On ramification structures for finite nilpotent groups

Şükran Gül ©
Department of Mathematics University of the Basque Country UPV/EHU, Bilbao, Spain

Abstract

We extend the characterization of abelian groups with ramification structures given by Garion and Penegini in [Beauville surfaces, moduli spaces and finite groups, Comm. Algebra, 2014] to finite nilpotent groups whose Sylow p-subgroups have a 'nice power structure', including regular p-groups, powerful p-groups and (generalized) p-central p-groups. We also correct two errors in [Beauville surfaces, moduli spaces and finite groups, Comm. Algebra, 2014] regarding abelian 2-groups with ramification structures and the relation between the sizes of ramification structures for an abelian group and those for its Sylow 2-subgroup.

Mathematics Subject Classification (2010). 20D15, 14J29
Keywords. ramification structures, Beauville structures, finite nilpotent groups, finite p-groups

1. Introduction

An algebraic surface S is said to be isogenous to a higher product of curves if it is isomorphic to $\left(C_{1} \times C_{2}\right) / G$, where C_{1} and C_{2} are curves of genus at least 2 , and G is a finite group acting freely on $C_{1} \times C_{2}$. Particular interesting examples of such surfaces are Beauville surfaces. These are algebraic surfaces isogenous to a higher product which are rigid.

Groups of surfaces isogenous to a higher product can be characterized by a purely group-theoretical condition: the existence of a 'ramification structure'.
Definition 1.1. Let G be a finite group and let $T=\left(g_{1}, g_{2}, \ldots, g_{r}\right)$ be a tuple of nontrivial elements of G.
(1) T is called a spherical system of generators of G if $\left\langle g_{1}, g_{2}, \ldots, g_{r}\right\rangle=G$ and $g_{1} g_{2} \ldots g_{r}=1$.
(2) T is of type $\tau:=\left(m_{1}, \ldots, m_{r}\right)$ if $o\left(g_{i}\right)=m_{i}$ for $g_{i} \in T$.
(3) $\Sigma(T)$ is the union of all conjugates of the cyclic subgroups generated by the elements of T :

$$
\Sigma(T)=\bigcup_{g \in G} \bigcup_{i=1}^{r}\left\langle g_{i}\right\rangle^{g} .
$$

Two tuples T_{1} and T_{2} are called disjoint if $\Sigma\left(T_{1}\right) \cap \Sigma\left(T_{2}\right)=1$.

[^0]Received: 22.11.2017; Accepted: 28.05.2018

Definition 1.2. An (unmixed) ramification structure of size $\left(r_{1}, r_{2}\right)$ for a finite group G is a pair (T_{1}, T_{2}) of disjoint spherical systems of generators of G, where $\left|T_{1}\right|=r_{1}$ and $\left|T_{2}\right|=r_{2}$. We denote by $S(G)$ the set of all sizes $\left(r_{1}, r_{2}\right)$ of ramification structures of G.
Observe that if d is the minimum number of generators of G, spherical systems of generators of G are of size at least $d+1$. Since clearly cyclic groups do not admit ramification structures, it follows that $r_{1}, r_{2} \geq 3$ in Definition 1.2.

If $r_{1}=r_{2}=3$, then ramification structures coincide with Beauville structures, which have been intensely studied in recent times; see surveys $[1,2,7]$. Not much is known about ramification structures that are not Beauville. In 2013, Garion and Penegini [5] proved that if $\tau_{1}=\left(m_{1,1}, \ldots, m_{1, r_{1}}\right)$ and $\tau_{2}=\left(m_{2,1}, \ldots, m_{2, r_{2}}\right)$ are tuples of natural numbers ≥ 2 and $\Sigma_{j=1}^{r_{i}}\left(1-1 / m_{i, j}\right)>2$ for $i=1,2$, then almost all alternating and symmetric groups admit a ramification structure of type $\left(\tau_{1}, \tau_{2}\right)$, where in the case of symmetric groups there is an additional assumption that at least two components in both τ_{1} and τ_{2} are even. Soon afterwards, they characterized the abelian groups with ramification structures [6, Theorem 3.18].

After abelian groups, the most natural class of finite groups to consider are nilpotent groups. As we will see in Proposition 3.2, a finite nilpotent group admits a ramification structure if and only if so do its Sylow p-subgroups. The goal of this paper is to extend the characterization of abelian groups with ramification structures to finite nilpotent groups whose Sylow p-subgroups have a good behavior with respect to powers. To this purpose, we first study the existence of ramifications structures for finite p-groups with a 'nice power structure'. In particular, we generalize Theorem A in [4], which determines the conditions for such p-groups to be Beauville groups.

If G is a finite p-group, we call G semi- p^{e-1}-abelian if for every $x, y \in G$, we have

$$
x^{p^{e-1}}=y^{p^{p-1}} \text { if and only if }\left(x y^{-1}\right)^{p^{p-1}}=1 .
$$

Theorem A. Let G be a finite p-group of exponent p^{e}, and let $d=d(G)$. Suppose that G is semi- p^{e-1}-abelian. Then G admits a ramification structure if and only if $\mid\left\{g^{p^{e-1}} \mid g \in\right.$ $G\} \mid \geq p^{s}$ where $s=2$ if $p \geq 3$ or $s=3$ if $p=2$. In that case, G admits a ramification structure of size (r_{1}, r_{2}) if and only if the following conditions hold:
(1) $r_{1}, r_{2} \geq d+1$.
(2) If $p=3$ then $r_{1}, r_{2} \geq 4$.
(3) If $p=2$ then $r_{1}, r_{2} \geq 5$.
(4) If $p=2$ and $\left|\left\{g^{2^{e-1}} \mid g \in G\right\}\right|=2^{3}$, then $\left(r_{1}, r_{2}\right) \neq(5,5)$, and furthermore if $e=1$, i.e. $G \cong C_{2} \times C_{2} \times C_{2}$, then r_{1}, r_{2} are not both odd.

Note that the condition on the cardinality of the set $\left\{g^{p^{e-1}} \mid g \in G\right\}$ in Theorem A implies that if G admits a ramification structure, then $d(G) \geq 2$ if $p \geq 3$ or $d(G) \geq 3$ if $p=2$.

According to [6, Theorem 3.18], if G is an abelian 2-group of exponent 2^{e} and $\left|G^{2^{e-1}}\right|=$ 2^{3}, then G does not admit a ramification structure of size $\left(r_{1}, r_{2}\right)$ if r_{1}, r_{2} are both odd. However, Theorem A shows that this statement is not true, and they can be both odd provided that $G \not \not C_{2} \times C_{2} \times C_{2}$.

Theorem A applies to a wide family of p-groups, including regular p-groups (so, in particular, p-groups of exponent p or of nilpotency class less than p), powerful p-groups, and generalized p-central p-groups. A p-group is called generalized p-central if $p>2$ and $\Omega_{1}(G) \leq Z_{p-2}(G)$, or $p=2$ and $\Omega_{2}(G) \leq Z(G)$.
We want to remark that Theorem A is not valid for all finite p-groups. We will see that no condition on the cardinality of the set $\left\{g^{p^{e-1}} \mid g \in G\right\}$ can ensure the existence of ramification structures for the class of all finite p-groups.

