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ABSTRACT 

The Bayesian method developed by Chaloner and Brant to see whether, for instance, the outlier observation is 
included in the linear model or not, focuses on posterior distributions of realized but unobserved errors [5]. This 
method has been expanded by Varbanov for the multivariate-multiple regression model in a way to provide analysis 
opportunities for separate observations in terms of their being an outlier [13]. This study expanded the proposed 
method by Varbanov to offer the opportunity for analyzing whether observations in groups are an outlier or not. 
Therefore, it is likely to claim the existence of masking and swamping problems. 
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1. INTRODUCTION 

     Barnett & Lewis, Hawkins, Bekman & Cook and 
Pettit & Smith [2], [10], [4], [12] conducted 
comprehensive studies on outlier observation. Most 
of the Bayesian approaches that are used to determine 
the outlier observation make use of the Freeman’s 
definition [6]. This definition is as follows ‘the 
observation which is not from the same distribution 
as the others in the sample is called the outlier 
observation’. The definition by Freeman requires a 
defining by another model that is the generator of the 
outlier observation. [3] and [9] serve as sample 
studies conducted in accordance with this definition. 
The method proposed by Chaloner & Brant gives a 
different definition of the outlier observation from 
Freeman as focusing on the assumed model [5]. This 
method was proposed by Zellner and defines the 
outlier observation through realized but unobserved 
error [14]. Another approach which does not require a 
whole new different definition is proposed by Geisser 
[7, 8].  

 

 

In the proposed method by Chaloner & Brant, to 
determine the outlier observation in the linear model, 
the ith observation’s realized but not observed errors’ 
being bigger than “k” critical value, its posterior 
probability’s being bigger than the prior probability 
stemmed from the assumed model are all considered 
as an indicator of ith ’s being the outlier observation. 
Accordingly, it is more likely to define the 
observation/s farther than the others as the outlier. 
Namely, observations called the outlier will be one of 
the extreme observations. Therefore, it becomes 
inevitable to use a sub-ordering principles which 
enables to put observations in order according to their 
magnitude in the multivariate linear observations. 
Barnett examined a variety of sub-ordering principle 
in multivariate problems and categorized them into 
four (1). These categories are named as reduced, 
marginal, partial and conditional. Reduced sub-
ordering is the one and only criterion to define 
multivariate outlier observations. This measurement 
is defined as sequencing p-dimensional 

1 2 nY , Y ,..., Y  observations as in the example given 
below in terms of single- variance R(Y) statistics. If, 
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{ }i jR(Y ) max R(Y ); j 1, 2,..., n= =                (1) 

is, iY observation is thought to be the outlier. Many 
frequency methods use the squared form of the  

1
j j j jR R(Y , , ) (Y ) (Y )− ′= µ Σ = −µ Σ −µ          (2) 

as )Y(R i  statistics to determine multivariate outlier 
observations. Here, µ  represents the center of the 
distribution parameter and variance- covariance 
matrix inΣ . The approach by Varbanov, Chaloner & 
Brant, has been expanded in the multivariate linear 
model by using the squared form stated in (2), 
assuming that independent and parameters of errors 
as 0 and Σ  has the same multivariate normal 
distribution [13, 5]. Nevertheless, in this study the 
observations can be examined one by one to check if 
they are the outlier or not. On the other hand, the 
existence of masking and swamping problems should 
be clarified; observations should be analyzed in 
groups to check the outlierness. Therefore, in section 
2 the expansion will enable the analysis of the 
Varbanov’s approach and observations in groups for 
multivariate-multiple regression analysis, followed by 
an implementation in section 3.  

2. EXAMINATION OF OBSERVATIONS’ 
OUTLIERNESS IN GROUPS IN THE 
MULTIVARIANCE-MULTIPLE REGRESSION 
ANALYSIS  

When p is considered as the variable number and ith 

dependent variable iY , i=1,2,...,n, as, 

T
11 12 1p1

T
21 22 2p2

(1) (2) (P)

T
n1 n2 npn
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⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

 

(nxp) dimensional data matrix is given. Here, ( j)Y is 

the vector formed from n numbered dependent 

observations in (j=1,2,...,p), jth variable.  

 

Multivariate-multiple regression model is 

hypothesized as, 

( j) ( j)
jY X= θ + ε      ; j=1,2,...,p 

where a X (nxq) is the dimensional design matrix. 

