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Abstract
We extend the characterization of abelian groups with ramification structures given by
Garion and Penegini in [Beauville surfaces, moduli spaces and finite groups, Comm. Alge-
bra, 2014] to finite nilpotent groups whose Sylow p-subgroups have a ‘nice power structure’,
including regular p-groups, powerful p-groups and (generalized) p-central p-groups. We
also correct two errors in [Beauville surfaces, moduli spaces and finite groups, Comm.
Algebra, 2014] regarding abelian 2-groups with ramification structures and the relation
between the sizes of ramification structures for an abelian group and those for its Sylow
2-subgroup.
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1. Introduction
An algebraic surface S is said to be isogenous to a higher product of curves if it is

isomorphic to (C1 × C2)/G, where C1 and C2 are curves of genus at least 2, and G is a
finite group acting freely on C1 × C2. Particular interesting examples of such surfaces are
Beauville surfaces. These are algebraic surfaces isogenous to a higher product which are
rigid.

Groups of surfaces isogenous to a higher product can be characterized by a purely
group-theoretical condition: the existence of a ‘ramification structure’.

Definition 1.1. Let G be a finite group and let T = (g1, g2, . . . , gr) be a tuple of non-
trivial elements of G.

(1) T is called a spherical system of generators of G if ⟨g1, g2, . . . , gr⟩ = G and
g1g2 . . . gr = 1.

(2) T is of type τ := (m1, . . . , mr) if o(gi) = mi for gi ∈ T .
(3) Σ(T ) is the union of all conjugates of the cyclic subgroups generated by the ele-

ments of T :

Σ(T ) =
∪

g∈G

r∪
i=1

⟨gi⟩g.

Two tuples T1 and T2 are called disjoint if Σ(T1) ∩ Σ(T2) = 1.
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Definition 1.2. An (unmixed) ramification structure of size (r1, r2) for a finite group G
is a pair (T1, T2) of disjoint spherical systems of generators of G, where |T1| = r1 and
|T2| = r2. We denote by S(G) the set of all sizes (r1, r2) of ramification structures of G.

Observe that if d is the minimum number of generators of G, spherical systems of gen-
erators of G are of size at least d+1. Since clearly cyclic groups do not admit ramification
structures, it follows that r1, r2 ≥ 3 in Definition 1.2.

If r1 = r2 = 3, then ramification structures coincide with Beauville structures, which
have been intensely studied in recent times; see surveys [1,2,7]. Not much is known about
ramification structures that are not Beauville. In 2013, Garion and Penegini [5] proved
that if τ1 = (m1,1, . . . , m1,r1) and τ2 = (m2,1, . . . , m2,r2) are tuples of natural numbers ≥ 2
and Σri

j=1(1 − 1/mi,j) > 2 for i = 1, 2, then almost all alternating and symmetric groups
admit a ramification structure of type (τ1, τ2), where in the case of symmetric groups there
is an additional assumption that at least two components in both τ1 and τ2 are even. Soon
afterwards, they characterized the abelian groups with ramification structures [6, Theorem
3.18].

After abelian groups, the most natural class of finite groups to consider are nilpotent
groups. As we will see in Proposition 3.2, a finite nilpotent group admits a ramification
structure if and only if so do its Sylow p-subgroups. The goal of this paper is to extend the
characterization of abelian groups with ramification structures to finite nilpotent groups
whose Sylow p-subgroups have a good behavior with respect to powers. To this purpose,
we first study the existence of ramifications structures for finite p-groups with a ‘nice power
structure’. In particular, we generalize Theorem A in [4], which determines the conditions
for such p-groups to be Beauville groups.

If G is a finite p-group, we call G semi-pe−1-abelian if for every x, y ∈ G, we have

xpe−1 = ype−1 if and only if (xy−1)pe−1 = 1.

Theorem A. Let G be a finite p-group of exponent pe, and let d = d(G). Suppose that
G is semi-pe−1-abelian. Then G admits a ramification structure if and only if |{gpe−1 | g ∈
G}| ≥ ps where s = 2 if p ≥ 3 or s = 3 if p = 2. In that case, G admits a ramification
structure of size (r1, r2) if and only if the following conditions hold:

(1) r1, r2 ≥ d + 1.
(2) If p = 3 then r1, r2 ≥ 4.
(3) If p = 2 then r1, r2 ≥ 5.
(4) If p = 2 and |{g2e−1 | g ∈ G}| = 23, then (r1, r2) ̸= (5, 5), and furthermore if e = 1,

i.e. G ∼= C2 × C2 × C2, then r1, r2 are not both odd.
Note that the condition on the cardinality of the set {gpe−1 | g ∈ G} in Theorem A

implies that if G admits a ramification structure, then d(G) ≥ 2 if p ≥ 3 or d(G) ≥ 3 if
p = 2.

According to [6, Theorem 3.18], if G is an abelian 2-group of exponent 2e and |G2e−1 | =
23, then G does not admit a ramification structure of size (r1, r2) if r1, r2 are both odd.
However, Theorem A shows that this statement is not true, and they can be both odd
provided that G ̸∼= C2 × C2 × C2.

