Conference Proceeding of 17th International Geometry Symposium (2019) Erzincan/Turkey.

Special Helices on the Ellipsoid

Zehra Özdemir ${ }^{1, *}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Arts, Amasya University, Amasya, Turkey, ORCID:0000-0001-9750-507X
* Corresponding Author E-mail: zehra.ozdemir@amasya.edu.tr

Abstract: In this study, we investigate three types of special helices whose axis is a fixed constant Killing vector field on the Ellipsoid $\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$ in $\mathbb{R}_{a_{1}, a_{2}, a_{3}}^{3}$. Then, we obtain the curvatures of all special helices on the ellipsoid $\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$ and give some characterizations of these curves. Moreover, we present various examples and visualize their images using the Mathematica program.

Keywords: Frame fields, Killing vector field, Special curves and surfaces.

1 Introduction

The spherical curves are the special space curves that lie on the sphere. If the sphere is constructed by using the elliptical inner product, then the elliptical 2-sphere is obtained. This sphere is an ellipsoid according to the Euclidean sense. We summarize some studies about spherical curves: Firstly, Wong proved the condition for a curve to be on a sphere and gave some characterizations for this curve [10, 11]. In [3], Breuer et al. gave an explicit characterization of the spherical curve. In [6], the author investigated the characterization of the dual spherical curve. Then, in [2], the author obtained a differential equation for characterizing of the dual spherical curves. Besides, in [4], İlarslan presented the spherical curve characterization for non-null regular curves in Lorentzian 3-space. Ayyıldız introduced the dual Lorentzian spherical curves [1]. Moreover, Izumiya and Takeuchi defined the slant helices and conical geodesic curve and gave a classification of special developable surfaces under the condition of the existence of such a special helix as a geodesic [5]. Scofield derived a curve of constant precession and proved that this curve is tangent indicatrix of a spherical helix [9].

In the present work, we give some characterizations for the special helices whose axis is the fixed constant Killing vector field on the elliptical 2 -sphere. Furthermore, we give various examples and draw their images by using the Mathematica program.

2 Preliminaries

Let we take $u=\left(u_{1}, u_{2}, u_{3}\right), v=\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3}$ and $a_{1}, a_{2}, a_{3} \in \mathbb{R}^{+}$then the elliptical inner product defined as

$$
\begin{equation*}
B: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R} ; B(u, v)=a_{1} x_{1} y_{1}+a_{2} x_{2} y_{2}+a_{3} x_{3} y_{3} \tag{1}
\end{equation*}
$$

The 3-dimensional real vector space \mathbb{R}^{3} equipped with the elliptical inner product will be represented by $\mathbb{R}_{a_{1}, a_{2}, a_{3}}^{n}$. The norm of a vector associated with the scalar product B is defined as

$$
\begin{equation*}
\|u\|_{B}=\sqrt{B(u, u)} \tag{2}
\end{equation*}
$$

Two vectors u and v are called elliptically orthogonal vectors if $B(u, v)=0$. In addition, if u is an elliptically orthonormal vector then $B(u, u)=1$. The cosine of the angle between two vectors u and v is defined as

$$
\begin{equation*}
\cos \theta=\frac{B(u, v)}{\|u\|_{B}\|v\|_{B}} \tag{3}
\end{equation*}
$$

where θ is compatible with the parameters of the angular parametric equations of ellipse or ellipsoid. The cross product of two vector fields $X, Y \in \mathbb{R}_{a_{1}, a_{2}, a_{3}}^{3}$ is given by

$$
X \times_{E} Y=\Delta\left|\begin{array}{ccc}
\frac{e_{1}}{a_{1}} & \frac{e_{2}}{a_{2}} & \frac{e_{3}}{a_{3}} \tag{4}\\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right|
$$

where $\Delta=\sqrt{a_{1} a_{2} a_{3}}, a_{1}, a_{2}, a_{3} \in \mathbb{R}^{+}[7]$.

