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Abstract: A function g(z) is said to be univalent in a domain D if it provides a one-to-one mapping onto its image, g(D). Geometri-
cally , this means that the representation of the image domain can be visualized as a suitable set of points in the complex plane. We
are mainly interested in univalent functions that are also regular (analytic, holomorphik) in U . Without lost of generality we assume
D to be unit disk U = {z : |z| < 1}. One of the most important events in the history of complex analysis is Riemann’s mapping
theorem, that any simply connected domain in the complex plane C which is not the whole complex plane, can be mapped by any
analytic function univalently on the unit disk U. The investigation of analytic functions which are univalent in a simply connected
region with more than one boundary point can be confined to the investigation of analytic functions which are univalent in U. The
theory of univalent functions owes the modern development the amazing Riemann mapping theorem. In 1916, Bieberbach proved

z

that for every g(z) =z + 372 5 anz" inclass S , |az| < 2 with equality only for the rotation of Koebe function k(z) = e -
We give an example of this univalent function with negative coefficients of order % and we try to explain B% (1, o —1) with convex
functions.
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1 Introduction
A indicates the class of the functions of form g(z)
g(z) =z + as2? 4+ az2® + asz* + a52° + a2’ + a72” + ag2® + ...

that are analytic and univalent in the open unit disk U = {z : |z| < 1}.
Let A(n) show the A subclass of form’s functions

g(z) =z + as2? + agz® + asz* + as52° + a2’ + a7z’ +agz® + ... (a, > 0).

Let T'(n) denote the subclass of A(n) consisting of functions which are univalent in U. Further a function in 7'(n) is said to be starlike of
order % if and only if satisfies

%(zjéj)) >1 (z € ),

and such a subclass of A(n) consisting of all the starlike functions of order % is denote by Ty (n). Also, g(z) € T'(n) is said to be convex

of order i if and only if satisfies

and the subclass by C' 1 (n)[1]12]]3][6])-
For n = 1, these notations are usually used as T% (1H)=1" (%) this form with starlike function and show us we have this form for convex
functions with C's (1) = C*($)[5].

Theorem 1. [1] A function g(z) in A(n) is in Ti (n) if and only if
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Ezozn+1 (k_ %) ap <1—

3

Theorem 2. [1] A function g(z) in A(n) is in C% (n) if and only if
-

S k(b= a,<1-1=

We introduced subclass A(n, 6) of A, and the subclass 175 (n, ) and C 1 (n, ) of A(n,0) in the we define the subclass with this way. Let

A(n, 0) denote the subclass of A consisting of function of the form

ih=1)0g, 27 (ar, >0, neN) [4].

9(z) =2 =3l e
We note that A(n,0) = A(n), thatis A(n, ) is the subclass of analytic functions with negative coefficients. We denote by 1’7 (n, 6) starlike
4

functions and C' 1 (n, 0) the subclass of A(n, @) of convex functions of order i inU.

Theorem 3. A function g(z) in A(n,0) is in T3 (n, 0) if and only if
4
Shenar (B—1)ar <1— 5 =304].

Theorem 4. A function g(z) in A(n, 0) is in C% (n, 0) if and only if
1

Sk (k=) e <1-7 [4].

Y

Theorem 5. If g(z) is in C’% (n, 0), then
|Z|n+1.

3 1 3
Izl = e 1A < 19 < L2l + sy

The right hand equality holds for the function

+1 (z = reii(eJr%), r< 1)

_ in6 3 n
g(z) =z—e (n+1)(dn+3) ¢

and the left hand equality holds for the function
9(z) =2z — ememzn*—l (z = re_ie, T < 1) [4].

Theorem 6. (Main theorem) If g(z) € B% (1,%,—1), then we have

”_ 3+2§\/522 + 3—%\/323 + 4%24 _ 3+23\/§z5 . 3—2:’)\/526 .

g(z) =

Proof:
Let Bi(n, 6, h) denote the subclass of A(n,#) consisting of functions of the form

1
4
g(z) =2 = 302, g et F g

where

(h>n, neN, n>1).

o [eS) i(k—1)0 6 _n
9(2) =2 =332, 1 T Gz
6e'3 2 6e25 3 6e>3 4 6e3 5 65 6
9(2) =z = 45 T 49, T 49 £ T 19, % T 19 %~
6cisg 2 6cis=+ 3 6eism 4 6cis= 5 6cis%r 6
=%~ 19 . a9 — 49 T T 4o T 49 T
1 ivV3 1 V3 1 V3
2(5"'2)272(_5""2 37;2472(54'2)57
19~ ~ 19 T a1r — T 1 F
- 3+Zé\/322+ 3—25\/§z3+ 6 4 3+3iv3 5 3—26\/§Z6_~_
We have proved the desired answer and we show that g(z) € B%(l, 5,—1)and B1(1,%,-1) € C%(l, %) s0 g(z) is convex function.
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