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ABSTRACT 

In this paper, we establish the fixed point theorems for single and multivalued valued contraction in complete 

metric space. We investigate an iteration method involving projections which converges to a fixed point using 

multivalued contraction. Also we prove the generalized well-posedness of the fixed point problem and 
continuity of single valued contraction in metric space. 
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1. INTRODUCTION 

 

 

Fixed point theory is an exciting branch of mathematics. 

In 1922, the Polish mathematician Stefan Banach proved 

a theorem on the existence and uniqueness of a fixed 

point in a complete metric space.  Various authors have 

defined contractive mappings on a complete metric space 

which are generalizations of well-known banach 

contraction.  Rhoades [5] compared and discussed the 

relation between all the contractions with appropriate 

examples. We introduce contraction mapping and 

establish fixed point theorems on complete metric space.  

The notion of set valued contraction was initiated by 

Nadler [2] in 1969. He proved that a set valued 

contraction possesses a fixed point in a complete metric 

space.  Subsequently many authors generalized Nadlers 

fixed point theorem in different ways.  Kunze et al. [3] 

have introduced an iteration method involving a 

projection which converges to a fixed point using 

multivalued nadler contraction.We investigate an 

iteration method involving projections which converges 

to a fixed point using multivalued contraction.   

Let ( )dX , be a metric space. Let ( )XP  be the family 

of all non-empty subsets of X and let 

( )XPX →:T be a multivalued mapping.  A point is 

said to be a fixed point of the multi-valued mapping 

T if xx T∈  or ( ){ }xxXxF T
T

∈∈= :  

and { } ( ){ }xxXxSF T
T

=∈= : .   

Definition 1.1 Let ( )dX , be a metric space and 

( )XP  be the family of all non-empty closed and 

bounded subsets of X , 



756 GU J Sci, 27(2):755-759 (2014)/ G.Arockia PRABAKAR, Ramasamy UTHAYAKUMAR 

Define ( ) ( )yxdBxd By ,inf, ∈= ,  

( ) ( )BxdBAh Ax ,sup, ∈=  for all Xx∈  

 ( )XPBA ∈, The Hausdorff metric or Hausdorff 

distance dH is a function   

( ) ( ) RXPXPH d →×: defined by  

( ) ( ) ( ){ }ABhBAhBAH d ,,,max, =  

( )( )dHXP ,  is called a Hausdorff metric space. 

Lemma 1.1 [3] Let ( )dX , be a metric space, 

Xyx ∈, and CBA ,,  are subsets of X . Then the 

following statements hold: 

If BA⊆ , then ( ) ( )CBdCAd ,, ≥  and 

( ) ( )CBhCAh ,, ≤  and ( ) ( )BChACh ,, ≥ . 

 
( ) ( ) ( )AydyxdAxd ,,, +≤

 

( ) ( ) ( ) ( )ABhBydyxdAxd ,,,, ++≤
. 

Definition 1.2 Let ( )dX , be a metric space. A map 

XXT →: is called banach contraction if there exists 

10 <≤ k such that ( ) ( )yxkdTyTxd ,, ≤ , for 

all Xyx ∈, . 

Definition 1.3 [2] Let ( )dX , be a metric space. A map 

( )XPX →:T is called multivalued contraction if 

there exists 10 <≤ k such 

that ( ) ( )yxkdTyTxH d ,, ≤ , for all Xyx ∈, . 

Lemma 1.2 [2] If ( )XPBA ∈, and Aa∈ then for 

each 0>k , there exists Bb∈ such that  

( ) ( ) kBAHbad d +≤ ,, . 

 

2. MAIN RESULTS 

Theorem 2.1 Let ( )dX , be a complete metric space. 

Let XXT →: be a single valued map satisfying 

( ) ( ) ( )],),([,, TxTydTxxdbyxadTyTxd ++≤

 there exists 
+∈Rba, with 12 <+ ba , 1<+ ba  

then  

 

 

(i) T has a unique fixed point i.e., uFT = ,  

(ii) The picard iteration associated to T i.e., the 

sequence { }∞
=0nnx defined by nn Txx =+1  

,....2,1,0=n  converges to the fixed pointu . 

 

Proof: To prove the existence of the fixed point, we 

show that for any Xx ∈0 the picard iteration { }nx  is a 

cauchy sequence. 

