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Abstract
In this article, a new goodness of fit test for normality is introduced based on Phi di-
vergence. The test statistic is estimated using spacing and the consistency of the test is
proved. Then with replacing some special cases of Phi divergence, the efficiency of each
test statistic is analyzed by Monte Carlo simulation against some competitors (based on
Phi divergence using kernel density function and also some classical competitors). It is
shown that each special case of Phi divergence based test is the most powerful in each
group of alternatives (depending on symmetry or support).
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1. Introduction
The normal distribution is the most widely known and used of all distributions. Because

the normal distribution approximates many natural phenomena. So, it plays a predomi-
nant role in various sciences and many applications.
Since Pearson [29] proposed the chi-squared goodness of fit test for normality, considerable
attention has been given to the problem of goodness of fit test and various tests were pro-
posed, like the moment-based tests, regression-based tests and entropy-based tests. Some
other popular tests for normality founded by Cramer [13], Von Mises [38], Kolmogorov
[22], Smirnov [34], Shapiro-Wilk [33], Anderson-Darling [7], Kuiper [23] and Watson [40].
Let f denote the density of a given population, then the null hypothesis of normality is
stated formally as

H0 : f(x) = g(x; µ, σ) = 1√
2πσ

exp{−1
2

(x − µ

σ
)2},

for some (µ, σ) ∈ Θ = R × R+. Also the alternative hypotheses is
H1 : f(x) ̸= g(x; µ, σ),
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for any (µ, σ) ∈ Θ, where µ and σ are unspecified.
For the first time, Vasicek [37] introduced a normality test based on entropy. The entropy
of X with distribution function F (x) and a continuous density function f(x) is defined by
Shannon [32] as

H(f) = −
∫ ∞

−∞
f(x) log f(x)dx. (1)

The problem of estimating Shannon entropy has been considered by many authors such as
Ahmad and Lin [1], Vasicek [37], Dudewicz and Van der Meulen [14], Joe [20], Van Es [36],
Ebrahimi et al. [17], Correa [12], Wieczorkowski and Grzegorzewski [41], Yousefzadeh and
Arghami [42] and Alizadeh [3]. Among these various entropy estimators, Vasicek,s sample
entropy has been the most widely used in developing entropy-based statistical procedures.
Using F (x) = p, Vasicek [37] expressed equation (1) as

H(f) =
∫ 1

0
log{ d

dp
F −1(p)}dp, (2)

and by replacing the distribution function F by the empirical distribution function Fn and
using a difference operator instead of the differential operator, the estimator is given as

Hn,m = 1
n

n∑
i=1

log
{

n

2m
(X(i+m) − X(i−m))

}
, (3)

where X(1) ≤ · · · ≤ X(n) are the order statistics and m is a positive integer, m ≤ n/2 and
X(i) = X(1) if i < 1, X(i) = X(n) if i > n.
The sample entropy was considered in establishing a goodness of fit test statistic for
uniformity by Dudewicz and Van der Meulen [14], for exponentiality by Ebrahimi et al.
[16] and for normality by Arizono and Ohta [8] and Vasicek [37], which introduced the
test statistic based on the property of maximum entropy of normal distribution as

Kn,m = exp(Hn,m)
σ̂

= n

2mσ̂

( n∏
i=1

[X(i+m) − X(i−m)]
)1/n

, (4)

where

σ̂ =

√√√√ 1
n

n∑
i=1

(Xi − X̄)2.

