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1 Introduction

We show that when infx∈Rn p(x) = 1 Hardy integral operator is a bounded linear operator from the Morrey space with variable exponent to
the weak Morrey space with variable exponent. In this work, we obtain the weak type estimates for Hardy integral operators on Morrey spaces
with variable exponents. We introduce the weak(w) Morrey spaces with variable exponent Mp(.)

u,w (see Definition 2.2) and show that H is a
bounded linear operator that maps Mp(.)

u to Mp(.)
u,w . The weak Morrey spaces has applications on the study of Navier-Stokes equations, see

[7, 10]. The duality of weak Morrey space is investigated in [11]. Furthermore, we also have the atomic decompositions of weak-Hardy Morrey
spaces in [4].

2 Definitions and Auxillary Statements

For any p(.) : Rn −→ [1,∞], we define p+ = supx∈Rn p(x) and p− = infx∈Rn p(x) and also

R
p(.)
∞ = {x ∈ Rn : p(x) =∞}.

And also any x ∈ Rn and r > 0, write B(x, r) = {z : |z − x| < r}.
Define Ψ = {B(x, r) : x ∈ Rn, r > 0}.Furthermore we define

Γlog = {p(.) : Rn −→ [1,∞] :
1

p(.)
is globally log −Holder continuous}.

Definition 2.1.The weak Lebesgue space with variable exponent Lp(.)w consists of all Lebesgue measurable functions f satisfying

‖f‖
L

p(.)
w

= sup
λ>0

λ‖χ{x:|f(x)|>λ}‖Lp(.)

We call p(.) the exponent function of Lp(.)w .

Lemma 1. (See [5]) If p(.) : Rn −→ [1,∞], then ‖.‖
L

p(.)
w

is a quasi-norm. We now recall some basic results for Lp(.). For some details on

the study of Lp(.). the reader is referred to [2, 8]. For any exponent function p(.) : Rn −→ [1,∞], define p
′
(.) by

1

p(.)
+

1

p
′
(.)

= 1

with the convention that 1
∞ = 0.

Lemma 2. (See [5]) Let p(.) : Rn −→ [1,∞]. For any Lebesgue measurable set E with |E| <∞, we have

‖χE‖Lp(.) = ‖χE‖Lp(.)
w

.
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Theorem 1. (See [8, Theorem4.3.8]) Let p(.) : Rn −→ [1,∞]. If p(.) ∈ Γlog with p− > 1, then the Hardy-Littlewood maximal operator
M is bounded on Lp(.).

Lemma 3. (See [5]) Let p(.) : Rn −→ [1,∞] be a globally log-Holder continuous with 1 ≤ p− ≤ p+ <∞. Then, there exists a constant
C > 0 such that for any B ∈ ψ we have

|B| ≤ ‖χB‖Lp(.)‖χB‖Lp
′
(.)
≤ C|B|.

Lemma 4. (See [8, Corollary4.5.9]) Let p(.) ∈ Γlog. There exist constants K,C > 0 such that for any B ∈ ψ, we have

K|B|
1

pB ≤ ‖χB‖Lp(.) ≤ C|B|
1

pB .

Theorem 2. (See [1, Theorem1.8(for α = 1)]).Let p(.) : Rn −→ [1,∞]. Suppose that p(.) is globally log-Holder continuous and satisfies
1 < p− ≤ p+ < n. Define q(.) by

1

p(.)
− 1

q(.)
=

1

n
(1)

We have a constant C > 0 such that for any f ∈ Lp(.),

‖Hf‖Lq(.) ≤ C‖f‖Lp(.)

We see that whenever p(.) and q(.) satisfy (1), we have

1

pB
− 1

qB
=

1

n
, ∀B ∈ ψ (2)

Theorem 3. (See [1, Theorem1.8(for α = 1)]).Let p(.) : Rn −→ [1,∞]. Suppose that p(.) is globally log-Holder continuous and satisfies
1 ≤ p− ≤ p+ < n. Let q(.) be defined by (1). We have a constant C > 0 such that for any f ∈ Lp(.),

‖Hf‖
L

q(.)
w
≤ C‖f‖Lp(.) .

Definition 2.2. Let p(.) : Rn −→ [1,∞) and u : Rn × (0,∞) −→ (0,∞). The Morrey space with variable exponent Mp(.)
k consists of all

Lebesgue measurable functions f satisfying

‖f‖
M

p(.)
k

= sup
B(x,r)∈ψ

1

k(x, r)
‖fχB(x,r)‖Lp(.) <∞

The weak Morrey space with variable exponent Mp(.)
k,w consists of all Lebesgue measurable functions f satisfying

‖f‖
M

p(.)
k,w

= sup
B(x,r)∈ψ

1

k(x, r)
‖fχB(x,r)‖Lp(.)

w
<∞.

3 Main Result

Theorem 4. Let p(.) : Rn −→ [1,∞) and k : Rn × (0,∞) −→ (0,∞). Suppose that p(.) is globally log-Holder continuous and satisfies
1 ≤ p− ≤ p+ < n. Let q(.) be defined by (1).If there exists a constant C > 0 such that for any x ∈ Rn and r > 0, k satisfies

∞∑
j=0

=
‖χB(x,r)‖Lq(.)

‖χB(x,2j+1r)‖Lq(.)

k(x, 2j+1r) ≤ Ck(x, r) (3)

then we have a constant C > 0 such that for any f ∈Mp(.)
k ,

‖Hf‖
M

q(.)
k,w

≤ C‖f‖
M

p(.)
k

.