( ) ( )1021 ,, TxTxdxxd =
 

                                                       

( ) ( ) ( )],,[, 100010 TxTxdTxxdbxxad ++≤
 

                                                  

( ) ( ) ( )],,[, 211010 xxdxxdbxxad ++≤
 

                                        

( ) ( ) ( )2110 ,, xxbdxxdba ++≤
 

                                                

( ) ( ) ( ) ( )102121 ,,, xxdbaxxbdxxd +≤−
 

                                                          

( ) ( ) ( ) ( )1021 ,,1 xxdbaxxdb +≤−
 

                                                                    

( ) ( )1021 ,
1

, xxd
b

ba
xxd

−

+
≤

 

( ) ( )1021 ,, xxkdxxd ≤
 

b

ba
k

−

+
=
1

 ,  12 <+ ba  10 << k . 

and by induction  

 
( ) ( )101 ,, xxdkxxd n

nn ≤+  
( ) ( ) ( ) ( )mmnnnnmn xxdxxdxxdxxd ,..........,,, 1211 −+++ +++≤

                    

( ) ( )10

11 ,........ xxdkkk mnn −+ +++≤
    

( )10 ,
1

xxd
k

k n

−
≤

 

Since 10 << k , it results that 0→nk  as 

∞→n shows that { }nx  is a cauchy sequence.   Since 

( )dX , be a complete metric space, therefore { }nx  

converges tou . 

nxnu
lim

∞→=
 

Hence u is a fixed point ofT . 

( ) ( ) ( )TuxdxudTuud nn ,,, 11 ++ +≤
 

                
( ) ( )TuTxdxud nn ,, 1 += +       

( ) ( ) ( ) ( )[ ]nnnnn TxTudTxxdbuxadxud ,,,, 1 +++≤ +

 

                                               

( ) ( ) ( ) ( )
nnn
xTubdxxbduxadxud nn ,,,, 1 +++= +
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( ) ( )

( ) ( )
1

,,

,,

10

1

+
++

+≤ +

n
xTudxxdbk

uxadxud

n

nn
                                (1) 

∞→n in (1) we get  

( ) ( )TuubdTuud ,, ≤
 

( ) ( ) 0,1 ≤− Tuudb
 

1<b , ( ) 0, =Tuud      ⇒  Tuu = . 

Uniqueness: On the contrary let u and v be two fixed 

points of T  then Tuu = and Tvv = . 

( ) ( )TvTudvud ,, =
                                               

( ) ( ) ( )],,[, TuTvdTuudbvuad ++≤
                                 

( ) ( ) ( )uvbduubdvuad ,,, ++≤
     

( ) ( )vudba ,+≤
                                                

( ) ( ) 0,1 ≤+− vudba
                                          

( ) .0,,1 vuvudba =⇒=<+
 

Example 2.1 ]1,0[=X endowed with Euclidean 

metric ( ) yxyxd −=, and a map 

XXT →: defined as follows  

[ )1,0for
3

∈= x
x

Tx
 

6

1
1=T

 
Contraction condition is satisfied for 

31=a and 21=b . 

Theorem 2.2 Let ( )dX , be a complete metric space. 

Let ( )XPX →::::T be a multivalued map satisfying 

( ) ( ) ( )],),([,, xydxxdbyxadyxH d TTTTT ++≤

there exists 
+∈Rba, with 12 <+ ba , 1<+ ba  

then  

(i) φ≠
T
F  

(ii) T  has a unique fixed pointu . 

Proof:  Fix any Xx∈ and 10 << k , 01 xx T= if 

( ) 0, 10 =xxH d TT  then 10 xx TT = i.e,  11 xx T∈  

which actually means that φ≠
T
F .  

Let ( ) 0, 10 ≠xxH d TT . 

 By lemma 1.2 there exist 12 xx T∈  such that  

( ) ( ) kxxHxxd d +≤ 1021 ,, TT
 

                                                  

( ) ( ) ( ) kxxdxxdbxxad +++≤ ],,[, 010010 TTT
 

                                          

( ) ( ) ( ) kxxbdxxbdxxad +++≤ 121010 ,,,
 

                                                                  

( ) ( ) ( ) kxxbdxxdba +++≤ 1210 ,,
 

                                   

( ) ( ) ( ) ( ) kxxdbaxxbdxxd ++≤− 101221 ,,,
 

                                            

( ) ( ) ( ) ( ) kxxdbaxxdb ++≤− 1021 ,,1
 

                                                     

( ) ( ) kxxd
b

ba
xxd +

−

+
≤ 1021 ,
1

,
 

               

( ) ( ) kxxkdxxd +≤ 1021 ,,
 

Where 
b

ba
k

−

+
=
1

,  12 <+ ba , 10 << k . 

