
Gazi University Journal of Science
GU J Sci
25(1):155-164 (2012)

ORIGINAL ARTICLE

♠Corresponding author, e-mail: ebru@hacettepe.edu.tr

An Ontology Based Infrastructure To Support CMMI-

Based Software Process Assessment

Sema GAZEL1, Ebru AKÇAPINAR SEZER1♠, Ayca TARHAN1

1Hacettepe University, Computer Engineering Department, Beytepe, Ankara,06800, Turkey

Received: 05.02.2011 Revised: 07.08.2011 Accepted: 16.10.2011

ABSTRACT
This paper presents an ontology-based software process assessment tool which was developed to
support data collection phase of process assessment and to track conformance of software processes
to CMMI as the process reference model. Ontology-based CMMI Mapping and Querying Tool
(OCMQT) was developed as a plug-in to an open-source process management tool, namely EPF
Composer which, is a realization of the process engineering meta-model SPEM. The study also
explains findings from example usage of the OCMQT in a system and software development
organization. In OCMQT, there is a need for expert knowledge. In fact, process improvement and
assessment activities always require experts. However, OCMQT can protect non-expert personals
from making unintended mistakes in an organization.

Keywords: Software Process Assessment Tool, CMMI, Ontology, SPEM, OWL.

1. INTRODUCTION

Process improvement is a continuous activity and it
carries out the Deming’s plan-do-check-act steps[1] on
an organization’s process assets in a cyclic way.
Definitions of process entities, setting the relationship
between them, updating these definitions and relations
when something is changed, and keeping the process
assets under configuration control during process
improvement, are important activities for organizations
which adopted process oriented management [2]. Many
times, it is almost a necessity to utilize supporting tools
to perform process improvement activities.

Various works have been demonstrated for modeling
and improving software processes during the last
decades. Two of them include a meta-model for
software and systems process engineering called SPEM
[3], and a process reference model that addresses
development and maintenance activities for both
products and services called CMMI [4]. Software and
System Process Engineering Meta-Model (SPEM) is a

conceptual framework proposed by the Object
Management Group (OMG) to define system and
software processes and their components. There are
tools developed by various organizations based on this
meta-model, and one of them is Eclipse Process
Framework (EPF) maintained by Eclipse Foundation
[5]. EPF is an Eclipse-based, open-source software
process engineering framework that can be extended by
developing plug-ins. It contains a process management
tool called EPF Composer [6] as an implementation of
SPEM. EPF Composer enables definition of processes
and methods as well as management, configuration, and
deployment of libraries as related to software and
system development. An organization can readily model
its processes and manage these process models by using
EPF Composer. Capability Maturity Model Integration
(CMMI), on the other hand, is a process reference
model developed by the Software Engineering Institute
(SEI) of Carnegie Mellon University in order to guide
development and maintenance activities applied to both
products and services. CMMI can be used as reference

156 GU J Sci, 25(1):155-164 (2012)/ Sema GAZEL, Ebru AKÇAPINAR SEZER, Ayca TARHAN

while assessing the capability of a process or the
maturity of an organization, and improving processes
[4].

Process assessment is the foundation step for process
improvement activities. It investigates strong, weak,
and/or missing points in definition and application of a
process in detail [7]. Process assessment provides an
understanding about current process situation and
enables rating about process quality based on this
understanding. It can be performed by system/software
engineering process group of the organization, by
independent consultants, or a combination of both [4,7].
Findings from a process assessment are usually
transformed into issues for process improvement.
Process assessments, either performed internally or
externally to the organization, are very time and effort
consuming and require qualified personnel. Especially,
if an organization tries to keep its organizational
processes in accordance with more than one process
reference model and/or standard; tracking compliance
of the organization’s processes to each model and/or
standard and finding out the deviation between them
would be getting more complicated. When it is done
manually, these activities can be error-prone, since the
environment is open to mistakes and difficult to
manage. If process modeling tools could be extended
with some abilities to carry out process assessment
activities, process assessments would be supported and
it would be beneficial to reduce assessment process
costs and risks.

In order to provide such an infrastructure, it is required;
1) to formally represent process reference models so as
to communicate with process management tools, 2) to
map an organization’s process assets residing in a
process management tool to the formal representations
of process reference models, and 3) to inquire these
mappings for strengths and weaknesses. It is believed
that the use of ontologies can be a good solution to meet
these requirements. Ontologies enable to formally
represent the knowledge in specific domains, to map
one domain to another domain, and to inquiry this
mapping. Because of these properties, using an
ontology-based approach can support all three steps
listed above.

