume that G = D20 and H = Z2 × Z10. In what follows, we prove that in the

group under same specific conditions the equality of spectrum and order implies

that the main supergraph are isomorphic.

Theorem 2.12. (See [1,23]). Suppose G1 is a finite group and G2 is one of the

following finite groups:

(1) A finite simple group,

(2) A symmetric group Sn, n ≥ 3,

(3) Automorphism group of a sporadic simple group,

then G1
∼= G2 if and only if |G1| = |G2| and πe(G1) = πe(G2).

Corollary 2.13. If G1 is a finite group and G2 is one of the following finite groups:

(1) A finite simple group,

(2) A symmetric group Sn, n ≥ 3,

(3) Automorphism group of a sporadic simple group.

If |G1| = |G2| and πe(G1) = πe(G2) then S(G1) ∼= S(G2).

In the following result, the finite groups G in which the main supergraph S(G)

is vertex transitive are classified.

Theorem 2.14. Let G be a finite group, then S(G) is a vertex transitive if and

only if G is a p-group. There is no group G such that
−−−→
S(G) is vertex transitive.

Proof. If G is a p-group then S(G) is complete and so it is a Cayley graph. Con-

versely, we assume that S(G) is vertex-transitive, where G has order n. Since

degS(G)(e) = n− 1, S(G) has to be complete and so G is a p-group.
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We now assume that G is a finite group such that
−−−→
S(G) is vertex transitive.

Then each vertex of
−−−→
S(G) will have the in-degree n− 1 and out-degree zero which

is impossible. �

The present authors [11], proved that for each finite group G we have |π(G)| ≤
α(S(G)) ≤ |πe(G)| − 1 with right-hand equality if and only if G is an EPO-group.

Applying this result, we have:

Theorem 2.15. If G is a finite group of order n then n+1−|πe(G)| ≤ β(S(G)) ≤
n− |π(G)|. The left-hand equality is attained if and only if G is an EPO-group.

Theorem 2.16. Let G be a finite group. S∗(G) is complete if and only if G ∼= Z2.

Proof. Suppose S∗(G) is a complete graph. Then G is an EPO-group and there

is a unique elements of each order. So, S(G) is a star graph and by [11, Corollary

2.18], G ∼= Z2. The converse is obvious. �

Theorem 2.17. Let G be a finite group of order> 2. Then G has full exponent if

and only if S∗(G) is disconnected.

Proof. If G is full exponent group of order n, n > 2 [11, Theorem 2.15 ], there

are at least two elements of degree n − 1 in S(G). This proves that S∗(G) is

disconnected. To prove the converse, we show that if G is not a full exponent group

of order n, n > 2, then S∗(G) is connected. Suppose |G| = p1
n1 . . . pk

nk . If k = 1,

then S(G) is complete and S∗(G) is an empty graph, as desired. Suppose k ≥ 2.

Define

Vi = {g ∈ G|1 6= o(g) | pini}.

Then for each i, the graph S∗(G) has an induced subgraph isomorphic to K|Vi|

in such a way that every element x ∈ Vi is adjacent to every element y ∈ Vj ,

i 6= j. Thus the induced subgraph [
⋃k
i=1 Vi] is connected. Suppose x, y /∈

⋃k
i=1 Vi,

o(x) = q1
α1 . . . qr

αr and o(y) = q1
β1 . . . qs

βs , r ≤ s. If (o(x), o(y)) = 1, then

xy ∈ E(S∗(G)) as desired. We now assume that d = (o(x), o(y)) 6= 1. If there

exists a prime number p such that p - d then we choose an element z of order p

in G. So x ∼ z ∼ y is a path connecting x and y in S(G). Hence, it is enough

to assume that, for any i, 1 ≤ i ≤ k, pi | d. Suppose o(x) = p1
γ1 . . . pk

γk and

o(y) = p1
δ1 . . . pk

δk . If o(x) - o(y) and o(y) - o(x) then xy ∈ E(S∗(G)). Suppose

o(x) | o(y) and choose i such that γi 6= αi. Then x ∼ xi ∼ y is a path in S∗(G).

