Some Pascal Spaces of Difference Sequences Spaces of Order m

ISSN: 2651-544X

http://dergipark.gov.tr/cpost

Saadettin Aydin ${ }^{1}$ Harun Polat ${ }^{2, *}$
${ }^{1}$ Department of Mathematics Education, Faculty of Education, Kilis 7 Aralk University, Kilis, Turkey, ORCID:0000-0002-9559-0730
${ }^{2}$ Department of Mathematics, Faculty of Arts and Science, Mus Alparslan University, Mus, Turkey, ORCID:0000-0003-3955-9197
* Corresponding Author E-mail: h.polat@alparslan.edu.tr

Abstract

The main purpose of this article is to introduce new sequence spaces $p_{\infty}\left(\Delta^{(m)}\right), p_{c}\left(\Delta^{(m)}\right)$ and $p_{0}\left(\Delta^{(m)}\right)$ which are consisted by sequences whose $m^{t h}$ order differences are in the Pascal sequence spaces p_{∞}, p_{c} and p_{0}, respectively. Furthermore, the bases of the new difference sequence spaces $p_{c}\left(\Delta^{(m)}\right)$ and $p_{0}\left(\Delta^{(m)}\right)$, and the α-, β - and γ-duals of the new difference sequence spaces $p_{\infty}\left(\Delta^{(m)}\right), p_{c}\left(\Delta^{(m)}\right)$ and $p_{0}\left(\Delta^{(m)}\right)$ have been determined. Finally, necessary and sufficient conditions on an infinite matrix belonging to the classes $\left(p_{c}\left(\Delta^{(m)}\right): l_{\infty}\right)$ and $\left(p_{c}\left(\Delta^{(m)}\right): c\right)$ are obtained.

Keywords: Difference operator of order m, Matrix mappings, Pascal difference sequence spaces, α-, β - and γ-duals.

1 Introduction

By w, we shall denote the space of all real or complex valued sequences. Any vector subspace of w is called as a sequence space. We shall write l_{∞}, c and c_{0} for the spaces of all bounded, convergent and null sequences, respectively. Also by $b s, c s$ and l_{1} we denote the spaces of all bounded, convergent and absolutely convergent series, respectively.

Let X, Y be any two sequence spaces and $A=\left(a_{n k}\right)$ be an infinite matrix of real or complex numbers $a_{n k}$, where $n, k \in N$. Then, the matrix A defines a transformation from X into Y and we denote it by $A: X \rightarrow Y$, if for every sequence $x=\left(x_{k}\right) \in X$ the sequence $A x=\left\{(A x)_{n}\right\}$, the A-transform of x, is in Y, where

$$
\begin{equation*}
(A x)_{n}=\sum_{k} a_{n k} x_{k} \tag{1}
\end{equation*}
$$

for each $n \in N$. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞. By ($X: Y$), we denote the class of all matrices A such that $A: X \rightarrow Y$. Thus $A \in(X: Y)$ if and only if the series on the right side of (1) converges for each $n \in N$ and every $x \in X$, and we have $A x=\left\{(A x)_{n}\right\} \in Y$ for all $x \in X$.

In the study on the sequence spaces, there are some basic approaches which are determination of topologies, matrix mapping and inclusions of sequence spaces [2]. These methods are applied to study the matrix domain X_{A} of an infinite matrix A in a sequence space X is defined by

$$
X_{A}=\left\{x=\left(x_{k}\right) \in w: A x \in X\right\},
$$

which is a sequence space. Although in the most cases the new sequence space X_{A} generated by the limitation matrix A from a sequence space X is the expansion or the contraction of the original space X, in some cases it may be observed that those spaces overlap. Indeed, one can easily see that the inclusions $X_{S} \subset X$ and $X \subset X_{\Delta}$ strictly hold for $X \in\left\{l_{\infty}, c, c_{0}\right\}$ [1]. Especially, the sequence spaces and the difference operator which are special cases for the matrix A have been studied extensively via the methods mentioned above.