Based on these assumptions, an ontology-based
software process assessment tool was developed to
support data collection phase of process assessment and
to track conformance of software processes to CMMI as
the process reference model. Ontology-based CMMI
Mapping and Querying Tool (OCMQT) was developed
as a plug-in to EPF Composer. This study explains the
tool and the findings from its example usage in a system
and software development organization. The abilities of
the OCMQT are as follows: 1) Viewing a CMMI
ontology, 2) Creating ontology of a software process
already represented in SPEM by EPF Composer, 3)
Mapping (manually) the entities in software process
ontology to the entities in CMMI ontology, and storing
these mappings as ontology, 4) Querying CMMI
ontology, software process ontology, and mapping
ontology.

This study is organized as follows. Section 2 is divided
into four subsections. Section 2.1 provides conceptual

background on process improvement, CMMI, and
process assessment. Section 2.2 explains the concepts of
ontology and lists related languages and tools. Section
2.3 includes basic properties of SPEM and EPF. Section
2.4 provides a review of related literature on ontology-
based process assessment environments. Section 3
explains the architecture and components of OCMQT as
an ontological infrastructure to support CMMI-based
software process assessment. Finally, section 4 provides
overall conclusions.

2. BACKGROUND

2.1. Process improvement, CMMI, and process
assessment

A process is a sequence of activities that transforms
inputs into outputs to meet a purpose [8]. A software
process is one or more processes that an organization or
a project uses to plan, carry out, control, and improve
software-related activities. Software process
improvement is the process of changing an
organization’s software processes in order to meet the
organization’s business needs and to reach its business
objectives more effectively [8]. Several process
reference models have been demonstrated during the
last decades for systematic improvement of software
processes. Among these, “ISO/IEC 12207 Software
Life Cycle Processes” [9] and “Capability Maturity
Model Integration (CMMI) for Development” [4] have
been utilized more extensively.

CMMI is a process reference model that was developed
by the Software Engineering Institute (SEI) of Carnegie
Mellon University. CMMI addresses the development
and maintenance activities applied to both products and
services. This model could be used for improving
processes, and measuring the capability of a process or
the maturity of an organization [4]. CMMI components
(including a model, its training materials, and appraisal-
related documents) are designed to meet the needs of
some specific areas of interest, which is called
constellation. There are three constellations as
supported by the version 1.2 of the framework: CMMI
for Development [4], CMMI for Services [10], and
CMMI for Acquisition [11].

CMMI consists of process areas where domain related
process activities are explained, goals and practices of
these process areas, two different representations, and
two different scopes. Representations are staged and
continuous, and scopes are with IPPD (Integrated
Product and Process Development) and without IPPD.
The representations and the scopes indicate in what way
the goals and practices shall be handled. The
representations can be considered as two different
viewpoints created by putting the model components
together in two different ways. IPPD, which is an
addition, enables expansion of the process areas in
CMMI with goals and practices so as to cover the
integrated team activities. Model components are
grouped into three categories which are required,
expected, and informative. Required and expected
components are considered in process assessments,
because they are important.

A process area is a cluster of related practices in an area
that, when implemented collectively, satisfy a set of

 GU J Sci, 25(1): (2012)/ Sema GAZEL, Ebru AKÇAPINAR SEZER, Ayca TARHAN 157

goals considered important for making improvement in
that area. In CMMI for Development [8], all system and
software development processes are addressed by 22
process areas such as Project Planning, Requirements
Development, Measurement and Analysis, and etc; and
these process areas are the same for both staged and
continuous representations. Process areas are rated by
maturity levels (ML1-ML5) to identify organizational
maturity in the staged representation, whereas they are
rated by capability levels (CL0-CL5) to identify process
capability in the continuous representation. "5" means

the most improved in both ratings. In both
representations, each level constitutes a basis for the
next level. Thus, in order to be considered successful in
a level, it is required that the previous levels should be
covered as well as those that are required to be covered
at the level. The ratings of organizational maturity and
process capability are not completely independent of
each other. Because many model components are
utilized in both representations, it is possible to map the
ratings of process areas in one representation to the
ratings in the other representation.

Process assessment is the systematic evaluation of an
organization’s processes against a process reference
model [8]. There are several process assessment
models, among which “Standard CMMI Appraisal
Method for Process Improvement (SCAMPI)” [12] and
“ISO/IEC 15504: Information Technology - Process
Assessment” [7] have become more popular. SCAMPI
is a process assessment method designed to evaluate
conformance to CMMI models and to perform quality
ratings accordingly.

There are many tools developed to support process
assessment; and in a study that investigated 46 of them
[13], Leung et al. [13] stated that the most of the tools
utilize Microsoft Excel or Access as a base to store data.
In this study, 8 tools are given in Table-1 with their
descriptions. While the selection of the listed tools,
tools which have automatic support for process
improvement are chosen and also SPI partners are
considered.