This model in the form of a matrix is defined as, 

Y X E= Θ+              , 1 2 p( , ,..., )Θ = θ θ θ          (3) 

It covers ith line of the E matrix of (nxp) dimension, 
random errors of iY  and formulated as; 

1/ 2
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Here, it is assumed that there are random variables 
where the iε ’s are independent, mean is 0 and the 
variance-covariance matrix is the p dimensioned unit 
matrix (having the same multivariate normal 
distribution). Therefore, the model in (3) can also be 
written as,  

1/ 2
i i iY X= Θ+ ε Σ          ;  i=1,2,...,n                   (4) 

It is 1/ 2
i 1i 2i pi i i( , ,..., ) (Y X ) ~ N(0, I)−ε = ε ε ε = − Θ Σ  

For the observations in the n diameter sample, n2  
numbers of different probable situations exist. The 
group composed of α  numbers of observations, 
probable of being an outlier which is found in each of 
the probable situations is called group A.  Defined as 
(α =0,1, 2,...,n),  

[ ]*
11 1p 21 2p n1 np 1 2 n,..., ; ,..., ;...; ,..., , ,...,⎡ ⎤ε = ε ε ε ε ε ε = ε ε ε⎣ ⎦  

(5) 

If in the squared form of realized but unobserved 
errors for the probable outlier observations that took 
place in A, 

 
* *

A A AR ′= ε ε                                                              (6) 
 

the posterior probability of its “ Ak ” critical value, 
being greater than the prior probability related to the 
observations’ outlierness will result with the 
observations in A being defined as the outlier. The 
prior probability related to the observation group’s 
outlierness in A and “ Ak ” critical value is defined as 
given below.  

For example, when the prior probability of consisting 
no outlier observation is chosen as a large number, 
(e.g. 0.95) then the prior probability of any of the 
observations (ith observation) in the sample as the 
outlier, 

i0.95 Pr{R k= ≤ , for each i }={ }n
pF (k)  
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is found in the form of 1/ n
p(0.95) F (k)= . Here, pF  

represents the distribution function of the iR  random 
variable having a chi-square distribution with p 
degrees of freedom. The prior probability of any 
observation’s outlierness 
becomes [ ]p i(1 F (k)) Pr(R k),  i için− = > . The prior 
probability of α  number of observation in A as being 
the outlier is defined as;  

A A i j tPr(R k ) Pr(R k, R k,..., R k)> = > > > , 

{ }i, j,...t A∈  

[ ]
i j t

i

p

Pr(R k)Pr(R k)...Pr(R k)

Pr(R k)

1 F (k)

α

α

= > > >

= >

⎡ ⎤= −⎣ ⎦

 

[5]. The critical value 

presenting p1 F (k)
α

⎡ ⎤−⎣ ⎦ probability is formed as 

1
A p pk F 1 F (k)

α−
α
⎡ ⎤⎡ ⎤= −⎣ ⎦⎢ ⎥⎣ ⎦

. 

 

In another approach, 

0i A AH : R k≥  , if the observations in A are outlier 

(i=1, 2,..., n) 

1i A AH : R k<  
 

to test this hypothesis, the Bayesian factor is referred. 
The bayes factor used to test 0iH  against 1iH , 

A

A pA
A

p A p

p

p
p {1 [1 F (k)] }1 p

B
[1 F (k)] (1 p )[1 F (k)]

{1 [1 F (k)] }

α

α α

α

− −−
= =

− − −

− −

 

 

is the proportion of posterior odd to prior odd. Kass 
and Raftery state that iB ’s being bigger than 10 is a 
strong and that of 100 is a much stronger proof for 
the validity of 0iH  [11]. 

To get A A Ap Pr(R k )= >  posterior probability, 
realized but unobserved error vector symbolized as 

*ε  and marginal posterior distribution of Aε  should 
be accessed. 

In the multivariate-multiple regression analysis, joint 
non-informative prior function of 

(p 1/ 2)p( , ) p( )p( ) − +Θ Σ = Θ Σ = Σ  and likelihood 

function of ( , / Y)Θ Σl multiplied, Θ  and  Σ  
parameters’ joint posterior distribution becomes,  

( )
1 (n p 1) 12

1 ˆ ˆp , / Y e x p iz A ( ) X X( )
2

− + + −⎧ ⎫⎡ ⎤′ ′Θ Σ α Σ − Σ + Θ−Θ Θ−Θ⎨ ⎬⎣ ⎦⎩ ⎭
 

, −∞ < Θ < ∞ , 0Σ >  

{ }mjA a= , mj m m j j
ˆ ˆa (Y X ) (Y X )′= − θ − θ  

covariance matrix and proportional (pxp) dimension 
symmetrical matrix related to the example]. When Σ  
and Y is evidently known; the marginal posterior 
distribution of Θ , 

