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Abstract: In this study, we investigate three types of special helices whose axis is a fixed constant Killing vector field on the
Ellipsoid SZ, 4, a5 iN RS, 4,.a5- Then, we obtain the curvatures of all special helices on the ellipsoid S2, ., ., and give some char-
acterizations of these curves. Moreover, we present various examples and visualize their images using the Mathematica program.
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1 Introduction

The spherical curves are the special space curves that lie on the sphere. If the sphere is constructed by using the elliptical inner product, then
the elliptical 2-sphere is obtained. This sphere is an ellipsoid according to the Euclidean sense. We summarize some studies about spherical
curves: Firstly, Wong proved the condition for a curve to be on a sphere and gave some characterizations for this curve [10, 11]. In [3], Breuer
et al. gave an explicit characterization of the spherical curve. In [6], the author investigated the characterization of the dual spherical curve.
Then, in [2], the author obtained a differential equation for characterizing of the dual spherical curves. Besides, in [4], flarslan presented the
spherical curve characterization for non-null regular curves in Lorentzian 3-space. Ayyildiz introduced the dual Lorentzian spherical curves [1].
Moreover, Izumiya and Takeuchi defined the slant helices and conical geodesic curve and gave a classification of special developable surfaces
under the condition of the existence of such a special helix as a geodesic [5]. Scofield derived a curve of constant precession and proved that
this curve is tangent indicatrix of a spherical helix [9].

In the present work, we give some characterizations for the special helices whose axis is the fixed constant Killing vector field on the elliptical
2-sphere. Furthermore, we give various examples and draw their images by using the Mathematica program.

2  Preliminaries

Let we take u = (ug,u2,u3), v = (v1,v2,v3) € R3 and ai,a2,a3 € RT then the elliptical inner product defined as
B:R® xR® - R; B(u,v) = a121y1 + asays + a3z3ys. (1)

The 3-dimensional real vector space R3 equipped with the elliptical inner product will be represented by R%, 4,,45- The norm of a vector
associated with the scalar product B is defined as

lullp = v/ B(u,w). @

Two vectors u and v are called elliptically orthogonal vectors if B(u,v) = 0. In addition, if w is an elliptically orthonormal vector then
B(u,u) = 1. The cosine of the angle between two vectors u and v is defined as

B(u,v)

cosf) = ——————,
lull 5 llvll 5

3)

where 6 is compatible with the parameters of the angular parametric equations of ellipse or ellipsoid. The cross product of two vector fields
X,Y € RS, 4, a5 is given by

€1 €2 €3
ar a2 az

XxpY=A| 21 x9 x3 |, “4)
Yy Y2 Y3

where A = \/at1agzas, a1, az, a3 € RT [7].
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Let us take the ellipsoid denoted by SZI Jas,az i Rgl ,as,as- Then, the sectional curvature of the ellipsoid generated by the non-degenerated
plane {u, v} is defined as

B(R(u,v)u,v)

K = 5
(u,v) B(u,u)B(v,v) — B(u,v)%’ ©)
where R is the Riemannian curvature tensor given by
R(X,Y)Z = —VXVyZ-i-VyVXZ-FV[X’Y]Z. 6)
The ellipsoid has the constant sectional curvature. Therefore, the curvature tensor R is written as follows
where C'is the constant sectional curvature.
A curve +y on the ellipsoid SZ, .as,a5 defined by y(s) = ¢(a(s)) and a unit normal vector field Z along the surface S2, .as,a5 defined
_ Pu XE Py (8)

~ lu x ol

Since Sghaz,az is sphere according to the elliptical inner product, the unit normal vector field Z along the surface Sghab% equal to the
position vector of the curve . Then, we found an orthonormal frame {¢t = ~Noy=vyxgv, ~} which is called the elliptical Darboux frame
along the curve . The corresponding Darboux formulae of - is written as

v = —v+kgpy, C)
Y =t
/
= _k!]Et7
where kn, = —1, kg, =B (v",y) and 1 = 0 are geodesic curvature, asymptotic curvature, and principal curvature of ~ on the surface