On the other hand, if G is a finite nilpotent group and G_{p} is the Sylow p-subgroup of G, then we have $\bigcap_{p| | G \mid} S\left(G_{p}\right) \subseteq S(G)$, and $S(G) \subseteq S\left(G_{p}\right)$ for odd primes p. However, it is
not always true that $S(G) \subseteq S\left(G_{2}\right)$, even for abelian groups, contrary to what is implicit in the statement of Theorem 3.18 in [6]. We give a counterexample to that in Example 3.3. We fix this error in Theorem B.

Theorem B. Let G be a nilpotent group, and let $d=d(G)$. Let G_{p} denote the Sylow p-subgroup of G for every prime p dividing $|G|$. Suppose that $\exp G_{p}=p^{e_{p}}$ and all G_{p} are semi- $p^{e_{p}-1}$-abelian. Then G admits a ramification structure if and only if all G_{p} admit a ramification structure. In that case, $\left(r_{1}, r_{2}\right) \in S(G)$ if and only if the following conditions hold:
(1) $r_{1}, r_{2} \geq d+1$.
(2) $\left(r_{1}, r_{2}\right) \in S\left(G_{p}\right)$ for p odd.
(3) $\left(r_{1}, r_{2}\right) \in S\left(G_{2}\right)$ unless $G_{2} \cong C_{2} \times C_{2} \times C_{2}$.
(4) If $G_{2} \cong C_{2} \times C_{2} \times C_{2}$ then $r_{1}, r_{2} \geq 5$ and $\left(r_{1}, r_{2}\right) \neq(5,5)$. Furthermore, if $G \cong C_{2} \times C_{2} \times C_{2}$ then r_{1}, r_{2} are not both odd.
Notation. If G is a finitely generated group, we write $d(G)$ for the minimum number of generators of G. If p is a prime and G is a finite p-group, then $G^{p^{i}}=\left\langle g^{p^{i}} \mid g \in G\right\rangle$ and $\Omega_{i}(G)=\left\langle g \in G \mid g^{p^{i}}=1\right\rangle$. The exponent of G, denoted by $\exp G$, is the maximum of the orders of all elements of G.

2. Finite p-groups

Throughout this paper all groups will be finite. In this section, we give the proof of Theorem A. Let us start with a general result related to lifting a spherical generating set of a factor group to the whole group.

Proposition 2.1. Let G be a finite group and let $d=d(G)$. Suppose that $N \unlhd G$ and $U=\left(\overline{x_{1}}, \ldots, \overline{x_{r}}\right)$ is a tuple of generators of G / N. Then the following hold:
(1) If $r \geq d$ then there exist $n_{1}, \ldots, n_{r} \in N$ such that $T=\left(x_{1} n_{1}, \ldots, x_{r} n_{r}\right)$ generates G.
(2) If $N \neq 1, r \geq d+1$ and $\overline{x_{1}} \ldots \overline{x_{r}}=\overline{1}$, then we can choose T to be a spherical system of generators of G.

Proof. (i) See Proposition 2.5.4 in [8].
(ii) Assume first that $\overline{x_{i}} \neq \overline{1}$ for some $i=1, \ldots, r$. For simplicity, we suppose that $\overline{x_{r}} \neq \overline{1}$. The equality $\overline{x_{1}} \ldots \overline{x_{r}}=\overline{1}$ implies that $\left\langle\overline{x_{1}}, \ldots, \overline{x_{r-1}}\right\rangle=G / N$. Since $r-1 \geq d$ then by (i), there is a tuple $V=\left(z_{1}, \ldots, z_{r-1}\right)$ that generates G, where $z_{i} \in x_{i} N$ for $1 \leq i \leq r-1$. Note that if $\overline{x_{j}}=\overline{1}$, then it may happen that $z_{j}=1$. If this is the case, we take a nontrivial element in N as z_{j}. Thus, $z_{i} \neq 1$ for $1 \leq i \leq r-1$.

If we call

$$
T=\left(z_{1}, \ldots, z_{r-1},\left(z_{1} \ldots z_{r-1}\right)^{-1}\right)
$$

then clearly T is a spherical system of generators of G. The only thing we have to show is that $\left(z_{1} \ldots z_{r-1}\right)^{-1} \in x_{r} N$. Observe that in G / N, we have $\left(\overline{z_{1}} \ldots \overline{z_{r-1}}\right)^{-1}=$ $\overline{x_{r}}\left(\overline{z_{1}} \ldots \overline{z_{r-1}} \overline{x_{r}}\right)^{-1}=\overline{x_{r}}\left(\overline{x_{1}} \ldots \overline{x_{r-1}} \overline{x_{r}}\right)^{-1}=\overline{x_{r}}$. Thus, we have $\left(z_{1} \ldots z_{r-1}\right)^{-1} \in x_{r} N$. Since $\overline{x_{r}} \neq \overline{1}$, this implies that $z_{1} \ldots z_{r-1} \neq 1$.

Now suppose that $\overline{x_{i}}=\overline{1}$ for all $1 \leq i \leq r$. Then $\bar{G}=\overline{1}$, and since $r \geq d+1$, we can take any spherical system of generators T of G of size r.

Notice that in part (ii) of Proposition 2.1, we do not require that U is a spherical system of generators of G / N. Therefore, as appears in the proof, some of $\overline{x_{i}} \in U$ might be the identity of G / N.

We next state a theorem characterizing the possible sizes of ramification structures of elementary abelian p-groups. Before that we need the following lemma.

Lemma 2.2. Let G be an elementary abelian p-group of rank d with a ramification structure of size $\left(r_{1}, r_{2}\right)$. Then the following hold:
(1) G admits a ramification structure of size $\left(r_{1}+1, r_{2}\right)$ if p is odd, and of size $\left(r_{1}+\right.$ $\left.2, r_{2}\right)$ if $p=2$.
(2) If G^{*} is elementary abelian of rank $d+1$ and $r_{1}, r_{2} \geq d+2$, then G^{*} admits a ramification structure of size $\left(r_{1}, r_{2}\right)$.

Proof. Let $\left(T_{1}, T_{2}\right)$ be a ramification structure of size $\left(r_{1}, r_{2}\right)$ for G. We write $T_{1}=$ $\left(x_{1}, x_{2}, \ldots, x_{r_{1}}\right)$.

We first prove (i). If

$$
T_{1}^{\prime}= \begin{cases}\left(x_{1}^{2}, x_{2}, \ldots, x_{r_{1}}, x_{1}^{-1}\right) & \text { if } p \text { is odd } \\ \left(T_{1}, x_{1}, x_{1}\right) & \text { if } p=2\end{cases}
$$

then $\left(T_{1}^{\prime}, T_{2}\right)$ is a ramification structure as desired.
We next prove (ii). Let $G^{*}=G \times\langle y\rangle$ be an elementary abelian p-group of rank $d+1$. Since G is of rank d and $r_{1}, r_{2} \geq d+2$, both T_{1} and T_{2} have at least two elements, say $a_{1}, b_{1} \in T_{1}$ and $a_{2}, b_{2} \in T_{2}$, that belong to the subgroup generated by the rest of the elements in T_{1} and T_{2}, respectively. We modify T_{1}, T_{2} to T_{1}^{*} and T_{2}^{*}, by multiplying a_{1}, a_{2} with y and b_{1}, b_{2} with y^{-1}. Then $\left(T_{1}^{*}, T_{2}^{*}\right)$ is a ramification structure of size $\left(r_{1}, r_{2}\right)$ for G^{*}.