Some other works related to the goodness of fit test are as follows.
Park [28] provided a test of normality based on the sample entropy of order statistics. Choi
[11]improved Vasicek,s entropy test. Esteban et al. [18] compared four tests of normal-
ity using four statistics based on different entropy estimators namely, Vasicek [37], Van
Es [36], Correa [12] and Wieczorkowski and Grzegorzewski [41]. Similar to this article
Alizadeh [3] compared the four mentioned tests with a test based on a new estimator of
entropy using kernel density function. In the other article, Alizadeh and Arghami [4] com-
pared seven different tests of normality namely Kolmogorov-Smirnov, Anderson- Darling
[7], Kuiper [23], Jarque-Bera [19], Cramer-von Mises [13], Shapiro-Wilk [33] and Vasicek
[37]. Lequesne [25] introduced a test based on entropy to pareto distribution. Moreover,
Lequesne [26] proposed a test of Student distribution based on Renyi information. Lee
[24] investigated the Vasicek test for a composite hypothesis. Lequesne and Regnault [27]
investigated the details of the mathematical justification of Vasicek test and Song [35] test.
Alizadeh Noughabi and Balakrishnan [6] introduced a general goodness of fit test based
on Phi-divergence. They estimated the test statistic using kernel density estimation and
computed the power of the tests for 20 alternatives divided to four groups. Alizadeh and
Arghami [5], presented an exponentiality test based on characterizations of the exponen-
tial distribution. Karadag and Aktas [21] introduced goodness of fit tests for generalized
gamma distribution.
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The rest of the article is organized as follows:
In Section 2, eight test statistics based on various divergence measures (special cases of
Phi divergence) which are estimated using spacing are introduced for normality. Also in
this section invariant and consistency of proposed tests are proved. In Section 3, using
Monte Carlo simulation, it is demonstrated that the proposed test has the greatest power
among the competitors.

2. Test statistic
Phi divergence measure between two density functions f(x) and g(x) is defined as

DΦ(f, g) =
∫ ∞

−∞
Φ

(
g(x)
f(x)

)
f(x)dx. (7)

where Φ is a convex functions such that Φ(1) = 0 and Φ′′(1) > 0.
Some Special cases of Phi divergence are:
1) Kullback-Leibler divergence measure (Φ(t) = t log(t))

DKL(f, g) =
∫ ∞

−∞
log

(f(x)
g(x)

)
f(x)dx;

2) Pearson divergence measure (Φ(t) = (t − 1)2)

DP (f, g) =
∫ ∞

−∞

(f(x) − g(x))2

f(x)
dx;

3) Hellinger divergence measure (Φ(t) = 1
2(

√
t − 1)2)

DH(f, g) =
∫ ∞

−∞

1
2

(√
f(x) −

√
g(x)

)2
dx;

4) Triangular divergence measure (Φ(t) = (1−t)2

1+t )

DT (f, g) =
∫ ∞

−∞

(f(x) − g(x))2

f(x) + g(x)
dx;

5) Lin-Wang divergence measure (Φ(t) = t log 2
1+t)

DLW (f, g) =
∫ ∞

−∞
f(x) log 2f(x)

f(x) + g(x)
dx;

6) Jeffreys divergence measure (Φ(t) = (t − 1) log(t))

DJ(f, g) =
∫ ∞

−∞
log

(f(x)
g(x)

)
f(x)dx +

∫ ∞

−∞
log

( g(x)
f(x)

)
g(x)dx;

7) Total variation divergence measure (Φ(t) = |t − 1|)

DT V (f, g) =
∫ ∞

−∞
|f(x) − g(x)|dx;

8) Balakrishnan-Sanghvi divergence measure [9] (Φ(t) =
(

t−1
t+1

)2)

DBS(f, g) =
∫ ∞

−∞

(
f(x) − g(x)
f(x) + g(x)

)2
f(x)dx.

It is obvious that the above divergence measures are non negative and they equal to zero
if and only if f(x) = g(x). So it motivates us to use them as a test statistic for normality.
Taking

g(x) = f0(x; µ, σ) = (1/
√

2πσ2) exp{−(x − µ)2/2σ2},
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in (7), we obtain

DΦ(f, g) =
∫ ∞

−∞
f(x)Φ

((1/
√

2πσ2) exp{−(x − µ)2/2σ2}
f(x)

)
dx. (8)

Now, similar to Vasicek,s method for estimating the entropy, by using F (x) = p, equation
(8) is expressed as

DΦ(f, g) =
∫ 1

0
Φ

((1/
√

2πσ2) exp{−(F −1(p) − µ)2/2σ2}
(dF −1(p)

dp )−1

)2
dp. (9)

With replacing F by Fn and using difference operator in place of differential operator, we
get an estimator VΦ of DΦ(f, g) as

VΦ = 1
n

n∑
i=1

Φ
(( 1√

2πσ̂2 ) exp{−(X(i)−µ̂)2

2σ̂2 }
2m

n(X(i+m)−X(i−m))

)
, (10)

where X(1) <= ... <= X(n) are the order statistics and m is a positive integer, m <=
n/2 and X(i) = X(1) for i < 1 and X(i) = X(1) for i > n. Also, µ̂ = X̄ and σ̂2 =
1
n

∑n
i=1 (Xi − X̄)2 are the MLEs of µ and σ2 under the null hypothesis.