Theorem A applies to a wide family of p-groups, including regular p-groups (so, in
particular, p-groups of exponent p or of nilpotency class less than p), powerful p-groups,
and generalized p-central p-groups. A p-group is called generalized p-central if p > 2 and
Ω1(G) ≤ Zp−2(G), or p = 2 and Ω2(G) ≤ Z(G).

We want to remark that Theorem A is not valid for all finite p-groups. We will see
that no condition on the cardinality of the set {gpe−1 | g ∈ G} can ensure the existence of
ramification structures for the class of all finite p-groups.

On the other hand, if G is a finite nilpotent group and Gp is the Sylow p-subgroup of
G, then we have

∩
p||G| S(Gp) ⊆ S(G), and S(G) ⊆ S(Gp) for odd primes p. However, it is
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not always true that S(G) ⊆ S(G2), even for abelian groups, contrary to what is implicit
in the statement of Theorem 3.18 in [6]. We give a counterexample to that in Example
3.3. We fix this error in Theorem B.

Theorem B. Let G be a nilpotent group, and let d = d(G). Let Gp denote the Sylow
p-subgroup of G for every prime p dividing |G|. Suppose that exp Gp = pep and all Gp are
semi-pep−1-abelian. Then G admits a ramification structure if and only if all Gp admit a
ramification structure. In that case, (r1, r2) ∈ S(G) if and only if the following conditions
hold:

(1) r1, r2 ≥ d + 1.
(2) (r1, r2) ∈ S(Gp) for p odd.
(3) (r1, r2) ∈ S(G2) unless G2 ∼= C2 × C2 × C2.
(4) If G2 ∼= C2 × C2 × C2 then r1, r2 ≥ 5 and (r1, r2) ̸= (5, 5). Furthermore, if

G ∼= C2 × C2 × C2 then r1, r2 are not both odd.

Notation. If G is a finitely generated group, we write d(G) for the minimum number of
generators of G. If p is a prime and G is a finite p-group, then Gpi = ⟨gpi | g ∈ G⟩ and
Ωi(G) = ⟨g ∈ G | gpi = 1⟩. The exponent of G, denoted by exp G, is the maximum of the
orders of all elements of G.

2. Finite p-groups
Throughout this paper all groups will be finite. In this section, we give the proof of

Theorem A. Let us start with a general result related to lifting a spherical generating set
of a factor group to the whole group.

Proposition 2.1. Let G be a finite group and let d = d(G). Suppose that N � G and
U = (x1, . . . , xr) is a tuple of generators of G/N . Then the following hold:

(1) If r ≥ d then there exist n1, . . . , nr ∈ N such that T = (x1n1, . . . , xrnr) generates
G.

(2) If N ̸= 1, r ≥ d + 1 and x1 . . . xr = 1, then we can choose T to be a spherical
system of generators of G.

Proof. (i) See Proposition 2.5.4 in [8].
(ii) Assume first that xi ̸= 1 for some i = 1, . . . , r. For simplicity, we suppose that

xr ̸= 1. The equality x1 . . . xr = 1 implies that ⟨x1, . . . , xr−1⟩ = G/N . Since r − 1 ≥ d
then by (i), there is a tuple V = (z1, . . . , zr−1) that generates G, where zi ∈ xiN for
1 ≤ i ≤ r − 1. Note that if xj = 1, then it may happen that zj = 1. If this is the case, we
take a nontrivial element in N as zj . Thus, zi ̸= 1 for 1 ≤ i ≤ r − 1.

If we call
T =

(
z1, . . . , zr−1, (z1 . . . zr−1)−1)

,

then clearly T is a spherical system of generators of G. The only thing we have to
show is that (z1 . . . zr−1)−1 ∈ xrN . Observe that in G/N , we have (z1 . . . zr−1)−1 =
xr(z1 . . . zr−1 xr)−1 = xr(x1 . . . xr−1 xr)−1 = xr. Thus, we have (z1 . . . zr−1)−1 ∈ xrN .
Since xr ̸= 1, this implies that z1 . . . zr−1 ̸= 1.

Now suppose that xi = 1 for all 1 ≤ i ≤ r. Then G = 1, and since r ≥ d + 1, we can
take any spherical system of generators T of G of size r. �

Notice that in part (ii) of Proposition 2.1, we do not require that U is a spherical system
of generators of G/N . Therefore, as appears in the proof, some of xi ∈ U might be the
identity of G/N .

We next state a theorem characterizing the possible sizes of ramification structures of
elementary abelian p-groups. Before that we need the following lemma.
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Lemma 2.2. Let G be an elementary abelian p-group of rank d with a ramification struc-
ture of size (r1, r2). Then the following hold:

(1) G admits a ramification structure of size (r1 + 1, r2) if p is odd, and of size (r1 +
2, r2) if p = 2.

(2) If G∗ is elementary abelian of rank d + 1 and r1, r2 ≥ d + 2, then G∗ admits a
ramification structure of size (r1, r2).