Let us take the ellipsoid denoted by $\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$ in $\mathbb{R}_{a_{1}, a_{2}, a_{3}}^{3}$. Then, the sectional curvature of the ellipsoid generated by the non-degenerated plane $\{u, v\}$ is defined as

$$
\begin{equation*}
K(u, v)=\frac{B(R(u, v) u, v)}{B(u, u) B(v, v)-B(u, v)^{2}}, \tag{5}
\end{equation*}
$$

where R is the Riemannian curvature tensor given by

$$
\begin{equation*}
R(X, Y) Z=-\nabla_{X} \nabla_{Y} Z+\nabla_{Y} \nabla_{X} Z+\nabla_{[X, Y]} Z \tag{6}
\end{equation*}
$$

The ellipsoid has the constant sectional curvature. Therefore, the curvature tensor R is written as follows

$$
\begin{equation*}
R(X, Y) Z=C\{B(Z, X) Y-B(Z, Y) X\}, \tag{7}
\end{equation*}
$$

where C is the constant sectional curvature.
A curve γ on the ellipsoid $\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$ defined by $\gamma(s)=\varphi(\alpha(s))$ and a unit normal vector field Z along the surface $\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$ defined

$$
\begin{equation*}
Z=\frac{\varphi_{u} \times_{E} \varphi_{v}}{\left\|\varphi_{u} \times \varphi_{v}\right\|} \tag{8}
\end{equation*}
$$

Since $\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$ is sphere according to the elliptical inner product, the unit normal vector field Z along the surface $\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$ equal to the position vector of the curve γ. Then, we found an orthonormal frame $\left\{t=\gamma^{\prime}, y=\gamma \times_{E} \gamma^{\prime}, \gamma\right\}$ which is called the elliptical Darboux frame along the curve γ. The corresponding Darboux formulae of γ is written as

$$
\begin{align*}
t^{\prime} & =-\gamma+k_{g_{E}} y \tag{9}\\
\gamma^{\prime} & =t, \\
y^{\prime} & =-k_{g_{E}} t,
\end{align*}
$$

where $k_{n_{E}}=-1, k_{g_{E}}=B\left(\gamma^{\prime \prime}, y\right)$ and $\tau_{r}=0$ are geodesic curvature, asymptotic curvature, and principal curvature of γ on the surface $\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$, respectively. Moreover, it is found as the following relation

$$
\begin{equation*}
y \times_{E} t=\gamma, z \times_{E} y=t, z \times_{E} t=-y, \tag{10}
\end{equation*}
$$

[8].
Lemma 1. Let $\varphi: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}_{a_{1}, a_{2}, a_{3}}^{3}, \varphi(U)=\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$ be an ellipsoid and $\gamma: I \subset \mathbb{R} \rightarrow U$ be a regular curve on the $\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$. Provided that V be a vector field along the curve γ then the variation of γ defined by $\Gamma: I \times(-\varepsilon, \varepsilon) \rightarrow \mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}(C)$ with $\gamma(s, 0)$ the initial curve satisfy $\Gamma(s, 0)=\gamma(s)$. The variations of the geodesic curvature function $k_{g_{E}}(s, w)$ and the speed function $v(s, w)$ at $w=0$ are calculated as follows:

$$
\begin{align*}
& V(v)=\left.\left(\frac{\partial v}{\partial w}(s, w)\right)\right|_{w=0}=-v \rho \tag{11}\\
& V\left(k_{g_{E}}\right)=\left.\left(\frac{\partial k_{g_{E}}}{\partial w}(s, w)\right)\right|_{w=0}=B\left(-R(V, t) t+\nabla_{t}^{2} V, y\right)-\frac{1}{k_{g_{E}}} B\left(-R(V, t) t+\nabla_{t}^{2} V, \gamma\right),
\end{align*}
$$

where $\rho=B\left(\nabla_{t} V, t\right)$ and R stands for the curvature tensor of $\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}[8]$.
Proposition 1. If $V(s)$ is the restriction to $\gamma(s)$ of a Killing vector field V of $\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$ then the variations of the elliptical Darboux curvature functions and speed function of γ satisfy:

$$
\begin{equation*}
V(v)=V\left(k_{g_{E}}\right)=0 \tag{12}
\end{equation*}
$$

[8].