If ( ) 0, 21 =xxH d TT  then 21 xx TT =  i.e. 

22 xx T∈ . Let ( ) 0, 21 ≠xxH d TT . Again by lemma 

1.2 there exists 23 xx T∈ . 

( ) ( ) 2

2132 ,, kxxkdxxd +≤
 

and by induction              

( ) ( ) kxxkdxxd nnnn +≤ −+ ,, 11  

( )( ) nn

nn kkxxkdk ++≤ −
−−

1

12 ,  

 
( ) nn

nn kkkxxdk ++= −
−−

1

12

2 ,
  

.......≤  

 ( ) ., 10

nn nkxxdk +≤  

Since 1<k , ∑ nk and ∑ nnk  have same radius of 

convergence, { }nx  is a cauchy sequence.   

 Since ( )dX , be a complete metric space, therefore 

{ }nx  converges tou .  

( ) ( ) ( )uxdxuduud nn TT ,,, 11 ++ +≤
 

 
( ) ( )uxHxud ndn TT ,, 1 +≤ +     

( ) ( ) ( ) ( )[ ]nnnn xudxxdbuxadxud
n

TTT ,,,, 1 +++≤ +

                                     

( ) ( ) ( ) ( )
nnnn
xubdxxbduxadxud n ,,,, T+++=
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( ) ( )

( ) ( )110 ,,

,,

+++

+≤

n

n

nn

xudxxdbk

uxadxud

T

                                (2) 

∞→n in (2) we get               

( ) ( )uubduud TT ,, ≤
 

 
( ) ( ) 0,1 ≤− uudb T

 

1<b , ( ) 0, =uud T      ⇒  uu T= . 

 

2.1 Projection on Multivalued Contraction  

Given a point Xx∈ and a compact set XA⊆ we 

know that the function ( )axd , has at least one 

minimum point 
*a when Aa∈ . So we have  

( ) ( )axdaxd ,, * ≤  for all Aa∈ . We call 
*a the 

projection of the point x  on the set A and denote it 

as Aa xπ=
*

. Obviously, 
*a is not unique but we 

choose one of it. Let ( )XPX →::::T  be a 

multivalued mapping such that ( )xT is a compact set 

for all Xx∈ . We define the following projection 

associated with a multivalued mapT  

by ( ) ( )xxxP Tπ= . For Xx ∈0 we 

define ( )nn xPx =+1 , ....3,2,1,0=n  and we call 

the sequence { }∞
=0nnx in this manner a picard projection 

iteration sequence ofT .  

Theorem 2.3 Let ( )dX , be a complete metric space. 

Let ( )XPX →::::T be a multivalued map satisfying 

( ) ( ) ( )],),([,, TxTydTxxdbyxadTyTxH d ++≤

 there exists 
+∈Rba, with 12 <+ ba , 1<+ ba  

then  

(i) for all Xx ∈0 there exists a point Xu∈ such 

that ( ) uxPx nn →=+1  when ∞→n , 

(ii) u is a unique fixed point, i.e., uu T∈ . 

Proof: Starting from the point Xx ∈0 , take the 

projection ( )0xP of the point on the set 0xT computing 

we have ( ) ( )( )0000 ,, xPxdxxd =T .  

Let ( )01 xPx = and take the projection of 1x  on the 

set 1xT , we have  

( ) ( )( ) ( )111112 ,,, xxdxxPdxxd T==
 

                  
( )( )10 , xxPd T=

 

                 
( )10 , xxHd TT≤

 

( ) ( ) ( )[ ]010010 ,,, xxdxxdbxxad TTT ++≤
 

                             

( ) ( ) ( )121010 ,,, xxbdxxbdxxad ++≤
 

                                                          

( ) ( ) ( )1210 ,, xxbdxxdba ++≤
 

                          

( ) ( ) ( ) ( )101221 ,,, xxdbaxxbdxxd +≤−
 

                                   

( ) ( ) ( ) ( )1021 ,,1 xxdbaxxdb +≤−
 

                                            

( ) ( )1021 ,
1

, xxd
b

ba
xxd

−

+
≤

 
       

( ) ( )1021 ,, xxkdxxd ≤
 

We can use the same argument as in theorem 2.2. for the 

rest of the proof. 

Regarding the generalized well-posedness of a fixed 

point problem, we have the subsequent result. 