1ˆ( / ,Y) ~ N( , (X X) )−′Θ Σ Θ Σ⊗                      (7) 

 

is pq dimension normal distribution. When Y is 
known; the marginal posterior distribution ofΣ ,  

1( / Y) ~ W (A, n q p 1)−Σ − − +                        (8) 

is (n+p-q+1) degrees of freedom inverted wishart. 
The marginal posterior distribution of 1( / Y)−Σ , 

where the transformation of Σ  into 1−Σ  jacobian as 
p 1+Σ ,  

1 1( / Y) ~ W(A ,n p q 1)− −Σ − − +                     (9) 

(n-p-q+1) degrees of freedom wishart 
distribution is achieved. 

In regards with (7) and (8), the posterior 
distribution of ( / , Y)ε Σ as 

1H X(X X) X−′ ′=  is formed as, 

[ ] [ ]{ }pxp
1 ˆ ˆp( / , Y) e xp iz I H
2

′⎧ ⎫ε Σ ∝ − ε − ε ε − ε⎨ ⎬
⎩ ⎭

 

The posterior distribution of *ε is 
formulated as, 

pxp
1 ˆ ˆp( / , Y) exp ( )(H I )( )
2

∗ ∗ ∗ ∗ ∗⎧ ⎫′ε Σ ∝ − ε − ε ⊗ ε − ε⎨ ⎬
⎩ ⎭

(10) 

To get the posterior probability of 
* *

A A A APr(R k )′= ε ε >  , a transformation enabling 

the *( / , Y)ε Σ  variance covariance matrix 

pxp(H I )⊗ into npxnpI  form should be exercised. 
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U; the matrix of pxp(H I )⊗  eigen vectors matrix of 
(npxnp)  

Λ ; diagonal matrix of (npxnp) consisting 
pxp(H I )⊗ matrix eigen value, the equivalence no 

(10);  

1/ 2Z U∗ − ′ε = Λ  

when the transformation is realized, as jacobian 
transformation is fixed, 1/ 2Z U− ′Λ  is written instead 

of *ε , under the condition that Σ  is known where 
posterior function of Z is, 

1/ 2 1/ 21 ˆ ˆp(Z / , Y) c.exp Z U Z U
2

∗ − ∗ − ′⎧ ⎫⎧ ⎫⎡ ⎤ ⎡ ⎤′ ′Σ = − − ε Λ − ε Λ⎨ ⎨ ⎬⎬⎣ ⎦ ⎣ ⎦⎩ ⎭⎩ ⎭
This is the multivariate normal distribution with np 
dimension ( 1/ 2

np npxnpˆ(Z / ,Y) ~ N ( U ;I )∗ − ′Σ ε Λ ). 

The posterior distribution, pα  degree of freedom 

and non-central parameter of A A AR Z Z ′=  ’s 
amount, with the condition that Σ  is known, is the 
chi square distribution: 

1
A A A Aˆ ˆ(H I) ( )∗ − ∗ ′λ = ε ⊗ ε  

At the end of the transformation, the critical value 
considered as 

A A A

1x p

k k k
K ; ;...;

p p p
α

⎛ ⎞
= ⎜ ⎟⎜ ⎟α α α⎝ ⎠

, 

1
Z ijk K(H I) K− ′= ⊗  

this formula is formed. Via this non-central 
posterior distribution, 

Ap = { }/ Y A ZE Pr(R k / ,Y)Σ > Σ  

or 

Ap = { }1
1

A Z/ YE Pr(R k / ,Y)−
−

Σ > Σ  

posterior distribution is achieved. In practice, for all 
the probable values of α , the Ap  posterior 
probabilities are obtained through the Monte-Carlo 
simulation technique written in the MATLAB 
program. 

3. IMPLEMENTATION 

Simulation data were preferred to be used to see 
whether the proposed Bayesian approach is successful 

in determining the observations that cause the 
problems of masking and swamping; another reason 
for this preference was the difficulty to find the 
multivariate regression data on which outlier 
observations have been worked on. The data simulated 
appropriately to the model in (3) are displayed in 
Table 1. 

