Araştırma Makalesi

24. GÜNEŞ ÇEVRİMİ KAPSAMINDA TÜRKİYE CİVARINDA YERMANYETİK ALANIN GÜNLÜK DEĞIŞİMLERİNİN İNCELENMESİ

Research Article

Cengiz ÇELİK^{*1}, Cenk KARATAŞ², M. Nuri DOLMAZ²

¹ Boğaziçi Üniversitesi, Kandilli Rasathanesi Deprem Araştırma Enstitüsü, İstanbul, Türkiye ² Süleyman Demirel Üniversitesi, Mühendislik Fakültesi, Jeofizik Mühendisliği Bölümü, Isparta, Türkiye

Anahtar Kelimeler	Öz
Yermanyetik Alan,	Bu çalışmada, 24. Güneş çevrimi kapsamında Türkiye ve civarında yer alan IZN ve
Manyetik Gözlemevi,	SUA manyetik gözlemevlerinden elde edilen yermanyetik alanı X, Y ve Z
Güneş Çevrimi.	bileşenlerine harmonik analiz uygulanmıştır. Güneş ve Ay'ın etkilerine bağlı olarak
	değişen solar ve lunar harmoniklerin genlik ve faz açıları elde edilmiştir. Solar
	harmoniklerden periyodu 24 saat olan birinci harmonik ve lunar harmoniklerden
	ise tamamen Ay'ın çekim etkisinden kaynaklanan ikinci harmonik genlik değişimleri
	24. Güneş çevrimi kapsamında incelenmiştir. Beklendiği gibi, solar harmonikler
	Güneş çevriminden daha çok etkilerken, lunar harmonikler ise daha az etkilenmiştir.
	Hiç şüphesiz sadece iki gözlemevi Türkiye ve civarında yermanyetik alan
	değişimlerini incelemek için yeterli değildir. Yoğun Avrupa manyetik gözlemevi
	ağından sonra Türkiye'nin hem doğusuna hem de güneyine doğru büyük bir boşluk
	vardır. Bu boşluğu doldurmak için bu bölgelere yeni manyetik gözlemevlerinin
	kurulmasına ihtiyaç vardır. Böylece yermanyetik alanını hem ulusal hem de
	uluslararası ölçekte daha iyi tanınmasına büyük katkı sağlanmış olacaktır.

INVESTIGATION OF THE GEOMAGNETIC DAILY VARIATIONS DURING $24^{\mbox{\tiny TH}}$ SOLAR CYCLE AROUND TURKEY

Keywords	Abstract
Geomagnetic Field, Magnetic Observatory, Solar Cycle.	In this study harmonic analysis is applied to the geomagnetic data of <i>X</i> , <i>Y</i> and <i>Z</i> elements of IZN and SUA observatories to investigate 24 th solar cycle dependence around Turkey. Dependence of solar and lunar amplitudes and phase angles obtained. Amplitude variations of the first solar harmonic that its period is 24 solar hours, and the second lunar harmonic that its origin is purely lunar, were examined during the 24 th solar cycle. As expected, amplitudes of the solar harmonics showed more dependence than that of lunar harmonics. Without doubt, it is not enough to search geomagnetic variations around Turkey using two observatories. After the dense European observatories, there is a big gap both in eastern and southern part of Turkey. To fill these gap new geomagnetic observatories needs to be installed around these regions. Thus, it provides important contribution to define the geomagnetic field in both national and global scale.
Alıntı / Cite	

Çelik, C., Karataş, Cenk., Dolmaz, M. N., (2019). 24. Güneş Çevrimi Kapsamında Türkiye ve Civarında Yermanyetik Alanın Günlük Değişiminin Araştırılmaşı, Mühendişlik Bilimleri ve Taşarım Dergişi, 7(4). 885-896.

