Conference Proceeding of 2th International Conference on Mathematical Advences and Applications (ICOMAA-2019).

On the Conversion of Convex Functions to Certain within the Unit Disk

ISSN: 2651-544X

http://dergipark.gov.tr/cpost

Hasan Şahin ${ }^{1, *}$ Ismet Yıldız ${ }^{1}$ Umran Menek ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey, ORCID:0000-0002-5227-5300
* Corresponding Author E-mail: hasansahin13@gmail.com

Abstract

A function $g(z)$ is said to be univalent in a domain D if it provides a one-to-one mapping onto its image, $g(D)$. Geometrically , this means that the representation of the image domain can be visualized as a suitable set of points in the complex plane. We are mainly interested in univalent functions that are also regular (analytic, holomorphik) in U. Without lost of generality we assume D to be unit disk $U=\{z:|z|<1\}$. One of the most important events in the history of complex analysis is Riemann's mapping theorem, that any simply connected domain in the complex plane \mathbb{C} which is not the whole complex plane, can be mapped by any analytic function univalently on the unit disk U. The investigation of analytic functions which are univalent in a simply connected region with more than one boundary point can be confined to the investigation of analytic functions which are univalent in U. The theory of univalent functions owes the modern development the amazing Riemann mapping theorem. In 1916, Bieberbach proved that for every $g(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ in class $S,\left|a_{2}\right| \leq 2$ with equality only for the rotation of Koebe function $k(z)=\frac{z}{(1-z)^{2}}$. We give an example of this univalent function with negative coefficients of order $\frac{1}{4}$ and we try to explain $B_{\frac{1}{4}}\left(1, \frac{\pi}{3},-1\right)$ with convex functions.

Keywords: Class s, Convex functions, Univalent functions.

1 Introduction

A indicates the class of the functions of form $g(z)$

$$
g(z)=z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+a_{6} z^{6}+a_{7} z^{7}+a_{8} z^{8}+\ldots
$$

that are analytic and univalent in the open unit disk $U=\{z:|z|<1\}$.
Let $A(n)$ show the A subclass of form's functions

$$
g(z)=z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+a_{6} z^{6}+a_{7} z^{7}+a_{8} z^{8}+\ldots\left(a_{k} \geq 0\right)
$$

Let $T(n)$ denote the subclass of $A(n)$ consisting of functions which are univalent in U. Further a function in $T(n)$ is said to be starlike of order $\frac{1}{4}$ if and only if satisfies

$$
\Re\left(\frac{z g^{\prime}(z)}{g(z)}\right)>\frac{1}{4} \quad(z \in U)
$$

and such a subclass of $A(n)$ consisting of all the starlike functions of order $\frac{1}{4}$ is denote by $T_{\frac{1}{4}}(n)$. Also, $g(z) \in T(n)$ is said to be convex of order $\frac{1}{4}$ if and only if satisfies

$$
\Re\left\{1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right\}>\frac{1}{4} \quad(z \in U)
$$

and the subclass by $C_{\frac{1}{4}}(n)[1][2][3][6]$.
For $n=1$, these notations are usually used as $T_{\frac{1}{4}}(1)=T^{*}\left(\frac{1}{4}\right)$ this form with starlike function and show us we have this form for convex functions with $C_{\frac{1}{4}}(1)=C^{*}\left(\frac{1}{4}\right)[5]$.

Theorem 1. [1] A function $g(z)$ in $A(n)$ is in $T_{\frac{1}{4}}(n)$ if and only if

$$
\sum_{k=n+1}^{\infty}\left(k-\frac{1}{4}\right) a_{k} \leq 1-\frac{1}{4}=\frac{3}{4} .
$$

Theorem 2. [1] A function $g(z)$ in $A(n)$ is in $C_{\frac{1}{4}}(n)$ if and only if

$$
\sum_{k=n+1}^{\infty} k\left(k-\frac{1}{4}\right) a_{k} \leq 1-\frac{1}{4}=\frac{3}{4}
$$

We introduced subclass $A(n, \theta)$ of A , and the subclass $T_{\frac{1}{4}}^{*}(n, \theta)$ and $C_{\frac{1}{4}}(n, \theta)$ of $A(n, \theta)$ in the we define the subclass with this way. Let $A(n, \theta)$ denote the subclass of A consisting of function of the form

$$
g(z)=z-\sum_{k=n+1}^{\infty} e^{i(k-1) \theta} a_{k} z^{n} \quad\left(a_{k} \geq 0, \quad \mathrm{n} \in \mathbb{N}\right)[4]
$$

We note that $A(n, \theta)=A(n)$, that is $A(n, \theta)$ is the subclass of analytic functions with negative coefficients. We denote by $T_{\frac{1}{4}}^{*}(n, \theta)$ starlike functions and $C_{\frac{1}{4}}(n, \theta)$ the subclass of $A(n, \theta)$ of convex functions of order $\frac{1}{4}$ in U.

