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Abstract: In this study, we investigate three types of special helices whose axis is a fixed constant Killing vector field on the
Ellipsoid S2a1,a2,a3 in R3

a1,a2,a3 . Then, we obtain the curvatures of all special helices on the ellipsoid S2a1,a2,a3 and give some char-
acterizations of these curves. Moreover, we present various examples and visualize their images using the Mathematica program.
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1 Introduction

The spherical curves are the special space curves that lie on the sphere. If the sphere is constructed by using the elliptical inner product, then
the elliptical 2-sphere is obtained. This sphere is an ellipsoid according to the Euclidean sense. We summarize some studies about spherical
curves: Firstly, Wong proved the condition for a curve to be on a sphere and gave some characterizations for this curve [10, 11]. In [3], Breuer
et al. gave an explicit characterization of the spherical curve. In [6], the author investigated the characterization of the dual spherical curve.
Then, in [2], the author obtained a differential equation for characterizing of the dual spherical curves. Besides, in [4], İlarslan presented the
spherical curve characterization for non-null regular curves in Lorentzian 3-space. Ayyıldız introduced the dual Lorentzian spherical curves [1].
Moreover, Izumiya and Takeuchi defined the slant helices and conical geodesic curve and gave a classification of special developable surfaces
under the condition of the existence of such a special helix as a geodesic [5]. Scofield derived a curve of constant precession and proved that
this curve is tangent indicatrix of a spherical helix [9].

In the present work, we give some characterizations for the special helices whose axis is the fixed constant Killing vector field on the elliptical
2-sphere. Furthermore, we give various examples and draw their images by using the Mathematica program.

2 Preliminaries

Let we take u = (u1, u2, u3), v = (v1, v2, v3) ∈ R3 and a1, a2, a3 ∈ R+ then the elliptical inner product defined as

B : R3 × R3 → R; B(u, v) = a1x1y1 + a2x2y2 + a3x3y3. (1)

The 3-dimensional real vector space R3 equipped with the elliptical inner product will be represented by Rna1,a2,a3 . The norm of a vector
associated with the scalar product B is defined as

‖u‖B =
√
B(u, u). (2)

Two vectors u and v are called elliptically orthogonal vectors if B(u, v) = 0. In addition, if u is an elliptically orthonormal vector then
B(u, u) = 1. The cosine of the angle between two vectors u and v is defined as

cos θ =
B(u, v)

‖u‖B ‖v‖B
, (3)

where θ is compatible with the parameters of the angular parametric equations of ellipse or ellipsoid. The cross product of two vector fields
X,Y ∈ R3

a1,a2,a3 is given by

X ×E Y = ∆

∣∣∣∣∣∣
e1
a1

e2
a2

e3
a3

x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣ , (4)

where ∆ =
√
a1a2a3, a1, a2, a3 ∈ R+ [7].
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Let us take the ellipsoid denoted by S2a1,a2,a3 in R3
a1,a2,a3 . Then, the sectional curvature of the ellipsoid generated by the non-degenerated

plane {u, v} is defined as

K(u, v) =
B(R(u, v)u, v)

B(u, u)B(v, v)−B(u, v)2
, (5)

where R is the Riemannian curvature tensor given by

R(X,Y )Z = −∇X∇Y Z +∇Y∇XZ +∇[X,Y ]Z. (6)

The ellipsoid has the constant sectional curvature. Therefore, the curvature tensor R is written as follows

R(X,Y )Z = C{B(Z,X)Y −B(Z, Y )X}, (7)

where C is the constant sectional curvature.
A curve γ on the ellipsoid S2a1,a2,a3 defined by γ(s) = ϕ(α(s)) and a unit normal vector field Z along the surface S2a1,a2,a3 defined

Z =
ϕu ×E ϕv
‖ϕu × ϕv‖

. (8)

Since S2a1,a2,a3 is sphere according to the elliptical inner product, the unit normal vector field Z along the surface S2a1,a2,a3 equal to the
position vector of the curve γ. Then, we found an orthonormal frame {t = γ′, y = γ ×E γ′, γ} which is called the elliptical Darboux frame
along the curve γ. The corresponding Darboux formulae of γ is written as

t′ = −γ + kgEy, (9)

γ′ = t,

y′ = −kgE t,

where knE = −1, kgE = B(γ′′, y) and τr = 0 are geodesic curvature, asymptotic curvature, and principal curvature of γ on the surface
S2a1,a2,a3 , respectively. Moreover, it is found as the following relation

y ×E t = γ, z ×E y = t, z ×E t = −y, (10)

[8].