Yazar Kimliği / Author ID (ORCID Number)	Makale Süreci / Article Process							
C. Çelik, 0000-0003-0619-0143	Başvuru Tarihi / Submission Date	14.05.2019						
C. Karataş, 0000-0001-9536-9270	Revizyon Tarihi / Revision Date	03.07.2019						
M. N. Dolmaz, 0000-0002-9185-9835	Kabul Tarihi / Accepted Date	03.07.2019						
	Yayım Tarihi / Published Date	19.12.2019						

1. Giriş

Bir noktada ölçülen yermanyetik alanı iç kaynaklı ve dış kaynaklı alanların toplamından oluşmaktadır. İç kaynaklı alan yerin çekirdeğinin bir dinamo gibi çalışmasından kaynaklanmaktadır ve bu alanda meydana gelen değişimler yermanyetik alanında uzun süreli düzensiz değişimler (seküler değişimler) olarak gözlemlenmektedir. Dış kaynaklı alanın kaynağı ise büyük ölçüde Güneş'tir. Güneş'in yermanyetik alanına

^{*} İlgili yazar / Corresponding author: celikc@boun.edu.tr, +90-224-757-6020

iki türlü etkisi vardır. Birincisi, Güneş'in ısı etkisi ile ivonosfer tabakasına iletkenlik kazandırması sonucunda olusan manyetik alan, ikincisi; bu alanın yerküreyi indüklemesiyle oluşan alandır. Bu alanların ortak etkisi birbirini takip eden günlük manyetogramlarda periyodik değişimler olarak göze çarpmaktadır ve alanın periyodik günlük değişimleri olarak nitelendirilmektedir. Yermanyetik alan günlük değisimleri enleme. bovlama. günün farklı zamanlarına ve yılın farklı mevsimlere göre değisiklik göstermektedir. Avrıca Günes kavnaklı perivodik değişimlere ek olarak, Ay'ın çekim etkisi de yermanyetik alan üzerinde çok az olmakla birlikte değisimler oluşturmaktadır (Chapman ve Bartels, 1940). Diğer taraftan Güneş yüzeyinde meydana gelen düzensiz aktiviteler (Güneş patlamaları, Güneş gözlenen manyetik gibi) lekeleri olup alan değerlerinde düzensiz değişimlere neden olmaktadır. Bu tür değişimlerin süresi bir saniyeden başlayıp günlerce sürebilmektedir (manyetik pulsasyonlar, manyetik fırtınalar, manyetik körfezler gibi).

Yermanyetik alanı dünyamızın en eski gözlemlenebilir özelliklerinden biridir ve birçok araştırmacı tarafından günümüze kadar incelenmiştir. 16. yy'da sapma açısında meydana gelen değişimlerin dikkat çekmesiyle başlayan gözlemler manyetik fırtınaların Alexander von Humboldt tarafından 1806 yılında kesfedilmesi ile birlikte büyük bir ivme kazanmıştır. Yermanyetik alanda özellikle Güneş'in ısı ve Ay'ın çekim etkisinden kaynaklanan periyodik günlük değişimler Chapman ve Bartels (1940) tarafından incelenmiştir. Bu çalışma aynı zamanda 1940 yılına kadar yapılan tüm çalışmaları da özetlemektedir. Malin ve Chapman (1970) Ayın ve Güneşin neden olduğu düzenli değişimlerin harmoniklerini çalışarak Chapman-Miller yöntemini revize etmişlerdir. Bu yöntem manyetik alan verisinin Ay'ın safhalarına göre 12 gruba ayrılarak analizine dayanmaktadır. Malin (1973) yapmıs olduğu diğer bir calısmada Günes leke sayısının en yüksek olduğu dönemde manyetik alanı küresel ölçekte modellemeye çalışmıştır. Hem Güneş'e bağlı hem de Ay'a bağlı değişimler için küresel harmonik katsayılarını hesaplayarak iyonosfer tabakasında gelişen akım sistemlerini göstermiştir. Winch (1981) benzer bir calısmayı Günes leke sayısının minimum olduğu bir dönem için yapmıştır. En küçük kareler yöntemiyle Güneşin ve Ayın neden olduğu değişimleri hesaplayan diğer bir yöntem ise yine Malin ve Schlapp (1980) tarafından ortaya konulmuştur. Bu yöntem daha sonra geliştirilerek manyetik rasathane verilerinin değerlendirilmesi için önerilmiştir (Malin vd., 1996). De Meyer (2003) modilasyon model adını verdiği bir yöntemle Güneş ve etkilerini Av'ın manyetik alana belirlemeye çalışmıştır, ancak bu yöntemin de temelinde en küçük kareler vöntemi vatmaktadır. Literatürde bahsedilen bu temel yöntemler kullanılarak değişik dönemlerde ve gözlemevlerinde yapılmış çok sayıda çalışmaya rastlamak mümkündür. Örneğin, ülkemizde Işıkara (1970, 1971) İstanbul için Ayın ve Güneşin manyetik

alana olan etkilerini çalışmıştır. Bilge ve Tulunay (1997), 1973-1977 yılları İstanbul Kandilli Manyetik Rasathanesi (ISK) verisine spektral analiz uygulamışlardır. Cueto vd. (2003) İber yarımadası için Günes ve Avın neden olduğu değisimleri hesaplamışlardır. Çelik vd. (2012) kuzeybatı Türkiye için Güneş ve Ayın etkilerini içeren bir çalışma yapmıştır. Çelik (2013, 2014, 2018) Güneş lekeleri ile vermanyetik alanın Günes'e ve Ay'a bağlı günlük değisimlerini inceleverek küresel ölcekli bir model ortava kovmustur.

