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(Communicated by Cihan ÖZGÜR)

Abstract. Regular polygons in the taxicab and Chinese checker planes stud-
ied in [3] and [4], respectively. In this work we study regular polygons in the
plane defined by the maximum metric. However, statements of all propositions
are given not only for maximum plane but also for the taxicab and Chinese
checker planes to show the common properties of them.

1. Introduction

A metric geometry consists of a set P, whose elements are called points, together
with a collection L of non-empty subsets of P, called lines, and a distance function
d, such that
1) Every two distinct points in P lie on a unique line,
2) There exist three points in P, which do not lie all on one line,
3) There exists a bijective function f : l → R for all lines in L such that
|f(P )− f(Q)| = d(P, Q) for each pair of points P and Q on l.

A metric geometry defined above is denoted by {P,L, d}. However, if a metric
geometry satisfies the plane separation axiom below, and it has an angle measure
function m, then it is called protractor geometry and denoted by {P,L, d, m}.
4) For every l in L, there are two subsets H1 and H2 of P (called half planes
determined by l) such that
(i) H1 ∪H2 = P − l (P with l removed),
(ii) H1 and H2 are disjoint and each is convex,
(iii) If A ∈ H1 and B ∈ H2, then [AB] ∩ l 6= ∅.

Let P =(x1, y1) and Q=(x2, y2) be two points in the Cartesian coordinate plane,
then dE(P,Q) = [(x1 − x2)2 + (y1 − y2)2]1/2, dM (P, Q) = max{|x1−x2| , |y1− y2|},
dT (P, Q) = |x1 − x2|+ |y1 − y2| and dC(P,Q) = max{|x1 − x2| , |y1 − y2|}+ (

√
2−

1)min{|x1 − x2| , |y1 − y2|} are called Euclidean, maximum, taxicab and Chinese

2000 Mathematics Subject Classification. 51K05, 51K99.
Key words and phrases. Maximum distance, Taxicab distance, Chinese checker distance, Eu-

clidean distance, Protractor geometry, Regular polygon.
*This paper is the written version of the talk delivered on July 2, 2008 at the VIth National

Geometry Symposium held at Bursa, Turkey.

76



REGULAR POLYGONS IN SOME MODELS OF PROTRACTOR GEOMETRY 77

checker (CC) distances between P and Q, respectively. If LE is the set of all
lines in the Cartesian coordinate plane, and mE is the standard angle measure
function in the Euclidean plane, then {R2, LE , dM ,mE}, {R2, LE , dT ,mE} and
{R2, LE , dC ,mE} are models of protractor geometry (see [7], [5], [8]), and they
are called maximum, taxicab and CC plane, respectively. Clearly, these planes
are almost the same as the Euclidean plane {R2, LE , dE ,mE} since the points are
the same, the lines are the same, and the angles are measured in the same way.
However, the distance functions are different. Since maximum, taxicab and CC
planes have distance functions different from that in the Euclidean plane, it is
interesting to study the maximum, taxicab and CC analogues of topics that include
the distance concept in the Euclidean plane. During the recent years, many such
topics have been studied in these plane geometries (see references of [10] for some
of studies). In this study, we define maximum regular polygons, and determine
which Euclidean regular polygons are also maximum regular, and which are not.
Finally, we investigate the existence or nonexistence of maximum regular polygons.
However, statements of all propositions are given not only for maximum plane but
also for the taxicab and Chinese checker planes to show the common properties of
them.

2. Maximum, Taxicab and CC Regular Polygons

As in the Euclidean plane, a polygon in the maximum, taxicab and CC planes
consists of three or more coplanar line segments; the line segments (sides) intersect
only at endpoints; each endpoint (vertex ) belongs to exactly two line segments; no
two line segments with a common endpoint are collinear. If the number of sides of
a polygon is n (n > 3, n ∈ N), then the polygon is called an n-gon. The following
definitions for the polygons in the Cartesian coordinate plane are given by means
of the maximum, taxicab and CC lengths instead of the Euclidean lengths:

Definition 2.1. A polygon in the plane is said to be maximum, taxicab and CC
equilateral if maximum, taxicab and CC lengths of its sides are equal, respectively.

