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generalized involute, the necessary and sufficient condition is obtained.
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1 Introduction

Galilean geometry is one of the nine projective space geometries which was discussed by Cayley-Klein at the beginning of 20th century. After
that, the curvature-related studies were maintained and the curve properties in Galilean space were studied in [1, 2]. The involute of a given
curve in Euclidean space is a famous concept, whereas the idea of an involute string is due to C. Huygens, who is well known for his job in
optics and who found involutes while attempting to construct a more accurate clock in 1968 [3, 4]. The theories of the Involute and Evolute
Curves in Minkowski Space are extensively studied in [5, 6, 7].

In classical differential geometry, an evolute of a curve is defined as the locus of the centers of curvatures of the curve, which is the envelope
of the normal of the given curve. While an Involute of a specified curve is a curve in which all tangents of a specified curve are normal
[3, 8, 9, 10].

In [11], the author created Frenet-Serret curve frame in the Galilean 4-space and acquired constant ratio curves in Galilean 4-space. Aydin
and Ergüt constructed equiform differential geometry of curves and obtained the angle between the equiform Frenet vectors and their derivatives
in G4 [12] .

In [13, 14] , the authors studied some curves of Galilean geometry in both plane and space, they obtained the characterization of slant helices
in 3- dimensional Galilean space G3.

2 Preliminaries

The Galilean space can be described as a three dimentional complex projective space with absolute figures {m, l, p1 , p2} which consists of a
real plane m, a real line l ⊂ m and two complex conjugate points p1 , p2 ∈ l.

The study of plane-parallel motion mechanics decreases the study of a 3-space geometry with {x, y, t} coordinates by the motion formula
[2]. This geometry can be described as geometry of Galilean 3-space. It is clarified in [2] that four dimensional Galilean space, which studies
all invariant features under object movements in space is even more complicated.

Moreover, it is indicated that this geometry can be more accurately defined as studying those four dimensional space characteristics with
co-ordinates that are invariant under the general Galilean transformations as follows:

x
′

= (cos θ cosφ− cos γ sin θ sinφ)x+ (sin θ cosφ− cos γ cos θ sinφ) y

+(sin γ sinφ) z + (v cosβ1) t+ a

y
′

= − (cos θ sinφ+ cos γ sin θ cosφ)x+ (− sin θ sinφ+ cos γ cos θ cosφ) y

+(sin γ cosφ) z + (v cosβ2) t+ b

z
′

= (sin γ sin θ)x− (sin γ cos θ) y + (cos γ) z + (v cosβ3) t+ c

t
′

= t+ d

with cos2 β1 + cos2 β2 + cos2 β3 = 1
The following chapter provides some basic characteristics of curves in Galilean 4-space for the uses of the conditions.
A curve α : I → G4, I ⊂ R can be given as
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α(t) = (x1(t), x2(t), x3(t), x4(t)),

where xi(t) ∈ C4 i=1,2,3,4 and t ∈ I . Let α be a curve in G4, which is parameterized by arclength t = s, and its coordinate form can be
written as

α(s) = (s, x2(s), x3(s), x4(s)).

In affine coordinates the Galilean inner product between two points Pi = (xi1, xi2, xi3, xi4), i = 1, 2, is defined by

g(P1, P2) = |x21 − x11| , if x21 6= x11

g(P1, P2) =

√
(x22 − x12)2 + (x23 − x13)2 + (x24 − x14)2, if x21 = x11

For the vectors p = (p1 , p2 , p3 , p4), q = (q1, q2, q3, q4) and r = (r1, r2, r3, r4), Galilean cross product in G4 is defined as follows:

p ∧ q ∧ r =

∣∣∣∣∣∣∣
0 e2 e3 e4
p1 p2 p3 p4
q1 q2 q3 q4
r1 r2 r3 r4

∣∣∣∣∣∣∣
where ei are the standard basis vectors.