3 Special helices on the ellipsoid $\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$

Definition 1. Let $\varphi: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}_{a_{1}, a_{2}, a_{3}}^{3}, \varphi(U)=\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$ be an ellipsoid and $\gamma: I \subset \mathbb{R} \rightarrow U$ be a regular curve on the $\mathbb{S}_{a_{1}, a_{2}, a_{3} .}^{2}$. Then we say that γ is a type-1 special helix, type- 2 special helix, or type- 3 special helix if $B(V, t)=$ const., $B(V, \gamma)=$ const., and $B(V, y)=$ const., respectively.

Theorem 1. Let $\varphi: U \subset \mathbb{E}^{2} \rightarrow \mathbb{E}^{3}, \varphi(U)=\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$ be an ellipsoid and $\gamma: I \subset \mathbb{R} \rightarrow U$ be a regular curve on $\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$ and V be a Killing vector field along the curve γ. Then γ is a type-1 special helix with the axis V if and only if the geodesic curvature of the curve γ satisfy the following equation:

$$
k_{g_{E}}=\cot \theta,
$$

where θ satisfy

$$
\theta^{\prime \prime} \sin ^{2} \theta-\omega \theta^{\prime} \cos \theta=0
$$

[8].

Now, we can give the following corollary without proof. The proof of the corollary similar to Scofield's work [9].
Corollary 1. Let $\varphi: U \subset \mathbb{E}^{2} \rightarrow \mathbb{E}^{3}, \varphi(U)=\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$ be an ellipsoid and $\gamma: I \subset \mathbb{R} \rightarrow U$ be a type-1 special helix with the Killing axis V on $\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$. Then, the integral curve of γ is an elliptical constant procession curve on the elliptical hyperboloid.

Theorem 2. Let $\varphi: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}_{a_{1}, a_{2}, a_{3}}^{3}, \varphi(U)=\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$ be an ellipsoid and $\gamma: I \subset \mathbb{R} \rightarrow U$ be a regular curve on the $\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$. Then γ is a type-2 special helix with the axis V if and only if the geodesic curvature of the curve γ satisfy the following equation:

$$
\begin{equation*}
k_{g_{E}}=\frac{c_{1}}{\sin \theta}-\theta^{\prime} \tag{13}
\end{equation*}
$$

here θ satisfies

$$
\theta=\text { const. or }(C+1) \sin ^{4} \theta-c_{1} \theta^{\prime} \sin \theta+c_{1}=0
$$

where c is a constant.

Proof: If γ is a type-2 special helix with the Killing axis V then V is written as

$$
\begin{equation*}
V=\cos \theta t+c_{1} \gamma+\sin \theta y, c_{1}=\text { const } . \tag{14}
\end{equation*}
$$

Differentiating eq.(14) with respect to s, we found the following equation

$$
\begin{align*}
\nabla_{T} V= & \left(\left(-\theta^{\prime}-k_{g_{E}}\right) \sin \theta+c_{1}\right) t+(-\cos \theta) \gamma \tag{15}\\
& +\left(\cos \theta k_{g_{E}}+\theta^{\prime} \cos \theta\right) y
\end{align*}
$$

Using the equation $V(v)=0$ in Lemma 1 , we found

$$
\begin{equation*}
k_{g_{E}}=\frac{c_{1}}{\sin \theta}-\theta^{\prime} \tag{16}
\end{equation*}
$$

The differentiation of eq.(15) is obtained as

$$
\begin{equation*}
\nabla_{T}^{2} V=\left(-1-k_{g_{E}}^{2}+k_{g_{E}} \theta^{\prime}\right) \cos \theta t+\theta^{\prime} \sin \theta \gamma+\left(\left(k_{g_{E}}+\theta^{\prime}\right) \cos \theta\right)^{\prime} y \tag{17}
\end{equation*}
$$

Moreover, we have the following equation

$$
\begin{equation*}
R(V, t) t=C(B(t, V) t-B(t, t) V) \tag{18}
\end{equation*}
$$

Using the Darboux frame equations and eq.(14), we deduce

$$
\begin{equation*}
R(V, t) t=-C\left(c_{1} \gamma+\sin \theta y\right) \tag{19}
\end{equation*}
$$