Definition 2.2. A polygon in the plane is said to be maximum, taxicab and CC
equiangular if measures of its interior angles are equal.

Definition 2.3. A polygon in the plane is said to be maximum, taxicab and CC
regular if it is both maximum, taxicab and CC equilateral and equiangular, respec-
tively.

Definition 2.2 does not give a new equiangular concept because angles are mea-
sured in the maximum, taxicab, CC and Euclidean plane in the same way (However,
it is possible to define different angle measures in maximum, taxicab and CC planes;
see [1] and [11] for example). That is, every Euclidean equiangular polygon is also
the maximum, taxicab and CC equiangular, and vice versa. However, since the
maximum, taxicab and CC planes has different distance functions, Definition 2.1,
and therefore Definition 2.3 are new concepts. In the next section, we determine
which Euclidean regular polygons in the plane are also maximum regular, and which
are not.
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The following equations, which relate the Euclidean distance to the maximum,
taxicab and CC distances between two points in the Cartesian coordinate plane,
plays an important role in our arguments.

Lemma 2.1. For any two points P and Q in the Cartesian coordinate plane that
do not lie on a vertical line, if m is the slope of the line through P and Q, then

(2.1) dE(P,Q) = ρM (m)dM (P, Q) = ρT (m)dT (P, Q) = ρC(m)dC(P, Q)

where ρM (m) = (1 + m2)1/2�max{1, |m|}, ρT (m) = (1 + m2)1/2�(1 + |m|),
and ρC(m) = (1 + m2)1/2�(max{1, |m|} + (

√
2 − 1)min{1, |m|}). If P and Q

lie on a vertical line, then

(2.2) dE(P,Q) = dM (P,Q) = dT (P, Q) = dC(P, Q).

Proof. Let P = (x1, y1) and Q = (x2, y2) with x1 6= x2; then m = (y2 − y1)�
(x2 − x1), dE(P,Q) = |x1 − x2| (1 + m)1/2, dM (P,Q) = |x1 − x2| (max{1, |m|}),
dT (P, Q) = |x1 − x2| (1 + |m|) and dC(P, Q) = |x1 − x2| (max{1, |m|} + (

√
2 −

1)min{1, |m|}). Now, it is obvious that Equation (2.1) is true. Equation (2.2) is
derived by straightforward calculations with the coordinate definitions of dE(P, Q),
dM (P,Q), dT (P, Q) and dC(P, Q) given in Section 1. ¤

Another useful fact is:

Lemma 2.2. For m1,m2 ∈ R-{0},
(i) ρM (m1) = ρM (m2) ⇔ |m1| = |m2| or |m1m2| = 1.
(ii) ρT (m1) = ρT (m2) ⇔ |m1| = |m2| or |m1m2| = 1.
(iii) ρC(m1) = ρC(m2) ⇔ |m1| = |m2|, |m1m2| = 1, |1− |m1m2|| = |m1|+ |m2| or
||m1| − |m2|| = 1 + |m1m2|.
Proof. (i) Let ρ(m1) = ρ(m2) for m1, m2 ∈ R-{0}. If “|m1| ≤ 1 and |m2| ≤ 1”
or “|m1| ≥ 1 and |m2| ≥ 1”, then m2

