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In this paper, longitudinal vibration responses of a nanorod subjected to harmonic 
external load are investigated with porosity based on Nonlocal Elasticity theory. The 
governing equation of the problem is solved by analytically. Frequency equations and 
the forced vibration displacements are obtained exactly. In the numerical examples, 
effects of the nonlocal, dynamic, geometry and porosity parameters on forced 
vibration responses of the nanorod are investigated. 

  

BOŞLUK YAPILI NANO BİR ÇUBUK ELEMANIN BOYUNA ZORLANMIŞ 
TİTREŞİM ANALİZİ 

 
Anahtar Kelimeler Öz 
Nano Çubuklar, 
Yerel Olmayan  
Elastisite Teorisi, 
Boşluk Oranı, 
Zorlanmış Titreşim. 
 

Bu çalışmada, boşluk yapılı nano çubuk bir elemanın harmonik bir dış kuvvet etkisi 
altında zorlanmış boyuna titreşim cevapları, yerel olmayan elastisite teorisi ile 
incelenmiştir. Probleme ait hareket denklemi analitik olarak çözülmüş olup, frekans 
denklemleri ile zorlamış titreşim yer değiştirmeleri kesin bir analitik değerde elde 
edilmiştir. Sayısal çalışmada, yerel olmayan parametre, dinamik, geometrik ve boşluk 
oranı parametrelerinin, nano çubuğun zorlanmış titreşim cevaplarına olan etkileri 
incelenmiştir.     
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1. Introduction 
 
With the advancement of technology, the use of nano 
structures is increasing in the engineering projects. 
Nano structures have been used many application, 
such as electro-mechanical devices, actuators, atomic 
misroscopes. In the mechanical modelling and 
solution of the nano structures are still difficult 
problems at the present time. In the mechanical 
solution of the nanostructures, molecular dynamic 
simulation is used. However, this solution takes much 
time and its computational cost is considerably high. 
So, the nonlocal continuum theories are preferred in 
the nanostructures. The nonlocal continuum theories 
consist of size effect in contrast with classical 
continuum theory.  
 

                                                             
* İlgili yazar / Corresponding author: seref.akbas@btu.edu.tr, +90-224-300-3498 

The main nonlocal elasticity theories are the couple 
stress theory, strain gradient theory, Eringen's 
nonlocal elasticity theory. 
 
In the production phase or lifetime of the nano 
structures, voids and porosities can be occurred 
naturally or technical problems. The porosity yields to 
losing strength and the mechanical responses of the 
nano structure change considerably.   
 
In the last decade, vibration, stability and static 
behavior of the nano structure have been investigated 
within nonlocal continuum theories in the literature at 
large (Eringen (1972,1983), Toupin (1962), Lam et al. 
(2003), Mindlin (1963a,b)), Yang et al. (2002) Park 
and Gao (2006), Hasanyan et al. (2008), Loya et al. 
(2009), Civalek et al. (2009), Civalek and Kiracioglu 
(2010), Reddy (2010,2011), Hasheminejad et al. 



AKBAŞ 10.21923/jesd.553328 
 

737 
 

(2011), Avcar (2010,2017,2018), Liu et al. (2013), 
Ansari et al. (2011), Civalek and Demir (2011), Wang 
et al. (2012), Asghari et al. (2010), Liu and Reddy 
(2011), Salamat-Talab et al. (2012), Akgöz and Civalek 
(2013,2014a,2014b), Roostai  et al. (2014), Peng et al. 
(2015), Akbaş (2014a,2014b,2014c,2015,  Karličić et 
al. (2015), Kocatürk and Akbaş (2013),Sedighi et al. 
(2014), Al-Basyouni et al. (2015), Şimşek (2016), 
Chaht et al. (2015), Zerin (2012), Yaylı (2014,2018), 
Mercan and Civalek (2017), Akgöz and Civalek (2017), 
Demir and Civalek (2017), Yaylı et al. (2015), 
Belkorissat et al. (2015),  Akbaş (2016a, 2016b, 2017a, 
2017b, 2018c, 2017d, 2017e, 2018a, 
2018b,2018c,2018d,2018e),Ke et al. (2012), Demir 
and Civalek (2016), Arda and Aydogdu (2017), Arda 
(2018), Eren and Aydogdu (2018)). 
 