Note that the roles of r_{1} and r_{2} are symmetric. Thus in Lemma 2.2, G also admits a ramification structure of size $\left(r_{1}, r_{2}+1\right)$ if p is odd and of size $\left(r_{1}, r_{2}+2\right)$ if $p=2$.

Theorem 2.3. Let G be an elementary abelian p-group of rank d and let $r_{1}, r_{2} \geq d+$ 1. Then G admits a ramification structure of size $\left(r_{1}, r_{2}\right)$ if and only if the following conditions hold:
(1) $d \geq 2$ if $p \geq 3$ or $d \geq 3$ if $p=2$.
(2) If $p=3$ then $r_{1}, r_{2} \geq 4$.
(3) If $p=2$ then $r_{1}, r_{2} \geq 5$, and furthermore if $d=3$ then r_{1}, r_{2} are not both odd.

Proof. We first assume that G admits a ramification structure $\left(T_{1}, T_{2}\right)$ of size $\left(r_{1}, r_{2}\right)$. We already know that $d \geq 2$. If $p=2$ and $G \cong C_{2} \times C_{2}$, then clearly $\Sigma\left(T_{1}\right) \cap \Sigma\left(T_{2}\right) \neq 1$, a contradiction. Thus, if $p=2$ then $d \geq 3$.

We next assume that $p=3$. We will show that $r_{1}, r_{2} \geq 4$. Suppose, on the contrary, that $r_{1}=3$. Then $G \cong C_{3} \times C_{3}$. If we write $T_{1}=\left(x_{1}, x_{2},\left(x_{1} x_{2}\right)^{-1}\right)$, then $\Sigma\left(T_{1}\right)$ contains 6 distinct nontrivial elements of G. The other two nontrivial elements of G are $x_{1} x_{2}^{2}$ and $x_{1}^{2} x_{2}^{4}$. Since they do not generate G, there is no ramification structure for G, which is a contradiction.

We now assume that $p=2$. We show that $r_{1}, r_{2} \geq 5$. Suppose that $r_{1}=4$. Then $G \cong C_{2} \times C_{2} \times C_{2}$. We write $T_{1}=\left(x_{1}, x_{2}, x_{3},\left(x_{1} x_{2} x_{3}\right)^{-1}\right)$. Then T_{2} can only contain $x_{1} x_{2}, x_{1} x_{3}$ and $x_{2} x_{3}$. However, $\left\langle x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right\rangle \neq G$, again a contradiction.

Finally, we show that if $G \cong C_{2} \times C_{2} \times C_{2}$ then r_{1}, r_{2} are not both odd. Suppose that r_{1} is odd. Then observe that T_{1} contains at least 4 distinct nontrivial elements. Otherwise, if T_{1} has 3 distinct nontrivial elements, say u, v, t, then (u, v, t) is a minimal system of generators of G. Since the product of the elements of T_{1} is equal to 1 , each of u, v, t appears an even number of times in T_{1}, which is not possible since r_{1} is odd.

We now prove the converse. To this purpose, it is enough to find ramification structures of sizes $(3,3)$ or $(4,4)$ according as $p \geq 5$ or $p=3$ if $d=2$, of sizes $(5,6)$ or $(6,6)$ if $d=3$ and $p=2$, and finally of size $(5,5)$ if $d=4$ and $p=2$. Then by applying (i) and (ii) in Lemma 2.2 repeatedly, we get the result.

Let $G=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \cong C_{p} \times C_{p}$ where $p \geq 3$. If we take

$$
T_{1}= \begin{cases}\left(x_{1}, x_{2},\left(x_{1} x_{2}\right)^{-1}\right) & \text { if } p \geq 5 \\ \left(x_{1}, x_{1}^{-1}, x_{2}, x_{2}^{-1}\right) & \text { if } p=3\end{cases}
$$

and

$$
T_{2}= \begin{cases}\left(x_{1} x_{2}^{2}, x_{1} x_{2}^{4},\left(x_{1}^{2} x_{2}^{6}\right)^{-1}\right) & \text { if } p \geq 5 \\ \left(x_{1} x_{2},\left(x_{1} x_{2}\right)^{-1}, x_{1} x_{2}^{2},\left(x_{1} x_{2}^{2}\right)^{-1}\right) & \text { if } p=3\end{cases}
$$

then $\left(T_{1}, T_{2}\right)$ is a ramification structure for G of size $(3,3)$ if $p \geq 5$, or of size $(4,4)$ if $p=3$.
Now assume that $G=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times\left\langle x_{3}\right\rangle \cong C_{2} \times C_{2} \times C_{2}$. If we take

$$
T_{1}= \begin{cases}\left(x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, x_{1} x_{2} x_{3}, x_{1} x_{2} x_{3}\right) & \text { if } r_{1}=5, \\ \left(x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{2} x_{3}, x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{2} x_{3}\right) & \text { if } r_{1}=6,\end{cases}
$$

and $T_{2}=\left(x_{1}, x_{2}, x_{3}, x_{1}, x_{2}, x_{3}\right)$, then $\left(T_{1}, T_{2}\right)$ is a ramification structure for G of size $(5,6)$ or $(6,6)$.

Finally if $p=2$ and $G=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times\left\langle x_{3}\right\rangle \times\left\langle x_{4}\right\rangle$, then we take $T_{1}=$ $\left(x_{1}, x_{2}, x_{3}, x_{4},\left(x_{1} x_{2} x_{3} x_{4}\right)^{-1}\right)$ and $T_{2}=\left(x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, x_{1} x_{2} x_{3}, x_{2} x_{3} x_{4}\right)$. Then clearly (T_{1}, T_{2}) is a ramification for G of size (5,5). This completes the proof.

Theorem 2.3 can also be deduced from Theorem 3.18 in [6] that characterizes abelian groups with ramification structures. However, note that the statement of that theorem corresponding to abelian 2-groups is not true in general. According to Theorem 3.18 in [6], if G is an abelian 2-group of exponent 2^{e} with $\left|G^{2^{e-1}}\right|=2^{3}$ and G admits a ramification structure of size $\left(r_{1}, r_{2}\right)$, then r_{1}, r_{2} cannot be both odd. However, the next example shows that this is not necessarily the case. We fix this mistake in Theorem 2.8.

Example 2.4. Let $G=\langle a\rangle \times\langle x\rangle \times\langle y\rangle \times\langle z\rangle \cong C_{2} \times C_{4} \times C_{4} \times C_{4}$. Now $\exp G=4$ and $\left|G^{2}\right|=2^{3}$. If we take

$$
T_{1}=\left(x, y, z, x^{-1}, y^{-1}, z^{-1} a, a\right),
$$

and

$$
T_{2}=(x y a, x z, y z, x y z, x y z a),
$$

then clearly $\left(T_{1}, T_{2}\right)$ is a ramification structure for G of size $(7,5)$.
We next see that the existence of ramification structures for a group of exponent p can be deduced from Theorem 2.5.