The notation < x, y >G we use in this paper denotes the inner product of the vectors x, y in Galilean space.
Let α(s) = (s, x2(s), x3(s), x4(s)) be a curve parameterized by arclength s in G4, the Frenet formulas can written as

T
′

N
′

B
′

1

B
′

2

 =

0 k1 0 0
0 0 k2 0
0 −k2 0 k3
0 0 −k3 0


 TNB1
B2

 (2.1)

where T,N,B1, B2 are mutually orthogonal vector fields which the following equations hold

< T, T >G=< N,N >G=< B1, B1 >G=< B2, B2 >G= 1

< T,N >G=< T,B1 >G=< T,B2 >G=< N,B1 >G=< N,B2 >G=< B1, B2 >G= 0.

We use some terms in this journal. The plane spanned by { T, B1 } is called (0,2)-tangent plane at any point of the curve φ. The plane
spanning { N, B2 } is called the (1,3)-normal plane of φ.

Let φ : I → G4 and φ∗ : I → G4, I ⊂ R be two regular parameterized curves in Galilean 4-space G4. Let s∗ = f(s) be an arc-length
parameter of φ∗. ∀ s ∈ I , if the (0, 2)-tangent plane at φ(s) of φ overlaps with the (1, 3)-normal plane of φ∗at φ∗(s), then φ∗ is said to be
(0, 2)-involute curve of φ in G4 while φ is called (1, 3)-evolute curve of φ∗ in G4.

3 The (0,2)-involute curve in a Galilean 4-space G4

In this chapter, we investigate the existence and representation of the (0,2)-involute curve in Galilean 4-space.
Let φ : I ⊂ R→ G4 be a regular parameterized curve, and k1, k2 and k3 to be its curvatures ki 6= 0, and let φ∗ : I ⊂ R→ G4 be a

(0, 2)-involute curve of φ. Donate {T ∗, N∗, B∗1 , B∗2} to be the Frenet Frame along φ∗ and k∗1 , k∗2 and k∗3 to be the curvatures of φ∗. Then

span {T,B1} = span
{
N∗, B∗2

}
span {N,B2} = span

{
T ∗, B∗1

}
(3.1)

and 〈
T
∗
, T
〉
= 0.

Moreover, α∗ can be expressed as

φ∗(s) = φ(s) + a(s)T (s) + b(s)B1(s) (3.2)

where a, b ∈ C∞ functions on I.
By differentiating (3.2) with respect to s and using (2.1)

φ∗
′

(s) = φ
′
(s) + a′(s)T (s) + a(s)T

′
(s) + b

′
(s)B1 + b(s)B

′

1(s) (3.3)

f
′
T
∗
=
(
1 + a′

)
T + (ak1 − bk2)N + b

′
B1 + bk3B2.

So by taking dot product on both-sides of (3.3) with T and B1
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〈
f
′
T
∗
, T
〉

=
〈(

1 + a′
)
T + (ak1 − bk2)N + b

′
B1 + bk3B2, T

〉
0 = 1 + a′

a′ = −1

integrate both sides of the above equation

∫
da

ds
ds = −

∫
ds

a = a0 − s, (a0 is a constant)

and

〈
f
′
T
∗
, B1

〉
=

〈(
1 + a′

)
T + (ak1 − bk2)N + b

′
B1 + bk3B2, B1

〉
0 = b

′
,

which implies that b is a constant, thus (3.3) turns to

f
′
T
∗
= (ak1 − bk2)N + bk3B2, (3.4)

let

δ =
(ak1 − bk2)

f
′ and γ =

bk3
f
′ , (3.5)

therefore

T
∗
= δN + γB2, (3.6)

δ2 + γ2 = 1.

Case 1
b 6= 0, in this case γ = bk3

f ′
6= 0. Denote δ

γ = t1, then δ = γt1 and

f
′
=
bk3
γ

= bγ−1k3 (3.7)

From (3.5) and (3.7)

δ =
(ak1 − bk2)

f
′

bt1k3 = ak1 − bk2. (3.8)

From (3.6)

δ2 + γ2 = 1

γ2 =
1

t21+1
. (3.9)

Differentiate (3.6) with respect to s and using (2.1)

T
∗′

= δ
′
N + δN

′
+ γ

′
B2 + γB

′

2

f
′
k
∗

1N
∗

= δ
′
N + (δk2 − γk3)B1 + γ

′
B2 (3.10)