Define the difference matrices $\Delta^{1}=\left(\delta_{n k}\right)$ by

$$
\delta_{n k}=\left\{\begin{array}{c}
\left\{(-1)^{n-k},(n-1 \leq k \leq n),\right. \\
0,(0<n-1 \text { or } n>k),
\end{array}\right.
$$

for each $k, n \in N$.
In the literature, the difference sequence spaces $l_{\infty}(\Delta)=\left\{x=\left(x_{k}\right) \in w: \Delta x \in l_{\infty}\right\}, c(\Delta)=\left\{x=\left(x_{k}\right) \in w: \Delta x \in c\right\}$ and $c_{0}(\Delta)=$ $\left\{x=\left(x_{k}\right) \in w: \Delta x \in c_{0}\right\}$ are first defined by Kızmaz [3]. Difference sequence spaces have been defined and studied by various authors [9]-[20]. The idea of difference sequences was generalized by Et and Çolak [9] and Murseelan [10]. Let λ denotes one of the sequence spaces l_{∞}, c, and c_{0}. They defined the sequence spaces $\lambda\left(\Delta^{(m)}\right)=\left\{x=\left(x_{k}\right) \in w: \Delta^{(m)} x \in \lambda\right\}$, where $m \in N$ and $\left(\Delta^{(m)} x\right)_{n}=$ $\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} x_{k-i}$. The operator $\Delta^{(m)}: w \rightarrow w$ is defined by $\left(\Delta^{(1)} x\right)_{k}=\left(x_{k}-x_{k+1}\right)$ and $\Delta^{(m)} x=\left(\Delta^{(1)} x\right)_{k} o\left(\Delta^{(m-1)} x\right)_{k}(m \geq$
2). Throughout the article, we shall use the convention that a term with a negative subscript is equal to naught. Also throughout this work, by F and K, respectively, we shall denote the collection of all finite subsets of N.

Let P denote the Pascal means defined by the Pascal matrix [4] is defined by

$$
P=\left[p_{n k}\right]=\left\{\begin{array}{c}
\left.\binom{n}{n-k}, 0 \leq k \leq n\right) \\
0,(k>n
\end{array},(n, k \in N)\right.
$$

and the inverse of Pascal's matrix $P_{n}=\left(p_{n k}\right)$ is given by

$$
P^{-1}=\left[p_{n k}\right]^{-1}=\left\{\begin{array}{c}
(-1)^{n-k}\binom{n}{n-k},(0 \leq k \leq n) \\
0,(k>n)
\end{array} \quad,(n, k \in N)\right.
$$

There is some interesting properties of Pascal matrix. For example; we can form three types of matrices: symmetric, lower triangular, and upper triangular, for any integer $n>0$. The symmetric Pascal matrix of order n is defined by

$$
\begin{equation*}
S_{n}=\left(s_{i j}\right)=\binom{i+j-2}{j-1}, \text { for } i, j=1,2, \ldots, n \tag{2}
\end{equation*}
$$

we can define the lower triangular Pascal matrix of order n by

$$
L_{n}=\left(l_{i j}\right)=\left\{\begin{array}{c}
\binom{i-1}{j-1},(0 \leq j \leq i) \tag{3}\\
0,(j>i)
\end{array}\right.
$$

and the upper triangular Pascal matrix of order n is defined by

$$
U_{n}=\left(u_{i j}\right)=\left\{\begin{array}{c}
\binom{j-1}{i-1},(0 \leq i \leq j) \tag{4}\\
0,(j>i)
\end{array}\right.
$$

We notice that $U_{n}=\left(L_{n}\right)^{T}$, for any positive integer n.
i. Let S_{n} be the symmetric Pascal matrix of order n defined by (2), L_{n} be the lower triangular Pascal matrix of order n defined by (3), and U_{n} be the upper triangular Pascal matrix of order n defined by (4), then $S_{n}=L_{n} U_{n}$ and $\operatorname{det}\left(S_{n}\right)=1$ [5].
ii. Let A and B be $n \times n$ matrices. We say that A is similar to B if there is an invertible $n \times n$ matrix P such that $P^{-1} A P=B$ [6].
iii. Let S_{n} be the symmetric Pascal matrix of order n defined by (2), then S_{n} is similar to its inverse S_{n}^{-1} [5].
iv. Let L_{n} be the lower triangular Pascal matrix of order n defined by (3), then $L_{n}^{-1}=\left((-1)^{i-j} l_{i j}\right)$ [7].

