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Abstract: In this research article, a numerical approach to the solutions of different forms of Emden-Fowler is presented. 

The variational Iteration Method (VIM) has been applied to a wide class of problems in mathematical physics, biology 

and chemical reactions. The solutions provided in this research proved that the method converged rapidly with easily 

computable terms. 
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1. Introduction 

The Variational Iteration Method [1-5] has been applied to many real life problems in theoretical physics, 

mathematical physics, biological sciences and in recent years, a great deal of attention has been devoted 

to the study of the method.  

Many problems in applied mathematical physics that occur on semi-infinite interval, are related to 

Emden-Fowler equation [6-16]. The equation is of the form: 
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where ))(,( tutf  and )(tg  are continuous real valued functions )(th  is a continuous and differentiable 

function with 0)( th . 



 
 
2                    M. O. Olaviwola 

Equations such as Emden-Fowler and Lane-Emden are special cases of equation (1). 

The Emden-Fouler equation of the form: 

0,0)()()(  tuftfu
t

k
tu t

           (2) 

0)0(',1)0(  uu  

is sometimes called the generalized Lane-Emden equation while the standard Lane-Emden equation: 
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was first studied by the astrophysicists Jonathan Homer Lane and Robert Emden [6]. The equations had 

attracted many researchers in the field of applied mathematics and computation. A. M. Wazwaz [7] 

presented Adomian decomposition method for the analytical solution of the time dependent Emden-

Fowler type equations. He also investigated the solution of Lane-Emden problem [8]. Aslanov [9] studies 

the Emden Fowler type equation and presented approximate solution to some numerical problems. 

Homotopy perturbation method was used to solve Lane-Emden problems [10]. Recently, Wazwaz [11] 

presented the Variational Iteration Method for solving the Volterra Integro differential forms of the Lane-

Emden and the Emden-Fowler problems. 

Different approaches were also presented for the Emden-Fowler and Lane-Emden problems in [12-16]. 

2. Variational Iteration Method 

The basic idea of the He's Variational Iteration Method (VIM) [1-5] can be explained by considering the 

following nonlinear partial differential equations: 

)()()( tgtNutLu                    (4) 

where L is the linear operator, N  is the nonlinear operator and )(tg is the inhomogeneous term. 

According to the method, the corresponding variational iteration method for solving (4) is given as:  
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where  is a Lagrange multiplier which can be identified optimally by variational iteration method. The 

subscript n  denote the nth  approximation, 


nu  is considered as a restricted variation i.e 0


nu . The 

successive approximation 0,1  nun  of the solution u can be easily obtained by determine the Lagrange 

multiplier and the initial guess 0u , consequently, the solution is given by 



n

nuu lim . 

 

In order to solve the equation (1) by means of the method, a correction functional can be constructed as 

follows:  
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Making the equation (6) correction functional stationary and following the stationary conditions, the 

Lagrange muiltipler can be readily identified as: 
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3. Numerical Examples 

In this section, VIM will be applied to some cases of Emden-Fowler type problems. 

Problem 1: Consider the following linear, non homogeneous singular initial value problem: 
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with initial conditions:
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Here, 
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The successive approximations are: 
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The exact solution is also given as: 
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Problem 2: Consider the following linear, singular initial value problem: 
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The successive approximations are: 
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The exact solution is: 

4
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Problem 3: Consider the following nonlinear singular initial value problem [13]: 
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Similarly, the successive approximations can be obtained as: 
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The problem has no closed form solution. 

Above result is in agreement with results obtained in [13] after the 40
th
 iteration. 

Problem 4: Consider the following nonlinear, non-homogeneous singular initial value problem [13]. 
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The successive results of the iteration are:
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The problem has no closed form solution. 

Above result is in agreement with results obtained in [13] the after 40
th
 iteration. 

Problem 5 Consider the following nonlinear Lane-Emden equation [16]: 
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which has the following analytical solution:
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4. Conclusions 

In this research, the numerical and or analytical solutions of five singular initial value problem of Emden-

Fowler type were calculated by using the variational iteration method. The method is a very fast 

convergent, effective and reliable through the Maple18 code generated and implemented for the 

numerical examples. It can be easily concluded that the VIM is a reliable tool for both the linear and 

nonlinear singular initial value problems of Emden-Fowler type. 
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