In the literature, the studies about porous 
nanostructures are as follows; Shafiei and Kazemi 
(2017) analyzed buckling of functionally graded 
porous tapered nanobeams based on Eringen's 
nonlocal elasticity theory. Ebrahimi et al. (2017) 
investigated vibration analysis of porous piezoelectric 
nanobeams under thermal effects based on strain 
gradient theory. Sahmani et al. (2018) analyzed 
nonlinear behavior of functionally graded nano/micro 
beam with reinforced by graphane with porosity 
effect. Li et al. (2018) presented nonlinear vibration 
analysis of porous nanobeams by using the von 
Kármán type nonlinearity and the strain gradient 
theory. Ebrahimi and Barati (2018a,2018b) examined 
dynamic and stability of porous nano beams with 
couple stress theory. Radić (2018) investigated 
buckling results of functionally graded nanoplates 
embedded on foundation with porosity. Karami et al. 
(2018) examined wave propagation analysis of 
functionally graded porous nanoplates. Sahmani and 
Aghdam (2018) studied nonlinear resonance of 
nanoporous nanobeams based on strain gradient 
theory. Barati and Zenkour (2018) investigated post-
buckling analysis porous nano-composite beam 
reinforced by Graphane. Ahmed et al. (2019) studied 
post-buckling of functionally graded porous 
nanobeams. 
 
In this study, longitudinal forced vibration of a 
cantilever nanorod is investigated with porosity effect. 
The nanorod is subjected to a harmonic load at the free 
end. In the governing equation of the problem, the 
nonlocal Elasticity theory is used. The solution of 
problem is obtained by analytically. The explicit 
frequency and displacements are obtained in domain 
time by analytically. In this paper, the effects of the 
nonlocal parameter, dynamic, geometric and porosity 
ratio values on the forced vibration responses of the 
nanorod are presented and discussed. 
 
2. Theory and Equations  
 
A clamped-free porous circular nanorod subjected to 
dynamically point load (P(t)) at the free end is shown 

in figure 1. In figure 1, L and D indicate the length and 
diameter of the nanarod, respectively.  
 

 
Figure 1. A clamped-free porous circular nanorod 

subjected to dynamically point load. 
 
According to the nonlocal elasticity theory, 
constitutive equation of the problem is given as 
follows (Eringen (1972,1983));  
 

                                 𝜎𝑥𝑥 − 𝜇
𝑑2𝜎𝑥𝑥

𝑑𝑥2 = 𝐸(𝑝)𝜖𝑥𝑥                   (1) 

 
where, σxx is nonlocal normal stress, ϵxx is normal 
strain, E is the Young's modulus, p is volume fraction 
of porosities and μ = (e0a)2. where μ indicates the 
nonlocal parameter, e0 indicates the material length 
scale parameter. By using the equilibrium of forces in 
the axially direction, the equation of motion can be 
expressed as follows; 
 

  𝐸(𝑝)
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
− 𝜌(𝑝)

𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2
+ 𝜌(𝑝)𝜇

𝜕2

𝜕𝑥2
(

𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2
) = 0     (2) 

 
where, ρ is the mass density and u is the axial 
displacement function. The effective material 
property of the nanorod is considered as the even 
porosity distribution as follows: 

 
          E(p) = E(1 − p),       ρ(p) = ρ(1 − p)               (3) 
 
When p=0, the nanorod becomes perfect. In solution of 
free vibration problem, the separation of variable is 
implemented in equation (2): 
 
                        uh(x, t) = Uh(x)eiωt                                   (4) 
 
where Uh(x) is spatially function. ω is the natural 
frequency, t indicates the time and i indicates 
imaginary number. 
 