Recently Polat [8] has defined the Pascal sequence spaces p_{∞}, p_{c} and p_{0} like as follows:

$$
\begin{aligned}
& p_{\infty}=\left\{x=\left(x_{k}\right) \in w: \sup _{n}\left|\sum_{k=0}^{n}\binom{n}{n-k} x_{k}\right|<\infty\right\}, \\
& p_{c}=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{n-k} x_{k} \text { exists }\right\},
\end{aligned}
$$

and

$$
p_{0}=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{n-k} x_{k}=0\right\}
$$

In the present paper, we define Pascal difference sequence spaces $p_{\infty}\left(\Delta^{(m)}\right), p_{c}\left(\Delta^{(m)}\right)$ and $p_{0}\left(\Delta^{(m)}\right)$ which consist of all sequences whose $m^{\text {th }}$ order differences are in the Pascal sequence spaces p_{∞}, p_{c} and p_{0}, respectively. Furthermore, the Schauder bases of the sequence spaces $p_{c}\left(\Delta^{(m)}\right)$ and $p_{0}\left(\Delta^{(m)}\right)$, and the α^{-}, β - and γ - duals of the sequence spaces $p_{\infty}\left(\Delta^{(m)}\right), p_{c}\left(\Delta^{(m)}\right)$ and $p_{0}\left(\Delta^{(m)}\right)$ have been determined. The last section of the article is devoted to the characterization of some matrix mappings on the sequence space $p_{c}\left(\Delta^{(m)}\right)$.

2 New Pascal difference sequence spaces of order m

The triangle matrix $\Delta^{(m)}=\left(\delta_{n k}^{(m)}\right)$ is defined by

$$
\delta_{n k}^{(m)}=\left\{\begin{array}{c}
(-1)^{n-k}\left(\binom{m}{n-k}\right),(\max \{0, n-m\} \leq k \leq n), \\
0,(0 \leq k<\max \{0, n-m\} \text { or } n>k),
\end{array}\right.
$$

for all $k, n \in N$ and for any fixed $m \in N$. Using this matrix, we introduce the sequence spaces $p_{\infty}\left(\Delta^{(m)}\right), p_{c}\left(\Delta^{(m)}\right)$ and $p_{0}\left(\Delta^{(m)}\right)$ as the set of all sequences such that $\Delta^{(m)}$-transforms of them are in the Pascal sequence spaces p_{∞}, p_{c} and p_{0}, respectively, that is,

$$
\begin{aligned}
p_{\infty}\left(\Delta^{(m)}\right) & =\left\{x=\left(x_{k}\right) \in w: \Delta^{(m)} x \in p_{\infty}\right\} \\
p_{c}\left(\Delta^{(m)}\right) & =\left\{x=\left(x_{k}\right) \in w: \Delta^{(m)} x \in p_{c}\right\}
\end{aligned}
$$

and

$$
p_{0}\left(\Delta^{(m)}\right)=\left\{x=\left(x_{k}\right) \in w: \Delta^{(m)} x \in p_{0}\right\} .
$$

Define the sequence $y=\left\{y_{k}\right\}$, which is frequently used, as the H - transform of a sequence $x=\left(x_{k}\right)$, i.e.,

$$
\begin{align*}
y_{n} & =(H x)_{n}=\sum_{k=0}^{n}\binom{n}{n-k} \sum_{i=0}^{m}(-1)^{i}\binom{m}{i} x_{k-i} \tag{5}\\
& =\sum_{k=0}^{n}\left[\sum_{i=k}^{n}\binom{i}{i-k}(-1)^{i-k}\binom{m}{i-k}\right] x_{k}
\end{align*}
$$

for each $n, m \in N$. Here by H, we denote the matrix $H=P \Delta^{(m)}=\left(h_{n k}\right)$ defined by

$$
h_{n k}=\left\{\begin{array}{c}
\sum_{i=k}^{n}\binom{i}{i-k}(-1)^{i-k}\binom{m}{i-k},(0 \leq k \leq n) \\
0,(k>n)
\end{array} \quad,(n, k \in N) .\right.
$$

It can be easily shown that $p_{\infty}\left(\Delta^{(m)}\right), p_{c}\left(\Delta^{(m)}\right)$ and $p_{0}\left(\Delta^{(m)}\right)$ are normed linear spaces by the following norm:

$$
\begin{equation*}
\|x\|_{\Delta}=\|H x\|_{\infty}=\sup _{n}\left|\sum_{k=0}^{n}\left[\sum_{i=k}^{n}\binom{i}{i-k}(-1)^{i-k}\binom{m}{i-k}\right] x_{k}\right| . \tag{6}
\end{equation*}
$$