Table-1. A list of tools to support process assessment

Tool Name

Description

Appraisal Assistant [14] This is a software application developed by Software Quality Institute of Griffith
University to meet the requirements of CMMI appraisals and of ISO/IEC 15504.
It supports assessment of organizational maturity and process capability. Models
and mapping data are stored in a Microsoft Access database.

CMMiPal v1.0 [15] This tool was developed by Chemuturi Consultancy. It enables manual mapping
of an organization’s processes to CMMI practices. Model and mapping data are
stored in a Microsoft Access database.

CMM-Quest v1.2 [16] This tool was developed by HM&S IT-Consulting to support preparation, data
collection, data analysis and reporting phases of process assessments based on
CMMI-Dev v1.2. It provides functionalities for selecting process areas and target
levels as preparation, text-based screens for data collection, graphics for data
analyses, and Microsoft Word and HTML based reporting facilities. It does not
support modeling of organizational processes.

SPICE 1-2-1 [17] This is a software tool developed by HM&S IT-Consulting to support process
assessments in accordance with ISO/IEC 15504.

SPiCE-Lite Tool [18] This tool was developed by HM&S IT-Consulting to assess conformance of
organizational processes to ISO/IEC 15504 requirements. Assessment data are
stored in a relational database.

Model Wizard [19] This is a Windows-based application developed by Integrated System Diagnostics
Incorporated. It enables users to store their process models in a relational database
.

Appraisal Wizard [20] This is a Windows-based, client-server structured software product developed by
Integrated System Diagnostics Incorporated. It is aimed to support management
of planning, preparation, data collection, merging, and reporting activities as
related to process assessments and process audits. It can co-operate with Model
Wizard [80]. Data from assessments and audits are stored in a relational database.

CMMI v1.2 Self Assessment Tool [21] This is a Microsoft Excel based process assessment tool developed by
Management Information Systems.

158 GU J Sci, 25(1):155-164 (2012)/ Sema GAZEL, Ebru AKÇAPINAR SEZER, Ayca TARHAN

2.2. Ontology, languages, and tools

Ontologies are content theories about the sorts of
objects, properties of objects, and relations between
objects that are possible in a specified domain of
knowledge [22]. Ontologies represented in a shareable
ontology language enable formal representation of
knowledge in a domain, and serve the achievement of
interoperability in these systems. There is a need to
perform some operations on ontologies utilized by
applications. Basic operations are building, mapping,
merging, and querying of ontologies. Since ontology
servers are partially aware of the meaning behind
formally represented data, they enable to query this data
and to have inferences from it. Creating, mapping and
querying of ontologies were achieved in this study.

There are a number of tools to manage ontologies [23].
Ontology development tools, for example, are utilized
to create a new ontology or to modify an existing
ontology. They also serve documentation, exportation,
and importation of ontology. OntoEdit, Protégé,
WebOde, and Ontolingua are the examples for ontology
development tools [23,24]. Protégé (version 3.3.1)
employed in this study is a free, open-source ontology
editor and knowledge-base framework [25]. It is based
on Java, is extensible, and provides a plug-and-play
environment that makes it a flexible base for rapid
prototyping and application development. Protégé is
supported by a strong community of developers and
academic, government and corporate users.

Ontology languages have become popular by the
introduction of the Semantic Web during the last
decade. More recent ontology languages are XML
(“eXtended Markup Language”), RDF (“Resource
Description Framework”), KA2 (“Knowledge
Annotation Initiative of Knowledge Acquisition”),
SHOE (“Simple HTML Ontology Extension”), OIL
(“Ontology Interchange Language”), DAML (“DARPA
Agent Markup Language”) and OWL (“Web Ontology
Language”) [24]. Ontologies created in this study were
represented in OWL which is a markup language to
publish and share ontologies on the Web. OWL was
derived from DAML+OIL and structured over RDF, by
World Wide Web Consortium (W3C)’s Web Ontology
Working Group [26].

Ontologies formalized in ontology languages can be
processed by logical reasoners to derive knowledge.
Jena 2 developed by HP Laboratories; various reasoners
for RDF, RDFS, and OWL; and RDQL as a flexible
querying language; are examples to ontology query
systems and languages. OWL-QL and RACER are
other such systems. RACER uses nRQL as the query
language, and supports reasoning in RDF, RDFS, and
OWL. SPARQL, developed by W3C, is an RDF query
language [27].

In this study, ontologies represented in OWL were
queried by Jena. Jena is an open-source Java framework
developed by HP Labs to build the Semantic Web. It
provides an environment to utilize RDF, RDFS, OWL,
and SPARQL, and includes a rule-based reasoning
engine [28].

2.3. SPEM and EPF

Software and System Process Engineering Meta-Model
(SPEM) [3] is a process engineering meta-model and a
conceptual framework. It is proposed by the Object
Management Group (OMG) and is based on Meta
Object Facility (MOF) [29]. It is basically used for
defining system and software processes and its
components. SPEM is not a general purpose process
modeling language. It includes elements to define any
software or system development process and excludes
objects specific to a certain domain or discipline (e.g.
project management).