Proof. Let (T1, T2) be a ramification structure of size (r1, r2) for G. We write T1 =
(x1, x2, . . . , xr1).

We first prove (i). If

T ′
1 =

{(
x2

1, x2, . . . , xr1 , x−1
1

)
if p is odd,(

T1, x1, x1
)

if p = 2,

then (T ′
1, T2) is a ramification structure as desired.

We next prove (ii). Let G∗ = G × ⟨y⟩ be an elementary abelian p-group of rank d + 1.
Since G is of rank d and r1, r2 ≥ d + 2, both T1 and T2 have at least two elements, say
a1, b1 ∈ T1 and a2, b2 ∈ T2, that belong to the subgroup generated by the rest of the
elements in T1 and T2, respectively. We modify T1, T2 to T ∗

1 and T ∗
2 , by multiplying a1, a2

with y and b1, b2 with y−1. Then (T ∗
1 , T ∗

2 ) is a ramification structure of size (r1, r2) for
G∗. �

Note that the roles of r1 and r2 are symmetric. Thus in Lemma 2.2, G also admits a
ramification structure of size (r1, r2 + 1) if p is odd and of size (r1, r2 + 2) if p = 2.

Theorem 2.3. Let G be an elementary abelian p-group of rank d and let r1, r2 ≥ d +
1. Then G admits a ramification structure of size (r1, r2) if and only if the following
conditions hold:

(1) d ≥ 2 if p ≥ 3 or d ≥ 3 if p = 2.
(2) If p = 3 then r1, r2 ≥ 4.
(3) If p = 2 then r1, r2 ≥ 5, and furthermore if d = 3 then r1, r2 are not both odd.

Proof. We first assume that G admits a ramification structure (T1, T2) of size (r1, r2).
We already know that d ≥ 2. If p = 2 and G ∼= C2 × C2, then clearly Σ(T1) ∩ Σ(T2) ̸= 1,
a contradiction. Thus, if p = 2 then d ≥ 3.

We next assume that p = 3. We will show that r1, r2 ≥ 4. Suppose, on the contrary,
that r1 = 3. Then G ∼= C3 × C3. If we write T1 = (x1, x2, (x1x2)−1), then Σ(T1) contains
6 distinct nontrivial elements of G. The other two nontrivial elements of G are x1x2

2 and
x2

1x4
2. Since they do not generate G, there is no ramification structure for G, which is a

contradiction.
We now assume that p = 2. We show that r1, r2 ≥ 5. Suppose that r1 = 4. Then

G ∼= C2 × C2 × C2. We write T1 = (x1, x2, x3, (x1x2x3)−1). Then T2 can only contain
x1x2, x1x3 and x2x3. However, ⟨x1x2, x1x3, x2x3⟩ ̸= G, again a contradiction.

Finally, we show that if G ∼= C2 ×C2 ×C2 then r1, r2 are not both odd. Suppose that r1
is odd. Then observe that T1 contains at least 4 distinct nontrivial elements. Otherwise,
if T1 has 3 distinct nontrivial elements, say u, v, t, then (u, v, t) is a minimal system of
generators of G. Since the product of the elements of T1 is equal to 1, each of u, v, t
appears an even number of times in T1, which is not possible since r1 is odd.

We now prove the converse. To this purpose, it is enough to find ramification structures
of sizes (3, 3) or (4, 4) according as p ≥ 5 or p = 3 if d = 2, of sizes (5, 6) or (6, 6) if d = 3
and p = 2, and finally of size (5, 5) if d = 4 and p = 2. Then by applying (i) and (ii) in
Lemma 2.2 repeatedly, we get the result.
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Let G = ⟨x1⟩ × ⟨x2⟩ ∼= Cp × Cp where p ≥ 3. If we take

T1 =
{(

x1, x2, (x1x2)−1)
if p ≥ 5,(

x1, x−1
1 , x2, x−1

2
)

if p = 3,

and

T2 =
{(

x1x2
2, x1x4

2, (x2
1x6

2)−1)
if p ≥ 5,(

x1x2, (x1x2)−1, x1x2
2, (x1x2

2)−1)
if p = 3,

then (T1, T2) is a ramification structure for G of size (3, 3) if p ≥ 5, or of size (4, 4) if p = 3.
Now assume that G = ⟨x1⟩ × ⟨x2⟩ × ⟨x3⟩ ∼= C2 × C2 × C2. If we take

T1 =
{(

x1x2, x1x3, x2x3, x1x2x3, x1x2x3
)

if r1 = 5,(
x1x2, x1x3, x1x2x3, x1x2, x1x3, x1x2x3

)
if r1 = 6,

and T2 =
(
x1, x2, x3, x1, x2, x3

)
, then (T1, T2) is a ramification structure for G of size (5, 6)

or (6, 6).
Finally if p = 2 and G = ⟨x1⟩ × ⟨x2⟩ × ⟨x3⟩ × ⟨x4⟩, then we take T1 =(

x1, x2, x3, x4, (x1x2x3x4)−1)
and T2 =

(
x1x2, x2x3, x3x4, x1x2x3, x2x3x4

)
. Then clearly

(T1, T2) is a ramification for G of size (5, 5). This completes the proof. �
Theorem 2.3 can also be deduced from Theorem 3.18 in [6] that characterizes abelian

groups with ramification structures. However, note that the statement of that theorem
corresponding to abelian 2-groups is not true in general. According to Theorem 3.18 in [6],
if G is an abelian 2-group of exponent 2e with |G2e−1 | = 23 and G admits a ramification
structure of size (r1, r2), then r1, r2 cannot be both odd. However, the next example shows
that this is not necessarily the case. We fix this mistake in Theorem 2.8.