Yermanvetik bilesenleri alanı manvetik gözlemevlerinde sürekli olarak kavdedilmektedir. Gözlemevlerinin yeryüzünde dağılımına bakıldığında dağılımın homojen olmadığı görülmektedir. Kuzey yarım kürede sayıca daha fazla olan gözlemevleri günev varımkürede ve okvanuslarla kaplı bölgelerde daha azdır. Kuzey yarımkürede Avrupa kıtasında daha yoğun olan gözlemevleri dağılımı doğuya doğru seyrekleşmektedir ve Türkiye'nin doğusuna doğru olan boşluk oldukça dikkat çekicidir. Bu bakımdan hem Türkiye'de hem de Türkiye civarında faaliyet gösteren gözlemevleri oldukça önem arz etmektedir. Türkiye'de yermanyetik alanın sistematik olarak gözlemlenmesine Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü bünyesinde ISK gözlemevi tarafından 1947 yılında başlanmıştır. ISK kurulduğu günden günümüze kadar calısmasına devam etmiştir ve hala devam etmektedir. ISK dışında farklı bir bölgede Harita Genel Komutanlığı bünyesinde kurulan Ankara Manyetik Rasathanesi'nde (ANK) 1986-1993 yıllarında yermanyetik alan gözlemleri yapılmıştır (Gürdal, 1997). ISK kayıtlarının zamanla yapay gürültülerden etkilenmesi nedeniyle 2005 yılında İznik Manyetik Rasathanesi (IZN) kurulmuştur. Gözlemevlerinde yermanyetik alan bileşenleri H (yatay bileşen), D (sapma açısı, manyetik kuzey ile coğrafi kuzey arasındaki açı), Z (düşey bileşen) ve F (toplam bilesen) kavıtları dakikalık olarak yapılmaktadır.

Bu çalışmada 24. Güneş çevrimi kapsamında Türkiye ve civarında yermanyetik alanın günlük değişimleri araştırılmıştır. Elde edilen sonuçların, yermanyetik alanın hem ulusal hem de uluslararası ölçekte daha iyi tanımlanmasına katkı sağlanacağı gibi Türkiye'nin doğusunda ve güneyinde ileride kurulabilecek manyetik gözlemevlerine ve manyetik çalışmalara da referans olacağı kanısını taşımaktayız.

2. Veri

Çalışmada Türkiye ve civarında 24. Güneş çevrimi kapsamında, yermanyetik alanın periyodik günlük değişiminin araştırılması amacıyla iki manyetik gözlemevi seçilmiştir (IZN, 40.5[°]K,29.7[°]D ve Surlari manyetik gözlemevi, Romanya, SUA, 44,7[°]K, 26.3[°]D). Gözlemevi seçiminde 24. Güneş çevrimi kapsamında veri uzunluğu ve Türkiye'ye olan yakınlığı dikkate alınmıştır. Şekil 1'de çalışmada kullanılan manyetik gözlemevlerinin yerleri gösterilmiştir. Yermanyetik alanın *X*, *Y* ve *Z* bileşenlerine ait manyetik veri INTERMAGNET ve Uluslararası veri merkezlerinden (WDC) dakikalık ortalamalar olarak temin edilmiştir. Dakikalık olarak temin edilen manyetik veri saatlik ortalamalara dönüştürülmüştür. Yermanyetik alanın günlük değişimine neden olan ve iyonosferin dinamo bölgesinde gelişen akım sistemleri, alanın firtınalı olduğu günlerde, manyetosfer katmanlarında gelişen diğer akım sistemlerinin şiddetlenmesi nedeniyle oldukça bozulmaktadır. Bu nedenle, her ayın firtınalı olarak işaretlenen beş günü çalışmaya dahil edilmemiştir.