So by taking dot product on both-sides of (3.10) with N and B2

〈
f
′
k
∗

1N
∗

, N

〉
=

〈
δ
′
N + (δk2 − γk3)B1 + γ

′
B2, N

〉
0 = δ

′〈
f
′
k
∗

1N
∗

, B2

〉
=

〈
δ
′
N + (δk2 − γk3)B1 + γ

′
B2, B2

〉
0 = γ

′

which implies that γ and δ are constants, thus (3.10) turns to
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f
′
k
∗

1N
∗

= (δk2 − γk3)B1. (3.11)

We suppose that

f
′
k
∗

1 = δk2 − γk3,

N
∗

= B1. (3.12)

Differentiate (3.12) with respect to s

N
∗′

= B
′

1

f
′
k
∗

2B
∗

1 = −k2N + k3B2. (3.13)

Let

c =
−k2
f
′
k
∗

2

, e =
k3

f
′
k
∗

2

, (3.14)

then (3.13) turns into

B
∗

1 = cN + eB2,

c2 + e2 = 1.

Let ce = t2, then c = et2, from (3.14)

c =
−k2
f
′
k
∗

2

et2 =
−k2
f
′
k
∗

2

k3

f
′
k
∗

2

t2 =
−k2
f
′
k
∗

2

k3 =
−k2
t2

, (3.16)

from (3.15)

c2 + e2 = 1

e2 =
1

t22 + 1
, (3.17)

from (3.8) and (3.16)

bt1k3 = ak1 − bk2

bt1

(
−k2
t2

)
= ak1 − bk2

τ =
k2
k1

=
at2

b (t2 − t1)

τ =
a
b t2

(t2 − t1)
. (3.18)

From (3.16)

k2 = −k3t2, (3.19)

substitute (3.19) in (3.8)

bt1k3 = ak1 − bk2

k3
k1

=
a

(bt1 − bt2)
= − 1

t2
τ. (3.20)

Let γe = t3, then γ = et3, from (3.14)
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e =
k3

f
′
k
∗

2

f
′
k
∗

2 =
k3t3
γ

= e−1k3 (3.21)

but

t3 =
γ

e

t23 =
γ2

e2
,

substitute (3.9) and (3.17) in the above equation

t23 =
γ2

e2

t23 =
1 + t22
1 + t21

. (3.22)

Differentiate (3.15) with respect to s and using (2.1)

B
∗′

1 = c
′
N + cN

′
+ e
′
B2 + eB

′

2

f
′
k
∗

3B
∗

2 = f
′
k
∗

2N
∗

+ c
′
N + (ck2 − ek3)B1 + e

′
B2. (3.23)

So by taking inner product on both-sides of (3.23) with N and B2

〈
f
′
k
∗

3B
∗

2 , N

〉
=

〈
f
′
k
∗

2N
∗

+ c
′
N + (ck2 − ek3)B1 + e

′
B2, N

〉
0 = c

′〈
f
′
k
∗

3B
∗

2 , B2

〉
=

〈
f
′
k
∗

2N
∗

+ c
′
N + (ck2 − ek3)B1 + e

′
B2, B2

〉
0 = e

′
,

which implies that c and e are constants, thus (3.23) turns to

f
′
k
∗

3B
∗

2 = f
′
k
∗

2N
∗

+ (ck2 − ek3)B1, (3.24)

substitute (3.12) and (3.21) in (3.24)

f
′
k
∗

3B
∗

2 = e−1k3B1 + (ck2 − ek3)B1,

f
′
k
∗

3B
∗

2 = c (t2k3 + k2)B1, (3.25)

we may choose that

B
∗

2 = cB1 (3.26)

f
′
k
∗

3 = (t2k3 + k2) .

Summarising the above discussion, we obtain the following

Theorem 1. Let φ : I ⊂ R→ G4 be a regular parameterized curve and k1, k2 and k3 are its curvatures ki 6= 0. If φ has the (0, 2)-involute
mate curve φ∗(s) = φ(s) + (a0−s)T (s) + b(s)B1(s) with b 6= 0, then k1, k2 and k3 satisfy

k2
k1

= τ,
k3
k1

= − 1

t2
τ and τ =

(a0 − s) t2
b (t2 − t1)

,

where a0, b and t2 are constants, moreover, the three curvatures of φ∗(s) are given by

k
∗

1 = − (t1t2 + 1)

b
(
1 + t22

) , k
∗

2 =
t3
b

and k
∗

3 = 0,
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its frenet frame can be written as

T
∗

= et3 (t1N +B2) ,

N
∗

= B1

B
∗

1 = e (t2N +B2)

B
∗

2 = et2B1.