Example 2.4. Let G = ⟨a⟩ × ⟨x⟩ × ⟨y⟩ × ⟨z⟩ ∼= C2 × C4 × C4 × C4. Now exp G = 4 and
|G2| = 23. If we take

T1 = (x, y, z, x−1, y−1, z−1a, a),
and

T2 = (xya, xz, yz, xyz, xyza),
then clearly (T1, T2) is a ramification structure for G of size (7, 5).

We next see that the existence of ramification structures for a group of exponent p can
be deduced from Theorem 2.5.

Theorem 2.5. Let G be a p-group of exponent p. Then G admits a ramification structure
of size (r1, r2) if and only if G/Φ(G) admits a ramification structure of size (r1, r2).

Proof. Note that if p = 2 then G is an elementary abelian 2-group, and hence G coincides
with G/Φ(G). Thus we assume that p ≥ 3. We first show that if G/Φ(G) admits a
ramification structure (U1, U2) of size (r1, r2), then so does G.

Consider a lift of (U1, U2) to G, say (T1, T2), such that T1 and T2 are spherical systems
of generators of G. Since exp G = p, all elements in T1 and T2 are of order p. We claim
that (T1, T2) is a ramification structure of size (r1, r2) for G. Suppose, on the contrary,
that there are a ∈ T1 and b ∈ T2 such that ⟨a⟩g = ⟨b⟩ for some g ∈ G. Since G/Φ(G) is
abelian, we get ⟨a⟩ = ⟨b⟩, which is a contradiction.

Let us now prove the converse. Assume that G admits a ramification structure of size
(r1, r2). Note that G/Φ(G) has rank at least 2. Then by Theorem 2.3, any elementary
abelian p-group of rank ≥ 2 for p ≥ 5 admits a ramification structure of size (r1, r2) if
r1, r2 ≥ 3.

Finally we assume that p = 3. According to Theorem 2.3, we only need to prove that
G does not admit a ramification structure with r1 = 3. By way of contradiction, suppose
that r1 = 3. It then follows that G is a 2-generator group with exp G = 3. Then [9, 14.2.3]
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implies that G is of order 33. Observe that each element in T1 falls into a distinct maximal
subgroup of G. Since G has 4 maximal subgroups and not all elements in T2 fall into the
same maximal subgroup, it then follows that there are elements in T1 and T2, say a ∈ T1
and b ∈ T2, which are in the same maximal subgroup. Then we have

b = aic,

for some c ∈ Φ(G) = G′ and for i ∈ {1, 2}. Since |G| = 33 and ai is a generator of G, we
can write c = [ai, g] for some g ∈ G. It then follows that b = (ai)g, a contradiction. �

We now introduce a property which is essential to our result, and then we describe some
families of finite p-groups satisfying this property.

Let G be a finite p-group, and let i ≥ 1 be an integer. Following Xu [11], we say that
G is semi-pi-abelian if the following condition holds for every x, y ∈ G:

xpi = ypi if and only if (xy−1)pi = 1. (2.1)

If G is semi-pi-abelian, then we have [11, Lemma 1]:
(SA1) Ωi(G) = {x ∈ G | xpi = 1}.
(SA2) |G : Ωi(G)| = |{xpi | x ∈ G}|.

If G is semi-pi-abelian for every i ≥ 1, then G is called strongly semi-p-abelian.
By [10, Theorem 3.14], regular p-groups are strongly semi-p-abelian. On the other hand,

by Lemma 3 in [3], a powerful p-group of exponent pe is semi-pe−1-abelian. Furthermore, by
Theorem 2.2 in [4], generalized p-central p-groups, i.e. groups in which Ω1(G) ≤ Zp−2(G)
for odd p, or Ω2(G) ≤ Z(G) for p = 2, are strongly semi-p-abelian.

Before we proceed to prove Theorem A, we need the following lemma.

Lemma 2.6. Let G be a p-group of exponent pe and let d = d(G). Suppose that G is
semi-pe−1-abelian. Then the following hold:

(1) If (T1, T2) is a ramification structure for G, then
(
T 1 r {1}, T 2 r {1}

)
is a ramifi-

cation structure for G/Ωe−1(G).
(2) If (U1, U2) is a ramification structure of size (r1, r2) for G/Ωe−1(G) and r1, r2 ≥

d + 1, then there is a lift of (U1, U2) to G which is a ramification structure of size
(r1, r2) for G.