Şekil 1. IZN ve SUA manyetik gözlemevleri. RAS1, RAS2, RAS3, RAS4 ve RAS5 muhtemel gözlemevi konumları.

3. Yöntem

Yermanyetik alanın Güneş'e bağlı düzenli değişimi Fourier açılımının ilk dört terimi olarak aşağıdaki gibi yazılabilir (Malin, 1973, Malin ve Schlapp 1980, Malin v.d. 1996)

$$S = \sum_{n=1}^{4} s_n \sin(nt + \sigma_n) \tag{1}$$

 s_n : Genlik ve σ_n faz açısı ve t yerel ortalama güneş zamanıdır. Uluslararası zaman t^* kullanıldığında ($t=t^* + v$) (1) denklemi aşağıdaki gibi yazılabilir. vdoğu boylamını göstermektedir.

$$S = \sum_{n=1}^{4} \{a_n \cos(nt^*) + b_n \sin(nt^*)\}$$
(2)

Burada a_n ve b_n Fourier katsayıları,

$$a_n = s_n \sin(\sigma_n + nv)$$
 $b_n = s_n \cos(\sigma_n + nv)$

şeklinde ifade edilebilir.

Benzer şekilde, yermanyetik alanın Aya bağlı günlük değişimleri de yermanyetik alanın herhangi bir bileşeni için aşağıdaki gibi verilebilir (Malin, 1973);

$$L = \sum_{n=1}^{4} l_n \sin(nt - 2\mathbf{V} + \lambda_n + n\mathbf{v})$$
(3)

(3) denklemi uluslararası zaman için düzenlendiğinde,

$$L = \sum_{n=1}^{4} \{a_n \cos(nt^* - 2V) + b_n \sin(nt^* - 2V)\}$$
(4)

denklemi elde edilir.

Burada;

V: Ay safhasını ifade etmektedir ve $V = t - \tau$ olarak verilmektedir. τ ay zamanıdır.

$$a_n = l_n \sin(\lambda_n + nv)$$
 $b_n = l_n \cos(\lambda_n + nv)$

 l_n : Genlik ve λ_n faz açısıdır.

Yer manyetik alanın hem Güneş'e bağlı (solar) hem de Ay'a bağlı (lunar) harmoniklerin genlik değerleri olan s_n ve l_n ile faz açıları σ_n ve λ_n , her bir gözlemevi ve bileşen için en küçük kareler yöntemiyle hesaplanmaktadır.

4. Tartışma ve Sonuç

Çalışmada, 24. Güneş çevrimi kapsamında Türkiye ve civarında seçilen iki gözlemevi (IZN ve ISK) verisi analiz edilerek Güneş'e ve Ay'a bağlı günlük değişim harmoniklerin genlik ve faz açıları hesaplanmıştır. Tablo 1 ve Tablo 2 de her bir gözlemevi ve bileşen için elde edilen genlik ve faz açıları verilmiştir.

Leaton vd. (1962) genlik değerlerinin standart hata miktarlarının 1.73 katından daha büyük olması durumunda %5 düzeyinde istatistiksel olarak anlamlı olacağını belirtmiştir. Tablo 1 ve Tablo 2'de %5 anlamlılık düzeyinden düşük olan genlik değerleri parantez içerisine alınarak belirtilmiştir. Görüldüğü gibi solar harmonik genlik değerleri her bir bileşen ve gözlemevi için istatistiksel olarak anlamlı düzevdedir. Ancak lunar harmonik genlik değerlerine bakıldığında ise her iki gözlemevinde de her bilesen için 3. ve 4. harmonik değerlerinin istatistiksel olarak anlamlı olmadığı görülmektedir. Lunar değişimlerin genlik değerleri solar değişimlerin genlik değerlerinden yaklaşık olarak 10 katı kadar daha küçüktür. Bu nedenledir ki böylesi küçük değişimlerin daha anlamlı olarak belirlenmesi için daha uzun veri setine ihtiyaç duyulmaktadır.