It is obvious that VΦ is invariant with respect to scale and location transformations since

VΦ(cx + d) = 1
n

n∑
i=1

Φ
(( 1√

2πcσ̂2 ) exp{−(cx(i)+d−cµ̂−d)2

2cσ̂2 }
2m

n(cx(i+m)+d−cx(i−m)−d)

)
= VΦ(x).

Now, we prove the test based on VΦ is consistent, that is the power of the test under the
alternative hypothesis increaes to one as n → ∞ .

Theorem 2.1. Let F be an unknown continuous distribution on real line and f0 be the
normal distribution with unspecified parameters. Then the test based on VΦ is consistent.

Proof of Theorem 2.1. As n, m → ∞ and m/n → 0, we have
2m

n
= Fn(X(i+m)) − Fn(X(i−m)) ≃ F (X(i+m)) − F (X(i−m))

≃
f(X(i+m)) + f(X(i−m))

2
(X(i+m) − X(i−m)),

where Fn(a) = #(Xi ≤ a)/n = (1/n)
∑

I(−∞,Xi](a) and I is the indicator function.
Therefore noting that µ̂ and σ̂2 are consistent, we have

VΦ = 1
n

n∑
i=1

Φ
(( 1√

2πσ̂2 ) exp{−(X(i)−µ̂)2

2σ̂2 }
2m

n(X(i+m)−X(i−m))

)

≃ 1
n

n∑
i=1

Φ
(( 1√

2πσ2 ) exp{−(X(i)−µ)2

2σ2 }
F (X(i+m))−F (X(i−m))

X(i+m)−X(i−m)

)

−→ E

{
Φ

(( 1√
2πσ2 ) exp{−(X−µ)2

2σ2 }
F (X(i+m))−F (X(i−m))

X(i+m)−X(i−m)

)}
where the last limit holds by the law of large numbers. Also, X(i−m) and X(i+m) belong
to an interval in which f(x) is positive and continuous, then there exsists a value X ′

i ∈
(X(i−m), X(i+m)) such that

F (X(i+m)) − F (X(i−m))
X(i+m) − X(i−m)

= f(X ′
i).



2108 M. Tavakoli, H. Alizadeh Noughabi, G.R. Mohtashami Borzadaran

Therefore VΦ → DΦ(f, f0). So, the test based on VΦ is consistent. �

3. Simulation study
A simulation study is investigated to analyze the behavior of the proposed test. For

this purpose, some special cases of Phi divergence are considered to construct some test
statistics that are, the tests based on Kullback-Leibler measure (VKL) (Vasicek test with
different m), Pearson measure (VP ), Triangular measure (VT ), Jeffreys measure (VJ),
Balakrishnan-Sanghvi measure (VBS), Hellinger measure (VH), Lin-wang measure (VLW )
and Total Variation measure(VT V ). Also, the critical values are determined using Monte
Carlo simulation with 10,000 replicates at the significance level 0.05 (Table 2).

The values of m in (10) are suggested that attained maximum power. These values for
each test statistic are given in Table 1.

Table 1. The values of m

n VJ VBS VLW VT V VP VH VKL VT

5 − 9 2 2 2 1 2 2 2 1
10 − 19 3 3 1 2 2 4 2 2
20 − 29 5 5 2 5 3 7 7 5
30 − 49 8 7 2 8 5 11 11 8
50 − 79 14 11 2 15 8 18 13 15
80 − 100 14 20 2 15 16 18 13 15

Table 2. Critical values of the proposed statistics at the significance level 0.05