1 = m2
2, which implies |m1| = |m2|. If

“|m1| ≤ 1 and |m2| ≥ 1” or “|m1| ≥ 1 and |m2| ≤ 1”, then m2
1m

2
2 = 1, which

implies |m1m2| = 1. The sufficient condition can be verified by direct calculations
using m2 = m1, m2 = −m1, m2 = 1/m1 and m2 = −1/m1.
(ii) Let ρT (m1) = ρT (m2) for m1,m2 ∈ R-{0}. Then by simple calculations, one
can easily get that (|m1| − |m2|)(|m1m2| − 1) = 0, which implies |m1| = |m2| or
|m1m2| = 1. The sufficient condition can be verified by direct calculations using
m2 = m1, m2 = −m1, m2 = 1/m1 and m2 = −1/m1 .
(iii) Let ρC(m1) = ρC(m2) for m1,m2 ∈ R-{0}. If “|m1| ≤ 1 and |m2| ≤ 1”
or “|m1| ≥ 1 and |m2| ≥ 1”, then one can easily obtain (|m1| − |m2|)(|m1m2| +
|m1|+ |m2| − 1) = 0 and (|m1| − |m2|)(|m1m2| − |m1| − |m2| − 1) = 0, respectively,
which imply |m1| = |m2| or |1− |m1m2|| = |m1|+ |m2|. If “|m1| ≤ 1 and |m2|” or
“|m1| ≥ 1 and |m2| ≤ 1”, then similarly one gets (|m1m2| − 1)(|m1m2| + |m1| −
|m2|+1) = 0 or (|m1m2|−1)(|m1m2|+|m2|−|m1|+1) = 0, respectively, which imply
|m1m2| = 1 or ||m1| − |m2|| = 1 + |m1m2|. The sufficient condition can be verified
by direct calculations using m2 = m1, m2 = −m1, m2 = 1/m1, m2 = −1/m1,
m2 = (1 −m1)/(1 + m1), m2 = (m1 − 1)/(1 + m1), m2 = (1 + m1)/(1 −m1) and
m2 = (1 + m1)/(m1 − 1). ¤
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The following theorem gives the necessary and sufficient conditions for two line
segments having the same Euclidean length to have the same maximum, taxicab or
CC lengths, respectively, in terms of slopes of the line segments.

Theorem 2.1. Let A, B, C, and D be four points in the Cartesian coordinate
plane, such that A 6= B and dE(A, B) = dE(C, D); and let m1 and m2 denote the
slopes of lines AB and CD, respectively.

(i) If m1,m2 ∈ R-{0}, then
dM (A,B) = dM (C, D) ⇔ |m1| = |m2| or |m1m2| = 1,
dT (A,B) = dT (C, D) ⇔ |m1| = |m2| or |m1m2| = 1,
dC(A, B) = dC(C, D) ⇔ |m1| = |m2|, |m1m2| = 1, |1− |m1m2|| = |m1| + |m2| or
||m1| − |m2|| = 1 + |m1m2|.
(ii) For i, j ∈ {1, 2} , i 6= j; if mi = 0 or mi →∞, then
dM (A,B) = dM (C, D) ⇔ mj = 0 or mj →∞,
dT (A,B) = dT (C, D) ⇔ mj = 0 or mj →∞,
dC(A, B) = dC(C, D) ⇔ mj = 0, mj = 1, mj = −1 or mj →∞.

Proof. (i) This follows immediately from Equation (2.1) and Lemma 2.2.
(ii) Let i = 1 and j = 2. If m1 = 0 or m1 → ∞, then dE(A,B) = dM (A,B) =
dT (A,B) = dC(A,B). Therefore dM (A,B) = dM (C, D), dT (A,B) = dT (C, D) and
dC(A, B) = dC(C, D) if and only if ρM (m2) = 1, ρT (m2) = 1 and ρC(m2) = 1,
respectively. It is clear that ρM (m2) = 1 ⇔ m1 = 0 or m1 → ∞; ρT (m2) = 1 ⇔
m1 = 0 or m1 → ∞; and ρC(m2) = 1 ⇔ m1 = 0, m1 = 1, m1 = −1 or m1 → ∞.
The case of i = 2 and j = 1 is similar. ¤

Let l1 and l2 be two non-vertical lines; let A be the measure of the non-obtuse
angle between l1 and l2; and let m1 and m2 be slopes of l1 and l2, respectively.
Then following properties can be verified by calculations:
(i) |m1| = |m2| if and only if l1 and l2 are coincident, parallel or symmetric about
a line parallel to x-axis or y-axis.
(ii) |m1m2| = 1 if and only if A = π/2 or l1 and l2 symmetric about a line parallel
to one of lines y = x and y = −x.
(iii) |1− |m1m2|| = |m1| + |m2| or ||m1| − |m2|| = 1 + |m1m2| if and only if A =
π/4 or l1 and l2 symmetric about a line parallel to one of lines y = (

√
2 − 1)x ,

y = −(
√

2− 1)x, y = (
√

2 + 1)x, y = −(
√

2 + 1)x.