Beklendiği gibi, ilk solar harmonik terim olan s₁ diğer harmonik değerlerinden daha büyüktür. Bunun

nedeni, Güneş'in termal etkisinin 24 saatlik periyodik değişim göstermesi ve s1 harmonik değerinin de perivodunun 24 saat olmasıdır. Ancak her iki gözlemevinde X bileşeni için elde edilen s_1 genlik değeri diğer harmonik değerlerinden küçük bulunmuştur. Çelik vd. (2012) ve Cueto vd. (2003) yapmış oldukları çalışmada benzer sonuçlar elde etmişlerdir. Yermanyetik alanın sakin solar günlük değisimi ivonosfer katmanında gelisen akım sistemleri ve bu akımların veri indüklemesi ile olusan versel akım sistemlerinden kaynaklanmaktadır. Torta vd. (1997) yılında Avrupa için iyonosferik akım modeli gelistirmislerdir. Gelistirilen bu model de X bileseni icin daha kücük değisimler üretmektedir. IZN ve SUA gözlemevlerinde kaydedilen küçük X değişimleri de bu model ile acıklanabilir.

Lunar harmoniklerin genlik değerlerine bakıldığında l_2 harmonik genlik değeri diğer harmonik genlik değerlerinden daha büyüktür. Bilindiği gibi Ay'ın çekim etkisi hem iyonosfer hem de okyanuslarda elektrik akımlarına neden olmaktadır. (3) denklemini $V = t - \tau$ için düzenlediğimizde n=2 harmoniği sadece Ay zamanına bağlı olacaktır. Yani l_2 harmonik değeri tamamen lunar kaynaklıdır. Bu nedenledir ki l_2 harmonik genlik değeri diğer harmoniklerin genliklerinden daha büyüktür. Ancak Tablo 1b ve Tablo 2b de bazı bileşenler ve yıllarda l_2 harmonik genlik değerinin düşük olduğu dikkat çekmektedir. Bunun nedeni veri uzunluğunun kısıtlı ve kısa olmasıdır.

Bir dinamonun elektrik akımı üretebilmesi için; iletkene, manyetik alana ve iletkeni hareket ettirecek bir mekanizmaya ya da kuvvete ihtiyaç vardır. İyonosfer dinamo modelinde iyonosfer katmanı Güneş etkisiyle iletkenlik kazanarak dinamo için gerekli olan iletken ortamı sağlamaktadır. Manyetik alan ise yerin çekirdeğinden kaynaklanan alandır. Dinamonun çalışabilmesi için Güneşin ısı ve Ay'ın çekim etkisi gerekli hareket mekanizmasını mevdana getirmektedir. Güneş yüzeyinde çevresine göre daha soğuk olduğu icin koyu gözüken ve yüksek manyetik alana sahip bölgeler oluşmaktadır. Bu bölgelere Güneş lekesi (sunspot) denilmektedir. Güneş leke sayısı yaklaşık 11 yıllık periyodlarda artma ve azalma seklinde bir döngü oluşturmaktadır ve bu döngüsel harekete Güneş çevrimi denilmektedir. Güneş manyetik alanı ile yakın ilişki içinde bulunan vermanyetik alanı da bu değişimden etkilenmektedir. Şekil 2'de s₁ solar harmonik genlik değerinin 24. Güneş çevrimi kapsamında IZN ve SUA gözlemevleri için değişimi görülmektedir. Görüldüğü gibi Y ve Z bilesenleri her iki gözlemevi icin Günes cevrimi ile gavet uvum icerisindedir. X bileseni ise Günes çevriminden daha az etkilenmiştir. Ay'a bağlı ve tamamen lunar kaynaklı olan *l*² harmonik genlik değişimi 24. Güneş çevriminden düşük oranda etkilenmiştir. Çelik (2013 ve 2014) de küresel ölçekli olarak yapmış olduğu çalışmada da benzer sonuçları bulmuştur. Tablo 3'te hem s_1 hem de l_2

harmoniklerinin Güneş çevrimi ile ilişkisini ortaya koymak amacıyla hesaplanan korelasyon katsayıları verilmiştir.

Sonuç olarak, bu çalışmada 24. Güneş çevrimi kapsamında, IZN ve SUA manyetik gözlemevlerinden elde edilen saatlik ortalamalar halindeki vermanyetik alanın X, Y ve Z bileşenlerine harmonik analiz uygulanmıştır. Güneş ve Ay'ın etkilerine bağlı olarak değişen solar ve lunar harmoniklerin genlik ve faz acıları elde edilmistir. Türkiye ve civarında 24. Günes cevrimi Günes'e bağlı harmonikler üzerinde daha etkilidir. Ay'a bağlı harmonikler ise cevrimden daha az etkilenmiştir. Yoğun Avrupa manyetik gözlemevleri topluluğunun en doğusunda bulunan IZN ve SUA gözlemevleri Türkiye ve civarında yermanyetik alan günlük değişiminin incelenmesi için yeterli değildir. Türkiye'nin daha doğusuna va da güneyine kurulacak gözlemevleri vermanvetik alanın Türkive enlemlerinde daha iyi tanımlanmasına hiç şüphesiz katkı sağlayacaktır. Şekil 1 de Türkiye için muhtemel gözlemevi konumları gösterilmiştir.