The boundary conditions of the clamped-free of the 
nanorod for the free vibration problem are given as 
follows; 
 

                     u(0, t) = 0,       
𝑑u(𝐿,t)

𝑑𝑥
= 0                             (5) 

 
Substituting equation (4) into equation (2) gives 
following equations of motion: 
 

                      (
𝑑2Uh(x)

𝑑𝑥2 + 𝛽2Uh(x)) eiωt = 0                      (6) 

 
where 
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                             𝛽2 =
ρ(p)ω2

E(p)−ρ(p) 𝜇 ω2                                  (7) 

 
By implementing the boundary conditions in the 
equation (6) for clamped-free nanorod, the following 
frequency equation is obtained:   
 
                              𝑐𝑜𝑠𝛽𝐿 = 0                                             (8a) 
 
                       𝛽𝑘𝐿 = (𝑘 − 0.5)𝜋,      k=1,2,3…              (8b) 
 
Substituting equation (7) into equation (8b) gives 
following equations of frequency: 
 

            ω𝑘 = √
E(p)

ρ(p)

(𝑘−0.5)𝜋

√𝐿2+ 𝜇 (𝑘−0.5)2 𝜋2
,       k=1,2,3…        (9) 

 
The external dynamically load (P(t)) is considered a 
harmonic function; 
                                                           
                            P(t) = P0sin (Ωt)                                 (10) 
 
where P0 and Ω are the amplitude and frequency of 
load, respectively. The boundary conditions of the 
forced vibration problem are given as follows; 
 

             u(0, t) = 0,    
𝑑u(𝐿,t)

𝑑𝑥
=

P(t)

𝐸(𝑝)𝐴
                               (11) 

 
where A is the area of the cross section. To solve the 
forced vibration problem, The solution (up) of 

equation (2) for the forced vibration problem is solved 
by using the separation of variable ; 
 
                    up(x, t) = Up(x)sin (Ωt)                             (12) 

 
Substituting Eq. (12) into equation (2) gives following 
equations of motion: 
 

    (
𝑑2Up(x)

𝑑𝑥2
(𝐸(𝑝) − 𝜇𝜌(𝑝) Ω2) + 𝜌(𝑝) Ω2Up(x)) sin (Ωt) = 0   (13) 

 
After the simplifying expression (13), the following 
equation is obtained as follows:   
 

                      (
𝑑2Up(x)

𝑑𝑥2 + 𝛾2Up(x)) = 0                            (14) 

 
where 

                             𝛾2 =
𝜌(𝑝)Ω2

𝐸(𝑝)−𝜌(𝑝) 𝜇 Ω2                                (15) 

 

By implementing the boundary conditions in the 
equation (14) for clamped-free nanorod, the Up(x) is 

obtained as follows: 
 

                               Up(x) = (
𝑃0 sin (γ𝑥)

𝐸(𝑝) A γ cos(γ𝐿)
)                  (16) 

 
The dynamic displacement function is given as 
follows:   
 

                     Up(x, t) = (
𝑃0 sin (γ𝑥)

𝐸(𝑝) A γ cos(γ𝐿)
) sin (Ω𝑡)         (17) 

 
The dimensionless quantities are expressed as 
follows: 
 

            η =
𝑒0𝑎

L
,   Ω̅ = √

𝜌(𝑝) 𝐿2

𝐸(𝑝)
Ω ,   𝜆 =

𝐿

𝐷
,   𝑈̅ =

𝑈𝑝

𝐿
     (18)   

 
where 𝜂 and Ω̅ indicate the dimensionless nonlocal 
parameter and the dimensionless the frequency of the 
dynamic load, respectively. 𝜆 is the aspect ratio and 𝑈̅ 
is dimensionless the longitudinal displacement. 
 
3. Numerical Results 
 
In this section, the effects of the dimensionless 
nonlocal parameter, dimensionless the frequency of 
the dynamic load and the volume fraction of porosity 
on the dynamic displacements of the porous nanorod 
are examined. In the numerical study, the material of 
the nanorod is considered as epoxy (E=1,44 GPa,  𝜌 =
1600 𝑘𝑔/𝑚3). The diameter of the nanorod is taken as 
D=1nm. The length of the nanorod is selected 
according to the aspect ratio (𝜆). 