Considering the eq.(17) and eq.(19) with the second equation in Lemma 1 and the Proposition 1, we reach the following equations

$$
\theta=\text { const. or }(C+1) \sin ^{4} \theta-c_{1} \theta^{\prime} \sin \theta+c_{1}=0
$$

Corollary 2. Let γ be a type- 2 special helix on the ellipsoid with the axis

$$
V=\cos \theta t+c_{1} \gamma+\sin \theta y, \quad \theta=\text { const. }
$$

then γ has the following parametric representation

$$
\gamma(s)=A_{1}+\frac{A_{2}}{\sqrt{1+\frac{c_{1}^{2}}{\sin ^{2} \theta}}} \cos \left(\sqrt{1+\frac{c_{1}^{2}}{\sin ^{2} \theta}}\right)+\frac{A_{3}}{\sqrt{1+\frac{c_{1}^{2}}{\sin ^{2} \theta}}} \sin \left(\sqrt{1+\frac{c_{1}^{2}}{\sin ^{2} \theta}} s\right)
$$

where $A_{1}, A_{2}, A_{3} \in \mathbb{R}_{a_{1}, a_{2}, a_{3}}^{3}$ and $c_{1} \in \mathbb{R}$.
Proof: Let γ be a type-2 special helix on the ellipsoid with the axis

$$
\begin{equation*}
V=\cos \theta t+c_{1} \gamma+\sin \theta y, \quad \theta=\text { const. } \tag{20}
\end{equation*}
$$

then the elliptical curvature of γ calculated as

$$
\begin{equation*}
k_{g_{E}}=\frac{c_{1}}{\sin \theta} . \tag{21}
\end{equation*}
$$

On the other hand, from the Darboux frame equations γ satisfy the following third order differential equation

$$
\begin{equation*}
k_{g_{E}} \gamma^{\prime \prime \prime}-k_{g_{E}}^{\prime} \gamma^{\prime \prime}+\left(k_{g_{E}}^{3}+k_{g_{E}}\right) \gamma^{\prime}-k_{g_{E}}^{\prime} \gamma=0 \tag{22}
\end{equation*}
$$

If $k_{g_{E}}$ is written in the eq.(22) and the differential equation is solved then it is obtained that γ has the following parametric representation

$$
\begin{equation*}
\gamma(s)=A_{1}+\frac{A_{2}}{\sqrt{1+\frac{c_{1}^{2}}{\sin ^{2} \theta}}} \cos \left(\sqrt{1+\frac{c_{1}^{2}}{\sin ^{2} \theta}}\right)+\frac{A_{3}}{\sqrt{1+\frac{c_{1}^{2}}{\sin ^{2} \theta}}} \sin \left(\sqrt{1+\frac{c_{1}^{2}}{\sin ^{2} \theta}} s\right) \tag{23}
\end{equation*}
$$

where $A_{1}, A_{2}, A_{3} \in \mathbb{R}_{a_{1}, a_{2}, a_{3}}^{3}$ and $c_{1} \in \mathbb{R}$.

Theorem 3. Let $\varphi: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}_{a_{1}, a_{2}, a_{3}}^{3}, \varphi(U)=\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$ be an ellipsoid and $\gamma: I \subset \mathbb{R} \rightarrow U$ be a regular curve on the $\mathbb{S}_{a_{1}, a_{2}, a_{3}}^{2}$. Then γ is type-3 special helix with the axis V if and only if the geodesic curvature of the curve γ satisfy the following equation:

$$
\begin{equation*}
k_{g_{E}}=\frac{\left(1-\theta^{\prime}\right) \sin \theta}{c_{2}}, \tag{24}
\end{equation*}
$$

here θ satisfies

$$
\left(1-\theta^{\prime}\right) \sin \theta\left(-c_{2}^{2} \theta^{\prime}-\theta^{\prime \prime} \sin \theta \cos \theta+\left(1-\theta^{\prime}\right) \theta^{\prime} \cos 2 \theta\right)-\theta^{\prime} \sin \theta-c_{2}^{2} \theta^{\prime \prime} \cos \theta=0,
$$

where c_{2} is a constant.
Proof: If γ is a type-3 special helix with the Killing axis V then V is written as

$$
\begin{equation*}
V=\cos \theta t+\sin \theta \gamma+c_{2} y . \tag{25}
\end{equation*}
$$