This completes the proof. �

Theorem 2.18. If G is a full exponent group, then the number of connected com-

ponents of S∗(G) is c(S∗(G)) = ϕ(G)+1, where ϕ(G) = |{a ∈ G|o(a) = Exp(G)}|.
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Proof. Suppose G is a full exponent group of order p1
n1 . . . pk

nk , where, pi, 1 ≤
i ≤ k are distinct primes and k > 1. Similar to the Theorem 2.17, we define

Vi = {g ∈ G|1 6= o(g) | pini}.

By Theorem 2.17, the induced subgraph on
⋃k
i=1 Vi is connected. Suppose x, y /∈⋃k

i=1 Vi. If o(x), o(y) /∈ {|G|, Exp(G)} then by similar argument as in Theorem

2.17, there exits an element u ∈
⋃k
i=1 Vi, such that x ∼ u ∼ y is path in S∗(G). We

now assume that o(x) ∈ {|G|, Exp(G)}. Then {x} is a component of S∗(G) and so

the number of connected components is ϕ(G) + 1. �

Theorem 2.19. Let G be a finite group. Then,

(1) if Exp(G) = m, then c(S∗(G)) = kφ(m) + 1, where k is the number of

cyclic subgroups of order m in G;

(2) if G is nilpotent, then c(S∗(G)) =
∏k
i=1 ϕ(Gi) + 1, where Gi’s are Sylow

subgroups of G;

(3) c(S∗(G)) = φ(|G|)+1 if and only if the number of cyclic subgroups of order

Exp(G) in G is |G|
Exp(G) .

Proof. Apply Theorems 2.2, 2.6, 2.8 and 3.2 from [22]. �

Corollary 2.20. The following hold:

(1) if 2k 6= n ≥ 3 is an even positive integer then c(S∗(D2n)) = φ(n) + 1, and

if n is odd then S∗(D2n) is connected;

(2) if n ≥ 3, S∗(Sn) is connected and if n ≥ 4, then S∗(An) is connected;

(3) if n = 2k, then c(S∗(SD8n)) = 8n− 1 and if n 6= 2k, then c(S∗(SD8n)) =

φ(4n) + 1;

(4) if n is odd, then S∗(T4n) is connected and if n = 2k, then c(S∗(T4n)) =

4n− 1. If n 6= 2k and n is an even number, then c(S∗(T4n)) = φ(2n) + 1;

(5) if n is odd, then S∗(V8n) is connected. If n = 2k, then c(S∗(V8n)) = 8n− 1

and if n 6= 2k and n is an even number, then c(S∗(V8n)) = φ(2n) + 1.

By the graph structure of S(G) = ∆G[KΩa1
(G), . . . ,KΩak

(G)] and definition of

module, one can see that every KΩai
(G), 1 ≤ i ≤ k, in S(G) is a maximal strong

module. Also P = {V (KΩa1 (G)), . . . , V (KΩak
(G))} is a modular partition of S(G)

and quotient graph S(G)/P is isomorphic to ∆G.

Theorem 2.21. Let G1 and G2 be two finite groups. We also assume that these

groups are not full exponent, they are not p-groups, for some prime number p, and

the graphs ∆G1 and ∆G2 are primitive. If S∗(G1) ∼= S∗(G2), then |G1| = |G2| and

nse(G1) = nse(G2).
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Proof. By Theorem 1.1, since ∆G1
and ∆G2

are primitive, S∗(G1), S∗(G2), S∗(G1)

and S∗(G2) are connected. In addition, each graph has a unique maximal modular

partition and S∗(G1) ∼= S∗(G2) implies that ∆G1
∼= ∆G2 and so |G1| = |G2|. This

shows that nse(G1) = nse(G2), as desired. �

Theorem 2.22. [17,18,21] Suppose G, H are finite groups and one of the following

are satisfied:

• H is a sporadic simple group;

• H is a Mathieu group;

• H is the symmetric group Sr, where r is prime number.

If |G| = |H| and nse(G) = nse(H), then G ∼= H.

Theorem 2.23. Suppose G1 and G2 satisfy the conditions of Theorem 2.21. We

also assume that one of the following conditions are satisfied:

• G1 is a sporadic simple group;

• G1 is a Mathieu group;

• G1 is the symmetric group Sr, where r is prime number.

If S∗(G1) ∼= S∗(G2), then G1
∼= G2.

Proof. Apply Theorems 2.21 and 2.22. �
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