Theorem 1. The sequence spaces $p_{\infty}\left(\Delta^{(m)}\right), p_{c}\left(\Delta^{(m)}\right)$ and $p_{0}\left(\Delta^{(m)}\right)$ are Banach spaces with the norm (6).
Proof: Let $\left\{x^{i}\right\}$ be any Cauchy sequence in the space $p_{\infty}\left(\Delta^{(m)}\right)$, where $\left\{x^{i}\right\}=\left\{x_{k}^{i}\right\}=\left\{x_{0}^{i}, x_{1}^{i}, \ldots\right\} \in p_{\infty}\left(\Delta^{(m)}\right)$ for each $i \in N$. Then, for a given $\varepsilon>0$ there exists a positive integer $N_{0}(\varepsilon)$ such that $\left\|x_{i}^{k}-x_{i}^{n}\right\|_{\Delta}<\varepsilon$ for all $k, n>N_{0}(\varepsilon)$. Hence

$$
\left|H\left(x_{i}^{k}-x_{i}^{n}\right)\right|<\varepsilon
$$

for all $k, n>N_{0}(\varepsilon)$ and for each $i \in N$. Therefore, $\left\{(H x)_{i}^{k}\right\}=\left\{(H x)_{i}^{0},(H x)_{i}^{1},(H x)_{i}^{2}, \ldots\right\}$ is a Cauchy sequence of real numbers for every fixed $i \in N$. Since the set of real numbers R is complete, it converges, say

$$
\lim _{i \rightarrow \infty}\left(H x^{i}\right)_{k} \rightarrow(H x)_{k}
$$

for each $k \in N$. So, we have

$$
\lim _{n \rightarrow \infty}\left|H\left(x_{i}^{k}-x_{i}^{n}\right)\right|=\left|H\left(x_{i}^{k}-x_{i}\right)\right| \leq \varepsilon
$$

for each $k \geq N_{0}(\varepsilon)$. This implies that $\left\|x^{k}-x\right\|_{\Delta}<\varepsilon$ for $k \geq N_{0}(\varepsilon)$, that is, $x^{i} \rightarrow x$ as $i \rightarrow \infty$.
Now, we must show that $x \in p_{\infty}\left(\Delta^{(m)}\right)$. We have

$$
\begin{aligned}
\|x\|_{\Delta} & =\|H x\|_{\infty}=\sup _{n}\left|\sum_{k=0}^{n}\left[\sum_{i=k}^{n}\binom{i}{i-k}(-1)^{i-k}\binom{m}{i-k}\right] x_{k}\right| \\
& \leq \sup _{n}\left|H\left(x_{k}^{i}-x_{k}\right)\right|+\sup _{n}\left|H x_{k}^{i}\right| \\
& \leq\left\|x^{i}-x\right\|_{\Delta}+\left|P \Delta^{(m)} x_{k}^{i}\right|<\infty
\end{aligned}
$$

for all $i \in N$. This implies that $x=\left(x_{i}\right) \in p_{\infty}\left(\Delta^{(m)}\right)$. Therefore $p_{\infty}\left(\Delta^{(m)}\right)$ is a Banach space. It can be shown that $p_{c}\left(\Delta^{(m)}\right)$ and $p_{0}\left(\Delta^{(m)}\right)$ are closed subspaces of $p_{\infty}\left(\Delta^{(m)}\right)$, which leads us to the consequence that the spaces $p_{c}\left(\Delta^{(m)}\right)$ and $p_{0}\left(\Delta^{(m)}\right)$ are also Banach spaces with the norm (6). Furthermore, since $p_{\infty}\left(\Delta^{(m)}\right)$ is a Banach space with continuous coordinates, i.e., $\left\|P\left(x^{k}-x\right)\right\|_{\Delta} \rightarrow$ 0 implies $\left|H\left(x_{i}^{k}-x_{i}\right)\right| \rightarrow 0$ for all, it is a $B K$-space.

3 The bases of sequence spaces $p_{c}\left(\Delta^{(m)}\right)$ and $p_{0}\left(\Delta^{(m)}\right)$
In this section, we shall give the Schauder bases for the spaces $p_{c}\left(\Delta^{(m)}\right)$ and $p_{0}\left(\Delta^{(m)}\right)$. First we define the Schauder bases. A sequence $\left\{b^{(k)}\right\}_{k \in \mathbb{N}}$ in a normed sequence space X is called a Schauder bases (or briefly bases), if for every $x \in X$ there is a unique sequence (λ_{k}) of scalars such that

$$
\lim _{n \rightarrow \infty}\left\|x-\left(\lambda_{0} x_{0}+\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{n}\right)\right\|=0
$$

Theorem 2. Define the sequence $b^{(k)}=\left\{b_{n}^{(k)}\right\}_{n \in N}$ of the elements of the space $p_{0}\left(\Delta^{(m)}\right)$ for every fixed $k \in \mathbb{N}$ by

$$
b_{n}^{(k)}=\left\{\begin{array}{c}
0,(n<k) \tag{7}\\
\sum_{i=k}^{n}\binom{m+n-i-1}{n-i}(-1)^{i-k}(\underset{i-k}{i}),(n \geq k) .
\end{array}\right.
$$