By differentiating eq.(25), we get

$$
\begin{equation*}
\nabla_{T} V=\left(\left(1-\theta^{\prime}\right) \sin \theta-c_{2} k_{g_{E}}\right) t+\left(1-\theta^{\prime}\right) \cos \theta \gamma+k_{g_{E}} \cos \theta y . \tag{26}
\end{equation*}
$$

By using the equation $V(v)=0$ in Lemma 1, we reach

$$
\begin{equation*}
k_{g_{E}}=\frac{\left(1-\theta^{\prime}\right) \sin \theta}{c_{2}} . \tag{27}
\end{equation*}
$$

If we take the differentiation of eq.(26), we obtain

$$
\begin{align*}
& \nabla_{T}^{2} V=\left(\left(1-\theta^{\prime}\right) \cos \theta-k_{g_{E}}^{2} \cos \theta\right) t+\left(-\theta^{\prime \prime} \cos -\left(1-\theta^{\prime}\right) \theta^{\prime} \sin \theta\right) \gamma \tag{28}\\
& +\left(k_{g_{E}}^{2} \cos \theta-k_{g_{E}} \theta^{\prime} \sin \theta\right) y .
\end{align*}
$$

Furthermore, we have the following equation

$$
\begin{equation*}
R(V, t) t=C(B(t, V) t-B(t, t) V) \tag{29}
\end{equation*}
$$

By using the Darboux frame equations and eq.(25), we obtain

$$
\begin{equation*}
R(V, T) T=C\left(-\sin \theta \gamma-c_{2} y\right) . \tag{30}
\end{equation*}
$$

If we consider the eq.(28) and eq.(30) with the second equation in Lemma 1 and the Proposition 1 , we deduce

$$
\begin{equation*}
\theta=\text { const } . \tag{31}
\end{equation*}
$$

or satisfy the following equation

$$
\begin{equation*}
\left(1-\theta^{\prime}\right) \sin \theta\left(-c_{2}^{2} \theta^{\prime}-\theta^{\prime \prime} \sin \theta \cos \theta+\left(1-\theta^{\prime}\right) \theta^{\prime} \cos 2 \theta\right)-\theta^{\prime} \sin \theta-c_{2}^{2} \theta^{\prime \prime} \cos \theta=0 . \tag{32}
\end{equation*}
$$

Corollary 3. Let γ be a type-3 special helix on the ellipsoid with the axis

$$
\begin{equation*}
V=\cos \theta t+\sin \theta \gamma+c_{2} y, \quad \theta=\text { const. }, \tag{33}
\end{equation*}
$$

then γ has the following parametric representation

$$
\gamma(s)=B_{1}+\frac{B_{2}}{\sqrt{1+\frac{\sin ^{2} \theta}{c_{2}^{2}}}} \cos \left(\sqrt{1+\frac{\sin ^{2} \theta}{c_{2}^{2}}}\right)+\frac{B_{3}}{\sqrt{1+\frac{\sin ^{2} \theta}{c_{2}^{2}}}} \sin \left(\sqrt{1+\frac{\sin ^{2} \theta}{c_{2}^{2}}} s\right),
$$

where $B_{1}, B_{2}, B_{3} \in \mathbb{R}_{a_{1}, a_{2}, a_{3}}^{3}$ and $c_{2} \in \mathbb{R}$.
Proof: Let γ be a type-3 special helix on the ellipsoid with the axis

$$
\begin{equation*}
V=\cos \theta t+\sin \theta \gamma+c_{2} y, \quad \theta=\text { const. }, \tag{34}
\end{equation*}
$$

then the elliptical curvature of γ calculated as

$$
\begin{equation*}
k_{g_{E}}=\frac{\sin \theta}{c_{2}} . \tag{35}
\end{equation*}
$$

On the other hand, from the Darboux frame equations, γ satisfy the following third order differential equation

$$
\begin{equation*}
k_{g_{E}} \gamma^{\prime \prime \prime}-k_{g_{E}}^{\prime} \gamma^{\prime \prime}+\left(k_{g_{E}}^{3}+k_{g_{E}}\right) \gamma^{\prime}-k_{g_{E}}^{\prime} \gamma=0 . \tag{36}
\end{equation*}
$$