Theorem 3. A function $g(z)$ in $A(n, \theta)$ is in $T_{\frac{1}{4}}^{*}(n, \theta)$ if and only if

$$
\sum_{k=n+1}^{\infty}\left(k-\frac{1}{4}\right) a_{k} \leq 1-\frac{1}{4}=\frac{3}{4}[4]
$$

Theorem 4. A function $g(z)$ in $A(n, \theta)$ is in $C_{\frac{1}{4}}(n, \theta)$ if and only if

$$
\sum_{k=n+1}^{\infty} k\left(k-\frac{1}{4}\right) a_{k} \leq 1-\frac{1}{4}=\frac{3}{4}[4]
$$

Theorem 5. If $g(z)$ is in $C_{\frac{1}{4}}(n, \theta)$, then

$$
|z|-\frac{3}{(n+1)(4 n+3)}|z|^{n+1} \leq|g(z)| \leq|z|+\frac{3}{(n+1)(4 n+3)}|z|^{n+1}
$$

The right hand equality holds for the function

$$
g(z)=z-e^{i n \theta} \frac{3}{(n+1)(4 n+3)} z^{n+1} \quad\left(z=r e^{-i\left(\theta+\frac{\pi}{n}\right)}, \quad r<1\right)
$$

and the left hand equality holds for the function

$$
g(z)=z-e^{i n \theta} \frac{3}{(n+1)(4 n+3)} z^{n+1} \quad\left(z=r e^{-i \theta}, \quad r<1\right)[4]
$$

Theorem 6. (Main theorem) If $g(z) \in B_{\frac{1}{4}}\left(1, \frac{\pi}{3},-1\right)$, then we have

$$
g(z)=z-\frac{3+3 i \sqrt{3}}{49} z^{2}+\frac{3-3 i \sqrt{3}}{49} z^{3}+\frac{6}{49} z^{4}-\frac{3+3 i \sqrt{3}}{49} z^{5}-\frac{3-3 i \sqrt{3}}{49} z^{6}-\ldots
$$

Proof:
Let $B_{\frac{1}{4}}(n, \theta, h)$ denote the subclass of $A(n, \theta)$ consisting of functions of the form

$$
g(z)=z-\sum_{k=n+1}^{\infty} e^{i(k-1) \theta} a_{k} z^{n} \quad(h \geq-n)
$$

where

$$
b_{k, h}=\frac{\left(1-\frac{1}{4}\right)^{2}}{\left(2-1-\frac{1}{4}\right)\left(2+1+1-\frac{1}{4}\right)\left(2-\frac{1}{4}\right)^{2}}=\frac{\frac{9}{16}}{\frac{3}{4} \cdot \frac{7}{4} \cdot \frac{7}{4} \cdot 2}=\frac{6}{49}
$$

If we put in place at that $b_{k, h}=\frac{6}{49}$

$$
\begin{aligned}
g(z) & =z-\sum_{k=n+1}^{\infty} e^{i(k-1) \theta} \frac{6}{49} z^{n} \quad(h \geq n, \quad n \in \mathbb{N}, n \geq 1) \\
g(z) & =z-\frac{6 e^{i \frac{\pi}{3}}}{49} z^{2}-\frac{6 e^{2 i \frac{\pi}{3}}}{49} z^{3}-\frac{6 e^{3 i \frac{\pi}{3}}}{49} z^{4}-\frac{6 e^{4 i \frac{\pi}{3}}}{49} z^{5}-\frac{6 e^{5 i \frac{\pi}{3}}}{49} z^{6}-\ldots \\
& =z-\frac{6 c i s \frac{\pi}{3}}{49} z^{2}-\frac{6 c i s \frac{2 \pi}{3}}{49} z^{3}-\frac{6 c i s \pi}{49} z^{4}-\frac{6 c i s \frac{4 \pi}{3}}{49} z^{5}-\frac{6 c i s \frac{5 \pi}{3}}{49} z^{6}-\ldots \\
& =z-\frac{2\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)}{49} z^{2}-\frac{2\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)}{39} z^{3}-\frac{-2}{49} z^{4}-\frac{2\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)}{49} z^{5}-\ldots \\
& =z-\frac{3+3 i \sqrt{3}}{49} z^{2}+\frac{3-3 i \sqrt{3}}{49} z^{3}+\frac{6}{49} z^{4}+\frac{3+3 i \sqrt{3}}{49} z^{5}-\frac{3-3 i \sqrt{3}}{49} z^{6}+\ldots
\end{aligned}
$$

We have proved the desired answer and we show that $g(z) \in B_{\frac{1}{4}}\left(1, \frac{\pi}{3},-1\right)$ and $B_{\frac{1}{4}}\left(1, \frac{\pi}{3},-1\right) \in C_{\frac{1}{4}}\left(1, \frac{\pi}{3}\right)$ so $g(z)$ is convex function.

2 References

[1] S. K. Chatterjea, On starlike functions, J. Pure Math., 1(1981), 23-26
[2] V. S. Kiryakova, M. Saigo, S. Owa, Distortion and characterization teorems for starlike and convex functions related to generalized fractional calculus, Publ. Res. Inst. Math. Sci., 1012(1997), 25-46.
[3] T. Sekine, On new generalized classes of analytic functions with negative coefficients, Report Res. Inst. Sci. Tec. Nihon Univ., 35(1987), 1-26.
[4] T. Sekine, S. Owa, New problems of coefficients inequalities, Publ. Res. Inst.Math. Sci., 1012(1997), 164-176.
[5] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.
[6] H. M. Srivasta, S. Owa, S. K. Chatterjea, A note on certainleclass of starlike functions, Rend. Sem. Mat. Univ. Padova, 77(1987), 115-124.