Proof. We first prove (i) by way of contradiction. Note that G/Ωe−1(G) is of exponent
p. Suppose that there are a ∈ T 1 r {1} and b ∈ T 2 r {1} such that ⟨a⟩ = ⟨b⟩g for
some g ∈ G/Ωe−1(G), i.e. b

g = ai for some i not divisible by p. Then we have bga−i ∈
Ωe−1(G), and consequently (bga−i)pe−1 = 1, by (SA1). Since G is semi-pe−1-abelian, we
get (bg)pe−1 = aipe−1 . This is a contradiction, since both a and b are of order pe and
⟨a⟩ ∩ ⟨b⟩g = 1.

We next prove (ii). By part (ii) of Proposition 2.1, we can take a lift of (U1, U2) to
G, say (T1, T2), such that T1 and T2 are spherical systems of generators of G. Observe
that all elements in T1 and T2 are of order pe. We next show that T1 and T2 are disjoint.
Suppose, on the contrary, that there are a ∈ T1 and b ∈ T2 such that

⟨ape−1⟩g = ⟨bpe−1⟩,

for some g ∈ G, i.e (ag)pe−1 = bipe−1 for some integer i not divisible by p. Since G is
semi-pe−1-abelian, then agb−i ∈ Ωe−1(G), and consequently, ⟨a⟩g = ⟨b⟩ in G/Ωe−1(G),
which is a contradiction since (U1, U2) is a ramification structure for G/Ωe−1(G). �

We are now ready to prove Theorem A. We deal separately with the cases p ≥ 3 and
p = 2.
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Theorem 2.7. Let G be a p-group of exponent pe with p ≥ 3, and let d = d(G). Suppose
that G is semi-pe−1-abelian. Then G admits a ramification structure if and only if |{gpe−1 |
g ∈ G}| ≥ p2. In that case, G admits a ramification structure of size (r1, r2) if and only
if r1, r2 ≥ d + 1, and also r1, r2 ≥ 4 provided that p = 3.

Proof. We first assume that G admits a ramification structure (T1, T2). By (SA2), the
cardinality of the set X = {gpe−1 | g ∈ G} is a power of p. Suppose that |X| = p. It
then follows that the subgroup Gpe−1 is cyclic of order p. Note that by (SA1), we have
exp Ωe−1(G) = pe−1. Then there are elements a ∈ T1 and b ∈ T2 such that o(a) = o(b) =
pe. Thus,

Gpe−1 = ⟨ape−1⟩ = ⟨bpe−1⟩,
which is a contradiction.

We next prove that if p = 3 and G admits a ramification structure of size (r1, r2), then
r1, r2 ≥ 4. Suppose, by way of contradiction, that r1 = 3. Then since |X| ≥ 32, we have
|G/Ωe−1(G)| ≥ 32, by (SA2). Part (i) of Lemma 2.6 implies that G/Ωe−1(G) admits a
ramification structure of size (r, s) where r ≤ r1 ≤ 3. However, according to Theorems 2.3
and 2.5 this is not possible.

Now assume that |X| ≥ p2. Let us use the bar notation G for the factor group
G/Ωe−1(G). Then |G| ≥ p2 and d(G) ≥ 2. It follows from Theorems 2.3 and 2.5 that G
admits a ramification structure of size (r, s) for all r, s ≥ d(G) + 1, and r, s ≥ 4 provided
that p = 3. If we take r1, r2 ≥ d + 1 ≥ d(G) + 1, and r1, r2 ≥ 4 provided that p = 3, then
part (ii) of Lemma 2.6 implies that G admits a ramification structure of size (r1, r2). This
completes the proof. �

We next deal with the prime 2.

Theorem 2.8. Let G be a 2-group of exponent 2e, and let d = d(G). Suppose that G

is semi-2e−1-abelian. Then G admits a ramification structure if and only if |{g2e−1 | g ∈
G}| ≥ 23. In that case, G admits a ramification structure of size (r1, r2) if and only if the
following conditions hold:

(1) r1, r2 ≥ d + 1.
(2) r1, r2 ≥ 5.
(3) If |{g2e−1 | g ∈ G}| = 23, then (r1, r2) ̸= (5, 5), and furthermore if e = 1, i.e.

G ∼= C2 × C2 × C2, then r1, r2 are not both odd.

Proof. We first assume that G admits a ramification structure. Suppose that X = {g2e−1 |
g ∈ G} is of cardinality at most 22, so that |G : Ωe−1(G)| ≤ 22. Then according to Theorem
2.3, G/Ωe−1(G) does not admit a ramification structure. Thus, G has no ramification
structure, as follows from Lemma 2.6(i). This is a contradiction. So we have |X| ≥ 23.

If the ramification structure for G is of size (r1, r2), then we have r1, r2 ≥ d + 1. By
Theorem 2.3, ramification structures of G/Ωe−1(G) have size (r, s) where r, s ≥ 5, and
furthermore r, s are not both odd if |G/Ωe−1(G)| = 23. Hence, by part (i) of Lemma 2.6,
we have r1, r2 ≥ 5 and furthermore, if |G/Ωe−1(G)| = 23 then (r1, r2) ̸= (5, 5). Finally if
G ∼= C2 × C2 × C2 then r1, r2 are not both odd, by Theorem 2.3.

