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ABSTRACT

In this paper, we establish the fixed point theorems for single and multivalued valued contraction in complete
metric space. We investigate an iteration method involving projections which converges to a fixed point using
multivalued contraction. Also we prove the generalized well-posedness of the fixed point problem and

continuity of single valued contraction in metric space.
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1. INTRODUCTION

Fixed point theory is an exciting branch of mathematics.
In 1922, the Polish mathematician Stefan Banach proved
a theorem on the existence and uniqueness of a fixed
point in a complete metric space. Various authors have
defined contractive mappings on a complete metric space
which are generalizations of well-known banach
contraction. Rhoades [5] compared and discussed the
relation between all the contractions with appropriate
examples. We introduce contraction mapping and
establish fixed point theorems on complete metric space.
The notion of set valued contraction was initiated by
Nadler [2] in 1969. He proved that a set valued
contraction possesses a fixed point in a complete metric
space. Subsequently many authors generalized Nadlers
fixed point theorem in different ways. Kunze et al. [3]
have introduced an iteration method involving a
projection which converges to a fixed point using
multivalued nadler contraction.We investigate an
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iteration method involving projections which converges
to a fixed point using multivalued contraction.

Let (X , d )be a metric space. Let P (X ) be the family

of all non-empty subsets of X and let
T:-X—>P (X ) be a multivalued mapping. A point is

said to be a fixed point of the multi-valued mapping

TitxeTx o F,={xeX:xeT(x)}
and SFy = {x € X :{x}=T(x)}.

Definition 1.1 Let (X ,d )be a metric space and
P(X ) be the family of all non-empty closed and
bounded subsets of X ,
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Define d(x, B)=inf,_, d(x, ),
h(4,B)=sup,_,d(x,B) forall x € X

A,B e P(X)The Hausdorff metric or Hausdorff
distance /1 ;is a function

H, : P(X)x P(X)—> R defined by

H (4, B)=max{h(4, B), h(B, 4)}

(P(X), H,) is called a Hausdorff metric space.
Lemma 1.1 [3] Let (X,d)be a metric space,
X,y € Xand A,B,C are subsets of X . Then the
following statements hold:
fAC B, then d(4,C)>d(B,C) and
h(A4,C)< h(B,C) and h(C, 4)> h(C, B).

a’(x, A)S d(x,y)+d(y,A)
d(x,4)<d(x,y)+d(y,B)+h(B, A)

Definition 1.2 Let (X ,d )be a metric space. A map

T : X — X is called banach contraction if there exists
0<k<lsuch thatd(Tx,Tv)<kd(x,y), for
allx,ye X .

Definition 1.3 [2] Let (X , d )be a metric space. A map
T-X—>P (X ) is called multivalued contraction if

there exists 0 <k <1such
that H , (Tx, Ty) < kd(x, y), forall x, y € X .

Lemma 1.2 [2] If A,B € P(X)and a € A then for
eachk > 0, there exists b € B such that

d(a, b)< H,(4,B)+k.

2. MAIN RESULTS

Theorem 2.1 Let (X ,d )be a complete metric space.
Let T:X — Xbe a single valued map satisfying
d(Tx,Ty) < ad(x, y)+b[d(x, Tx) + d(Ty, Tx)]

there exists a,b e R witha+2b<1, a+b<l1
then

(i) T has a unique fixed point i.e., FT =u,

(i) The picard iteration associated to T ie., the

sequence {xn }?10:0 defined by x ., =1Tx

n+l n

n=0,1,2,.... converges to the fixed point £ .

Proof: To prove the existence of the fixed point, we
show that for any X, € X the picard iteration {Xn } isa

cauchy sequence.

d(x,,x,)=d(Tx,,Tx,)
<ad(x,,x,)+b{d(x,, Tx, )+ d(Tx,, T, )
<ad(x,,x,)+b[d(x,,x,)+d(x,,x,)]
<(a+b)d(x,,x )+bd(x,,x,)
d(x,,x,)—=bd(x,,x,)<(a+b)d(x,,x,)
(1=0)d(x,,x,)<(a+b)d(x,,x,)

a+b

d(xl,xz)ﬁ -5 d(xO’xl)
d(xli‘xZ)Skd(xO’xl)

k=611+: ,a+2b<1 0<k<l.

and by i;duction
d(xnaxnn)S k"d(xo,xl)

d(xn’xm )S d(‘xn9xn+l)+ d(‘xn+l9‘xn+2 )+ ---------- + d(xm—laxm)

<"+ K" M (x5, )

k
Snd(xo,xl)