SPEM 2.0 elements are organized under seven packages
and the meta-model is divided into logical units by this
organization. The functions of the packages within the
meta-model are briefly described below [3]. Although
SPEM 2.0 provides recommendations on the
implementation of these packages, it allows selection
and implementation of packages for a specific need.
Core package contains those meta-model classes and
abstractions that build the base for classes in all other
meta-model packages. Process Structure package
defines the base for all process models and supports the
creation of simple and flexible process models. Process
Behavior package allows extending process structures
with behavioral models. It does not define its own
behavior modeling approach, but rather provides ‘links’
to existing externally-defined behavior models.
Managed Content package introduces concepts for
managing the textual content of development processes.
These concepts can either be used standalone or in
combination with process structure concepts. Method
Content package provides the concepts to build up a
development knowledge base that is independent of any
specific processes and development projects. Processes
reuse these method content elements and relate them
into partially-ordered sequences that are customized to
specific types of projects. Process with Methods
package defines or redefines structures for integrating
processes defined with Process Structure meta-model
package concepts with instances of Method Content
meta-model package concepts. Method Plugin package
introduces concepts for designing and managing
maintainable, large scale, reusable, and configurable
libraries or repositories of method content and
processes. These concepts allow arranging different
parts of such a library based on different layers of
concern similar to layered software architectures.

There are tools developed by various organizations
based on this meta-model. As being implementations of
SPEM, these tools can be utilized by process
management staff of a development organization or a
specific project to define and maintain processes. An
implementation of this meta-model is Eclipse Process
Framework (EPF) proposed by Eclipse Foundation [5].
EPF is an Eclipse-based and open-source software
process engineering framework that can be extended by
developing plug-ins. It contains a process management
tool called EPF Composer as an implementation of
SPEM and example processes definitions created by
this tool. EPF Composer [6] is a process management
tool that enables definition of processes and methods as

 GU J Sci, 25(1): (2012)/ Sema GAZEL, Ebru AKÇAPINAR SEZER, Ayca TARHAN 159

well as management, configuration, and deployment of
libraries as related to software and system development.
The processes defined by using this tool can be
deployed as web pages via the tool.

In this study, SPEM was utilized for the purpose of
creating an organizational process ontology because of
its flexibility and support of OMG which has wide-
acceptance in specifications. A subset of elements
within Process with Methods package in SPEM was
chosen and an ontology called Process Structure
Ontology (PSO) was created based on this subset.
Because EPF Composer was extended by a plug-in
developed in this study, SPEM is also indirectly utilized
to define organizational processes. The ontologies of
organizational processes were created based on Process
Structure Ontology and by utilizing process definitions
constructed by EPF Composer.

2.4.Ontology-Based Process Assessment
Environments

There are lots of studies in the literature on the subjects
of either process modeling or ontology. However, when
searched for process modeling ontology as the
intersection of these two subjects, the number of studies
decreases significantly. In this section, several studies
which are close to the purpose and scope of this study
were elaborated.

 There are only a few studies on CMMI ontology in the
literature. Soydan et al. [30] presented OWL ontology
for CMMI for Software Engineering v1.1. In this work,
only staged representation was analyzed whereas in our
study, it was aimed to meet the needs of both staged and
continuous representations. Sharifloo et al. [31]
introduced an ontology for CMMI for Acquisition v1.2.
This ontology was based on SUMO [32] upper ontology
using SOU-KIF [33] languages.

Rungratri and Usanavasin [34] proposed a framework
called “CMMI v.1.2 based Gap Analysis Assistant
Framework (CMMI-GAAF)” to perform automatic gap
analysis with respect to CMMI. Within this framework,
Project Assets Ontology (PAO), which was an ontology
to merge CMMI process areas and project assets, was
created. PAO was created based on CMMI ontology
developed by Soydan et.al. [30]. Other units of the
framework included Project Assets Repository (PAR)
which was a storage to hold project assets, Project
Assets Metadata Generator (PAM Generator) that
merged the information in the PAR with PAO, Project
Assets Metadata Repository which was a storage of
project assets metadata, and Project Maturity Level
Assessment (ProMLA) that performed assessment of
project’s maturity level. PAM Generator created project
assets metadata by using process assets and PAO and
forwarded this metadata as input to process assessment.

It was stated in [34] that PAO includes generic and
specific goals as well as generic and specific practices
in CMMI; however, the way how generic goals and
practices were handled was not clear in the study. In the
present study, the objects under general and specific
practices in the object hierarchy of CMMI were not
included in CMMI ontology, and general and specific
practices were directly mapped to process steps and
artifacts. Furthermore, our study focused on mapping of
organizational process assets whereas the study in [34]
focused on mapping of project assets to CMMI
components.