n VJ VBS VLW VT V VP VH VKL VT

5 0.791 0.260 0.266 0.784 0.396 0.184 0.899 0.457
6 0.788 0.251 0.239 0.778 0.421 0.183 0.840 0.447
7 0.796 0.247 0.218 0.778 0.452 0.184 0.792 0.436
8 0.785 0.240 0.200 0.774 0.475 0.182 0.751 0.428
9 0.758 0.227 0.186 0.770 0.493 0.178 0.697 0.419
10 0.634 0.196 0.181 0.624 0.515 0.138 0.652 0.300
11 0.614 0.187 0.172 0.618 0.517 0.135 0.612 0.289
12 0.598 0.182 0.166 0.616 0.522 0.131 0.588 0.283
13 0.596 0.176 0.161 0.611 0.537 0.131 0.564 0.283
14 0.564 0.167 0.154 0.604 0.526 0.125 0.526 0.273
15 0.557 0.162 0.148 0.602 0.537 0.124 0.509 0.270
20 0.460 0.135 0.113 0.475 0.413 0.108 0.468 0.192
25 0.422 0.118 0.098 0.463 0.409 0.099 0.389 0.176
30 0.395 0.109 0.088 0.426 0.317 0.097 0.411 0.161
40 0.344 0.091 0.077 0.405 0.300 0.084 0.314 0.142
50 0.350 0.089 0.069 0.392 0.258 0.088 0.275 0.144
60 0.316 0.079 0.063 0.375 0.250 0.079 0.228 0.131
70 0.296 0.072 0.060 0.363 0.237 0.073 0.195 0.123
80 0.274 0.083 0.057 0.349 0.230 0.068 0.173 0.115
90 0.259 0.076 0.054 0.341 0.224 0.065 0.154 0.108
100 0.246 0.071 0.052 0.334 0.218 0.061 0.139 0.103
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To comparing the proposed test with competitors, 20 alternatives are considered that
can be divided into four groups, based on the support and shape of their densities. These
alternatives were used by Alizadeh and Balakrishnan [6] and Esteban et al. [18] which
are, as follows:

Group I: Support (−∞, ∞), symmetric.

1) Students t with 1 degree of freedom (i.e. the standard Cauchy),
2) Students t with 3 degrees of freedom,
3) Standard logistic,
4) Standard double exponential (Laplace);

Group II: Support (−∞, ∞), asymmetric.

5) Gumbel with parameters α = 0 (location) and β = 1 (scale),
6) Gumbel with parameters α = 0 (location) and β = 2 (scale),
7) Gumbel with parameters α = 0 (location) and β = 1/2 (scale);

Group III: Support (0, −∞).

8) Exponential with mean 1,
9) Gamma with parameters β = 1 (scale) and α = 2 (shape),
10) Gamma with parameters β = 1 (scale) and α = 1/2 (shape),
11) Lognormal with parameters µ = 0 (scale) and σ = 1 (shape),
12) Lognormal with parameters µ = 0 (scale) and σ = 2 (shape),
13) Lognormal with parameters µ = 0 =0 (scale) and σ = 1/2 (shape),
14) Weibull with parameters β = 1 (scale) and α = 1/2 (shape),
15) Weibull with parameters β = 1 (scale) and α = 2 (shape);

Group IV: Support (0,1).

16) Uniform,
17) Beta (2,2),
18) Beta (0.5,0.5),
19) Beta (3,1.5),
20) Beta (2,1).

We regard the entropic based tests using Kernel method and some classical tests such
as Cramer Von Mises, Kolmogorov, Kuiper and Anderson-Darling as the competitors.
Alizadeh and Balakrishnan [6] have concluded that the most powerful tests among all
mentioned in the last line, are five following tests (tests 1 to 5). Moreover, in regards
to Romao et al. [31], Shapiro-Wilk test was concluded as one of the most powerful tests
among 30 normality tests, we consider, Shapiro-Wilk test as the competitor (test 6th), as
well.

1) KKL: Test based on Kullback-Leibler measure using kernel density estimation,
2) KH : Test based on Hellinger measure using kernel density estimation,
3) KJ : Test based on pearson measure using kernel density estimation,
4) KP : Test based on Jeffreys measure using kernel density estimation,
5) A: Anderson-Darling test,
6) W : Shapiro-Wilk test.
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So, we compare the treatment of the proposed test with these five powerful tests as the
competitors.
Under each alternative, 10,000 samples of size 10, 20, 30 and 50 were generated. For each
sample, the test statistics A, KKL, KP , KH and KJ were evaluated and the power of
the corresponding test was estimated by the frequency of the event "the statistic is in the
critical region".
Tables 3 to 7 show the estimated power of the proposed tests and those of the competing
tests, at the significance level α = 0.05 based on 10,000 iterations with sample sizes 10,
20, 30 and 50.