Now, let us denote by S1 the set of lines x = 0, y = 0, y = x and y = −x ; and by
S2 the set of lines y = (

√
2− 1)x, y = −(

√
2− 1)x, y = (

√
2+1)x, y = −(

√
2+1)x,

and the lines in S1. Then one can immediately state following corollary:

Corollary 2.1. Let A, B, and C be three non-collinear points in the Cartesian
coordinate plane, such that dE(A,B) = dE(B, C). Then,
(i) dM (A,B) = dM (B,C) if and only if ](ABC) = π/2 or A and C are symmetric
about the line passing through B, and parallel to a line in S1.
(ii) dT (A,B) = dT (B, C) if and only if ](ABC) = π/2 or A and C are symmetric
about the line passing through B, and parallel to a line in S1.
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(iii) dC(A, B) = dC(B, C) if and only if ](ABC) ∈ {π/4, π/2, 3π/4} or A and C
are symmetric about the line passing through B, and parallel to a line in S2.

Note that Theorem 2.1 and Corollary 2.1 indicate also Euclidean isometries of
the plane that do not change the maximum, taxicab and CC distances between any
two points, respectively:
(i) Euclidean isometries of the plane that do not change the maximum distance
between any two points are all translations, rotations of π/2, π and 3π/2 radians
around a point, reflections about lines parallel to a line in S1, and their compo-
sitions; there is no other bijections of R2 onto R2 which preserve the maximum
distance (see [8]).
(ii) Euclidean isometries of the plane that do not change the taxicab distance be-
tween any two points are all translations, rotations of π/2, π and 3π/2 radians
around a point, reflections about lines parallel to a line in S1, and their composi-
tions; there is no other bijections of R2 onto R2 which preserve the taxicab distance
(see [9]).
(iii) Euclidean isometries of the plane that do not change the CC distance between
any two points are all translations, rotations of π/4, π/2 , 3π/4, π, 5π/4, 3π/2 and
7π/4 radians around a point, reflections about lines parallel to a line in S2, and
their compositions; there is no other bijections of R2 onto R2 which preserve the
CC distance (see [6]).

3. Euclidean Regular Polygons in the Maximum, Taxicab and CC
Planes

Since every Euclidean regular polygon is also maximum, taxicab and CC equian-
gular, it is obvious that a Euclidean regular polygon is maximum, taxicab and CC
regular if and only if it is maximum, taxicab and CC equilateral, respectively.
Therefore, to investigate the maximum, taxicab and CC regularity of a Euclidean
regular polygon, it is sufficient to determine whether it is maximum, taxicab and
CC equilateral or not, respectively. In doing so, we use following concepts:

Any Euclidean regular polygon can be inscribed in a circle, and a circle can be
circumscribed about any Euclidean regular polygon. A point is called the center
of a Euclidean regular polygon if it is the center of the circle circumscribed about
the polygon. A line l is called axis of symmetry (AOS) of a polygon if the polygon
is symmetric about l, and in addition, if l passes through a vertex of the polygon
then l is called radial axis of symmetry (RAOS) of the polygon. Clearly, every
AOS of a Euclidean regular polygon passes through the center of the polygon.

Now, we are ready to investigate the maximum, taxicab and CC regularity of the
Euclidean regular polygons. In the following propositions proofs are given for only
maximum regularity; see [3] and [4] for the proofs of taxicab and CC regularity.

Proposition 3.1. No Euclidean regular triangle is maximum, taxicab or CC reg-
ular.

Proof. Since the Euclidean lengths of two consecutive sides are the same, and the
angle between two consecutive sides is not a right angle, by the Corollary 2.1,
two consecutive sides must be symmetric about a line parallel to a line in S1 in
order to have the same maximum lengths. Suppose two consecutive sides are sym-
metric about a line that is parallel to a line in S1. Figure 1 and Figure 2 show
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such Euclidean regular triangles. A simple calculation shows that none of the other

Figure 1 Figure 2

two AOS’s is parallel to a line in S1. Therefore, triangles in Figure 1 and Figure
2 are not maximum equilateral. Thus, no Euclidean regular triangle is maximum
regular. ¤
Corollary 3.1. No Euclidean regular hexagon is maximum, taxicab or CC regular.