Liao et al. [35] aimed to create generic Software
Process Ontology (SPO) and strived to ensure that it
covered the requirements of both CMMI and ISO/IEC
15504. A process was represented by atomic practices
in this study. It was stated in [35] that an organization’s
process model could be represented by using SPO and
that a web-based process assessment tool that used SPO
has been under development. Liao et al. [35] targeted a
generic software process ontology whereas our study
aimed to develop ontology of CMMI for Development
v1.2. In addition, organizational processes were
represented in SPEM by using EPF Composer tool in
our study rather that by using generic software process
ontology.

Doheny and Filby [36] defined a conceptual process
modeling framework and developed a tool to support
modeling and assessment of software processes. The
framework was based on Process Ontology (PO). It was
stated in the study [36] that PO could be utilized to
model software development processes as well as
standards and best practices as related to software
development. In PO, objects were represented under
three categories which were artifacts, activities, and
agents. Doheny ve Filby [36] aimed to develop a
generic software process modeling process ontology as
Liao et al. [35] did. Therefore, our study differs from
[36] because of similar results stated above.

Garcia et al. [37] proposed a framework for integrated
management of modeling and measuring of software
processes. It is argued by this study that all models and
meta models should be based on the same
conceptualization of objects and relations for the sake
of integration. The place of software process models
within the conceptual architecture of the study was
explained and Descriptive Process Modeling Ontology
(SPMO) was introduced. Although it was stated that
SPMO was developed based on SPEM, the details of
the ontology were not explained. This study [37] was
similar to our study in using SPEM as a reference to
develop process ontology. However, the focus in our
study was process assessment whereas the focus in [37]
was process modeling and measurement.

Lee et al. [38] presented an ontology-based
computational intelligent multi-agent system for CMMI
assessment. The system could summarize evaluation
reports by using agents and quality assurance ontology
was built based on Process and Product Quality
Assurance process area of CMMI. Lee et al. [39] also

presented an Ontology-based Intelligent Decision
Support Agent (OIDSA) to apply to Project Monitoring
and Control process area of CMMI. In the present
study, the intention was to cover all process areas in
CMMI for Development v1.2, though not by
representing the knowledge as specific to each process
area but by considering the structure of the CMMI.
Furthermore, in the studies [38] and [39], the ontologies

160 GU J Sci, 25(1):155-164 (2012)/ Sema GAZEL, Ebru AKÇAPINAR SEZER, Ayca TARHAN

were constructed according to a domain ontology
structure. In other words, CMMI was used as an
instance of the domain ontology. However, CMMI was
selected as the domain in our study and ontology was
constructed by considering CMMI concepts and
relations only.

3. ONTOLOGY-BASED CMMI MAPPING AND
QUERYING TOOL (OCMQT)

When models/standards are presented in ontology, they
gain the abilities of machine process ability, share
ability, and querying. Liao et al. [35] presents the
advantages of ontology use for process modeling
clearly. In addition to the advantages presented by Liao
et al. [35], when both of process reference
models/standards and organizational processes are

represented by ontologies, they can be mapped to each
other and queried. In Gazel et al. [40] the representation
of CMMI with ontology is presented and also in this
study, the tool called as OCMQT which uses CMMI
Ontology[40] is presented as an helpful infrastructure
for CMMI-based process assessment activities.

 In the OCMQT, CMMI-Dev v1.2 was selected as the
process reference model. SPEM presented by OMG is
used as the meta-model for ontology derivation of
organizational process definitions. EPF Composer is the
realization of SPEM with the properties of an open
source, eclipse based, extendible tool. The OCMQT
was developed as plug-ins to EPF Composer. The main
components of the OCMQT are illustrated in Figure 1
and described in the following section.

Figure 1: Schematic representation of OCMQT

• CMMI plug-in: This is a plug-in to view and
manipulate CMMI Ontology in EPF Composer.
First, CMMI-Dev v1.2 was modeled in an
ontology and was represented in OWL by using
Protégé-OWL Editor. Then, CMMI Ontology was
integrated with EPF Composer (version 1.5) by
using a software developed as an eclipse plug-in
(version 3.4.1).