We now work under the assumption |X| ≥ 23. Suppose that r1, r2 ≥ d+1, r1, r2 ≥ 5 and
furthermore that r1, r2 are not both odd if |X| = 23. Then by Theorem 2.3, G/Ωe−1(G)
admits a ramification structure of size (r1, r2). Lemma 2.6(ii) implies that G admits a
ramification structure of size (r1, r2).

It remains to prove that if r1, r2 ≥ 5, (r1, r2) ̸= (5, 5) and both r1, r2 are odd, then G
admits a ramification structure of size (r1, r2) under the assumptions |X| = 23 and e ≥ 2.
We may assume that r2 ≥ 7. Then G/Ωe−1(G) admits a ramification structure of size
(r1, r2 − 1).
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Since G/G2 is elementary abelian of rank d and G/Ωe−1(G) is of rank 3, we have
Ωe−1(G)/G2 is of rank d − 3. We take a generating set {n1, . . . , nd−3} of Ωe−1(G) modulo
G2. Call n = n1 . . . nd−3 and let o(n) = 2k < 2e. If 1 ̸= n2k−1 = x2e−1 for some
x ∈ G, then since x /∈ Ωe−1(G) we take a generating set of G/Ωe−1(G) containing x, say
G/Ωe−1(G) = ⟨x⟩ × ⟨y⟩ × ⟨z⟩. Otherwise, if n2k−1 ̸= g2e−1 for any g ∈ G, then we take any
generating set of G/Ωe−1(G).

Now consider the following ramification structure of G/Ωe−1(G):
U1 =

(
xy, yz, xz, xyz, xyz, xy, . . . , xy

)
and

U2 =
(
x, y, z, x, y, z, x, . . . , x

)
,

where |U1| = r1 and |U2| = r2 − 1. Since r1 ≥ d + 1, by part (ii) of Proposition 2.1, we
take a lift T1 of U1 so that T1 is a spherical system of generators of G. Then consider the
following lift of U2 to G:

T2 =
(
x, y, z, xn1, yn2, zn3, xn4, . . . , xnd−3, x, . . . , x

)
,

where |T2| = r2 − 1. Clearly, T2 generates G. Observe that the product of all components
of T2 is n modulo G2, i.e. the product is equal to wn for some w ∈ G2. Now consider the
following tuple:

T ∗
2 =

(
w−1x, y, z, xn1, yn2, zn3, xn4, . . . , xnd−3, x, . . . , x, n−1)

,

where |T2| = r2. Since w ∈ G2 = Φ(G), it follows that T ∗
2 generates G and furthermore,

it is spherical. Our claim is that (T1, T ∗
2 ) is a ramification structure of size (r1, r2) for G.

Notice that all elements in T1 ∪ T ∗
2 are of order 2e except n−1. Then by using the same

argument in the proof of part (ii) of Lemma 2.6, we conclude that ⟨a⟩g ∩ ⟨b⟩ = 1 for any
g ∈ G, a ∈ T1 and b ∈ T ∗

2 r {n−1}. On the other hand, if n2k−1 = x2e−1 then since
⟨x2e−1⟩ ̸= ⟨a2e−1⟩g for any g ∈ G and a ∈ T1, we have ⟨n⟩ ∩ Σ(T1) = 1. Otherwise, if
n2k−1 ̸= g2e−1 for any g ∈ G, then clearly ⟨n⟩ ∩ Σ(T1) = 1. This completes the proof. �

We close this section by showing that the assumption of being semi-pe−1-abelian is
essential in Theorem A. As we next see, for a general finite p-group G, the cardinality of
the set {gpe−1 | g ∈ G} does not control the existence of ramification structures for G. To
this purpose, we will work with 2-generator p-groups constructed in [4]. For more details,
we suggest readers to see pages 11-13 of [4].

Lemma 2.9. Let G be a Beauville group. Then G admits a ramification structure of size
(r1, r2) for any r1, r2 ≥ 3.

Proof. Assume that G is a Beauville group, that is it admits a ramification structure
(U1, U2) of size (3, 3). Let U1 =

(
x1, y1, (x1y1)−1)

, U2 =
(
x2, y2, (x2y2)−1)

. Consider the
following tuples:

T1 =
(
x1, y1, y−1

1 , x−1
1

)
or T1 = U1,

and
T2 =

(
x2, y2, y−1

2 , x−1
2

)
or T2 = U2.

By adding x1, x−1
1 to T1 and x2, x−1

2 to T2 repeatedly, we obtain a pair of spherical systems
of generators (T ∗

1 , T ∗
2 ) for G of size (r1, r2) for any r1, r2 ≥ 3. Then since (U1, U2) is a

ramification structure for G, so does (T ∗
1 , T ∗

2 ). �
The following result shows that the ‘only if’ part of Theorem A fails for a general finite

p-group.