Sgl Jaz,as» Tespectively. Moreover, it is found as the following relation

YXpt=7,z2Xgy=t, zxXgt=—y, (10)
[8].
Lemma 1. Let p: U C R? - Ril,%a?’, p(U) = Sghaz’ag be an ellipsoid and v : I C R — U be a regular curve on the Sgl’a%ag. Pro-
vided that V be a vector field along the curve y then the variation of v defined by T : I X (—e,e) — Sgl .az,a5 (C) with (s, 0) the initial curve

satisfy I'(s, 0) = ~y(s). The variations of the geodesic curvature function kg, (s, w) and the speed function v(s, w) at w = 0 are calculated as
Sfollows:

V() = (F(sw)| =,
1)
Vikge) = (F(s,w)| = B(=R(V.0)t + ViViy) = £ B(=R(V. 1)t + ViV, ),

where p = B(VV,t) and R stands for the curvature tensor 0f8317a27a3 [8].

Proposition 1. If V (s) is the restriction to (s) of a Killing vector field V' of Sgl ,as,a then the variations of the elliptical Darboux curvature
functions and speed function of v satisfy:

V(v) =V(kgp) =0, 12)
18].

3  Special helices on the ellipsoid S2

aj,az2,a3

Definition 1. Letp : U C R? — Rgl,amas, pU) = Sgl,az,ag be an ellipsoid and ~ : I C R — U be a regular curve on the Sghaz’as. Then
we say that 7y is a type-1 special helix, type-2 special helix, or type-3 special helix if B(V,t) = const., B(V,~) = const., and B(V,y) =
const., respectively.

Theorem 1. Let ¢ : U C E? — IE3, p(U) = Sgl,az,a?’ be an ellipsoid and v : I C R — U be a regular curve on Sghaz’ag and V be a
Killing vector field along the curve . Then -y is a type-1 special helix with the axis V if and only if the geodesic curvature of the curve -y satisfy
the following equation:

kg = cotd,
where 0 satisfy
0" sin? 0 — wb’ cos O = 0,

[8].
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Now, we can give the following corollary without proof. The proof of the corollary similar to Scofield’s work [9].

Corollary 1. Let ¢ : U C E? - IES, pU) = Sﬁl,awg be an ellipsoid and v : I C R — U be a type-1 special helix with the Killing axis V'
on Sgl Jas,a3- Then, the integral curve of v is an elliptical constant procession curve on the elliptical hyperboloid.

Theorem 2. Letp : U C R? - Rﬁhaz’w pU) = 8317{127@3 be an ellipsoid and v : I C R — U be a regular curve on the 8317,127@3. Then
v is a type-2 special helix with the axis V' if and only if the geodesic curvature of the curve v satisfy the following equation:

_a oy
kgE_sin& v, a3

here 0 satisfies

0 = const. or (C + 1) sin® 6 — ¢160"sin 6 + ¢; = 0,
where c is a constant.
Proof: If ~y is a type-2 special helix with the Killing axis V' then V is written as

V = cos Ot + c17vy + sin 0y, c; = const. (14)

Differentiating eq.(14) with respect to s, we found the following equation

VeV = (=0 —kgy)sin® + c1)t + (= cos )y (15)

+(cos Okgy, + 6 cosB)y.

Using the equation V (v) = 0 in Lemma 1, we found

C1 /
kgp = -0 1
98 7 §in0 (16)
The differentiation of eq.(15) is obtained as
ViV = (-1- kgE + kgp0') cos 0t + 6" sin Oy + (kg + 6') cos6)'y. (17)
Moreover, we have the following equation
R(V,t)t = C(B(t, V)t — B(t,t)V). (18)
Using the Darboux frame equations and eq.(14), we deduce
R(V,t)t = —C(c1y + sin Qy). (19)

Considering the eq.(17) and eq.(19) with the second equation in Lemma 1 and the Proposition 1, we reach the following equations

0 = const. or (C + 1)sin® 6 — ¢10'sin + ¢; = 0.

|
Corollary 2. Let v be a type-2 special helix on the ellipsoid with the axis
V = cosOt + c1v +sinfy, 0 = const.,
then vy has the following parametric representation
A 3 A 7
~v(s) = A1 + 2 cos({/1+ 12 + 3 sin(4/1+ — 12 s),
4 c? sin® 6 /1 4 c? sin® 6
sin? 6 sin? 6
where Ay, A, A3 € R?LI@%QB and c; € R.
Proof: Let ~y be a type-2 special helix on the ellipsoid with the axis
V = cosOt + c1y +sinfy, 0 = const., (20)
then the elliptical curvature of v calculated as
C1
= . 21
92 7 §ing @D
On the other hand, from the Darboux frame equations -y satisfy the following third order differential equation
3
kg = kg + (kg + kgu)y' — kgpy = 0. (22)

