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ABSTRACT 

 

This paper is devoted to investigating the existence and uniqueness solutions class boundary integral equations over 
a regular closed surface. This paper provides sufficient conditions for the existence and uniqueness solution in the 

space of continuous functions of class boundary integral equations. 
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1. INTRODUCTION 
 

In this paper, has been studied a boundary integral 

equation (BIE) which is in the following form  
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Here S  is a closed, bounded and regular surface in đ
3

, 

),( yxφ  and )(xf  are known continuous functions 

in their domains of definition, such that for 

every Sx∈  .0),( =xxφ  Function )(xϕ  is an 

unknown function and yx −  denotes the distance 

between the points x  and y . 

    It is well known that singular integral equation theory 

has broad applications to theoretical and practical 

investigations in mathematics, mathematical physics, 

mechanics, hydrodynamics and elasticity theory [1-3]. 

This fact has only given rise to multiple studies of 

singular integral equations, but also developed many 

effective approximate solution methods. There exist 

many studies that explore these methods [4-22].  

    In this paper, the reason of taking up the equations in 

the form (1) is that these kinds of equations have broad 

application field. It is well known that the solutions of a 

host of familiar boundary value problems have been 

reduced to solving equations of the form (1). For 

example, the solutions of many theoretical and applied 

problems of mathematics, mechanics, physics and 

engineering can be reduced to the equations in the form 

(1). 

    As it is known, the solution of mixed Dirichlet-

Neumann boundary value problem for Helmholtz’s 

equation, the solution of exterior boundary value 

problem for Helmholtz’s equation with the Dirichlet 

boundary condition, the solution of interior Dirichlet 

and Neumann eigenvalue problems are being reduced to 

the solutions of the equations in form (1) and to the 

BIE’s similar to (1) [23-25]. Similar BIE’s have also 

been applied to a host of problems in engineering 

whenever the problems can be reformulated in terms of 

biharmonic equations with Dirichlet boundary 

conditions [26]. 

    It is known that many engineering problems are 

being formulated by the biharmonic equations with 

Dirichlet boundary conditions and the solutions of these 

kinds of problems are being reduced to the solution of 

BIE’s [26]. Furthermore, fundamental equations of 

viscous flows problems are being formulated by the 

help of Poisson-type BIE’s [27]. In engineering analysis 

of singular, potential and biharmonic problems with 
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BIE’s are given by D.B. Ingham and M.A. Kelmanson 

(see [28]). 

    Many dispersion and radiation problems are related 

with finding the solution of the Helmholtz’s equation in 

exterior region defined by an equation of the following 

form: 

 

,0.2 =+∆ uku  .0Im ≥k  

 

As it is known, in the solutions of this kind equations 

with finite element and half finite difference methods 

there are difficulties in the general case. These 

difficulties have been overcome by using the integral 

equation method given by Jones instead (see [29-32]).  

    We consider the integral equation defined on a two-

dimensional closed, bounded and regular surface in đ
3

, 

which the kernel of the integral operator is a function of 

the form
2

/),( yxyx −φ , with 

continuous ),( yxφ . 

    In this paper, it is shown that if the modulus of 

continuity of ),( yxφ  satisfies some minor 

restrictions, then in spite of the presence of a high level 

of singularity along the diagonal, the integral operator 

in question is well defined and compact in the space of 

continuous functions. In this case, the Fredholm 

theorem applies, so the integral equation has a solution 

for any continuous right-hand side if and only if the 

corresponding homogenous equation does not have a 

nontrivial solution.  

    In the second section of the paper, we introduce some 

concepts needed to prove their main results.  

    In the third section, we prove the existence and 

uniqueness of the solution of the class of BIE’s under 

consideration. 

 

  

2. PRELIMINARIES 

 

In this section of the paper, we will introduce some 

necessary information for proving the main results.  

We denote the real numbers by đ, the nonnegative real 

numbers by đ + . 

Let { }Syxyx ∈−= ,:supl , where S  is a 

closed, bounded, regular surface in đ
3

. We will denote 

the radius of the standard sphere associated to the 

surface S  by d  [33].  

The symbol )(XC  denotes the space of continuous 

functions on X . In the space )(XC , we denote by 

{ }Xxxuu ∈= :)(max  the ϖ norm of the 

vector )(XCu∈ .  

    Throughout this paper, the numbers  ,ic  

,...2,1=i  will denote positive real numbers.  

 

Definition 2.1. The function  ( ]: 0,ϕω δ +→ �  

which is defined by the following formula 

 

{ }δτττωδδω ϕϕ ≥= − :).(sup.)( 1
, ( ]l,0∈δ  

 

is the modulus of continuity of the function ∈ϕ )(SC .  

Here,  

 

( ) =δωϕ  { } ( ]l,0,,,:)()(max ∈∈≤−−= δδϕϕ Syxyxyx . 

 

Definition 2.2. Let us define the following functions for ∈φ )( SSC × and ( ]:,0 l∈δ  

 

                               { }Syxyxyx ∈≤−= ,,:),(sup)(* δφδωφ , 

                               { }δτττωδδω φφ ≥= − :).(sup.)( 1**
, 

                               ( ) ( ) ( ){ }Sxxxxyxyx
Sy

∈≤−−=
∈

212121

0,1 ,,:,,maxsup δφφδωφ , 

          ( ) ( ) ( ){ }Syyyyyxyx
Sx

∈≤−−=
∈

212121

1,0 ,,:,,maxsup δφφδωφ . 