Then, the following assertions are true:
i. The sequence $\left\{b^{(k)}\right\}_{k \in \mathbb{N}}$ is bases for the space $p_{0}\left(\Delta^{(m)}\right)$ and for any $x \in p_{0}\left(\Delta^{(m)}\right)$ has a unique representation of the form

$$
x=\sum_{k}(H x) b^{(k)} .
$$

ii. The set $\left\{t, b^{(1)}, b^{(2)}, \ldots\right\}$ is a basis for the space $p_{c}\left(\Delta^{(m)}\right)$ and for any $x \in p_{c}\left(\Delta^{(m)}\right)$ has a unique representation of form

$$
x=l t+\sum_{k}\left[(H x)_{k}-l\right] b^{(k)},
$$

where $t=\left\{t_{n}\right\}=\sum_{k=0}^{n} \sum_{i=k}^{n}(\underset{i-k}{i})(-1)^{i-k}\binom{m}{i-k},(m, n \in \mathbb{N}), l=\lim _{k \rightarrow \infty}(H x)_{k}$ and $H=P \Delta^{(m)}$.
Theorem 3. The sequence spaces $p_{\infty}\left(\Delta^{(m)}\right), p_{c}\left(\Delta^{(m)}\right)$ and $p_{0}\left(\Delta^{(m)}\right)$ are linearly isomorphic to the spaces l_{∞}, c and c_{0} respectively, i.e., $p_{\infty}\left(\Delta^{(m)}\right) \cong l_{\infty}, p_{c}\left(\Delta^{(m)}\right) \cong c$ and $p_{0}\left(\Delta^{(m)}\right) \cong c_{0}$.

Proof: To prove the fact $p_{0}\left(\Delta^{(m)}\right) \cong c_{0}$, we should show the existence of a linear bijection between the spaces $p_{0}(\Delta)$ and c_{0}. Consider the transformation T defined, with the notation (5), from $p_{0}\left(\Delta^{(m)}\right)$ to c_{0} by $x \rightarrow y=T x$. The linearity of T is clear. Further, it is trivial that $x=0$ whenever $T x=0$ and hence T is injective. Let $y \in c_{0}$ and define the sequence $x=\left\{x_{n}\right\}$ by

$$
\begin{equation*}
x_{n}=\sum_{k=0}^{n}\left[\sum_{i=k}^{n}\binom{m+n-i-1}{n-i}(-1)^{i-k}\binom{i}{i-k}\right] y_{k} \tag{8}
\end{equation*}
$$

for each $m, n \in \mathbb{N}$. Then,

$$
\begin{gathered}
\lim _{n \rightarrow \infty}(H x)_{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{n-k} \Delta^{(m)} x_{k} \\
=\lim _{n \rightarrow \infty}^{n} \sum\binom{n}{n-k} \sum_{i=0}^{m}(-1)^{i}\binom{m}{i} x_{k-i} \\
=\lim _{n \rightarrow \infty} \sum_{k=0}^{n}\left[\sum_{i=k}^{n}\binom{i}{i-k}(-1)^{i-k}\binom{m}{i-k}\right] x_{k}=\lim _{n \rightarrow \infty} y_{n}=0
\end{gathered}
$$

Thus, we have that $x \in p_{0}\left(\Delta^{(m)}\right)$. Consequently, T is surjective and is norm preserving. Hence, T is a linear bijection which implies that the spaces $p_{0}\left(\Delta^{(m)}\right)$ and c_{0} are linearly isomorphic. In the same way, it can be shown that $p_{\infty}\left(\Delta^{(m)}\right)$ and $p_{c}\left(\Delta^{(m)}\right)$ are linearly isomorphic to l_{∞} and c, respectively, and so we omit the detail.