Proof. It is clear that every Euclidean regular hexagon is the union of six Eu-
clidean regular triangles, and by Theorem 2.1, the maximum lengths of sides
of one of the Euclidean regular triangles are the same as the maximum lengths
of corresponding parallel sides of the Euclidean regular hexagon, respectively, as
shown in Figure 3. Since no Euclidean regular triangle is maximum equilateral,

Figure 3

no Euclidean regular hexagon is maximum equilateral, either. Thus, no Euclidean
regular hexagon is maximum regular. ¤
Proposition 3.2. Every Euclidean regular quadrilateral (Euclidean square) is max-
imum, taxicab and CC regular.

Proof. Since every side of the Euclidean square has the same Euclidean length and
the angle between every two consecutive sides is a right angle, as shown in Fig-
ure 4, every side has the same maximum, taxicab and CC lengths by Corollary 2.1.

Figure 4

Thus, every Euclidean square is maximum, taxicab and CC equilateral, and there-
fore is maximum, taxicab and CC regular. ¤
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Proposition 3.3. (i) Every Euclidean regular octagon, one of whose RAOS’s is
parallel to a line in S1, is maximum and taxicab regular.
(ii) Every Euclidean regular octagon and Euclidean regular 16-gon, one of whose
RAOS’s is parallel to a line in S2, are CC regular.

Proof. Clearly, every Euclidean regular octagon has four RAOS’s, and if a RAOS of
a Euclidean regular octagon is parallel to a line in S1, then each of the other RAOS’s
is parallel to a line in S1, too (see Figure 5). Since every two consecutive sides of
such Euclidean regular octagons are symmetric about a line parallel to a line in S1,

Figure 5

and every side has the same Euclidean length, by Corollary 2.1, these sides have
the same maximum lengths. Thus, every Euclidean regular octagon, one of whose
RAOS’s is parallel to a line in S1, is maximum equilateral, and therefore is maximum
regular. ¤

Theorem 3.1. No Euclidean regular polygon, except the ones in Proposition 3.2
and Proposition 3.3, is maximum, taxicab or CC regular.

Proof. Let us classify Euclidean regular polygons as (2n− 1)-gons and 2n-gons for
n ≥ 2 (n ∈ N), and investigate them separately:

(i) Euclidean regular (2n−1)-gons: The case n = 2 is proved in Proposition 3.1. Let
n > 2. It is clear that the number of AOS’s of a Euclidean regular (2n− 1)-gon is
2n− 1 (≥ 5), and each AOS passes through a vertex and the center of the polygon.
Therefore, there exists at least one AOS that is not parallel to any line in S1. Then,
there are at least two consecutive sides symmetric about a line that is not parallel
to any line in S1. We know also that the angle between two consecutive sides of
the Euclidean regular (2n − 1)-gon is not a right angle. By Corollary 2.1, these
consecutive sides do not have the same maximum lengths. Thus, for n > 2, the
Euclidean regular (2n − 1)-gon is not maximum equilateral, and therefore is not
maximum regular. That is, no Euclidean regular (2n−1)-gon is maximum regular.

(ii) Euclidean regular 2n-gons: The case n = 2 is included in Proposition 3.2. The
case n = 3 is proved in Corollary 3.1. In order to exclude the case in Proposition 3.3-
(i), let us consider a Euclidean regular octagon, none of whose RAOS’s is parallel to
any line in S1, for the case n = 4. By Corollary 2.1, no two consecutive sides have
the same maximum length. Thus, such Euclidean regular octagon is not maximum
equilateral, and therefore is not maximum regular. Let n > 4. Clearly, the number
of RAOS’s of a Euclidean regular 2n-gon is n. Therefore, there exists at least one
RAOS that is not parallel to any line in S1. Then, there are at least two consecutive
sides symmetric about a line that is not parallel to any line in S1. We know also
that the angle between two consecutive sides of the Euclidean regular 2n-gon is
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not a right angle for n > 4. By Corollary 2.1, these consecutive sides do not have
the same maximum length. Thus, for n > 4, the Euclidean regular 2n-gon is not
maximum equilateral, and therefore is not maximum regular. ¤