Lemma 1. Let ϕ : U ⊂ R2 → R3
a1,a2,a3 , ϕ(U) = S2a1,a2,a3 be an ellipsoid and γ : I ⊂ R→ U be a regular curve on the S2a1,a2,a3 . Pro-

vided that V be a vector field along the curve γ then the variation of γ defined by Γ : I × (−ε, ε)→ S2a1,a2,a3(C) with γ(s, 0) the initial curve
satisfy Γ(s, 0) = γ(s). The variations of the geodesic curvature function kgE (s, w) and the speed function v(s, w) at w = 0 are calculated as
follows:

V (v) = ( ∂v∂w (s, w))
∣∣∣
w=0

= −vρ,

V (kgE ) = (
∂kgE
∂w (s, w))

∣∣∣
w=0

= B(−R(V, t)t+∇2
tV, y)− 1

kgE
B(−R(V, t)t+∇2

tV, γ),

(11)

where ρ = B(∇tV, t) and R stands for the curvature tensor of S2a1,a2,a3 [8].

Proposition 1. If V (s) is the restriction to γ(s) of a Killing vector field V of S2a1,a2,a3 then the variations of the elliptical Darboux curvature
functions and speed function of γ satisfy:

V (v) = V (kgE ) = 0, (12)

[8].

3 Special helices on the ellipsoid S2
a1,a2,a3

Definition 1. Let ϕ : U ⊂ R2 → R3
a1,a2,a3 , ϕ(U) = S2a1,a2,a3 be an ellipsoid and γ : I ⊂ R→ U be a regular curve on the S2a1,a2,a3 . Then

we say that γ is a type-1 special helix, type-2 special helix, or type-3 special helix if B(V, t) = const., B(V, γ) = const., and B(V, y) =
const., respectively.

Theorem 1. Let ϕ : U ⊂ E2 → E3, ϕ(U) = S2a1,a2,a3 be an ellipsoid and γ : I ⊂ R→ U be a regular curve on S2a1,a2,a3 and V be a
Killing vector field along the curve γ. Then γ is a type-1 special helix with the axis V if and only if the geodesic curvature of the curve γ satisfy
the following equation:

kgE = cot θ,

where θ satisfy

θ′′ sin2 θ − ωθ′ cos θ = 0,

[8].
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Now, we can give the following corollary without proof. The proof of the corollary similar to Scofield’s work [9].

Corollary 1. Let ϕ : U ⊂ E2 → E3, ϕ(U) = S2a1,a2,a3 be an ellipsoid and γ : I ⊂ R→ U be a type-1 special helix with the Killing axis V
on S2a1,a2,a3 . Then, the integral curve of γ is an elliptical constant procession curve on the elliptical hyperboloid.

Theorem 2. Let ϕ : U ⊂ R2 → R3
a1,a2,a3 , ϕ(U) = S2a1,a2,a3 be an ellipsoid and γ : I ⊂ R→ U be a regular curve on the S2a1,a2,a3 . Then

γ is a type-2 special helix with the axis V if and only if the geodesic curvature of the curve γ satisfy the following equation:

kgE =
c1

sin θ
− θ′, (13)

here θ satisfies
θ = const. or (C + 1) sin4 θ − c1θ′ sin θ + c1 = 0,

where c is a constant.

Proof: If γ is a type-2 special helix with the Killing axis V then V is written as

V = cos θt+ c1γ + sin θy, c1 = const. (14)

Differentiating eq.(14) with respect to s, we found the following equation

∇TV = ((−θ′ − kgE ) sin θ + c1)t+ (− cos θ)γ (15)

+(cos θkgE + θ′ cos θ)y.

Using the equation V (v) = 0 in Lemma 1, we found

kgE =
c1

sin θ
− θ′ (16)

The differentiation of eq.(15) is obtained as

∇2
TV = (−1− k2gE + kgEθ

′) cos θt+ θ′ sin θγ + ((kgE + θ′) cos θ)′y. (17)

Moreover, we have the following equation
R(V, t)t = C(B(t, V )t−B(t, t)V ). (18)

Using the Darboux frame equations and eq.(14), we deduce

R(V, t)t = −C(c1γ + sin θy). (19)

Considering the eq.(17) and eq.(19) with the second equation in Lemma 1 and the Proposition 1, we reach the following equations

θ = const. or (C + 1) sin4 θ − c1θ′ sin θ + c1 = 0.

�

Corollary 2. Let γ be a type-2 special helix on the ellipsoid with the axis

V = cos θt+ c1γ + sin θy, θ = const.,

then γ has the following parametric representation

γ(s) = A1 +
A2√

1 +
c21

sin2 θ

cos(

√
1 +

c21
sin2 θ

) +
A3√

1 +
c21

sin2 θ

sin(

√
1 +

c21
sin2 θ

s),

where A1, A2, A3 ∈ R3
a1,a2,a3 and c1 ∈ R.