If $k_{g_{E}}$ is written in the eq.(34) and the differential equation is solved then it is obtained that γ has the following parametric representation

$$
\begin{equation*}
\gamma(s)=B_{1}+\frac{B_{2}}{\sqrt{1+\frac{\sin ^{2} \theta}{c_{2}^{2}}}} \cos \left(\sqrt{1+\frac{\sin ^{2} \theta}{c_{2}^{2}}}\right)+\frac{B_{3}}{\sqrt{1+\frac{\sin ^{2} \theta}{c_{2}^{2}}}} \sin \left(\sqrt{1+\frac{\sin ^{2} \theta}{c_{2}^{2}}} s\right), \tag{37}
\end{equation*}
$$

where $B_{1}, B_{2}, B_{3} \in \mathbb{R}_{a_{1}, a_{2}, a_{3}}^{3}$ and $c_{2} \in \mathbb{R}$.

In the following examples we give various special helices on the ellipsoid.
Examle 1. Let us take the curve parameterized as

$$
\begin{equation*}
\gamma(s)=\frac{1}{2} \frac{(1+k) \cos (1-k) t-(1-k) \cos (1+k) t}{2} \frac{1}{2} \frac{(1+k) \sin (1-k) t-(1-k) \sin (1+k) t}{4} \frac{\sqrt{1-k^{2}} \cos k t}{9} . \tag{38}
\end{equation*}
$$

The elliptical curvature of the helix calculated as

$$
\begin{equation*}
k_{g_{E}}(s)=\cot (k s) . \tag{39}
\end{equation*}
$$

Thus, we can easily see that γ is a type-1 special helix. It is illustrated in Figure 1.

Figure1. Type-1 special Helices on the Ellipsoid $\mathbb{S}_{2,4,9}^{2}, k=0.505$.
Examle 2. Type-2 (type-3) special helices corresponding to different values of the $A_{i}, B_{i}, i=1,2,3$. are illustrated in Figure 2.

Figure2. Type-2 (type-3) Special Helices on the Ellipsoid $\mathbb{S}_{2,4,9}^{2}$.

4 References

[1] N. Ayyıldız, A. C. Çöken and Ahmet Yücesan, A Characterization of Dual Lorentzian Spherical Curves in the Dual Lorentzian Space, Taiwanese Journal of Mathematics, 11(4) (2007), 999-1018.
[2] R. A. Abdel Bakey, An Explicit Characterization of Dual Spherical Curve, Commun. Fac. Sci. Univ. Ank. Series, 51(2) (2002), 2, 1-9
[3] S. Breuer, D. Gottlieb, Explicit Characterization of Spherical Curves, Proc. Am. Math. Soc. 27 (1971), 126-127.
[4] K. Ilarslan, Ç. Camci, H. Kocayigit, On the explicit characterization of spherical curves in 3-dimensional Lorentzian space, Journal of Inverse and Ill-posed Problems, 11 (2003), 4, pp. 389-397.
[5] S. Izumiya, N. Takeuchi, New Special Curves and Developable Surfaces, Turk. J. Math. 28 (2004), 153-163.
[6] O. Kose, An Expilicit Characterization of Dual Spherical Curves, Doğa Mat. 12(3) (1998), 105-113.
[7] M. Özdemir, An Alternative Approach to Elliptical Motion, Adv. Appl. Clifford Algebras 26 (2016), 279-304
[8] Z. Özdemir, F. Ates, Trajectories of a point on the elliptical 2-sphere, arXiv:submit/2795112.
[9] P. D. Scofield, Curves of Constant Precession, Amer. Math. Monthly. 102(6)(1995), 531-537.
[10] Y. C. Wong, On an Explicit Characterization of Spherical Curves, Proc. Am. Math. Soc., 34(1) (1972), 239-242.
[11] Y. C. Wong, A global formulation of the condition for a curve to lie in a sphere, Monatsh. Math. 67 (1963), 363-365.