4 The α-, β - and γ - duals of the sequence spaces $p_{\infty}\left(\Delta^{(m)}\right), p_{c}\left(\Delta^{(m)}\right)$ and $p_{0}\left(\Delta^{(m)}\right)$

In this section, we state and prove the theorems determining the α-, β - and γ - duals of Pascal difference sequence spaces $p_{\infty}\left(\Delta^{(m)}\right)$, $p_{c}\left(\Delta^{(m)}\right)$ and $p_{0}\left(\Delta^{(m)}\right)$. For the sequence spaces λ and μ, define the set $S(\lambda, \mu)$ by

$$
\begin{equation*}
S(\lambda, \mu)=\left\{z=\left(z_{k}\right) \in w: x z=\left(x_{k} z_{k}\right) \in \mu \text { for all } x \in \lambda\right\} . \tag{9}
\end{equation*}
$$

The α-, β - and γ - duals of a sequence space λ, which are respectively denoted by $\lambda^{\alpha}, \lambda^{\beta}$ and λ^{γ} are defined

$$
\lambda^{\alpha}=S\left(\lambda, l_{1}\right), \lambda^{\beta}=S(\lambda, c s) \text { and } \lambda^{\gamma}=S(\lambda, b s) .
$$

We shall begin with some lemmas due to Stieglitz and Tietz [21] that are needed in proving (4)-(6).
Lemma 1. $A \in\left(c_{0}: l_{1}\right)$ if and only if

$$
\begin{equation*}
\sup _{K \in F} \sum_{n}\left|\sum_{k \in K} a_{n k}\right|<\infty \tag{10}
\end{equation*}
$$

Lemma 2. $A \in\left(c_{0}: c\right)$ if and only if

$$
\begin{align*}
& \sup _{n} \sum_{k}\left|a_{n k}\right|<\infty \tag{11}\\
& \lim _{n \rightarrow \infty} a_{n k}-\alpha_{k}=0 \tag{12}
\end{align*}
$$

Lemma 3. $A \in\left(c_{0}: l_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{n} \sum_{k}\left|a_{n k}\right|<\infty . \tag{13}
\end{equation*}
$$

Theorem 4. Let $a=\left(a_{k}\right) \in w$ and the matrix $B=\left(b_{n k}\right)$ by

$$
b_{n k}=\left\{\begin{array}{cc}
\sum_{i=k}^{n}\binom{m+n-i-1}{n-i}(-1)^{i-k}(\underset{i-k}{i}) a_{n},(0 \leq k \leq n) \\
0, & (k>n)
\end{array}\right.
$$

for all $m, n \in \mathbb{N}$. Then the α-dual of the spaces $p_{\infty}\left(\Delta^{(m)}\right), p_{c}\left(\Delta^{(m)}\right)$ and $p_{0}\left(\Delta^{(m)}\right)$ is the set

$$
D=\left\{a=\left(a_{n}\right) \in w: \sup _{K \in F} \sum_{n}\left|\sum_{k \in K} b_{n k}\right|<\infty\right\} .
$$

Proof: Let $a=\left(a_{n}\right) \in w$ and consider the matrix B whose rows are the products of the rows of the matrix $H^{-1}=\left(P \Delta^{(m)}\right)^{-1}=$ $\left(\Delta^{(m)}\right)^{-1} P^{-1}$ and sequence $a=\left(a_{n}\right)$. Bearing in mind the relation (5), we immediately derive that

$$
\begin{equation*}
a_{n} x_{n}=\sum_{k=0}^{n}\left[\sum_{i=k}^{n}\binom{m+n-i-1}{n-i}(-1)^{i-k}\binom{i}{i-k} a_{n}\right] y_{k}=\sum_{k=1}^{n} b_{n k} y_{k}=(B y)_{n} \tag{14}
\end{equation*}
$$

$m, n \in \mathbb{N}$, we therefore observe Lemma 1 and by (14) that $a x=\left(a_{n} x_{n}\right) \in l_{1}$ whenever $x \in p_{\infty}\left(\Delta^{(m)}\right), p_{c}\left(\Delta^{(m)}\right)$ and $p_{0}\left(\Delta^{(m)}\right)$ if and only if $B y \in l_{1}$ whenever $y=\left(y_{k}\right) \in l_{\infty}, c$ and c_{0}. This means that $a=\left(a_{n}\right) \in\left[p_{\infty}\left(\Delta^{(m)}\right)\right]^{\alpha},\left[p_{c}\left(\Delta^{(m)}\right)\right]^{\alpha}$ and $\left[p_{0}\left(\Delta^{(m)}\right)\right]^{\alpha}$ if and only if $B y \in\left(\left[p_{\infty}\left(\Delta^{(m)}\right)\right]^{\alpha}: l_{1}\right),\left(\left[p_{\infty}\left(\Delta^{(m)}\right)\right]^{\alpha}: l_{1}\right)$ and $\left(\left[p_{\infty}\left(\Delta^{(m)}\right)\right]^{\alpha}: l_{1}\right)$ which yields the consequence that $\left[p_{\infty}\left(\Delta^{(m)}\right)\right]^{\alpha}=\left[p_{c}\left(\Delta^{(m)}\right)\right]^{\alpha}=\left[p_{0}\left(\Delta^{(m)}\right)\right]^{\alpha}=D$.