Proposition 2.10. Let p ≥ 5 be a prime. Then there exists a p-group G such that:
(1) |{gpe−1 | g ∈ G}| = p, where pe = exp G.
(2) G admits a ramification structure of size (r1, r2) for any r1, r2 ≥ 3.
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Proof. In the proof of Corollary 2.12 in [4], it was shown that there exists a Beauville p-
group G with exp G = pe such that |Gpe−1 | = p. It then follows that |{gpe−1 | g ∈ G}| = p
and hence (i) holds. Since G is a Beauville group, (ii) readily follows from Lemma 2.9. �

Finally, the following result shows that for every power of p, there is a p-group G such
that the cardinality of the set {gpe−1 | g ∈ G} is exactly that power and G does not admit
a ramification structure.

Proposition 2.11. For every prime p ≥ 5, and positive integer m, there exists a p-group
G such that:

(1) |{gpe−1 | g ∈ G}| = pm, where pe = exp G.
(2) G does not admit a ramification structure.

Proof. Consider the group G in the second part of the proof of Corollary 2.12 in [4].
Then G is a 2-generator p-group G with exp G = pe such that |Gpe−1 | = pm for some
m. One can also observe from the proof that the subgroup Gpe−1 coincides with the set
{gpe−1 | g ∈ G}. Furthermore, it was shown that for every pair of generating sets (x1, y1)
and (x2, y2), there are elements, say x1 and x2, such that ⟨xi

1⟩ = ⟨xj
2⟩ ̸= 1 for some integers

i, j. Thus, G does not admit a ramification structure. Furthermore, Corollary 2.13 in [4]
implies that m can be any positive integer. �

3. Finite nilpotent groups
In this section, we prove Theorem B. We give the possible sizes of ramification structures

for nilpotent groups whose Sylow p-subgroups are semi-pe−1-abelian if the exponent is pe.
To this purpose, we need the following result regarding a direct product of groups of
coprime order.

Proposition 3.1. Let G and G∗ be groups of coprime order. Then the following hold:
(1) If G and G∗ admit ramification structures of size (r1, r2) and (r∗

1, r∗
2), respectively,

then G × G∗ admits a ramification structure of size (r, s) where r = max{r1, r∗
1}

and s = max{r2, r∗
2}.

(2) If G × G∗ admits a ramification structure of size (r, s), then G and G∗ admit
ramification structures of size (r1, r2) and (r∗

1, r∗
2), respectively, for some r1, r∗

1 ≤ r
and r2, r∗

2 ≤ s. Furthermore, if G is of odd order, we also have r1 = r and r2 = s.

Proof. We first prove (i). Assume that (T1, T2) and (T ∗
1 , T ∗

2 ) are ramification structures
of size (r1, r2) and (r∗

1, r∗
2) for G and G∗, respectively. Let r = max{r1, r∗

1} and s =
max{r2, r∗

2}. Then by adding as many times the identity as needed to T1, T2, T ∗
1 and T ∗

2 ,
we obtain U1, U2, U∗

1 and U∗
2 where |U1| = |U∗

1 | = r and |U2| = |U∗
2 | = s. Let

U1 = (x1, . . . , xr) and U2 = (y1, . . . , ys),

U∗
1 = (x∗

1, . . . , x∗
r) and U∗

2 = (y∗
1, . . . , y∗

s).
Then let

A1 =
(
(x1, x∗

1), . . . , (xr, x∗
r)

)
and

A2 =
(
(y1, y∗

1), . . . , (ys, y∗
s)

)
.

Observe that since G and G∗ have coprime order, both A1 and A2 generate G × G∗.
We will see that (A1, A2) is a ramification structure for G × G∗. Otherwise, there exist
(a, a∗) ∈ A1 and (b, b∗) ∈ A2 such that

⟨(a, a∗)⟩(g,g∗) ∩ ⟨(b, b∗)⟩ ̸= {(1, 1)},

for some (g, g∗) ∈ G × G∗. It then follows that either ⟨a⟩g ∩ ⟨b⟩ ̸= 1 or ⟨a∗⟩g∗ ∩ ⟨b∗⟩ ̸= 1,
which is a contradiction.
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Let us now prove (ii). Assume that
A1 =

(
(x1, x∗

1), . . . , (xr, x∗
r)

)
and A2 =

(
(y1, y∗

1), . . . , (ys, y∗
s)

)
form a ramification structure of size (r, s) for G×G∗. Assume that after deleting the iden-
tity element in (x1, . . . , xr) and (y1, . . . , ys) we get T1 = (z1, . . . , zr1) and T2 = (t1, . . . , tr2)
for some r1 ≤ r and r2 ≤ s. We claim that (T1, T2) is a ramification structure of size
(r1, r2) for G. The same arguments apply to G∗. For every (a, a∗) ∈ A1 and (b, b∗) ∈ A2
we have

⟨(a, a∗)⟩(g,g∗) ∩ ⟨(b, b∗)⟩ = {(1, 1)}, (3.1)
for all (g, g∗) ∈ G×G∗. Let |G| = l and |G∗| = m, where gcd(l, m) = 1. Then by equation
(3.1), we get