• Mapping-Querying plug-in: This is an eclipse
plug-in (version 3.4.1) developed with the abilities
listed below:

• Creating ontology of organizational processes
already modeled in EPF Composer (Process
Ontologies)

• Mapping of CMMI Ontology and Process
Ontologies, and storage of mapping knowledge in
another ontology (Mapping Ontology)

• Querying of CMMI Ontology, Process Ontologies,
and Mapping Ontology, and listing of results

The major purpose of the CMMI Ontology design was
to create a base for mapping of organizational process
definitions and CMMI-Dev v1.2 components for
supporting process assessment activities. The secondary
aim of the design was to reflect CMMI domain
knowledge as much as possible. When designing the
CMMI Ontology model, continuous and staged
representations were considered but Integrated Product
and Process Development (IPPD) was excluded. First,
ontology models for continuous and staged
representations were designed individually and then,
these models were combined by using common domain
concepts. The rationale behind this combination is to
provide the beneficial possibility of switching from one
representation to the other. For example, it would be
possible to see the corresponding levels of the staged
and continuous representations. In Figure-2 [40],
combined CMMI Ontology model for staged and
continuous representations is illustrated with its
concepts and relations.

 GU J Sci, 25(1):155-164 (2012)/ Sema GAZEL, Ebru AKÇAPINAR SEZER, Ayca TARHAN 161

Figure-2: The Aggregated CMMI Ontology of staged and continuous representations [40]

Detailed explanation about Aggregated CMMI
Ontology can be found in [40]. In summary, all classes
reflects CMMI terms explicitly and the meanings of the

relations are summarized from [40] and given in Table
2 .

Table-2: Meaning of relations in Aggregated CMMI Ontology

Name of the relation Meaning

is-a Inheritance

hasLevel Denotes the organization level according to corresponding representation

isLeveledBy Shows the levels of the corresponding representation

hasPrecedence Reflects all previous levels that require to be satisfied

consistOf Shows that which process areas constitutes the associated process area set

isMemberOf Reflects the category of the process areas

satisfiedByS(taged) (towards ProcessAreaSet) Denotes the process area set that should be satisfied to accept associated
maturity level as satisfied

satisfiedByS(taged) (towards ProcessArea) Reflects all process areas that should be satisfied to accept the process are
set as satisfied

satisfiedByS(taged) and satisfiedByC(ountinuous)
(towards Goals)

List of the goals that require to be satisfied

achievedBy Reflects the satisfactory practices of the Goal

instanceOf Reflects the instance of the class

162 GU J Sci, 25(1):155-164 (2012)/ Sema GAZEL, Ebru AKÇAPINAR SEZER, Ayca TARHAN

In EPF Composer, processes are expressed with the
object types such as Delivery Process and Capability
Pattern. Capability Pattern is the structure containing
the part of the process. Reusable process modules can
be constituted with this structure. Whole process is
defined with Delivery Process object type. In other

words, one organizational process or the process
applied in a project can be defined with Delivery
Process object. In this study, Process Structure
Ontology was organized based on Delivery Process
object. Delivery Process object includes hierarchical
structure and relations as explained below:

• In EPF, a Delivery Process object includes the
objects such as Phase, Iteration, Activity,
Milestone, Task Descriptor, Work Product
Descriptor, Role Descriptor, and Team Profile.

• Delivery Process, Capability Pattern, Phase and
Iteration objects are derived from Activity object.
In hierarchical structure, these objects can cover
other objects that are covered by Delivery Process
object.

• Milestone, Task Descriptor, Work Product
Descriptor, and Role Descriptor are leaf objects of
the hierarchical structure and they cannot cover
any objects.

• Team Profile object can cover only Team Profile
object.

The includes relation was created specifically in Process
Structure Ontology to show the hierarchical structure
between the classes covered in a Delivery Process.
When ontology of an organizational process definition
is being created, the classes Activity, Delivery Process,
Iteration, Milestone, Phase, Role Descriptor, Task
Descriptor, Team Profile, and Work Product Descriptor
are utilized. All of these classes and their relations
correspond to a subset of the classes and the relations
placed in the package called Process with Methods in
SPEM.

Process Ontology is the ontology of an organizational
process already modeled in EPF Composer. Typically,
more than one organizational process are modeled in
EPF Composer. For this reason, the ontology of each
process is stored in a different OWL file, and each
ontology uses the Process Structure Ontology as a super
ontology. While Process Structure Ontology includes all
classes and relations to model a process; in Process
Ontology, the universal unique descriptors of the
process assets modeled in EPF Composer is placed.
Objects of the Process Ontology is created based on the
classes and relations of the Process Structure Ontology.
For example, assume that "do unit test" activity is
placed in a process. Activity class of the Process
Structure Ontology is used as the base class for Process
Ontology objects which cover "do unit test" activity and
its universal unique descriptor.

Mapping Ontology uses the CMMI Ontology and
Process Ontologies, and stores the information of
mappings between CMMI components and process

assets. In fact, these mappings is many to many (m-n).
In other words, one CMMI component can correspond
to many process asset or vice versa. In practice,
mapping is expected between CMMI practices and
process activities, tasks, or work products. However,
any CMMI component can be mapped with any process
asset in the infrastructure presented in this study. The
relations between ontologies presented above are
illustrated in Figure-3.