Proof: Let f ∈Mp(.)
k . For any z ∈ Rn and r > 0, write f0 = χB(z,2r)f and fj = χB(z,2j+1r)/B(z,2jr)f , j ∈ N/{0}. We have f =∑∞

j=0 fj . In view of Theorem 2.7, we find that

‖χB(z,r)Hf0‖Lq(.)
w
≤ C‖f0‖Lp(.) = C‖fχB(z,2r)‖Lp(.) (4)

Notice that there exists a constant C > 0 such that for any z ∈ Rn and r > 0,

χB(z,2r) ≤ CMχB(x,r)

Moreover, whenever p(.) is globally log-Holder continuous with 1 ≤ p− ≤ p+ <∞, then q(.) is globally log-Holder continuous with 1 <
p− ≤ p+ <∞. Therefore, Theorem 2.3 asserts that

‖χB(z,2r)‖Lq(.) ≤ C‖MχB(z,r)‖ ≤ C‖χB(z,r)‖Lq(.)

for some C > 0. Consequently, (3) gives k(z, 2r) < Ck(z, r) for some C > 0 independent of z and r. As a result of the above inequality, (4)
yields
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1

k(z, r)
‖χB(z,r)Hf0‖Lq(.)

w
≤ C 1

k(z, r)
‖χB(z,2r)f‖Lp(.)

≤ C 1

k(z, 2r)
‖χB(z,2r)f‖Lp(.) ≤ C‖f‖

M
p(.)
k

(5)

Next, for any j ≥ 1, we have that for any x ∈ B(z, r)

|Hfj(x)| ≤ C2−j(n−1)r−n+1
∫
B(z,2j+1r)

|f(y)|dy.

The Holder inequality for Lp(.) gives
χB(z,r)(x)|Hfj(x)|

≤ C2−j(n−1)r−n+1χB(z,r)(x)× ‖χB(z,2j+1r)f‖Lp(.)‖χB(z,2j+1r)‖Lp
′
(.)

(6)

Since p(.) is globally log-Holder continuous with 1 ≤ p− ≤ p+ <∞. Lemma 2.4 ensures that

Dj ≤ C2−j(n−1)r−n+12n(j+1)rn
‖χB(z,2j+1r)f‖Lp(.)

‖χB(z,2j+1r)‖Lp(.)

≤ C2jr
‖χB(z,2j+1r)f‖Lp(.)

‖χB(z,2j+1r)‖Lp(.)

Lemma 2.5 and (2) show that

K
|B(z, 2j+1r)|

1
n

‖χB(z,2j+1r)‖Lp(.)

≤ 1

‖χB(z,2j+1r)‖Lq(.)

≤ C |B(z, 2j+1r)|
1
n

‖χB(z,2j+1r)‖Lp(.)

for some C,K > 0 independent of z and r.
Since |B(z, 2j+1r)|

1
n = C2jr, where C > 0 is a constant independent of z and r > 0, we obtain

Dj ≤ C
‖χB(z,2j+1r)f‖Lp(.)

‖χB(z,2j+1r)‖Lq(.)

.

Consequently,

χB(z,r)(x)

∞∑
j=1

|Hfj(x)| ≤ CχB(z,r)(x)

∞∑
j=1

‖χB(z,2j+1r)f‖Lp(.)

‖χB(z,2j+1r)‖Lq(.)

.

By applying the quasi-norm ‖.‖
L

q(.)
w

on both sides of the above inequality, we get

‖χB(z,r)(x)

∞∑
j=1

|Hfj(x)|‖
L

q(.)
w
≤ C‖χB(z,r)‖Lq(.)

w,k

∞∑
j=1

‖χB(z,2j+1r)f‖Lp(.)

‖χB(z,2j+1r)‖Lq(.)

≤
∞∑
j=1

‖χB(z,r)f‖Lq(.)
w

‖χB(z,2j+1r)‖Lq(.)

k(z, 2j+1r)‖f‖
M

p(.)
k

.

Lemma 2.2 gives

1

k(y, r)
‖χB(z,r)(x)

∞∑
j=1

|Hfj(x)|‖
L

q(.)
w
≤
∞∑
j=1

k(z, 2j+1r)

k(z, r)

‖χB(z,r)f‖Lq(.)
w

‖χB(z,2j+1r)‖Lq(.)

‖f‖
M

p(.)
k

≤
∞∑
j=1

k(z, 2j+1r)

k(z, r)

‖χB(z,r)f‖Lq(.)

‖χB(z,2j+1r)‖Lq(.)

‖f‖
M

p(.)
k

.

Therefore, (3) and (5) yield
1

k(z, r)
‖χB(z,r)(x)Hf‖

L
q(.)
w

C(
1

k(z, r)
‖χB(z,r)(x)Hf0‖Lq(.)

w
+

1

k(z, r)
‖χB(z,r)(x)

∞∑
j=1

|Hfj |‖Lq(.)
w

) ≤ C‖f‖
M

p(.)
k

.

for some C > 0 independent of B(z, r) ∈ ψ. By taking the supremum over z ∈ Rnand r > 0, we obtain

‖Hf‖
M

q(.)
k,w

≤ C‖f‖
M

p(.)
k

.

Thus the proof of Theorem 3.1 is completed.

�

The reader is referred to ([6], pp.366− 367) for some examples of k that satisfies (3) and the relation between (3) with the conditions
imposed on k for the results obtained in [3, 9].
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