Theorem 2.5. Let G be a p-group of exponent p. Then G admits a ramification structure of size $\left(r_{1}, r_{2}\right)$ if and only if $G / \Phi(G)$ admits a ramification structure of size $\left(r_{1}, r_{2}\right)$.
Proof. Note that if $p=2$ then G is an elementary abelian 2-group, and hence G coincides with $G / \Phi(G)$. Thus we assume that $p \geq 3$. We first show that if $G / \Phi(G)$ admits a ramification structure $\left(U_{1}, U_{2}\right)$ of size $\left(r_{1}, r_{2}\right)$, then so does G.

Consider a lift of $\left(U_{1}, U_{2}\right)$ to G, say $\left(T_{1}, T_{2}\right)$, such that T_{1} and T_{2} are spherical systems of generators of G. Since $\exp G=p$, all elements in T_{1} and T_{2} are of order p. We claim that $\left(T_{1}, T_{2}\right)$ is a ramification structure of size $\left(r_{1}, r_{2}\right)$ for G. Suppose, on the contrary, that there are $a \in T_{1}$ and $b \in T_{2}$ such that $\langle a\rangle^{g}=\langle b\rangle$ for some $g \in G$. Since $G / \Phi(G)$ is abelian, we get $\langle\bar{a}\rangle=\langle\bar{b}\rangle$, which is a contradiction.

Let us now prove the converse. Assume that G admits a ramification structure of size $\left(r_{1}, r_{2}\right)$. Note that $G / \Phi(G)$ has rank at least 2 . Then by Theorem 2.3, any elementary abelian p-group of rank ≥ 2 for $p \geq 5$ admits a ramification structure of size $\left(r_{1}, r_{2}\right)$ if $r_{1}, r_{2} \geq 3$.

Finally we assume that $p=3$. According to Theorem 2.3, we only need to prove that G does not admit a ramification structure with $r_{1}=3$. By way of contradiction, suppose that $r_{1}=3$. It then follows that G is a 2 -generator group with $\exp G=3$. Then [9, 14.2.3]
implies that G is of order 3^{3}. Observe that each element in T_{1} falls into a distinct maximal subgroup of G. Since G has 4 maximal subgroups and not all elements in T_{2} fall into the same maximal subgroup, it then follows that there are elements in T_{1} and T_{2}, say $a \in T_{1}$ and $b \in T_{2}$, which are in the same maximal subgroup. Then we have

$$
b=a^{i} c,
$$

for some $c \in \Phi(G)=G^{\prime}$ and for $i \in\{1,2\}$. Since $|G|=3^{3}$ and a^{i} is a generator of G, we can write $c=\left[a^{i}, g\right]$ for some $g \in G$. It then follows that $b=\left(a^{i}\right)^{g}$, a contradiction.

We now introduce a property which is essential to our result, and then we describe some families of finite p-groups satisfying this property.

Let G be a finite p-group, and let $i \geq 1$ be an integer. Following Xu [11], we say that G is semi-p ${ }^{i}$-abelian if the following condition holds for every $x, y \in G$:

$$
\begin{equation*}
x^{p^{p^{i}}}=y^{p^{i}} \quad \text { if and only if } \quad\left(x y^{-1}\right)^{p^{i}}=1 . \tag{2.1}
\end{equation*}
$$

If G is semi- p^{i}-abelian, then we have [11, Lemma 1]:
(SA1) $\Omega_{i}(G)=\left\{x \in G \mid x^{p^{i}}=1\right\}$.
(SA2) $\left|G: \Omega_{i}(G)\right|=\left|\left\{x^{p^{i}} \mid x \in G\right\}\right|$.
If G is semi- p^{i}-abelian for every $i \geq 1$, then G is called strongly semi-p-abelian.
By [10, Theorem 3.14], regular p-groups are strongly semi- p-abelian. On the other hand, by Lemma 3 in [3], a powerful p-group of exponent p^{e} is semi- p^{e-1}-abelian. Furthermore, by Theorem 2.2 in [4], generalized p-central p-groups, i.e. groups in which $\Omega_{1}(G) \leq Z_{p-2}(G)$ for odd p, or $\Omega_{2}(G) \leq Z(G)$ for $p=2$, are strongly semi- p-abelian.

Before we proceed to prove Theorem A, we need the following lemma.
Lemma 2.6. Let G be a p-group of exponent p^{e} and let $d=d(G)$. Suppose that G is semi-p ${ }^{e-1}$-abelian. Then the following hold:
(1) If $\left(T_{1}, T_{2}\right)$ is a ramification structure for G, then $\left(\bar{T}_{1} \backslash\{\overline{1}\}, \bar{T}_{2} \backslash\{\overline{1}\}\right)$ is a ramification structure for $G / \Omega_{e-1}(G)$.
(2) If $\left(U_{1}, U_{2}\right)$ is a ramification structure of size $\left(r_{1}, r_{2}\right)$ for $G / \Omega_{e-1}(G)$ and $r_{1}, r_{2} \geq$ $d+1$, then there is a lift of $\left(U_{1}, U_{2}\right)$ to G which is a ramification structure of size $\left(r_{1}, r_{2}\right)$ for G.

Proof. We first prove (i) by way of contradiction. Note that $G / \Omega_{e-1}(G)$ is of exponent p. Suppose that there are $\bar{a} \in \bar{T}_{1} \backslash\{\overline{1}\}$ and $\bar{b} \in \bar{T}_{2} \backslash\{\overline{1}\}$ such that $\langle\bar{a}\rangle=\langle\bar{b}\rangle^{\bar{g}}$ for some $\bar{g} \in G / \Omega_{e-1}(G)$, i.e. $\bar{b}^{\bar{g}}=\bar{a}^{i}$ for some i not divisible by p. Then we have $b^{g} a^{-i} \in$ $\Omega_{e-1}(G)$, and consequently $\left(b^{g} a^{-i}\right)^{p^{e-1}}=1$, by (SA1). Since G is semi- p^{e-1}-abelian, we get $\left(b^{g}\right)^{p^{e-1}}=a^{i p^{e-1}}$. This is a contradiction, since both a and b are of order p^{e} and $\langle a\rangle \cap\langle b\rangle^{g}=1$.
We next prove (ii). By part (ii) of Proposition 2.1, we can take a lift of $\left(U_{1}, U_{2}\right)$ to G, say $\left(T_{1}, T_{2}\right)$, such that T_{1} and T_{2} are spherical systems of generators of G. Observe that all elements in T_{1} and T_{2} are of order p^{e}. We next show that T_{1} and T_{2} are disjoint. Suppose, on the contrary, that there are $a \in T_{1}$ and $b \in T_{2}$ such that

$$
\left\langle a^{p^{e-1}}\right\rangle^{g}=\left\langle b^{p^{p-1}}\right\rangle,
$$

for some $g \in G$, i.e $\left(a^{g}\right)^{p^{e-1}}=b^{i p^{e-1}}$ for some integer i not divisible by p. Since G is semi- p^{e-1}-abelian, then $a^{g} b^{-i} \in \Omega_{e-1}(G)$, and consequently, $\langle\bar{a}\rangle^{\bar{g}}=\langle\bar{b}\rangle$ in $G / \Omega_{e-1}(G)$, which is a contradiction since $\left(U_{1}, U_{2}\right)$ is a ramification structure for $G / \Omega_{e-1}(G)$.