Table 3. The power comparisons at α = 0.05 under alternatives from group I

A
lte

rn
at

iv
e

n
K

K
L

K
J

K
P

K
H

A
V

J
V

B
S

V
L

W
V

T
V

V
P

V
H

V
K

L
V

T
W

t
(1

)
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0.
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3
0.

55
4

0.
45

3
0.

55
3

0.
61

6
0.

52
4

0.
48
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0.

43
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0.
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46
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0.
06

6
0.

13
7
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0.
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0.
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1
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8
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2
0.
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0.
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0.
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0

0.
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1
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0.
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3

0.
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Table 4. The power comparisons at α = 0.05 under alternatives from group II
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G
um
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2

0.
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8
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5

0.
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9
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0.
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8
0.
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6
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According to Table 3, in group I, the most amount of powers is related to VP test for
most of the alternatives, especially for large sample sizes. According to Table 4, in group
II, the most amount of powers is related to VH test for most of the alternatives. Also,
according to Tables 5 and 6, in group III, the most amount of powers is related to VBS

and VH tests and eventually, according to Table 7 in group IV, the most amount of powers
is related to VKL test for most of the alternatives.

Remark 3.1. It should be noted that for a sample size of less than or equal to 10, KKL

is also suitable for group I because for 2 of the 4 alternatives, it gained the highest power.
This is true about KH for group II, and VLW for group IV.
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Table 5. The power comparisons at α = 0.05 under alternatives from group III
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Remark 3.2. Because of the importance of normal distribution, in this paper goodness
of fit test for normality was studied. However, it could be done for any distribution such
as exponential, uniform, etc in a similar way.
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Table 6. The power comparisons at α = 0.05 under alternatives from group III
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Table 7. The power comparisons at α = 0.05 under alternatives from group IV
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4. Illustration with a real data set
In this section, two real data sets are used to illustrate the application of the proposed

tests.

Example 4.1. We choose the leghorn chicks data set given in Bliss [10]. It contains the
weights in grams of n = 20 twenty-one-day-old leghorn chicks. The data (Table 9) was
also analyzed in Wang et al. [39], which observed that the normal distribution fits these
data at level 5%. Figure 1 shows the histogram of the kilos of chicks.

Table 8. The kilos of the chicks data

156 162 168 182 186 190 190 196 202 210
214 220 226 230 230 236 236 242 246 270

Figure 1. Histogram for data set in Example 1

Now, using the proposed tests, we test whether the data come from a normal distribu-
tion. For the normal assumption, the values of the proposed test statistics (the critical
values at level 5%) are:

VJ = 0.282(0.460), VBS = 0.092(0.135), VLW = 0.563(0.113) , VT V = 0.315(0.475),
VP = 0.1495(0.413), VH = 0.0764(0.108), VKL = 0.339(0.468), VT = 0.120(0.192).
It is clear that the values of the proposed statistics are all smaller than the corresponding
critical values and so the normal model is not rejected at the significance level of 0.05
and this agrees with the previous conclusions. In addition, the Shapiro-Wilk test does not
reject the normality assumption for these data, as its p − value is 0.866.

Example 4.2. The second example is related to 100 breaking strengths presented by
Duncan [15]. Table 9 shows the data set and Figure 2 indicates the histogram of the
breaking strengths of yarn.
Recently, these data were reviewed and analyzed by Alizadeh [2], who concluded that a
normal distribution does not fit well for this data set. We also examine here the appro-
priateness of the normal distribution for this data. The values of the proposed tests are
as follows:
VJ = 0.581(0.246), VBS = 0.116(0.071), VLW = 0.03(0.052) , VT V = 0.59(0.334),
VP = 0.63(0.218), VH = 0.132(0.061), VKL = 0.163(0.139), VT = 0.239(0.103).
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Table 9. The breaking strengths of yarn data

66 117 132 111 107 85 89 79 91 97 138 103 111 86 78
96 93 101 102 110 95 96 88 122 115 92 137 91 84 96
97 100 105 104 137 80 104 104 106 84 92 86 104 132 94
99 102 101 104 107 99 85 95 89 102 100 98 97 104 114
111 98 99 102 91 95 111 104 98 98 102 109 88 91 103
94 105 103 96 100 101 98 97 97 101 102 98 94 100 98
99 92 102 87 99 62 92 100 96 98

Figure 2. Histogram for data set in Example 2

It can be seen that the values of the test statistics for all tests (with the exception of
VLW ) are higher than their critical values, which means that the normal distribution for
this data set is rejected, consistent with the result of Puig and Stephenes [30]. Moreover,
the p − value of the Shapiro-Wilk test for this data set is 0.000. So, Shapiro-Wilk test
rejects the assumption of normality as well.