                      

Remark 2.1. If a real valued function :g →� � with real variable is increasing or decreasing in its domain, then we 

denote it by ↑g  and ↓g , respectively. 

 

Definition 2.3. We define the following sets functions ( ]: 0,g +→l � : 
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Proposition 2.1. For ∈ϕ )(SC and )( SSC ×∈φ we have ( ]l,0, 1

* E∈φϕ ωω  and  

 ,0,1

φω
1,0

φω ∈ ( ]l,02E . 

 

 

3. MAIN RESULTS 

 

In this section, we shall prove the existence of solution of the BIE (1).   

    Before proving the existence and uniqueness of solution of the BIE (1) let us give the following lemma. 

Lemma 3.1. If  (1)  τττωφ d1*

0

).( −∫
l

< ∞+  and (2) as 0→δ , we have )(ln)( 10,1 δδωφ
−= o ,  

then for )( SSC ×∈φ , 
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is a  compact operator  in the space )(SC . 

 

Proof. For )(),( SSCSC ×∈∈ φϕ  and for every Sx∈  the following inequality can be easily proven: 
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    From this inequality, according to the assumption (1) of the lemma, it can be seen that the integral at the right hand side 

of Equality (2) is converging. 

    Now we will show that the operator ϕK  defined by (2) is continuous in )(SC . 

    Let δ=−∈ 2121 ,, xxSxx  and ( ]2/,0 d∈δ . In that case, we can write: 
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where SSxSxSS =∪= 222/12/1 ),()( δδ \ ,1S { }δδ ≤−∈= yxSyxS :)( . Let us denote the integrals 

on the right hand side of the above equation by 321 ,, III , respectively.  

It is obvious that 
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where 2,1),(2/1 == ixSS i

i

δ . In a manner similar to the proof of Inequality (3), we can prove the following 

inequality: 
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Since 2/32/ 1 δδ ≤−≤ yx  for
2

1Sy∈ , we have 
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Use the inequalities (4) and (5), we obtain 
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Can be proved in a manner similar: 
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Now, we will evaluate the 3I  integral. We can write 

 

y

S

y

S

dy
yxyx

yxdy
yx

yxyx
I σϕφσϕ

φφ
)(

11
),()(

),(),(
2

2

2

1

22

1

21
3

22












−
−

−
+

−

−
= ∫∫ . 

 

    Let us denote the integrals, which are on the right hand side of the above equality by
2

3

1

3 , II , respectively. 

For 
1

3I  we get: 
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Since yxyxyx −≤−≤− 211 .3
3

1
 for 2Sy∈  we obtain:  
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From (8) and (9), we are writing: 

 

                                        ( )
( )












+≤ ∫

l

δ

φ
φ τ

τ

τω
δδδωϕ dcI

*

0,1

113 .ln... .                                 (10) 

 

Use the Inequalities (6), (7), (10), we obtain 
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    From this inequality, according to the assumptions of the lemma and Proposition 2.1, we can see 

that )()(: SCSCK → . 

    Now, we will show that the operator  K   is compact. For any )(SC∈ϕ let us define the following operators:  
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    It is obvious that the operators ,...2,1),()(: =→ nSCSCGn  are compact. Furthermore, from the inequality  
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it can be seen that the compact operator sequence  { } ,...2,1, =nGn   is converging to the operator K . Therefore, the 

operator K  is also compact (see [34, p. 241, Theorem 1]).  

This completes the proof of the lemma.                                                                                     �    

                                                                                   

      We can write the BIE (1) in the form of an operator equation as follows: 

 

                                                 ( ) ( ) ( )xfxKI =+ ϕ .                                                            (11) 

 

Here,  I  is the identity operator on )(SC , and  K  is the operator that is defined by (2). 

    Now, we present a theorem on the existence and uniqueness of the solution of the operator equation (11). 

 

Theorem 3.1.  If (1) 
( )

τ
τ

τωφ

∫
l

0

*

d < ∞+ ; (2) as 0→δ , we have ( ) ( )δδωφ
10,1 ln −= o ; (3) ( ) { }0=+ KIKer  

and (4) the operator K  is onto from (S)C to (S)C , then, for every )(SCf ∈ and )( SSC ×∈φ , the equation 

(11) has unique solution in the space )(SC . 

 

Proof. To prove the theorem, it is sufficient to show that the linear operator )()(: SCSCKI →+  satisfies of the 

hypotheses of the Banach theorem on the existence of a bounded inverse operator.      
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The operator K  (according to Lemma 3.1) is compact. Since every compact operator is bounded, the operator K  is 

bounded. Thus, the operator KI +  is also bounded. Furthermore, by condition (3) of the theorem, the operator  

KI +  is a one-to-one operator. Thus, KI +  is an invertible bounded linear operator. Furthermore, from the 

hypothesis (4) of the theorem the operator K  is surjective.  

 

Whit this, the conditions of the Banach Theorem for the existence of bounded linear inverse operator of KI +   are 

satisfied (see [34, pp. 225, Theorem 3]). Therefore, invertible bounded linear operator  KI +  has a bounded inverse. 

Thus, for every )(SCf ∈ the operator equation (11) has unique solution in the space )(SC .  

With this the theorem is proven.                                                                                                � 

 

Remark 3.1. Cubature formula for integral (2) may be given and singular integral equation (1) can be solved by 

approximation methods. 
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