Theorem 5. Let $a=\left(a_{k}\right) \in w$ and the matrix $C=\left(c_{n k}\right)$ by

$$
c_{n k}=\left\{\begin{array}{c}
\sum_{i=k}^{n}\left[\sum_{j=k}^{n}\left({ }_{i+j}^{m+i-j-1}\right)(-1)^{j-k}\binom{j}{j-k}\right] a_{i},(0 \leq k \leq n) \\
0,(k>n)
\end{array}\right.
$$

and define the sets c_{1}, c_{2}, c_{3} and c_{4} by

$$
\begin{aligned}
& c_{1}=\left\{a=\left(a_{k}\right) \in w: \sup _{n} \sum_{k}\left|c_{n k}\right|<\infty\right\}, \\
& c_{2}=a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} c_{n k} \text { exists for each } k \in N, \\
& c_{3}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k}\left|c_{n k}\right|=\sum_{k}\left|\lim _{n \rightarrow \infty} c_{n k}\right|\right\},
\end{aligned}
$$

and

$$
c_{4}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k} c_{n k} \text { exists }\right\} .
$$

Then $\left[p_{\infty}\left(\Delta^{(m)}\right)\right]^{\beta},\left[p_{c}\left(\Delta^{(m)}\right)\right]^{\beta}$ and $\left[p_{0}\left(\Delta^{(m)}\right)\right]^{\beta}$ is $c_{2} \cap c_{3}, c_{1} \cap c_{2} \cap c_{4}$ and $c_{1} \cap c_{2}$, respectively.
Proof: We only give the proof the space $p_{0}\left(\Delta^{(m)}\right)$. Since the rest of the proof can be obtained by the same way for the spaces $p_{c}\left(\Delta^{(m)}\right)$ and $p_{\infty}\left(\Delta^{(m)}\right)$. Consider the equation

$$
\begin{align*}
\sum_{k=1}^{n} a_{k} x_{k} & =\sum_{k=0}^{n} \sum_{i=0}^{k}\left[\sum_{j=i}^{k}\binom{m+k-j-1}{k-j}(-1)^{j-i}\binom{j}{j-i}\right] a_{k} y_{i} \tag{15}\\
& =\sum_{k=0}^{n}\left[\sum_{i=k}^{n}\left[\sum_{j=k}^{i}\binom{m+i-j-1}{i-j}(-1)^{j-k}\binom{j}{j-k}\right] a_{i}\right] y_{k} \\
& =(C y)_{n} .
\end{align*}
$$

Thus, we deduce from Lemma 2 and (15) that $a x=\left(a_{k} x_{k}\right) \in c s$ whenever $x=\left(x_{k}\right) \in h_{0}\left(\Delta^{(m)}\right)$ if and only if $C y \in c$ whenever $y=$ $\left(y_{k}\right) \in c_{0}$. That is to say that $a=\left(a_{k}\right) \in\left[p_{0}\left(\Delta^{(m)}\right)\right]^{\beta}$ if and only if $C \in\left(c_{0}: c\right)$ which yields us $\left[p_{0}\left(\Delta^{(m)}\right)\right]^{\beta}=c_{1} \cap c_{2}$. The β-dual of the sequence spaces $\left[p_{c}\left(\Delta^{(m)}\right)\right]$ and $\left[p_{\infty}\left(\Delta^{(m)}\right)\right]$ may be obtained in the similiar way, we omit their proofs.

Theorem 6. The γ-dual of the spaces $p_{\infty}\left(\Delta^{(m)}\right), p_{c}\left(\Delta^{(m)}\right)$ and $p_{0}\left(\Delta^{(m)}\right)$ is the set c_{1}.
Proof: This may be obtained in the similiar way used in the prof of Theorem (5) together with Lemma 3 instead of Lemma 2. So, we omit the detail.

5 Matrix transformations on the sequence space $p_{c}\left(\Delta^{(m)}\right)$

We shall write throughout for brevity that

$$
\tilde{a}_{n k}=\sum_{j=k}^{\infty}\binom{m+n-j-1}{n-j}(-1)^{j-k}\binom{j}{j-k} a_{n j}
$$

and

$$
\hat{g}_{n k}=\sum_{j=k}^{s}\binom{m+n-j-1}{n-j}(-1)^{j-k}\binom{j}{j-k} a_{n j}
$$

for all $m, n, s \in \mathbb{N}$.
In this section, we give the characterization of the classes $\left(p_{c}\left(\Delta^{(m)}\right): l_{\infty}\right)$ and $\left(h_{c}\left(\Delta^{(m)}\right): c\right)$. Following theorems can be proved using standart methods, we omit the detail.