 
In figures 2,3 and 4, relationship between the 
dimensionless displacements and dimensionless 
nonlocal parameter (𝜂) for different the volume 
fractions of porosity (p) is presented for different 
aspect ratios λ = 10, λ = 30 and λ = 100, respectively. 
The displacements (𝑈̅𝑚) are calculated at the free end 
of the nanorod. In these figures, the the amplitude of 
the dynamic load is taken as P0 = 1 nN and the 
dimensionless the frequency of the dynamic load is 
taken as Ω̅=10. 

 
It is seen from figures 2,3 and 4 that increasing the 
dimensionless nonlocal parameter yields to increase 
the difference among of the volume fractions of 
porosity on the dynamic displacements increase 
significantly. In the higher values of the dimensionless 
nonlocal parameter, there is quite large difference 
among the results of the porosity parameters. Another 
result of the figures 2,3 and 4 is that the aspect ratio 
has very influence on the porous nanorods. With 
increasing aspect ratio, the effects of nonlocal 
parameter on dynamic displacements change 
dramatically.  
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Figure 2. The relationship between dimensionless 
displacements and dimensionless nonlocal parameter 
for different the volume fractions of porosity for 𝜆 =

10. 
 

 
Figure 3. The relationship between dimensionless 

displacements and dimensionless nonlocal parameter 
for different the volume fractions of porosity for 

 𝜆 = 30. 
 

 
Figure 4. The relationship between dimensionless 

displacements and dimensionless nonlocal parameter for 
different the volume fractions of porosity for 𝜆 = 100. 

 
Figures 5, 6 and 7 show the relationship between the 
dimensionless displacements (U̅m) and the 
dimensionless the frequency of the dynamic load (Ω̅) 
is plotted for different the dimensionless nonlocal 
parameter (η) for the volume fractions of porosity 
p=0, p=0.3 and p=0.5, respectively. In figures 5, 6 and 
7, the the amplitude of the dynamic load is taken as 
P0 = 1 nN and the aspect ratio is taken as λ = 10. 

As seen from figures 5, 6 and 7 that the dynamic 
responses the porous nanorod change with increasing 
the nonlocal parameter. Also, the resonance frequency 
change considerably with increasing the nonlocal 
parameter. The resonance case can be seen in the 
vertical asymptote lines in figures 5-7. Increasing of 
the dimensionless nonlocal parameter yields to 
decrease the resonance frequency. 
 

 
Figure 5. The relationship between dimensionless 
displacements and dimensionless frequency of the 

load for different the dimensionless nonlocal values 
for p=0. 

 

 
Figure 6. The relationship between dimensionless 
displacements and dimensionless frequency of the 

load for different the dimensionless nonlocal values 
for p=0.3. 

 



AKBAŞ 10.21923/jesd.553328 
 

740 
 

 
Figure 7. The relationship between dimensionless 
displacements and dimensionless frequency of the 

load for different the dimensionless nonlocal values 
for p=0.5. 

 
4. Conclusions 
 
Longitudinal forced vibration results of the porous a 
nanorod are investigated by using the nonlocal 
elasticity theory. In the forced vibration analysis, a 
harmonic external load is considered at the free end of 
the cantilever rod. In the considered vibration 
problem dynamic responses are obtained by 
analytically with using the separation of variable. In 
the numerical examples, the effects of the nonlocal, 
dynamic, geometry and porosity parameters on the 
forced vibration responses of the nanorod are 
presented and discussed. With using the analytical 
method in this problem, the exact solution and the 
dynamic responses of the all domain are obtained.  
It is concluded from the results that the nonlocal 
parameters play important role on the porosity 
effects. The dynamic responses of the nanorods 
change with increasing the volume fractions of 
porosity significantly.  
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