Case 2
b = 0, in this case (3.2) turns to

φ∗(s) = φ(s) + (a0 − s)T (s). (3.27)

Differentiate (3.27) with respect to s and using (2.1)

f
′
T
∗
= (a0 − s)k1N, (3.28)

we suppose that

f
′
= (s− a0)k1

T
∗
= −N. (3.29)

Differentiate (3.29) with respect to s and using (2.1)

T
∗
′

= −N
′

f
′
k
∗

1N
∗

= −k2B1.

Let

N
∗

= eB1 (3.30)

e =
−k2
f
′
k
∗

1

.

By differentiating (3.30) with respect to s we get

f
′
k
∗

2B
∗

1 = −ek2N + e
′
B1 + ek3B2, (3.31)

so by taking dot product on both-sides of (3.31) with B1〈
f
′
k
∗

2B
∗

1 , B1

〉
=

〈
−ek2N + e

′
B1 + ek3B2, B1

〉
0 = e

′

which implies that e is a constant, therefore (3.31) turns to

f
′
k
∗

2B
∗

1 = −ek2N + ek3B2, (3.32)

let

p =
ek3

f
′
k
∗

2

, q =
−ek2
f
′
k
∗

2

(3.33)

B
∗

1 = pB2 + qN

p2 + q2 = 1

from (3.33) we get
pk2 + qk3 = 0. (3.34)

From (3.34) we get
k3
k1

= −p
q
τ. (3.35)
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Let ep = t1, e = pt1, from (3.33)

p =
ek3

f
′
k
∗

2

e

t1
=

ek3

f
′
k
∗

2

f
′
k
∗

2 = t1k3, (3.36)

By differentiating (3.33) we get

f
′
k
∗

3B
∗

2 = f
′
k
∗

2N
∗

+ q
′
N + (qk2 − pk3)B1 + p

′
B2, (3.37)

so by taking dot product on both-sides of (3.37) with N and B2〈
f
′
k
∗

3B
∗

2 , N

〉
=

〈
f
′
k
∗

2N
∗

+ q
′
N + (qk2 − pk3)B1 + p

′
B2, N

〉
0 = q

′〈
f
′
k
∗

3B
∗

2 , B2

〉
=

〈
f
′
k
∗

2N
∗

+ q
′
N + (qk2 − pk3)B1 + p

′
B2, B2

〉
0 = p

′

which implies that p and q are constants, thus (3.37) turns to

f
′
k
∗

3B
∗

2 = f
′
k
∗

2N
∗

+ (qk2 − pk3)B1, (3.38)

by substituting (3.33) and (3.36) in (3.38) we have

f
′
k
∗

3B
∗

2 = k1

{
p
k3
k1

(
t21 − 1

)
+ q

k2
k1

}
B1 =

k1τ

q

(
1− e2

)
B1. (3.39)

We suppose that

f
′
k
∗

3 = k1τ
(
e2 − 1

)
(3.40)

B
∗

2 = −q−1B1

Summarising the above discussion, we obtain the following.

Theorem 2. Let φ : I ⊂ R→ G4 be a regular parameterized curve and k1, k2 and k3 are its curvatures ki 6= 0. If φ has the (0, 2)-involute
mate curve φ∗(s) = φ(s) + (a0−s)T (s), then k2 and k3 satisfy

pk2 + qk3 = 0, (3.41)

k2
k1

= τ,
k3
k1

= −p
q
τ ,

where a0, p and q are given constants, moreover, the three curvatures of α∗(s) are given by

k
∗

1 = − k2
e (s− a0) k1

, k
∗

2 =
−pt1τ

q (s− a0)
and k

∗

3 =
τ
(
e2 − 1

)
(s− a0)

,

its frenet frame can be written as

T
∗

= −N

N
∗′

= pt1B1

B
∗

1 = qN + pB2

B
∗

2 = −q−1B1.

Remark 1. From theorems 1 and 2 we can see that the above two cases are quite different with each other.
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