⟨((am)g, 1)⟩ ∩ ⟨(bm, 1)⟩ = {(1, 1)},

and hence ⟨am⟩g ∩ ⟨bm⟩ = 1. Since gcd(l, m) = 1, it then follows that ⟨a⟩g ∩ ⟨b⟩ = 1.
Finally we assume that G is of odd order. If r − r1 is even, then we take T1 =

(z1, . . . , zr1 , z1, z−1
1 , . . . , z1, z−1

1 ). Now suppose that r − r1 is odd. Since G is of odd order,
we have o(z1) ̸= 2. Then in this case we take

T1 = (z2
1 , z−1

1 , z2, . . . , zr1 , z1, z−1
1 , . . . , z1, z−1

1 ).
In both cases, T1 is a spherical system of generators of G of size r. By using the same ar-
guments, we can make |T2| = s. Then by the previous paragraph, (T1, T2) is a ramification
structure of size (r, s) for G, as desired. This completes the proof. �

The following proposition is easily deduced from Proposition 3.1.

Proposition 3.2. Let G be a nilpotent group. Then
(1) G admits a ramification structure if and only if all Sylow p-subgroups of G admit

a ramification structure.
(2) If G is of odd order, then G admits a ramification structure of size (r1, r2) if and

only if all Sylow p-subgroups of G admit a ramification structure of size (r1, r2).

In order to characterize abelian groups with ramification structures, Garion and
Penegini [6] reduced the study to their Sylow p-subgroups. However, as far as the sizes
of ramification structures are concerned, this reducing argument is not correct in general.
More precisely, if G is an abelian group of even order, then the size of a ramification
structure of G need not be inherited by the Sylow 2-subgroup of G, as we see in the next
example. We fix this mistake in Theorem 3.4.

Example 3.3. Let G = ⟨a⟩ × ⟨b⟩ × ⟨c⟩ ∼= C6 × C6 × C2. If we take

T1 = (a, b, c, b−1, (ac)−1),
and

T2 = (ab, ab, (ab)−2, abc, (abc)−1, a2bc, (a2bc)−1),
then (T1, T2) is a ramification structure of size (5, 7) for G . However, the Sylow 2-subgroup
of G, which is C2 × C2 × C2, does not admit a ramification structure of size (5, 7).

We close the paper by proving Theorem B.

Theorem 3.4. Let G be a nilpotent group, and let d = d(G). Let Gp denote the Sylow
p-subgroup of G for every prime p dividing |G|. Suppose that exp Gp = pep and all Gp are
semi-pep−1-abelian. Then G admits a ramification structure of size (r1, r2) if and only if
the following conditions hold:

(1) r1, r2 ≥ d + 1.
(2) (r1, r2) ∈ S(Gp) for p odd.
(3) (r1, r2) ∈ S(G2) unless G2 ∼= C2 × C2 × C2.
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(4) If G2 ∼= C2 × C2 × C2 then r1, r2 ≥ 5 and (r1, r2) ̸= (5, 5). Furthermore, if
G ∼= C2 × C2 × C2 then r1, r2 are not both odd.

Proof. We first assume that (r1, r2) ∈ S(G). We know that (i) holds, and by Proposition
3.1(ii), we have (ii). We next assume that G2 ̸= 1. Then again by Proposition 3.1(ii), G2
admits a ramification structure of size (r, s) for some r ≤ r1 and s ≤ r2. Then by Theorem
2.8, r, s ≥ 5, and furthermore (r, s) ̸= (5, 5) if |{ge2−1 | g ∈ G2}| = 23. This implies that
r1, r2 ≥ 5, and furthermore (r1, r2) ̸= (5, 5) if |{ge2−1 | g ∈ G2}| = 23. Then the first part
of (iv) follows, and (iii) follows from Theorem 2.8. Finally if G ∼= C2 × C2 × C2 then r1, r2
are not both odd, by Theorem 2.3.

Conversely, assume that conditions (i)-(iv) hold. Then all Gp admit a ramification
structure of size (r1, r2) unless G2 ∼= C2 × C2 × C2. Thus, if G2 ̸∼= C2 × C2 × C2, by
Proposition 3.1(i), we conclude that G admits a ramification structure of size (r1, r2).

Finally we assume that conditions (i)-(iv) hold and G2 = ⟨x⟩×⟨y⟩×⟨z⟩ ∼= C2 ×C2 ×C2.
If G = G2 then we already know the result, by Theorem 2.8. Thus, we assume that
G ̸= G2. Let R be the direct product of the Sylow p-subgroups of G for all odd primes p
dividing |G|. Then Proposition 3.2(ii), together with condition (ii), implies that R admits
a ramification structure of size (r1, r2).

If r1, r2 are not both odd, then G2 also admits a ramification structure of size (r1, r2).
Otherwise, if both r1, r2 are odd, then we may assume that r2 ≥ 7, and thus G2 admits a
ramification structure of size (r1, r2 −1), by Theorem 2.3. Then in both cases, Proposition
3.1(i) implies that G = R × G2 admits a ramification structure of size (r1, r2). This
completes the proof. �
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