Figure 3: The relations between ontologies utilized in
OCMQT

Basic facilities of the OCMQT are listed following and
a snapshot from the OCMQT is given in Figure-4.

• The creation of the process ontology selected from
Delivery Process in the library view,

• Examination of the process and all assets of it in a
process editor window,

• Establishing the mapping between selected
components from CMMI Ontology and the process
ontology,

• Deleting/updating/listing of mappings,
• Loading/saving ontologies of CMMI, process, and

mapping.

Querying abilities supported with OCMQT are listed
below:

• Querying about CMMI domain knowledge: It is
possible to list generic practices, specific practices,
generic goals, and specific goals for a selected
process area. In addition, explanations are
displayed on the tool for practices and goals when
they are selected.

• Querying about process: It is possible to list all
activities, tasks, roles, and work products for a
selected process within all defined processes.

• Querying about mapping: The mappings between
CMMI components and processes have many-to-
many (m:n), bidirectional multiplicity;
accordingly, there are two types of querying such
as;

o Listing of process assets related with the
selected CMMI component

o Listing of CMMI components related
with the selected process asset

o

 GU J Sci, 25(1):155-164 (2012)/ Sema GAZEL, Ebru AKÇAPINAR SEZER, Ayca TARHAN 163

Figure-4: A snapshot from the ontological infrastructure of OCMQT

OCMQT was utilized in a system and software
development organization which readily used Microsoft
Word to maintain process definitions and Microsoft
Excel to store mappings between process assets and
CMMI components. Observations can be summarized
like that establishment and management of mapping
between CMMI components and organizational process
assets was performed easier, faster, and more accurately
with OCMQT than Microsoft Excel. The use of
OCMQT eliminated the need for searching on process
definitions and CMMI documents again and again. At
the beginning of QCMQT usage, it seemed as a time
consuming effort to define whole organizational
processes in detail by using OCMQT infrastructure.
However, after completing this step, usefulness of
OCMQT became evident, especially in understanding
CMMI knowledge, accessing process assets, and
managing mappings for process assessment and
improvement.

4. CONCLUSION

OCMQT enables an integrated infrastructure for
process improvement and CMMI based assessment
activities. It tries to map definitions of organizational
process and CMMI. It uses the SPEM as the
metamodel for organizational process and EPF as the
realization of the SPEM. It uses the ontology
technology to express these definitions and also gains
the all advantages of the ontologies. In OCMQT, user
interfaces are supplied for mapping, namely, user can
select the CMMI component and process asset from
different frames and maps them easily. All of the
mappings are stored with directional relation to enable
effective querying.

When a modification is considered for a process, the
effect of the modification on the consistency with
CMMI, lacks and errors of the process can be seen easy
with the OCMQT. Moreover, data repetitions are
eliminated because of the integrated infrastructure.
Presently, OCMQT does not have the ability of
inference about assessment rating. However, OCMQT
gives an infrastructure for the design and
implementation of advanced features. Although there is

a need for expert knowledge for mapping, this necessity
does not arise with the use of OCMQT. In fact, process
improvement and assessment activities always require
experts. However, OCMQT can protect non-expert
personnel from making unintended mistakes in an
organization.

5. REFERENCES

[1] Tague, N.R., “The Quality Toolbox”, 2nd Ed.,
ASQ Quality Press, ISBN 978-0-87389-639-9:
390-392 (2004).

[2] “Quality Management Systems – Requirement”,
ISO, ISO 9001:2000 (2000).

[3] “Software & Systems Process Engineering
Metamodel Specification (SPEM)”, version 2.0,
OMG Document Number: formal/2008-04-01,
Object Management Group (OMG), (2008).

[4] CMMI Product Team, CMU/SEI. CMMI for
Development. CMMI-SE/SW V1.2, CMU/SEI-
2006-TR-008, ESC-TR-2006-008, August (2006).

[5] “Eclipse Foundation”, http://www.eclipse.org

[6] Haumer, P., “Introducing the Eclipse Process
Framework”, Eclipse Con, (2006).

[7] “Information Technology - Process Assessment”,
ISO, ISO/IEC 15504 (2003-2008).

[8] “Information technology — Software process
assessment” —Part 9:Vocabulary, First edition,
ISO/IEC, 15504-9, (1998-08-15).

[9] “Systems And Software Engineering” – Software
Life Cycle Processes, IEEE Std 12207-2008,
Second Edition, ISO. ISO/IEC 12207 (01-02-
2008).

[10] CMMI Product Team, CMU/SEI. CMMI for
Services. CMMI-SVC V1.2, CMU/SEI-2009-TR-
001, ESC-TR-2009-01, February 2009.

[11] “CMMI Product Team, CMU/SEI. CMMI for
Acquisition”,CMMI-ACQ V1.2, CMU/SEI-2007-
TR-017, ESC-TR-2007-017, November (2007).