Table 1: Simulated multivariate- multiple regression 
data  

 

 

 

 

 

 

 

 

In 
the 

data where the formulations are ; n=17, p=2, q=4 and 

0.1323 0.1330
S

0.1330 0.1344
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

the 16th and 17th observations are generated out of a 
different normal distribution with different 
parameters from the normal distribution where the 
other observations are generated. Therefore, the 
simulation data displayed in Table 1 are designed as 
data because they were different from the 16th and 
17th observations. In order to reduce the operational 
complexity and for easier interpretation, the number 
of observations is restricted to 17. 

When the probability of none of the observations’ 
outlierness is chosen as 0.95, Ak =16.3148 is 
achieved in the process of analyzing the observations’ 
outlierness separately. In this stage, the ip  posterior 
probabilities obtained from the Monte Carlo 
simulation program which has 20000 circles and 
written in MATLAB package program and the 16th as 
well as 17th observations out of the iB  Bayesian 
factor vales are found significant. For the 16th and 
17th observations, these values are (0.0052, 18.1231), 
(0.0027, 9.5100) respectively. 

When analyzing the observations’ outliernesses in 
pairs Ak =28.6987 is found. According to the ijp  

and ijB  values, all double sub-groups where the 4th 

 

1Y          2Y  1X   2X   3X  4X  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

  201.9410  291.4064 
  201.6816  292.7837 
  200.7539  289.8407 
  200.4720  289.9292 
  200.6772  289.6901 
  202.4464  293.0461 
  202.4720  292.5687 
  202.6303  292.5790 
  201.3104  291.7532 
  201.0433  290.0800 
  203.3517  293.0813 
  201.6263  291.9232 
  202.4640  292.1624 
  200.3946  290.0285 
  202.0619  292.5877 
  202.2683  292.2683 
  205.2317  297.7317 

3.7146  7.8149  20.0148  50.1134 
4.0972  8.6551  20.1234  49.5626 
3.7034  7.7940  20.1384  49.6584 
3.6196  8.1439  19.8738  49.6624 
3.8804  7.7620  19.8304  49.7849 
3.7959  8.4305  19.5707  50.3636 
4.2398  7.8751  19.9736  50.1404 
3.7222  7.9704  19.9132  50.3735 
4.4491  8.1899  20.1471  49.4528 
3.4208  7.8784  19.8206  50.0376 
4.0029  7.5594  20.0365  50.5701 
4.3148  8.2653  19.3091  50.1461 
3.9079  7.7772  19.9119  50.3202 
3.8040  8.1740  19.9795  49.4893 
3.5244  8.5310  19.8110  50.1296 
4.0000  8.0000  20.0000  50.0000 
4.5000  8.5000  20.5000  50.5000 
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and 16th observations take place and all pairs 
including (2,4,7,9,12,16).th and the 17th observation 
are found as outlier. As the 4th observation did not 
have the ip  value in single analysis, it is concluded 
that it has been hidden by other observations. It can 
be said that the 4th observation swamps all other 
observations except for the 16th and 17th as all the 
pairs where the 4th observation take place are found 
as outlier. All paired sub groups which have been 
found as outlier in the 16th and 17th observations, are 
swamped by the 16th and 17th observations. When all 
triple probable sub -groups are examined, it is seen 
that all single and double sub-group observations 
which have been previously found as outlier leads to 
the problems of masking and swamping ( Ak = 
46.1733 is found during the analysis of triple 
observation groups). 

The evaluation based on the whole results show that 
the 4th, 16th and 17th observations have significant 
impact on the model parameter estimations. If 
separate difference- contradiction- disagreement 
outliernesses of the observations were analyzed, the 
effect of the 4th observation would not be realized. 

4. CONCLUSION  

Determining the outlier observations in multivariate 
linear models and using the posterior distribution of 
realized but unobserved error was first proposed by 
Chaloner & Brant [5]. In line with that, Varbanov 
suggested the use of the posterior distribution of 
realized but unobserved error’s squared form to 
determine the outlier observations of multivariate-
multiple linear models [13]. In this study, the purpose 
was to prove the existence of masking and swamping 
problems in the multivariate-multiple linear models. 
Therefore, the method proposed by Varbanov has been 
expanded in order to provide analysis of the 
observation’s outlierness in groups. For example, with 
this expansion enabling the analysis of all the probable 
sub-groups’ outliernesses, the results to be interpreted 
can be achieved easily. Moreover, this method does 
not require defining a new model except for the 
proposed one for the outlier observations. 

This method used for a non-informative priority 
function can be expanded in cases where the prior 
information related to the model parameters exists. 
Nevertheless, the prior function to be used, except for 
the conjugate prior function, may hinder gathering 
the posterior function of the statistics in [2] in an 
evidently known form.  
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