Proof: Let γ be a type-2 special helix on the ellipsoid with the axis

V = cos θt+ c1γ + sin θy, θ = const., (20)

then the elliptical curvature of γ calculated as

kgE =
c1

sin θ
. (21)

On the other hand, from the Darboux frame equations γ satisfy the following third order differential equation

kgEγ
′′′ − k′gEγ

′′ + (k3gE + kgE )γ′ − k′gEγ = 0. (22)

If kgE is written in the eq.(22) and the differential equation is solved then it is obtained that γ has the following parametric representation

γ(s) = A1 +
A2√

1 +
c21

sin2 θ

cos(

√
1 +

c21
sin2 θ

) +
A3√

1 +
c21

sin2 θ

sin(

√
1 +

c21
sin2 θ

s), (23)

where A1, A2, A3 ∈ R3
a1,a2,a3 and c1 ∈ R. �
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Theorem 3. Let ϕ : U ⊂ R2 → R3
a1,a2,a3 , ϕ(U) = S2a1,a2,a3 be an ellipsoid and γ : I ⊂ R→ U be a regular curve on the S2a1,a2,a3 . Then

γ is type-3 special helix with the axis V if and only if the geodesic curvature of the curve γ satisfy the following equation:

kgE =
(1− θ′) sin θ

c2
, (24)

here θ satisfies
(1− θ′) sin θ(−c22θ′ − θ′′ sin θ cos θ + (1− θ′)θ′ cos 2θ)− θ′ sin θ − c22θ′′ cos θ = 0,

where c2 is a constant.

Proof: If γ is a type-3 special helix with the Killing axis V then V is written as

V = cos θt+ sin θγ + c2y. (25)

By differentiating eq.(25), we get

∇TV = ((1− θ′) sin θ − c2kgE )t+ (1− θ′) cos θγ + kgE cos θy. (26)

By using the equation V (v) = 0 in Lemma 1, we reach

kgE =
(1− θ′) sin θ

c2
. (27)

If we take the differentiation of eq.(26), we obtain

∇2
TV = ((1− θ′) cos θ − k2gE cos θ)t+ (−θ′′ cos−(1− θ′)θ′ sin θ)γ

+(k2gE cos θ − kgEθ′ sin θ)y.
(28)

Furthermore, we have the following equation
R(V, t)t = C(B(t, V )t−B(t, t)V ). (29)

By using the Darboux frame equations and eq.(25), we obtain

R(V, T )T = C(− sin θγ − c2y). (30)

If we consider the eq.(28) and eq.(30) with the second equation in Lemma 1 and the Proposition 1, we deduce

θ = const. (31)

or satisfy the following equation

(1− θ′) sin θ(−c22θ′ − θ′′ sin θ cos θ + (1− θ′)θ′ cos 2θ)− θ′ sin θ − c22θ′′ cos θ = 0. (32)

�

Corollary 3. Let γ be a type-3 special helix on the ellipsoid with the axis

V = cos θt+ sin θγ + c2y, θ = const., (33)

then γ has the following parametric representation

γ(s) = B1 +
B2√

1 + sin2 θ
c22

cos(

√
1 +

sin2 θ

c22
) +

B3√
1 + sin2 θ

c22

sin(

√
1 +

sin2 θ

c22
s),

where B1, B2, B3 ∈ R3
a1,a2,a3 and c2 ∈ R.

Proof: Let γ be a type-3 special helix on the ellipsoid with the axis

V = cos θt+ sin θγ + c2y, θ = const., (34)

then the elliptical curvature of γ calculated as

kgE =
sin θ

c2
. (35)

On the other hand, from the Darboux frame equations, γ satisfy the following third order differential equation

kgEγ
′′′ − k′gEγ

′′ + (k3gE + kgE )γ′ − k′gEγ = 0. (36)

If kgE is written in the eq.(34) and the differential equation is solved then it is obtained that γ has the following parametric representation

γ(s) = B1 +
B2√

1 + sin2 θ
c22

cos(

√
1 +

sin2 θ

c22
) +

B3√
1 + sin2 θ

c22

sin(

√
1 +

sin2 θ

c22
s), (37)

where B1, B2, B3 ∈ R3
a1,a2,a3 and c2 ∈ R. �
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In the following examples we give various special helices on the ellipsoid.

Examle 1. Let us take the curve parameterized as

γ(s) =
1

2

(1 + k) cos(1− k)t− (1− k) cos(1 + k)t

2

1

2

(1 + k) sin(1− k)t− (1− k) sin(1 + k)t

4

√
1− k2 cos kt

9
. (38)

The elliptical curvature of the helix calculated as
kgE (s) = cot(ks). (39)

Thus, we can easily see that γ is a type-1 special helix. It is illustrated in Figure 1.

Figure1. Type-1 special Helices on the Ellipsoid S22,4,9, k = 0.505.

Examle 2. Type-2 (type-3) special helices corresponding to different values of the Ai, Bi, i = 1, 2, 3. are illustrated in Figure 2.

Figure2. Type-2 (type-3) Special Helices on the Ellipsoid S22,4,9.
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