164 GU J Sci, 25(1):155-164 (2012)/ Sema GAZEL, Ebru AKÇAPINAR SEZER, Ayca TARHAN

[12] “SCAMPI Upgrade Team. Standard CMMI
Appraisal Method for Process Improvement
(SCAMPI) A, Version 1.2”, Method Definition
Document, Handbook, CMU/SEI-2006-HB-002,
August (2006).

[13] Leung H.K.N., Liao L., Qu Y.. Automated
support of software quality improvement.
International Journal of Quality & Reliability
Management, 24:(3):230-243 (2007).

[14] Appraisal Assistant, “Griffith University”,
Software Quality Institute.
http://www.sqi.gu.edu.au/AppraisalAssistant/abou
t.html

[15] http://www.chemuturi.com/cmmipaldtls.html

[16] http://www.cmm-quest.com

[17] http://www.spice121.com

[18] http://www.spicelite.com

[19] Model Wizard. http://isd-
inc.com/tools.modelWizard

[20] Appraisal Wizard. http://isd-
inc.com/tools.appraisalWizard

[21] http://www.man-info-
systems.com/index_files/FreeTools.htm

[22] B. Chandrasekaran, J.R. Josephson, V.R.
Benjamins, “What Are Ontologies, and Why Do
We Need Them?”, IEEE Intelligent Systems
14(1):20-26 (1999).

[23] OntoWeb Consortium. Deliverable 1.3: “A survey
on ontology tools. OntoWeb Ontology-based
information exchange for knowledge management
and electronic commerce”, IST-2000-29243.
May, (2002).

[24] Pulido, J.R.G., Ruiz, M.A.G., Herrera, R.,
Cabello, E., Legrand, S., Elliman, D., “Ontology
languages for the semantic web: A never
completely updated review”. Knowledge-Based
Systems, November, 19 (7): 489–497 (2006).

[25] Protégé. http://protege.stanford.edu

[26] W3C. Owl Web Ontology Language Reference.
Technical Report, February 2004.

[27] Z. Zhang. “Ontology Query Languages For The
Semantic Web: A Performance Evaluation”, A
Master of Science Degree Thesis, The University
Of Georgia, Athens, (2005).

[28] Jena. http://jena.sourceforge.net

[29] OMG, Object Management Group.
http://www.omg.org

[30] G.H. Soydan, M.M. Kokar. “An OWL Ontology
for Representing the CMMI-SW Model. In ISWC
2006” Workshop on Semantic Web Enabled
Software Engineering, 2006.

[31] Sharifloo A.A., Motazedi Y., Shamsfard M.,
Dehkharghani R.. “An Ontology for CMMI-ACQ
Model”, In 3rd International Conference on

Information and Communication Technologies:
From Theory to Applications (ICTTA), April
(2008).

[32] “Suggested Upper Merged Ontology (SUMO)”,
http://www.ontologyportal.org

[33] “Knowledge Interchange Format, draft proposed”
American National Standard (dpANS),
NCITS.T2/98-004, Ed.

[34] Rungratri, S., Usanavasin, S., “Project Assets
Ontology (PAO) to Support Gap Analysis for
Organization Process Improvement Based on
CMMI”, (Book) Making Globally Distributed
Software Development a Success Story, Springer
Berlin / Heidelberg, May 76-87 (2008).

[35] Liao, L., Qu, Y., Leung H., “A Software Process
Ontology and Its Application. In ISWC 2005
Workshop on Semantic Web Enabled Software
Engineering”, (2005).

[36] Doheny, J. G., Filby, I. M., “A Framework and
Tool for Modelling and Assessing Software
Development Processes”, In The European
Software Control and Metrics Conference,
Wilmslow, May (1996).

[37] García, F., Piattini, M., Ruiz, F., Canfora, G.,
Visaggio C. A., “FMESP: Framework for the
Modeling and Evaluation of Software Processes”,
Journal of Systems Architecture: the
EUROMICRO Journal, 52 (11) : 627–639,
November (2006).

[38] Lee, C.S., Wang, M.H., “Ontology-based
Computational Intelligent Multi-agent and Its
Application to CMMI Assessment”, Springer
Science+Business Media, LLC (2007).

[39] Lee, C.S., Wang, M.H., Chen, J.-J., Hsu, C.Y.,
“Ontology-based Intelligent Decision Support
Agent for CMMI Project Monitoring and
Control”, International Journal of Approximate
Reasoning, April, 48: 62–76 (2008).

[40] Gazel, S., Tarhan, A., Sezer, E., “A CMMI
Ontology for An Ontology-Based Software
Process Assessment Tool”, In proceedings of the
16th EuroSPI2 Conference, 9.1 (2009).