We are now ready to prove Theorem A. We deal separately with the cases $p \geq 3$ and $p=2$.

Theorem 2.7. Let G be a p-group of exponent p^{e} with $p \geq 3$, and let $d=d(G)$. Suppose that G is semi- p^{e-1}-abelian. Then G admits a ramification structure if and only if $\mid\left\{g^{p^{e-1}} \mid\right.$ $g \in G\} \mid \geq p^{2}$. In that case, G admits a ramification structure of size $\left(r_{1}, r_{2}\right)$ if and only if $r_{1}, r_{2} \geq d+1$, and also $r_{1}, r_{2} \geq 4$ provided that $p=3$.

Proof. We first assume that G admits a ramification structure $\left(T_{1}, T_{2}\right)$. By (SA2), the cardinality of the set $X=\left\{g^{p^{e-1}} \mid g \in G\right\}$ is a power of p. Suppose that $|X|=p$. It then follows that the subgroup $G^{p^{e-1}}$ is cyclic of order p. Note that by (SA1), we have $\exp \Omega_{e-1}(G)=p^{e-1}$. Then there are elements $a \in T_{1}$ and $b \in T_{2}$ such that $o(a)=o(b)=$ p^{e}. Thus,

$$
G^{p^{e-1}}=\left\langle a^{p^{e-1}}\right\rangle=\left\langle b^{p^{e-1}}\right\rangle
$$

which is a contradiction.
We next prove that if $p=3$ and G admits a ramification structure of size $\left(r_{1}, r_{2}\right)$, then $r_{1}, r_{2} \geq 4$. Suppose, by way of contradiction, that $r_{1}=3$. Then since $|X| \geq 3^{2}$, we have $\left|G / \Omega_{e-1}(G)\right| \geq 3^{2}$, by (SA2). Part (i) of Lemma 2.6 implies that $G / \Omega_{e-1}(G)$ admits a ramification structure of size (r, s) where $r \leq r_{1} \leq 3$. However, according to Theorems 2.3 and 2.5 this is not possible.

Now assume that $|X| \geq p^{2}$. Let us use the bar notation \bar{G} for the factor group $G / \Omega_{e-1}(G)$. Then $|\bar{G}| \geq p^{2}$ and $d(\bar{G}) \geq 2$. It follows from Theorems 2.3 and 2.5 that \bar{G} admits a ramification structure of size (r, s) for all $r, s \geq d(\bar{G})+1$, and $r, s \geq 4$ provided that $p=3$. If we take $r_{1}, r_{2} \geq d+1 \geq d(\bar{G})+1$, and $r_{1}, r_{2} \geq 4$ provided that $p=3$, then part (ii) of Lemma 2.6 implies that G admits a ramification structure of size $\left(r_{1}, r_{2}\right)$. This completes the proof.

We next deal with the prime 2 .
Theorem 2.8. Let G be a 2-group of exponent 2^{e}, and let $d=d(G)$. Suppose that G is semi-2 2^{e-1}-abelian. Then G admits a ramification structure if and only if $\mid\left\{g^{2^{e-1}} \mid g \in\right.$ $G\} \mid \geq 2^{3}$. In that case, G admits a ramification structure of size $\left(r_{1}, r_{2}\right)$ if and only if the following conditions hold:
(1) $r_{1}, r_{2} \geq d+1$.
(2) $r_{1}, r_{2} \geq 5$.
(3) If $\left|\left\{g^{2^{e}-1} \mid g \in G\right\}\right|=2^{3}$, then $\left(r_{1}, r_{2}\right) \neq(5,5)$, and furthermore if $e=1$, i.e. $G \cong C_{2} \times C_{2} \times C_{2}$, then r_{1}, r_{2} are not both odd.

Proof. We first assume that G admits a ramification structure. Suppose that $X=\left\{g^{2^{e-1}} \mid\right.$ $g \in G\}$ is of cardinality at most 2^{2}, so that $\left|G: \Omega_{e-1}(G)\right| \leq 2^{2}$. Then according to Theorem 2.3, $G / \Omega_{e-1}(G)$ does not admit a ramification structure. Thus, G has no ramification structure, as follows from Lemma 2.6(i). This is a contradiction. So we have $|X| \geq 2^{3}$.

If the ramification structure for G is of size $\left(r_{1}, r_{2}\right)$, then we have $r_{1}, r_{2} \geq d+1$. By Theorem 2.3, ramification structures of $G / \Omega_{e-1}(G)$ have size (r, s) where $r, s \geq 5$, and furthermore r, s are not both odd if $\left|G / \Omega_{e-1}(G)\right|=2^{3}$. Hence, by part (i) of Lemma 2.6, we have $r_{1}, r_{2} \geq 5$ and furthermore, if $\left|G / \Omega_{e-1}(G)\right|=2^{3}$ then $\left(r_{1}, r_{2}\right) \neq(5,5)$. Finally if $G \cong C_{2} \times C_{2} \times C_{2}$ then r_{1}, r_{2} are not both odd, by Theorem 2.3.

We now work under the assumption $|X| \geq 2^{3}$. Suppose that $r_{1}, r_{2} \geq d+1, r_{1}, r_{2} \geq 5$ and furthermore that r_{1}, r_{2} are not both odd if $|X|=2^{3}$. Then by Theorem $2.3, G / \Omega_{e-1}(G)$ admits a ramification structure of size $\left(r_{1}, r_{2}\right)$. Lemma 2.6 (ii) implies that G admits a ramification structure of size $\left(r_{1}, r_{2}\right)$.

It remains to prove that if $r_{1}, r_{2} \geq 5,\left(r_{1}, r_{2}\right) \neq(5,5)$ and both r_{1}, r_{2} are odd, then G admits a ramification structure of size $\left(r_{1}, r_{2}\right)$ under the assumptions $|X|=2^{3}$ and $e \geq 2$. We may assume that $r_{2} \geq 7$. Then $G / \Omega_{e-1}(G)$ admits a ramification structure of size $\left(r_{1}, r_{2}-1\right)$.

Since G / G^{2} is elementary abelian of rank d and $G / \Omega_{e-1}(G)$ is of rank 3 , we have $\Omega_{e-1}(G) / G^{2}$ is of rank $d-3$. We take a generating set $\left\{n_{1}, \ldots, n_{d-3}\right\}$ of $\Omega_{e-1}(G)$ modulo G^{2}. Call $n=n_{1} \ldots n_{d-3}$ and let $o(n)=2^{k}<2^{e}$. If $1 \neq n^{2^{k-1}}=x^{2^{e-1}}$ for some $x \in G$, then since $x \notin \Omega_{e-1}(G)$ we take a generating set of $G / \Omega_{e-1}(G)$ containing \bar{x}, say $G / \Omega_{e-1}(G)=\langle\bar{x}\rangle \times\langle\bar{y}\rangle \times\langle\bar{z}\rangle$. Otherwise, if $n^{2^{k-1}} \neq g^{2^{e-1}}$ for any $g \in G$, then we take any generating set of $G / \Omega_{e-1}(G)$.