Şekil-2. a) IZN ve b) SUA manyetik gözlemevlerinde 24. Güneş çevrimi kapsamında Güneş'e bağlı temel harmonik bileşenin genlik değişimi. Düşey barlar standart hata paylarını göstermektedir. En üstteki grafik 24. Güneş çevrimi kapsamında 2005-2016 yılları arasında yıllık ortalama Güneş leke sayısı (SSN) değişimini göstermektedir.

Şekil-3. a) IZN ve b) SUA manyetik gözlemevlerinde 24. Güneş çevrimi kapsamında Ay'a bağlı 2. harmonik bileşenin genlik değişimi. Düşey barlar standart hata paylarını göstermektedir. En üstteki grafik 24. Güneş çevrimi kapsamında 2005-2016 yılları arasında yıllık ortalama Güneş leke sayısı (SSN) değişimini göstermektedir.

		<i>S</i> ₁	$ ho_1$	$\sigma_{_1}$	<i>s</i> ₂	$ ho_2$	$\sigma_{_2}$	<i>s</i> ₃	$ ho_3$	$\sigma_{_3}$	S_4	$ ho_4$	$\sigma_{_4}$
Yıl	Bilş.	(0.01nT)	(0.01nT)	(°)	(0.01nT)	(0.01nT)	(º)	(0.01nT)	(0.01nT)	(°)	(0.01nT)	(0.01nT)	(º)
	Х	305	55	79	278	44	333	322	61	161	124	45	16
2005	Y	714	36	43	711	29	201	515	32	51	236	26	241
	Z	296	18	90	274	17	254	188	18	96	105	24	291
	Х	126	28	176	284	26	16	309	27	178	123	18	15
2006	Y	890	16	28	757	16	203	475	18	47	159	18	235
	Z	453	10	79	327	9	254	176	8	95	75	7	289
	Х	99	21	174	281	21	32	272	15	204	105	16	40
2007	Y	901	18	38	784	16	224	471	15	72	167	16	267
	Z	419	7	91	309	9	272	170	8	121	66	10	320

Tablo 1a. IZN gözlemevi X, Y ve Z bileşenleri için dört temel solar harmonik değerleri.

Ζ

Yıl	Bilş.	S_1	$ ho_1$	$\sigma_{\scriptscriptstyle 1}$	<i>s</i> ₂	$ ho_2$	$\sigma_{_2}$	<i>s</i> ₃	$ ho_3$	$\sigma_{\scriptscriptstyle 3}$	s_4	$ ho_4$	$\sigma_{\scriptscriptstyle 4}$
		(0.01nT)	(0.01nT)	(º)	(0.01nT)	(0.01nT)	(°)	(0.01nT)	(0.01nT)	(°)	(0.01nT)	(0.01nT)	(°)
	v	118	19	128	222	32	26	248	25	196	116	21	48
8003	Y	831	13	36	757	14	219	455	17	71	158	12	269
	Z	398	10	92	304	9	274	173	6	122	66	7	321
	x	246	21	202	386	14	28	334	23	204	118	21	39
2009	Y	810	15	35	736	13	228	485	18	77	178	21	265
	Z	424	9	83	307	9	269	172	9	120	76	11	316
	x	201	25	191	376	25	36	349	24	208	146	23	48
2010	Y	946	22	35	852	22	224	536	19	73	192	20	271
	Z	446	9	85	344	9	271	196	12	121	81	13	325
	x	166	28	167	356	38	23	365	32	195	134	34	44
2011	Y	1144	20	32	1036	26	219	618	26	67	213	22	267
	7.	549	10	86	420	10	271	223	15	119	88	12	321
	X	173	38	155	355	39	22	343	40	193	121	34	49
2012	Y	1099	23	32	955	24	219	555	22	64	183	18	268
	Z	548	10	85	420	14	268	210	13	113	79	12	315
	Х	218	37	192	343	30	25	343	25	194	132	26	42
2013	Y	1096	23	27	923	19	217	547	22	63	174	21	262
	Z	541	10	81	398	9	265	198	7	109	78	11	308
	X	128	35	201	377	26	25	353	32	202	151	34	39
2014	Y	1251	21	28	1056	22	216	633	17	65	197	22	263
	Z	632	16	82	453	9	265	237	12	110	77	13	309
	Х	(11)	51	341	316	39	32	367	47	200	131	54	42
2015	Y	1244	31	27	1091	27	210	646	39	55	193	37	251
	Z	648	14	84	478	16	264	236	16	107	69	12	310
	Х	185	42	54	291	30	30	274	26	204	76	34	37
2016	Y	1066	19	38	849	19	212	446	23	67	125	22	270
		467	16	97	336	9	264	165	14	115	53	11	324