4. Existences of Maximum, Taxicab and CC Regular 2n-gons

We know now that which Euclidean regular polygons are maximum, taxicab or
CC regular, and which are not. Furthermore, we also know existence of some max-
imum, taxicab and regular polygons. However, we do not have general knowledge
about the existence of them. The next theorem shows the existence of maximum,
taxicab and CC regular 2n-gons by means of maximum, taxicab and CC circles.
Recall that
(i) the maximum circle with center O and radius 1 is the set of all points whose
maximum distance to O is 1. This locus of points is a Euclidean square, each side
having length 2 parallel to a coordinate axis (see Figure 6),
(ii) the taxicab circle with center O and radius 1 is the set of all points whose
taxicab distance to O is 1. This locus of points is a square with center O, each side
having slope ±1, and each diagonal having length 2 (see Figure 7),
(iii) the CC circle with center O and radius 1 is the set of all points whose CC
distance to O is 1. This locus of points is a Euclidean regular octagon one of whose
radial axes of symmetry has slope 0 (see Figure 8).

Just as for a Euclidean circle, the center and one point at a maximum, taxicab
and CC distance r from the center completely determine the maximum, taxicab
and CC circles, respectively.

Figure 6 Figure 7 Figure 8

Theorem 4.1. There exist two congruent maximum, taxicab and CC regular 2n-
gons (n ≥ 2) having given any line segment as a side.

Proof. Clearly, the measure of each interior angle of an equiangular 2n-gon (n ≥ 2)
is π(n − 1)/n radians. Let us consider now any given line segment A1A2 in the
maximum plane. It is obvious that (n − 1) line segments AiAi+1, 2 ≤ i ≤ n,
having the same maximum length dM (A1, A2), can be constructed using the max-
imum circles with center Ai and radius dM (A1, A2), such that the measure of the
angle between every two consecutive segments is π(n − 1)/n radians (see Fig-
ure 9). Also it is not difficult to see that ]A2A1An+1 + ]AnAn+1A1 = π(n −
1)/n. If we continue to construct line segments A′iA

′
i+1, 1 ≤ i ≤ n, which are

symmetric to AiAi+1 about the midpoint of A1An+1, respectively, we get a 2n-
gon (see Figure 10). Since the symmetry about a point (rotation of π radians
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Figure 9 Figure 10

around a point) preserves both the maximum distances and the angle measures,
we have dM (Ai, Ai+1) = dM (A′i, A

′
i+1) = dM (A1, A2) for 1 ≤ i ≤ n, and ]Ai =

]A′i = π(n − 1)/n for 2 ≤ i ≤ n. Also it is easy to see that ]A1 = ]An+1 =
π(n − 1)/n. Thus, the constructed 2n-gon is maximum regular. Furthermore,
on the other side of the line A1A2, one can construct another maximum regu-
lar 2n-gon, having the same line segment A1A2 as a side, using the same proce-
dure (see Figure 11). However, it is easy to see that these two maximum regular

Figure 11

2n-gons are symmetric about the midpoint of the line segment A1A2, and congruent.

¤

In every maximum, taxicab or CC regular 2n-gon, there are n line segments
joining the corresponding vertices of the 2n-gon (AiA

′
i, 1 ≤ i ≤ n, for polygons

in Figure 10 and Figure 11). We call each of these line segments an axis of the
polygon. Clearly, axes of every maximum, taxicab or CC regular 2n-gon intersect
at one and only one point.

Example Using the procedure given in the proof of Theorem 4.1, one can easily
construct maximum, taxicab or CC regular 2n-gons having given any line segment
as a side. To give examples, we construct one maximum, one taxicab and one CC
regular hexagon, having given line segment A1A2 as a side, in Figure 12, 13 and
14, respectively:
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Figure 12 Figure 13 Figure 14

5. More About Maximum, Taxicab and CC Regular Polygons

The following corollary is another statement of Corollary 2.1:

Corollary 5.1. Let A, B, and C be three non-collinear points in the Cartesian
coordinate plane. Then
(i) If dM (A,B) = dM (B, C) then, dE(A,B) = dE(B, C) if and only if ](ABC) =
π/2 or A and C are symmetric about the line passing through B, and parallel to
one of lines in S1.
(ii) If dT (A,B) = dT (B, C) then, dE(A,B) = dE(B, C) if and only if ](ABC) =
π/2 or A and C are symmetric about the line passing through B, and parallel to
one of lines in S1.
(iii) If dC(A,B) = dC(B, C) then, dE(A,B) = dE(B,C) if and only if ](ABC) ∈
{π/4, π/2, 3π/4} or A and C are symmetric about the line passing through B, and
parallel to one of lines in S2.