Now consider the following ramification structure of $G / \Omega_{e-1}(G)$:

$$
\begin{gathered}
U_{1}=(\overline{x y}, \overline{y z}, \overline{x z}, \overline{x y z}, \overline{x y z}, \overline{x y}, \ldots, \overline{x y}) \quad \text { and } \\
U_{2}=(\bar{x}, \bar{y}, \bar{z}, \bar{x}, \bar{y}, \bar{z}, \bar{x}, \ldots, \bar{x})
\end{gathered}
$$

where $\left|U_{1}\right|=r_{1}$ and $\left|U_{2}\right|=r_{2}-1$. Since $r_{1} \geq d+1$, by part (ii) of Proposition 2.1, we take a lift T_{1} of U_{1} so that T_{1} is a spherical system of generators of G. Then consider the following lift of U_{2} to G :

$$
T_{2}=\left(x, y, z, x n_{1}, y n_{2}, z n_{3}, x n_{4}, \ldots, x n_{d-3}, x, \ldots, x\right)
$$

where $\left|T_{2}\right|=r_{2}-1$. Clearly, T_{2} generates G. Observe that the product of all components of T_{2} is n modulo G^{2}, i.e. the product is equal to $w n$ for some $w \in G^{2}$. Now consider the following tuple:

$$
T_{2}^{*}=\left(w^{-1} x, y, z, x n_{1}, y n_{2}, z n_{3}, x n_{4}, \ldots, x n_{d-3}, x, \ldots, x, n^{-1}\right),
$$

where $\left|T_{2}\right|=r_{2}$. Since $w \in G^{2}=\Phi(G)$, it follows that T_{2}^{*} generates G and furthermore, it is spherical. Our claim is that $\left(T_{1}, T_{2}^{*}\right)$ is a ramification structure of size $\left(r_{1}, r_{2}\right)$ for G.
Notice that all elements in $T_{1} \cup T_{2}^{*}$ are of order 2^{e} except n^{-1}. Then by using the same argument in the proof of part (ii) of Lemma 2.6, we conclude that $\langle a\rangle^{g} \cap\langle b\rangle=1$ for any $g \in G, a \in T_{1}$ and $b \in T_{2}^{*} \backslash\left\{n^{-1}\right\}$. On the other hand, if $n^{2^{k-1}}=x^{2^{e-1}}$ then since $\left\langle x^{2^{e-1}}\right\rangle \neq\left\langle a^{2^{e-1}}\right\rangle^{g}$ for any $g \in G$ and $a \in T_{1}$, we have $\langle n\rangle \cap \Sigma\left(T_{1}\right)=1$. Otherwise, if $n^{2^{k-1}} \neq g^{2^{e-1}}$ for any $g \in G$, then clearly $\langle n\rangle \cap \Sigma\left(T_{1}\right)=1$. This completes the proof.

We close this section by showing that the assumption of being semi- p^{e-1}-abelian is essential in Theorem A. As we next see, for a general finite p-group G, the cardinality of the set $\left\{g^{p^{e-1}} \mid g \in G\right\}$ does not control the existence of ramification structures for G. To this purpose, we will work with 2 -generator p-groups constructed in [4]. For more details, we suggest readers to see pages 11-13 of [4].

Lemma 2.9. Let G be a Beauville group. Then G admits a ramification structure of size $\left(r_{1}, r_{2}\right)$ for any $r_{1}, r_{2} \geq 3$.

Proof. Assume that G is a Beauville group, that is it admits a ramification structure $\left(U_{1}, U_{2}\right)$ of size $(3,3)$. Let $U_{1}=\left(x_{1}, y_{1},\left(x_{1} y_{1}\right)^{-1}\right), U_{2}=\left(x_{2}, y_{2},\left(x_{2} y_{2}\right)^{-1}\right)$. Consider the following tuples:

$$
T_{1}=\left(x_{1}, y_{1}, y_{1}^{-1}, x_{1}^{-1}\right) \quad \text { or } \quad T_{1}=U_{1},
$$

and

$$
T_{2}=\left(x_{2}, y_{2}, y_{2}^{-1}, x_{2}^{-1}\right) \quad \text { or } \quad T_{2}=U_{2} .
$$

By adding x_{1}, x_{1}^{-1} to T_{1} and x_{2}, x_{2}^{-1} to T_{2} repeatedly, we obtain a pair of spherical systems of generators (T_{1}^{*}, T_{2}^{*}) for G of size $\left(r_{1}, r_{2}\right)$ for any $r_{1}, r_{2} \geq 3$. Then since $\left(U_{1}, U_{2}\right)$ is a ramification structure for G, so does $\left(T_{1}^{*}, T_{2}^{*}\right)$.

The following result shows that the 'only if' part of Theorem A fails for a general finite p-group.

Proposition 2.10. Let $p \geq 5$ be a prime. Then there exists a p-group G such that:
(1) $\left|\left\{g^{p^{e-1}} \mid g \in G\right\}\right|=p$, where $p^{e}=\exp G$.
(2) G admits a ramification structure of size $\left(r_{1}, r_{2}\right)$ for any $r_{1}, r_{2} \geq 3$.

Proof. In the proof of Corollary 2.12 in [4], it was shown that there exists a Beauville p group G with $\exp G=p^{e}$ such that $\left|G^{p^{e-1}}\right|=p$. It then follows that $\left|\left\{g^{p^{e-1}} \mid g \in G\right\}\right|=p$ and hence (i) holds. Since G is a Beauville group, (ii) readily follows from Lemma 2.9.

Finally, the following result shows that for every power of p, there is a p-group G such that the cardinality of the set $\left\{g^{p^{e-1}} \mid g \in G\right\}$ is exactly that power and G does not admit a ramification structure.

Proposition 2.11. For every prime $p \geq 5$, and positive integer m, there exists a p-group G such that:
(1) $\left|\left\{g^{p^{e-1}} \mid g \in G\right\}\right|=p^{m}$, where $p^{e}=\exp G$.
(2) G does not admit a ramification structure.

Proof. Consider the group G in the second part of the proof of Corollary 2.12 in [4]. Then G is a 2-generator p-group G with $\exp G=p^{e}$ such that $\left|G^{p^{e-1}}\right|=p^{m}$ for some m. One can also observe from the proof that the subgroup $G^{p^{e-1}}$ coincides with the set $\left\{g^{p^{e-1}} \mid g \in G\right\}$. Furthermore, it was shown that for every pair of generating sets $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, there are elements, say x_{1} and x_{2}, such that $\left\langle x_{1}^{i}\right\rangle=\left\langle x_{2}^{j}\right\rangle \neq 1$ for some integers i, j. Thus, G does not admit a ramification structure. Furthermore, Corollary 2.13 in [4] implies that m can be any positive integer.