Theorem 7. $A \in\left(p_{c}\left(\Delta^{(m)}\right): l_{\infty}\right)$ if and only if

$$
\begin{gather*}
\sup _{n} \sum_{k}\left|\hat{g}_{n k}\right|<\infty, \tag{16}\\
\lim _{n \rightarrow \infty} \sum_{k} \hat{g}_{n k} \text { exists for all } m \in N, \tag{17}\\
\sup _{n \in N} \sum_{k}\left|\tilde{a}_{n k}\right|<\infty,(n \in N), \tag{18}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \tilde{a}_{n k} \text { exists for all } n \in N \tag{19}
\end{equation*}
$$

Theorem 8. $A \in\left(p_{c}\left(\Delta^{(m)}\right): c\right)$ if and only if (16)-(19) hold, and

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \sum_{k} \tilde{a}_{n k}=\alpha, \tag{20}\\
\lim _{n \rightarrow \infty}\left(\tilde{a}_{n k}\right)=\alpha_{k}, \quad(k \in N) \tag{21}
\end{gather*}
$$

6 References

[1] B. Choudhary, S. Nanda, Functional Analysis with Applications, Wiley, New Delhi, 1989.
[2] W.H. Ruckle, Sequence spaces, Pitman Publishing, Toronto, 1981.
[3] H. Kızmaz, On certain sequence space, Canad. Math. Bull., 24 (2) (1981), 169-176.
[4] R. Brawer, Potenzen der Pascal matrix und eine Identitat der Kombinatorik, Elem. der Math., 45 (1990), 107-110.
[5] A. Edelman, G. Strang, Pascal Matrices, The Mathematical Association of America, Monthly, 111 (2004), 189-197.
[6] C. Lay David, Linear Algebra and Its Applications: 4th Ed., Boston, Pearson, Addison-Wesley, 2012.
[7] G. H. Lawden, Pascal matrices, Mathematical Gazette, 56 (398) (1972), 325-327.
[8] H. Polat, Some New Pascal Sequence Spaces, Fundamental Journal of Mathematics and Applications, 1 (2018), 61-68.
[9] M. Et, R. Çolak, On some genaralized difference sequence spaces, Soochow J. Math., 21 (4) (1995), 377-386.
[10] M. Mursaleen, Generalized spaces of difference sequences. J. Math. Anal. Appl., 203 (1996), 738-745.
[11] E. Malkowsky, S. D. Parashar, Matrix transformations in spaces of bounded and convergent difference sequences of order m, Analysis, 17 (1997), $87-97$.
[12] R. Çolak, M. Et, On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math. J., 26 (3) (1997), 483-492.
[13] M. Et, M. Başarır, On some genaralized difference sequence spaces, Period. Math. Hung., 35 (3) (1997), 169-175.
[14] B. Altay, H. Polat, On some new Euler difference sequence spaces, Southeast Asian Bull. Math., 30 (2006), 209-220.
[15] B. Altay, F. Başar, The fine spectrum and the matrix domain of the difference operator on the sequence space l_{p}; $(0<p<1)$, Commun. Math. Anal., 2 (2) (2007), 1-11.
[16] E. Malkowsky, M. Mursaleen, The Dual Spaces of Sets of Difference Sequences of Order m and Matrix Transformations, Acta Mathematica Sinica, 23 (3), (2007), 521-532.
[17] H. Polat, F. Başar, Some Euler spaces of difference sequences of order m, Acta Math. Sci. Ser. B Engl. Ed., 27B (2) (2007), 254-266.
[18] V. Karakaya, H. Polat, Some New Paranormed Sequence Spaces defined by Euler and Difference Operators, Acta Sci. Math(Szeged), 76 (2010), 87-100.
[19] M. Mursaleen, A. K. Noman, On some new difference sequence spaces of non-absolute type, Math. Comput. Modelling, 52, 3-4 (2010), 603-617.
[20] H. Polat, V.Karakaya, N. Şimşek, Difference Sequence Spaces Derived by Generalized Weighted Mean, Applied Mathematics Letters, 24 (2011), 608-614.
[21] M. Stieglitz, H. Tietz, Matrix transformationen von Folgenraumen Eine Ergebnisübersict, Math. Z., 154 (1977), 1-16.