Proposition 5.1. Every maximum, taxicab or CC square is Euclidean regular.

Proof. Since every side of a maximum, taxicab and CC square has the same maxi-
mum, taxicab and CC length respectively, and the angle between every two consec-
utive sides is a right angle, every side has the same Euclidean length by Corollary
5.1. Thus, every maximum square taxicab or CC square is Euclidean equilateral,
and therefore is Euclidean regular. ¤

We need a new notion to prove the next proposition: An equiangular polygon
with an even number of vertices is called equiangular semi-regular if sides have
the same Euclidean length alternately. There is always a Euclidean circle passing
through all vertices of an equiangular semi-regular polygon (see [12]).

Proposition 5.2. (i) Every maximum or taxicab regular octagon, one of whose
axes is parallel to a line in S1, is Euclidean regular.
(ii) Every CC regular octagon and CC regular 16-gon one, of whose axes is parallel
to a line in S2, are Euclidean regular.

Proof. In every maximum regular octagon, sides have the same Euclidean length
alternately since the measure of the angle between any two alternate sides is π/2
and sides have the same maximum length by Theorem 2.1 and Corollary 5.1.
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Therefore, every maximum regular octagon is equiangular semi-regular. It is ob-
vious that if any two consecutive sides of an equiangular semi-regular polygon
have the same Euclidean length, then the polygon is Euclidean regular. Let us
consider a maximum regular octagon, A1A2...A8, one of whose axes, let us say
A1A5, is parallel to y = 0, for one case (see Figure 15). Then there exist a

Figure 15

Euclidean circle with diameter A1A5, passing through points A1, A2, ..., A8, and
there exist a maximum circle with center A1, passing through points A2 and A8.
Since the Euclidean and the maximum circles are both symmetric about the line
A1A5, the intersection points of them, A2 and A8, are also symmetric about the
same line. Then two consecutive sides A1A2 and A1A8 have the same Euclidean
length. Therefore, every maximum regular octagon, one of whose axes is parallel
to the line y = 0, is Euclidean regular. ¤

Theorem 5.1. No maximum, taxicab or CC regular polygon, except the ones in
Proposition 5.1 and Proposition 5.2, is Euclidean regular.

Proof. Assume that there exists a maximum regular polygon, except the ones in
Proposition 5.1 and Proposition 5.2, that is also Euclidean regular. Then there
exists a Euclidean regular polygon, except the ones in Proposition 3.2 and Proposi-
tion 3.3, that is also maximum regular. But this is in contradiction with Theorem
3.1. Therefore, no maximum regular polygon, except the ones in Proposition 5.1
and Proposition 5.2, is Euclidean regular. ¤

Consequently, the maximum, taxicab, CC and the Euclidean squares have the
same shape in any position, and the only regular polygon having this property is
the square.

6. On the Nonexistence of Maximum, Taxicab and CC (2n-1)-gons

The following proposition shows that there is no maximum, taxicab or CC regular
triangle:

Proposition 6.1. There is no maximum, taxicab or CC regular triangle.

Proof. Every maximum equiangular triangle is also Euclidean regular. Since no
Euclidean regular triangle is maximum equilateral by Proposition 3.1, no maximum
equiangular triangle is maximum regular. Therefore, there is no maximum regular
triangle. ¤
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Unfortunately, we could not reach any conclusion by reasoning about the exis-
tence or nonexistence of maximum regular (2n− 1)-gons for n ≥ 3, as taxicab and
CC regular (2n− 1)-gons. However, we have seen that there is no maximum (also
taxicab or CC) regular 5-gon, 9-gon and 15-gon using a computer program called
C.a.R (Compass and Ruler [13]). Our conjecture is that there is no maximum,
taxicab or CC regular (2n− 1) -gon since there is no center of symmetry of equian-
gular polygons. It seems interesting to study the open question: “Does there exist
any maximum, taxicab or CC regular (2n− 1)-gon?”
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