3. Finite nilpotent groups

In this section, we prove Theorem B. We give the possible sizes of ramification structures for nilpotent groups whose Sylow p-subgroups are semi- p^{e-1}-abelian if the exponent is p^{e}. To this purpose, we need the following result regarding a direct product of groups of coprime order.

Proposition 3.1. Let G and G^{*} be groups of coprime order. Then the following hold:
(1) If G and G^{*} admit ramification structures of size $\left(r_{1}, r_{2}\right)$ and $\left(r_{1}^{*}, r_{2}^{*}\right)$, respectively, then $G \times G^{*}$ admits a ramification structure of size (r, s) where $r=\max \left\{r_{1}, r_{1}^{*}\right\}$ and $s=\max \left\{r_{2}, r_{2}^{*}\right\}$.
(2) If $G \times G^{*}$ admits a ramification structure of size (r, s), then G and G^{*} admit ramification structures of size $\left(r_{1}, r_{2}\right)$ and $\left(r_{1}^{*}, r_{2}^{*}\right)$, respectively, for some $r_{1}, r_{1}^{*} \leq r$ and $r_{2}, r_{2}^{*} \leq s$. Furthermore, if G is of odd order, we also have $r_{1}=r$ and $r_{2}=s$.
Proof. We first prove (i). Assume that $\left(T_{1}, T_{2}\right)$ and $\left(T_{1}^{*}, T_{2}^{*}\right)$ are ramification structures of size $\left(r_{1}, r_{2}\right)$ and $\left(r_{1}^{*}, r_{2}^{*}\right)$ for G and G^{*}, respectively. Let $r=\max \left\{r_{1}, r_{1}^{*}\right\}$ and $s=$ $\max \left\{r_{2}, r_{2}^{*}\right\}$. Then by adding as many times the identity as needed to T_{1}, T_{2}, T_{1}^{*} and T_{2}^{*}, we obtain U_{1}, U_{2}, U_{1}^{*} and U_{2}^{*} where $\left|U_{1}\right|=\left|U_{1}^{*}\right|=r$ and $\left|U_{2}\right|=\left|U_{2}^{*}\right|=s$. Let

$$
\begin{aligned}
U_{1} & =\left(x_{1}, \ldots, x_{r}\right) \quad \text { and } \quad U_{2}=\left(y_{1}, \ldots, y_{s}\right) \\
U_{1}^{*} & =\left(x_{1}^{*}, \ldots, x_{r}^{*}\right) \quad \text { and } \quad U_{2}^{*}=\left(y_{1}^{*}, \ldots, y_{s}^{*}\right)
\end{aligned}
$$

Then let

$$
\begin{gathered}
A_{1}=\left(\left(x_{1}, x_{1}^{*}\right), \ldots,\left(x_{r}, x_{r}^{*}\right)\right) \quad \text { and } \\
\quad A_{2}=\left(\left(y_{1}, y_{1}^{*}\right), \ldots,\left(y_{s}, y_{s}^{*}\right)\right)
\end{gathered}
$$

Observe that since G and G^{*} have coprime order, both A_{1} and A_{2} generate $G \times G^{*}$. We will see that $\left(A_{1}, A_{2}\right)$ is a ramification structure for $G \times G^{*}$. Otherwise, there exist $\left(a, a^{*}\right) \in A_{1}$ and $\left(b, b^{*}\right) \in A_{2}$ such that

$$
\left\langle\left(a, a^{*}\right)\right\rangle^{\left(g, g^{*}\right)} \cap\left\langle\left(b, b^{*}\right)\right\rangle \neq\{(1,1)\}
$$

for some $\left(g, g^{*}\right) \in G \times G^{*}$. It then follows that either $\langle a\rangle^{g} \cap\langle b\rangle \neq 1$ or $\left\langle a^{*}\right\rangle^{g^{*}} \cap\left\langle b^{*}\right\rangle \neq 1$, which is a contradiction.

Let us now prove (ii). Assume that

$$
A_{1}=\left(\left(x_{1}, x_{1}^{*}\right), \ldots,\left(x_{r}, x_{r}^{*}\right)\right) \quad \text { and } \quad A_{2}=\left(\left(y_{1}, y_{1}^{*}\right), \ldots,\left(y_{s}, y_{s}^{*}\right)\right)
$$

form a ramification structure of size (r, s) for $G \times G^{*}$. Assume that after deleting the identity element in $\left(x_{1}, \ldots, x_{r}\right)$ and $\left(y_{1}, \ldots, y_{s}\right)$ we get $T_{1}=\left(z_{1}, \ldots, z_{r_{1}}\right)$ and $T_{2}=\left(t_{1}, \ldots, t_{r_{2}}\right)$ for some $r_{1} \leq r$ and $r_{2} \leq s$. We claim that $\left(T_{1}, T_{2}\right)$ is a ramification structure of size $\left(r_{1}, r_{2}\right)$ for G. The same arguments apply to G^{*}. For every $\left(a, a^{*}\right) \in A_{1}$ and $\left(b, b^{*}\right) \in A_{2}$ we have

$$
\begin{equation*}
\left\langle\left(a, a^{*}\right)\right\rangle^{\left(g, g^{*}\right)} \cap\left\langle\left(b, b^{*}\right)\right\rangle=\{(1,1)\}, \tag{3.1}
\end{equation*}
$$

for all $\left(g, g^{*}\right) \in G \times G^{*}$. Let $|G|=l$ and $\left|G^{*}\right|=m$, where $\operatorname{gcd}(l, m)=1$. Then by equation (3.1), we get

$$
\left\langle\left(\left(a^{m}\right)^{g}, 1\right)\right\rangle \cap\left\langle\left(b^{m}, 1\right)\right\rangle=\{(1,1)\},
$$

and hence $\left\langle a^{m}\right\rangle^{g} \cap\left\langle b^{m}\right\rangle=1$. Since $\operatorname{gcd}(l, m)=1$, it then follows that $\langle a\rangle^{g} \cap\langle b\rangle=1$.
Finally we assume that G is of odd order. If $r-r_{1}$ is even, then we take $T_{1}=$ $\left(z_{1}, \ldots, z_{r_{1}}, z_{1}, z_{1}^{-1}, \ldots, z_{1}, z_{1}^{-1}\right)$. Now suppose that $r-r_{1}$ is odd. Since G is of odd order, we have $o\left(z_{1}\right) \neq 2$. Then in this case we take

$$
T_{1}=\left(z_{1}^{2}, z_{1}^{-1}, z_{2}, \ldots, z_{r_{1}}, z_{1}, z_{1}^{-1}, \ldots, z_{1}, z_{1}^{-1}\right) .
$$

In both cases, T_{1} is a spherical system of generators of G of size r. By using the same arguments, we can make $\left|T_{2}\right|=s$. Then by the previous paragraph, $\left(T_{1}, T_{2}\right)$ is a ramification structure of size (r, s) for G, as desired. This completes the proof.