Since 0 < k < 1, it results that k" >0 as
71 —> 00 shows that {)Cn} is a cauchy sequence. Since

(X ,d ) be a complete metric space, therefore {X " }
converges toll .
lim
U=n—>ox,
Hence U is a fixed point of 7.

d(u,Tu)< d(u,x,, ) +d(x,,,Tu)
:d(u,xn+l)+d(Txn,Tu)

<d(u,x,,,)+ad(x,,u)+bld(x,,Tx,)+d(Tu,Tx, )]

n+l

= d(u, il ) + ad(xn R u) + bd(x" X )+ bd(Tu, x )
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Sd(u,x

n+l

+bk”a’(x0,xl)+d(T“,x,ﬁl )

)+ ad(x u)

n? M
n —> 0in (1) we get

d(u, Tu) < bd(u, Tu)

(1-b)d(u,Tu)< 0

b<1,du,Tu)=0 = u="Tu.

Uniqueness: On the contrary let # and Vbe two fixed
points of T then ¥ =T andv =TV

d(u,v)=d(Tu,Tv)
Sad(u,v)+b[d(u,Tu)+d(Tv,Tu)]

< ad(u,v)+bd(u,u)+bd(v,u)
<(a+b)d(u,v)

1—(a+b)d(u,v)<0

at+b<l, d(u,v)zO =S u=vw

Example 2.1 X =[0,]]endowed with Euclidean
metric d(x,y)=|x—y| and a map

T : X — X defined as follows

Tx=2 for xe [0,1)

3
1
T1=—
6
Contraction condition is satisfied for

a=1/3andb=1/2.
Theorem 2.2 Let (X ,d )be a complete metric space.
Let T:X —> P (X )be a multivalued map satisfying

H ,(Tx,Ty)< ad(x,y)+b{d(x,Tx) +d(Ty, Tx)]

there exists a,b € R witha +2b < 1, a+b<l1
then

i Fp#¢
(i1) T nhasa unique fixed point/ .

Proof: Fix any x € X and0 <k <1, X, = Txo if
H ,(Tx,,Tx,)=0 then Tx, = Tx,ie, x, € Tx,
that I # ¢ .

which actually means

Let H ,(Tx,,Tx,)#0.
By lemma 1.2 there exist X, € Tx1 such that

d(x,x,)< H,(Tx,,Tx,)+k

<ad(x,,x )+b[d(x,,Tx,)+d(Tx,, Tx, )]+ k
<ad(x,,x,)+bd(x,,x, )+bd(x,,x )+ k
<(a+b)d(x,,x,)+bd(x,,x )+k
d(x,,x,)—bd(x,,x,) < (a+b)d(x,,x, ) +k

(l—b)d(xl,xz)ﬁ (a+b)d(x0,xl)+k

a+b

d(xl,xz)sﬁd(xo,xlﬁk

d(x,,x,)<kd(x,,x )+ k
Where k = 20 a2 <1 0<k<1
1-b
it H,(Tx,,Tx,)=0 then Tx,=Tx, ic
X, € sz . Let Hd (T)Cl , sz ) #0. Again by lemma

1.2 there exists X; € sz .

d(x,,x;) < kd(x,,x, )+ k*

and by induction

d('xn ’ xn+1 ) = kd(xnfl ’ xn )+ k

<k(kd(x, 5, x, )+ K" )+ k"

=kd(x, ,, x, )+ kk"" + k"
<k"d(x,,x,)+nk".

Since k <1, Zk" and an" have same radius of

convergence, {x " } is a cauchy sequence.

Since (X ,d )be a complete metric space, therefore

{Xn} converges toU .
d(u’11u)S d(u’xn+l)+d(xn+l’

<d(u,x,,)+H,(Tx,,Tu)
Sd(u,xn+l)+ ad(xn,u)+ bld(xn,Txn )+ d(Tu,Txn )J

Tu)

= d(u,xn)+ ad(xn ,u)+ bd(xn X )+ bd(Tu,xn)
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<d(u,x,)+ad(x,,u)
2)
+bk"d(x0,xl)+ d( T“axm)

n — 0in (2) we get

d(u, Tu) < bd(u, Tu)
(1-b)d(u, Tu)<0
b<1,dw,Tu)=0 = u=Tu.

2.1 Projection on Multivalued Contraction

Given a point X € X and a compact set 4 C X we
know that the function d (x,a)has at least one
minimum  point a whena € A. So we have
d(x,a*)S d(x,a) forall a € A. We call a the
projection of the point X on the set A and denote it
as a* = XA. Obviously, a* is not unique but we
choose one of it. Let T 1 X — P(X) be a
multivalued mapping such that T()C)is a compact set
for allx € X . We define the following projection

associated with a multivalued map T
byP(x)ZﬂxT()C). For X, € X we
define X, ,, = P(xn), n=0,1,2,3.... and we call
the sequence {xn };O:O in this manner a picard projection
iteration sequence of T.