Tablo 1a. (Devamı)

	1		1			1							1
Yıl	Bilş.	l_1	$ ho_1$	λ_1	l_2	$ ho_2$	λ_2	l_3	$ ho_3$	λ_3	l_4	$ ho_4$	$\lambda_{_4}$
		(0.01nT)	(0.01nT)	(°)	(0.01nT)	(0.01nT)	(°)	(0.01nT)	(0.01nT)	(°)	(0.01nT)	(0.01nT)	(°)
	v	(974)	572	50	727	384	79	(275)	499	231	(209)	548	335
005		(593)	362	157	786	289	323	(399)	307	147	(91)	310	238
5	7	(237)	207	225	(238)	204	284	(112)	169	176	(5)	209	119
	v	188	243	146	(445)	334	42	(375)	227	247	(109)	261	124
006		365	227	145	(432)	270	296	429	206	71	(160)	189	238
5	7	328	86	117	456	104	301	312	126	117	(132)	122	270
	v	824	242	139	582	236	27	518	228	245	(296)	214	68
007		291	183	184	424	221	238	359	183	115	(100)	122	345
5	7	178	92	67	318	82	309	213	88	150	(89)	87	17
	v	520	246	251	684	204	76	399	187	267	(203)	208	25
008	v	567	163	183	548	212	320	(298)	186	160	(23)	145	159
5	7	224	94	214	269	99	11	(136)	92	197	(67)	98	273
	v	691	196	206	523	212	37	767	220	249	(315)	265	75
600	v v	533	165	107	780	189	293	573	156	105	(134)	192	303
5	7	396	121	137	648	115	325	427	78	145	(162)	116	337
	x	(85)	177	245	(363)	372	106	(288)	231	252	(202)	291	121
010		(340)	217	140	681	210	298	448	196	104	(238)	145	307
5	7	370	110	196	412	118	348	275	97	161	(152)	100	346
	x	602	322	202	798	362	47	(440)	349	243	(168)	263	97
011	v	997	259	129	1019	268	308	790	254	141	(99)	173	288
5	7	382	134	155	559	151	338	373	154	179	(85)	130	349
	x	1533	379	239	(677)	416	81	(494)	306	267	(119)	286	51
012	Y	437	210	134	776	254	344	571	280	168	(62)	187	25
14	7.	333	123	104	368	121	352	(152)	113	205	(67)	101	70
	x	(328)	279	240	783	234	43	(539)	335	225	(121)	320	67
2013	Y	(443)	264	124	599	151	294	551	213	140	(239)	160	310
	Z	483	110	133	468	93	324	307	125	153	(171)	105	317

Tablo 1b. IZN gözlemevi X, Y ve Z bileşenleri için dört temel lunar harmonik değerleri.

		l_1	$ ho_1$	λ_1	l_2	$ ho_2$	λ_2	l_3	$ ho_3$	λ_3	l_4	$ ho_4$	λ_4
Yıl	Bilş.	(0.01nT)	(0.01nT)	(°)	(0.01nT)	(0.01nT)	(°)	(0.01nT)	(0.01nT)	(°)	(0.01nT)	(0.01nT)	(°)
	Х	869	332	200	673	329	4	(503)	330	230	(288)	322	38
2014	Y	590	196	114	586	224	293	627	205	136	(128)	239	303
	Z	(221)	142	91	402	143	320	337	120	154	(143)	106	336
	Х	1592	493	152	(235)	363	336	(684)	449	233	(214)	386	355
2015	Y	(667)	432	265	580	326	303	709	398	104	(75)	332	342
	Z	(235)	159	343	389	151	343	325	153	172	(155)	134	353
	Х	1072	412	239	(622)	440	43	632	251	279	(65)	288	54
2016	Y	567	199	103	(224)	233	322	638	169	144	(55)	182	326
	Z	332	111	107	371	159	340	323	131	170	(85)	154	12

Tablo 1b. (Devamı)

Tablo 2a. SUA gözlemevi X, Y ve Z bileşenleri için dört temel solar harmonik değerleri.