5. Conclusions
We introduced a goodness of fit test for normality based on Phi divergence using spac-

ings. The test statistic was estimated using spacing and the consistency of the test was
proved. Then with replacing some special cases of Phi divergence (like Kullback-Leibler
measure, Pearson measure, Triangular measure, Jeffreys measure, Hellinger measure, Total
variation measure, Lin-Wang measure and Balakrishnan-Sanghvi measure), the efficiency
of each test statistic was analyzed by Monte Carlo simulation against some competitors
based on Phi divergence using kernel density function and also some classical competitors.
It was shown, for a symmetric alternative with support (−∞, ∞), the most powers were
related to VP . For a asymmetric alternative with support (−∞, ∞), the most powers were
related to VH . Also, for an alternative with support (0, ∞), the most powerful tests are
VBS and VH , and at last for an alternative with support (0,1), the most powerful test is
VKL test.

Acknowledgment. The authors would like to thank the editor and anonymous review-
ers for their constructive comments which led to the improvement of the paper.



An estimation of Phi divergence and its application in testing normality 2117

References
[1] I.A. Ahmad and P.E. Lin, A nonparametric estimation of the entropy of the absolutely

continuous distribution, IEEE Trans. Inform. Theor. 22, 327-375, 1976.
[2] H. Alizadeh Noughabi, A new estimator of Kullback–Leibler information and its ap-

plication in goodness of fit tests, J. Stat. Comput. Simul. 89 (10), 1914-1934, 2019.
[3] H. Alizadeh Noughabi, A new estimator of entropy and its application in testing

normality, J. Stat. Comput. Simul. 86, 1151-1162, 2010.
[4] H. Alizadeh Noughabi and N.R. Arghami, Monte Carlo comparison of seven normality

tests, J. Stat. Comput. Simul. 8, 965-972, 2011a.
[5] H. Alizadeh Noughabi and N.R. Arghami, Testing exponentiality based on charac-

terizations of the exponential distribution, J. Stat. Comput. Simul. 81, 1641-1651,
2011b.

[6] H. Alizadeh Noughabi and N. Balakrishnan, Tests of goodness of fit based on Phidi-
vergence, J. Appl. Stat. 43 (3), 412-429, 2016.

[7] T.W. Anderson and D.A. Darling, A test of goodness of fit, J. Amer. Statist. Assoc.
49, 765-769, 1954.

[8] I. Arizono and H. Ohta, A test for normality based on Kullback Leibler information,
Amer. Statist. 43, 20-23, 1989.

[9] V. Balakrishnan and L.D. Sanghvi, Distance between populations on the basis of at-
tribute, Biometrics 24, 859-865, 1968.

[10] C.I. Bliss, Statistics in Biology: Statistical methods for research in the natural sci-
ences, McGrawHill Book Company, New York, 1967.

[11] B. Choi, Improvement of goodness of fit test for normal distribution, J. Stat. Comput.
Simul. 78, 781-788, 2008.

[12] J.C. Corea, A new estimator of entropy, Comm. Statist. Theory Methods 24, 2439-
2449, 1995.

[13] H. Cramer, On the composition of elementary errors, Scand. Actuar. J. 1, 1374, 1928.
[14] E.S. Dudewicz and E.C. Van der Meulen, Entropy-based tests of uniformity, J. Amer.

Statist. Assoc. 76, 967-974, 1981.
[15] A.J. Duncan, Quality Control and Industrial statistics, Homewood (IL), Irwin, 1974.
[16] N. Ebrahimi, M. Habibullah and E.S. Soofi, Testing exponentiality based on Kullback-

Leibler information, J. R. Stat. Soc. Ser. B. Stat. Methodol. 54, 739-748, 1992.
[17] N. Ebrahimi, K. Pflughoeft and E.S. Soofi, Two measures of sample entropy, Statist.

Probab. Lett. 20, 225-234, 1994.
[18] M.D. Esteban, M.E. Castellanos, D. Morales and I. Vajda, Monte Carlo comparison

of four normality tests using different entropy estimates, Comm. Statist. Simulation
Comput. 30, 761-785, 2001.