Theorem 2.3 Let (X ,d )be a complete metric space.
Let T:X —> P (X )be a multivalued map satisfying

H ,(Tx,Ty) < ad(x, y)+bd(x,Tx) + d(Ty, Tx)]

there exists a,b € R witha +2b < 1, a+b<l1
then
(i) for all X, € X there exists a point # € X such

that X, = P(xn ) —> U when 11 —> 00,

(i) U is a unique fixed point, i.e., U € Tu.

Proof: Starting from the pointX, € X, take the

projection P(x0 )ofthe point on the set Tx, computing

we haved(x,, Tx, ) = d(x,, P(x,) ).

Let X, = P(xo)and take the projection of X, on the

set Tx, , we have

af(x2,x1 ) = a’(P(x1 ),xl ) = a’(x1 , Ix, )
=d(P(x,),Tx,)

<H ,(Tx,,Tx,)
Sad(xo,x1)+ b[a’(xO,Tx0 )+ d(Txl,TxO )]

< ad(xo,xl)+bd(x0,x1)+bd(x2,xl)
< (a +b)d(x0,xl)+bd(x2,xl)
d(xl,xz)—bd(xz,xl)ﬁ (a+b)d(x0,x1)

(l—b)d(xl,xz)ﬁ (a+b)d(x0,x1)

d(xl,xz)sa—w

-5 d(x()sxl)

d(xl,xz)Skd(xo,xl)

We can use the same argument as in theorem 2.2. for the
rest of the proof.

Regarding the generalized well-posedness of a fixed
point problem, we have the subsequent result.

Theorem 2.4 Let (X ,d ) be a compact metric space and
letT: X —>P (X ) be a multivalued contraction then
If (xn )nEN is such that d(xn , Txn ) —>0 as

n — 00, then there exists a sub sequence (xn, ) Nof
17e

d .
(xn )neN such that X, ———>u € F, as i > ©

generalized well-posedness of the fixed point problem
with respect to d [4].
Proof: Let (xn )neN be a sequence in X such that

d(xn,Txn)—>O asyl —> 0. Let (x be a

i )ieN
d
subsequence of (xn )ne y such that X, ———u
1
asi —> 00 . Then there exist Yu € T(an ), such that
1 1
Vo —< 5S4 asi—>00. Then
1
d(u, Tu) < d(u, Txnl_ )+ d(ym , Txnl_ )+ Hd (Txm , Tu)

< d(u,Txnl_ )+ d(y"i ,Txnv )+ adkxn ,u)—i—
b[d (xni ,Tx )+ d (Txni ,Tu )]

< d(u, Txni )+ ad(xnl_ , u)+

i

bd (x Txni )+ bd (Txni ,Tu ) -0

.9
nl

asn—)OO.HenceuEFT.
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2.2 Continuity of Single Valued Contraction

Any contraction is continuous, while Kannan mapping
[1] is not generally continuous on the whole space but
continuous at the fixed points. Rhoades [6], [7] have
found a large class of contractive type mapping which are
continuous at their fixed points, but are not continuous on

the whole space X . In this section we prove continuity
of single valued contraction then results state that single
valued contraction is continuous at its fixed point.

Theorem 2.5 Let (X ,d )be a complete metric space.
Let 7 : X — X be a single valued contraction. Then

T is continuous at , for any U € FT .

Proof: Since T is single valued contraction, there exists

constants a, b such that @+ 2b <1we know by

theorem 2.1 that for any X, € X the picard iteration

(%, defined by x,,=Tx, "= 0L2

converges to fixed pointi4 € FT .
0 . .
Let { n} =0 D€ any sequence in X converging tol .

Then by taking ) = ), and X =U in the

single valued contraction

d(Tx,Ty) < ad(x, y)+b[d(x,Tx) +d(Ty, Tx)]

d(Tu,Tyn)S ad(u,yn)er[d(u,T(u))Jr d(Tyn,Tu )]

which in view of JTu =u is equivalent to

d(Tu,Ty,)< ad(u,y,)+bd(Ty,,Tu )

d(Tu,Ty,)~d(Tu,Ty,)< ad(u,y,) n=0,1,2,...

(l—b)d(Tu,Tyn)S ad(u,yn) n=0,1,2,.. (3

Now letting in (3)77 —> © Tyn —>Tu as n —>

which shows that 7" is continuous at % .
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