The following proposition is easily deduced from Proposition 3.1.
Proposition 3.2. Let G be a nilpotent group. Then
(1) G admits a ramification structure if and only if all Sylow p-subgroups of G admit a ramification structure.
(2) If G is of odd order, then G admits a ramification structure of size $\left(r_{1}, r_{2}\right)$ if and only if all Sylow p-subgroups of G admit a ramification structure of size $\left(r_{1}, r_{2}\right)$.
In order to characterize abelian groups with ramification structures, Garion and Penegini [6] reduced the study to their Sylow p-subgroups. However, as far as the sizes of ramification structures are concerned, this reducing argument is not correct in general. More precisely, if G is an abelian group of even order, then the size of a ramification structure of G need not be inherited by the Sylow 2-subgroup of G, as we see in the next example. We fix this mistake in Theorem 3.4.

Example 3.3. Let $G=\langle a\rangle \times\langle b\rangle \times\langle c\rangle \cong C_{6} \times C_{6} \times C_{2}$. If we take

$$
T_{1}=\left(a, b, c, b^{-1},(a c)^{-1}\right),
$$

and

$$
T_{2}=\left(a b, a b,(a b)^{-2}, a b c,(a b c)^{-1}, a^{2} b c,\left(a^{2} b c\right)^{-1}\right)
$$

then $\left(T_{1}, T_{2}\right)$ is a ramification structure of size (5,7) for G. However, the Sylow 2-subgroup of G, which is $C_{2} \times C_{2} \times C_{2}$, does not admit a ramification structure of size (5,7).

We close the paper by proving Theorem B.
Theorem 3.4. Let G be a nilpotent group, and let $d=d(G)$. Let G_{p} denote the Sylow p-subgroup of G for every prime p dividing $|G|$. Suppose that $\exp G_{p}=p^{e_{p}}$ and all G_{p} are semi-p ${ }^{e_{p}-1}$-abelian. Then G admits a ramification structure of size $\left(r_{1}, r_{2}\right)$ if and only if the following conditions hold:
(1) $r_{1}, r_{2} \geq d+1$.
(2) $\left(r_{1}, r_{2}\right) \in S\left(G_{p}\right)$ for p odd.
(3) $\left(r_{1}, r_{2}\right) \in S\left(G_{2}\right)$ unless $G_{2} \cong C_{2} \times C_{2} \times C_{2}$.
(4) If $G_{2} \cong C_{2} \times C_{2} \times C_{2}$ then $r_{1}, r_{2} \geq 5$ and $\left(r_{1}, r_{2}\right) \neq(5,5)$. Furthermore, if $G \cong C_{2} \times C_{2} \times C_{2}$ then r_{1}, r_{2} are not both odd.

Proof. We first assume that $\left(r_{1}, r_{2}\right) \in S(G)$. We know that (i) holds, and by Proposition 3.1 (ii), we have (ii). We next assume that $G_{2} \neq 1$. Then again by Proposition 3.1(ii), G_{2} admits a ramification structure of size (r, s) for some $r \leq r_{1}$ and $s \leq r_{2}$. Then by Theorem $2.8, r, s \geq 5$, and furthermore $(r, s) \neq(5,5)$ if $\left|\left\{g^{e_{2}-1} \mid g \in G_{2}\right\}\right|=2^{3}$. This implies that $r_{1}, r_{2} \geq 5$, and furthermore $\left(r_{1}, r_{2}\right) \neq(5,5)$ if $\left|\left\{g^{e_{2}-1} \mid g \in G_{2}\right\}\right|=2^{3}$. Then the first part of (iv) follows, and (iii) follows from Theorem 2.8. Finally if $G \cong C_{2} \times C_{2} \times C_{2}$ then r_{1}, r_{2} are not both odd, by Theorem 2.3.

Conversely, assume that conditions (i)-(iv) hold. Then all G_{p} admit a ramification structure of size $\left(r_{1}, r_{2}\right)$ unless $G_{2} \cong C_{2} \times C_{2} \times C_{2}$. Thus, if $G_{2} \neq C_{2} \times C_{2} \times C_{2}$, by Proposition 3.1(i), we conclude that G admits a ramification structure of size $\left(r_{1}, r_{2}\right)$.

Finally we assume that conditions (i)-(iv) hold and $G_{2}=\langle x\rangle \times\langle y\rangle \times\langle z\rangle \cong C_{2} \times C_{2} \times C_{2}$. If $G=G_{2}$ then we already know the result, by Theorem 2.8. Thus, we assume that $G \neq G_{2}$. Let R be the direct product of the Sylow p-subgroups of G for all odd primes p dividing $|G|$. Then Proposition 3.2(ii), together with condition (ii), implies that R admits a ramification structure of size $\left(r_{1}, r_{2}\right)$.

If r_{1}, r_{2} are not both odd, then G_{2} also admits a ramification structure of size $\left(r_{1}, r_{2}\right)$. Otherwise, if both r_{1}, r_{2} are odd, then we may assume that $r_{2} \geq 7$, and thus G_{2} admits a ramification structure of size $\left(r_{1}, r_{2}-1\right)$, by Theorem 2.3. Then in both cases, Proposition 3.1(i) implies that $G=R \times G_{2}$ admits a ramification structure of size $\left(r_{1}, r_{2}\right)$. This completes the proof.

Acknowledgment. I would like to thank G. A. Fernández-Alcober for intense discussions and his feedbacks. The author is supported by the Spanish Government, grants MTM2014-53810-C2-2-P and MTM2017-86802- P, partly with FEDER funds, and by the Basque Government, grant IT974-16.

References

[1] N. Boston, A survey of Beauville p-groups,in: Beauville Surfaces and Groups, editors I. Bauer, S. Garion, A. Vdovina, Springer Proceedings in Mathematics \& Statistics, 123, 35-40, Springer, 2015.
[2] B. Fairbairn, Recent work on Beauville surfaces, structures and groups, in: Groups St Andrews 2013, editors C.M. Campbell, M.R. Quick, E.F. Robertson and C.M. RoneyDougal, London Mathematical Society Lecture Note Series, 422, 225-241, 2015.
[3] G.A. Fernández-Alcober, Omega subgroups of powerful p-groups, Israel J. Math. 162, 75-79, 2007.
[4] G.A. Fernández-Alcober and Ş. Gül, Beauville structures in finite p-groups, J. Algebra, 474, 1-23, 2017.
[5] S. Garion and M. Penegini, New Beauville surfaces and finite simple groups, Manuscripta Math. 142, 391-408, 2013.
[6] S. Garion and M. Penegini, Beauville surfaces, moduli spaces and finite groups, Comm. Algebra, 42, 2126-2155, 2014.
[7] G. Jones, Beauville surfaces and groups: a survey, in: Rigidity and Symmetry, editors R. Connelly, A.I. Weiss, W. Whiteley, Fields Institute Communications, 70, Springer, 205-225, 2014.
[8] L. Ribes and P. Zalesskii, Profinite Groups, second edition, Springer, 2010.
[9] D.J.S. Robinson, A Course in the Theory of Groups, second edition, Springer, 1996.
[10] M. Suzuki, Group Theory II, Springer, 1986.
[11] M. Xu, A class of semi-p-abelian p-groups, Kexue Tongbao, 27, 142-146, 1982.

[^0]: Email addresses: sukran.gul@ehu.eus, sukran.gul@tedu.edu.tr