If kg, is written in the eq.(22) and the differential equation is solved then it is obtained that -y has the following parametric representation

A c? A ) c?
¥(s) = Ar + ———2——cos({/ 1+ —5-) + S sin(\/1+ ——5—9), (23)
c? sin” 6 c? sin” 6
1+ sin2 0 1+

sin? 6

where A1, As, Az € Rgha%% and c; € R. O
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Theorem 3. Letp : U C R? - ]Rgha%%, pU) = Sghamas be an ellipsoid and v : I C R — U be a regular curve on the 831@2@3. Then
v is type-3 special helix with the axis V' if and only if the geodesic curvature of the curve -y satisfy the following equation:

1—6")sin6
gy = L= 050 (24)
c2
here 0 satisfies
(1—0")sin0(—c30' — 0" sinfcosf + (1 — 0')0 cos20) — 6’ sin 6 — 36" cos 6 = 0,

where cg is a constant.

Proof: If 7y is a type-3 special helix with the Killing axis V' then V' is written as

V' = cos 0t + sin 0y + c2y. (25)
By differentiating eq.(25), we get
VoV = ((1—6")sinb — cakgp )t + (1 — 0) cos 0y + kg, cos Oy. (26)
By using the equation V' (v) = 0 in Lemma 1, we reach
- (1- i;) sin0. @7

If we take the differentiation of eq.(26), we obtain

V2V = ((1—6")cos — k;E cos 0)t + (—0" cos —(1 — 6")8' sin )

28
+(k§E cos — kg0 sin 0)y. (28)
Furthermore, we have the following equation
R(V,t)t = C(B(t, V)t — B(t,t)V). 29)
By using the Darboux frame equations and eq.(25), we obtain
R(V,T)T = C(—sin0vy — coy). (30)
If we consider the eq.(28) and eq.(30) with the second equation in Lemma 1 and the Proposition 1, we deduce
6 = const. 31
or satisfy the following equation
(1—0")sin0(—c30" — 0" sinfcos O+ (1 —0')0 cos20) — 6’ sin 6 — 36" cos § = 0. (32)
]
Corollary 3. Let vy be a type-3 special helix on the ellipsoid with the axis
V = cos 0t + sin 0y + coy, 60 = const., (33)
then ~y has the following parametric representation
02 02
~v(s) = By + % cos(4/1+ SHCIQ 0 + B3si1r129 sin(4/1+ 5127293),
where By, Bs, B3 € Rghaz’as and c3 € R.
Proof: Let vy be a type-3 special helix on the ellipsoid with the axis
V = cos 0t + sin 0y + coy, 60 = const., (34)
then the elliptical curvature of v calculated as
sin 0
kgp = . (35)
C2
On the other hand, from the Darboux frame equations, v satisfy the following third order differential equation
3
kgp?" = kg + (g + kgp)?' — kgpy = 0. (36)
If kg, is written in the eq.(34) and the differential equation is solved then it is obtained that -y has the following parametric representation
Bo sin? 0 Bs . sin? 0
Y(s) = B1 + ——==cos(4 |1+ —5—) + —— sin(4/1+ —5—s), 37)
14 sin’é 5 14 sin’é c5
<3 <3
where By, Bo, B3 € RS, 4, 4, and c2 € R. O
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In the following examples we give various special helices on the ellipsoid.

Examle 1. Let us take the curve parameterized as

1 (14 k)cos(l — k)t — (1 —k)cos(1 + k)t 1 (1+k)sin(1 — k)t — (1 — k) sin(1 + k)t V1 — k2 cos kt
v(s) =5 5 . (38)
2 2 2 4 9
The elliptical curvature of the helix calculated as
kgy (s) = cot(ks). (39)

Thus, we can easily see that vy is a type-1 special helix. It is illustrated in Figure 1.

Figurel. Type-1 special Helices on the Ellipsoid S%A,g, k = 0.505.

Examle 2. Type-2 (type-3) special helices corresponding to different values of the A;, B;, i = 1,2, 3. are illustrated in Figure 2.

Figure2. Type-2 (type-3) Special Helices on the Ellipsoid 83,4,9.
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