[19] C.M. Jarque and A.K. Bera, A test normality of observations and regression residuals,
Int. Stat. Rev. 55, 163-172, 1987.

[20] H. Joe, Estimation of entropy and other functionals of a multivariate density, Ann.
Inst. Statist. Math. 41, 683-697, 1989.

[21] O. Karadag and S. Aktas, Goodness of fit tests for generalized gamma distribution,
International Conference of Numerical Analysis and Applied Mathematics 2015, AIP
Conference Proceedings, 1738, 2016.

[22] A.N. Kolmogorov, Sulla determinazione empiricadi une legga di distribuzione, Gior-
nale dell Istituto Italiano degli Attuari 4, 83-91, 1993.

[23] N.H. Kuiper, Tests concerning random points on a circle, Proc. K. Ned. Akad. Wet.
63, 38-47, 1960.

[24] S. Lee Bull, Entropy-based goodness of fit test for a composite hypothesis, Bull. Korean
Math. Soc. 53(2), 351-363, 2016.



2118 M. Tavakoli, H. Alizadeh Noughabi, G.R. Mohtashami Borzadaran

[25] J. Lequesne, Entropy-based goodness-of-fit test: Application to the Pareto distribution,
AIP Conf. Proc. of the International Workshop on Bayesian Inference and Maximum
Entropy Methods in Science and Engineering, 1553, 155-62, 2013.

[26] J. Lequesne, A goodness-of-fit test of student distributions based on Renyi entropy,
AIP Conf. Proc. of the International Workshop on Bayesian Inference and Maximum
Entropy Methods in Science and Engineering, 1641, 487-94, 2015.

[27] J. Lequesne and P. Regnault, Goodness-of-fit tests based on entropy: R package KL-
goftest, Workinprogress, 2017.

[28] S. Park, A goodness-of-fit test for normality based on the sample entropy of order
statistics, Statist. Probab. Lett. 44 (4), 359-363, 1999.

[29] K. Pearson, On the criterion that a given system of deviations from the probable in
the case of a correlated system of variables is such that it can be reasonably supposed
to have arisen from random sampling, Philos. Mag. Lett. 50, 157-175, 1900.

[30] P. Puig and M.A.Stephens, Tests of fit for the Laplace distribution with applications,
Technometrics 4, 417424, 2000.

[31] X. Romao, R. Delgado and A. Costa, An empirical power comparison of univariate
goodness-of-fit tests for normality, J. Stat. Comput. Simul. 80 (5),545-591, 2010.

[32] C.E. Shannon, Mathematical theory of communications, Bell Syst. tech. 27, 379-423,
623-656, 1948.

[33] S.S. Shapiro and M.B. Wilk, An analysis of variance test for normality (Complete
Sample), Biometrika 52, 591-611,1965.

[34] N. Smirnov, Table for estimating the goodness of fit of empirical distributions, Ann
Math Stat. 19 (2), 279281, 1948.

[35] K.S. Song, Goodness-of-fit tests based on KullbackLeibler discrimination information,
IEEE Trans. Inf. Theory 48 (5),110317, 2002.

[36] B. Van Es, Estimating functional related to a density by a lass of statistic based on
spacings, Scand. J. Stat. 19, 61-72, 1992.

[37] O. Vasicek, A Test for normality based on sample entropy, J. R. Stat. Soc. Ser. B.
Stat. Methodol. 38, 730-737, 1976.

[38] R.E. Von Mises, Wahrscheinlichkeit, Statistik und Wahrheit, Julius Springer, 1928.
[39] X. Wang, Y. Liu and B. Han, Goodness-of-fit tests based on Bernstein distribution

estimator, J. Nonparametr. Stat., 2018.
[40] G.S. Watson, Goodness of fit tests on a circle, Biometrika 48, 109-114, 1961.
[41] P. Wieczorkowski and P. Grzegorzewsky, Entropy estimators improvements and com-

parisons, Comm. Statist. Simulation Comput. 28, 541-567, 1999.
[42] F. Yousefzadeh and N.R. Arghami, Testing exponentiality based on type II censored

data and a New cdf estimator, Comm. Statist. Simulation Comput. 37, 1479-1499,
2008.