Theorem 2.4 Let ( )dX , be a compact metric space and 

let ( )XPX →:T  be a multivalued contraction then  

If ( )
Nnnx ∈
 is such that ( ) 0, →nn xxd T  as 

∞→n , then there exists a sub sequence ( )
Niin

x
∈

of 

( )
Nnnx ∈
 such that 

T
Fux d

in
∈→  as ∞→i  

generalized well-posedness of the fixed point problem 

with respect to d [4]. 

Proof: Let ( )
Nnnx ∈
 be a sequence in X such that 

( ) 0, →nn xxd T  as ∞→n .  Let ( )
Niin

x
∈

be a 

subsequence of ( )
Nnnx ∈
such that ux d

in
→  

as ∞→i . Then there exist ( )
ii nn xy T∈ , such that 

uy d

in
→  as ∞→i . Then 

( ) ( ) ( ) ( )ux
d

Hxydxuduud
inin inin

TTTTT ,,,, ++≤

  

( ) ( ) ( )
( ) ( )[ ]uxdxxdb

uxadxydxud

inin

in

in

ininin

TTT

TT

,,

,,,

+

+++≤

 

   

( ) ( )
( ) ( ) 0,,

,,

→+

++≤

uxbdxxbd

uxadxud

ininin

inin

TTT

T

 

as ∞→n . Hence
T
Fu∈ . 
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2.2 Continuity of Single Valued Contraction 

 

Any contraction is continuous, while Kannan mapping 

[1] is not generally continuous on the whole space but 

continuous at the fixed points. Rhoades [6], [7] have 

found a large class of contractive type mapping which are 

continuous at their fixed points, but are not continuous on 

the whole space X . In this section we prove continuity 

of single valued contraction then results state that single 

valued contraction is continuous at its fixed point. 

Theorem 2.5 Let ( )dX , be a complete metric space. 

Let XXT →: be a single valued contraction. Then 

T  is continuous atu , for any TFu∈ .  

Proof: Since T  is single valued contraction, there exists 

constants a, b such that 12 <+ ba we know by 

theorem 2.1 that for any Xx ∈0 the picard iteration 

{ }∞
=0nnx defined by nn Txx =+1   

....2,1,0=n
 

converges to fixed point TFu∈ . 

Let { }∞
=0nny be any sequence in X converging tou . 

Then by taking nyy =  and ux =  in the 

single valued contraction  

( ) ( ) ( )],),([,, TxTydTxxdbyxadTyTxd ++≤
   

( ) ( ) ( )( ) ( )[ ]TuTyduTudbyuadTyTud nnn ,,,, ++≤

which in view of uTu =  is equivalent to  

( ) ( ) ( )TuTybdyuadTyTud nnn ,,, +≤
          

( ) ( ) ( ) ,...2,1,0,,, =≤− nyuadTyTudTyTud nnn

                          

( ) ( ) ( ) ,..2,1,0,,1 =≤− nyuadTyTudb nn  (3) 

Now letting in (3) TuTyn n →∞→  as ∞→n  

which shows that T  is continuous atu . 

 

ACKNOWLEDGEMENT 

The first author is thankful to UGC, New Delhi for 

providing BSR fellowship. 

CONFLICT OF INTEREST 

No conflict of interest was declared by the authors.  

 

REFERENCES 

[1]. Kannan, R Some results on fixed points, Bull. 

Calcutta Math.Soc. 10 71-76 1968. 

 

[2]. Kunze, H.E., La Torre, D., and Vrscay, E.R., 

Contractive multifunctions, fixed point    inclusions 

and iterated multifunction systems, J. Math. Anal. 

Appl. 330:159-173 2007. 

 

[3]. Nadler, S.B., Multivalued contraction mappings, 

Pacific J. Math., 30:475-488 1969. 

 

[4]. Petrusel A., Rus.I.A, and Cao. J.C, Well-posdeness 

in the generalized sense of the fixed point problems 

for multivalued operators, Taiwanese Journal of 

Mathematics, 11(3) 903-914 2007. 

 

[5]. Rhoades, B, E., A comparison of various definitions 

of contractive mappings, Trans. Amer. Math. Soc., 

226:257-290 1977. 

 

[6]. Rhoades, B.E., Contractive definitions and 

continuity, Contemporary Mathematics, 72 233-245 

1988. 

 

[7]. Rhoades, B.E., Fixed points and continuity for 

multivalued mappings, Internat. J. Math. Math. 

Sci., 15 15-30 1992. 

 