		S_1	$ ho_1$	$\sigma_{_1}$	<i>s</i> ₂	$ ho_2$	$\sigma_{_2}$	<i>s</i> ₃	$ ho_3$	$\sigma_{_3}$	<i>s</i> ₄	$ ho_4$	$\sigma_{_4}$
Yıl	Bilş.	(0.01nT)	(0.01nT)	(°)	(0.01nT)	(0.01nT)	(°)	(0.01nT)	(0.01nT)	(º)	(0.01nT)	(0.01nT)	(°)
	Х	178	46	91	196	39	33	226	45	198	133	32	67
2005	Y	1108	30	43	920	25	212	488	21	55	124	22	242
	Z	539	16	97	433	15	266	211	19	102	68	16	275
	Х	422	55	119	252	25	352	309	41	187	111	32	49
2006	Y	993	28	40	813	25	215	465	29	70	120	33	259
	Z	372	21	93	337	16	271	168	13	116	67	12	304
	Х	92	24	1	73	28	6	171	28	174	93	19	14
2007	Y	727	22	52	679	25	211	437	21	62	201	21	254
	Z	320	18	104	262	17	272	167	16	116	84	20	307
	Х	248	25	109	157	21	11	230	22	192	112	18	51
2008	Y	853	16	40	754	19	217	406	18	67	140	14	257
	Z	358	11	98	310	13	274	170	13	117	64	10	307
	Х	247	23	155	304	17	14	323	20	201	115	17	39
2009	Y	879	16	36	740	16	227	427	18	74	139	19	257
	Z	368	8	86	305	7	271	162	8	112	66	7	298

Yıl	Bilş.	<i>s</i> ₁	$ ho_1$	$\sigma_{_1}$	<i>s</i> ₂	$ ho_2$	$\sigma_{_2}$	<i>s</i> ₃	$ ho_3$	$\sigma_{_3}$	s_4	$ ho_4$	$\sigma_{_4}$
		(0.01nT)	(0.01nT)	(°)	(0.01nT)	(0.01nT)	(°)	(0.01nT)	(0.01nT)	(°)	(0.01nT)	(0.01nT)	(°)
	x	245	23	142	258	22	17	312	17	199	125	18	44
010	v	985	20	37	811	20	222	451	16	67	154	14	265
2	7	390	12	89	337	9	270	181	9	111	73	10	307
	v	352	23	123	285	24	360	344	21	190	122	26	45
011	v	1236	21	34	1040	16	218	550	21	63	174	24	261
2	7	507	11	89	423	10	271	218	11	111	83	9	309
		376	26	128	341	33	358	356	32	193	118	26	43
012	X	1256	14	34	1007	18	220	529	19	63	135	16	260
2	ľ	511	12	88	433	12	267	212	12	107	71	9	298
		286	25	135	264	19	358	321	24	188	109	31	34
)13	X	1165	21	30	926	15	216	499	20	59	147	21	251
2(Y	513	9	84	404	7	265	205	8	102	78	11	295
	Z	283	25	111	304	32	355	321	32	193	130	28	37
)14	X	1332	21	30	1072	20	214	568	18	62	153	21	252
20	Y	583	19	85	453	13	263	236	11	104	75	12	295
	Z	470	32	91	262	35	351	348	25	187	128	31	43
15	X	1257	20	33	1067	21	212	550	25	57	155	24	250
20	Y	550	12	93	466	15	266	232	12	106	79	14	300
	Z	399	35	64	183	33	12	252	28	199	88	27	28
9	X	1055	24	44	860	24	210	403	22	63	108	20	257
201	Y	1033	10	107	262	16	210	101	11	107	100	10	200
	Z	433	12	107	362	16	264	181	11	107	58	10	308

Tablo 2a. (Devamı)

		l_1	$ ho_1$	λ_1	l_2	$ ho_2$	λ_2	l_3	$ ho_3$	λ_3	l_4	$ ho_4$	λ_4
Yıl	Bilş.												
	v	856	308	166	1429	449	19	740	425	232	(460)	329	38
005	N V	689	265	64	1210	284	272	703	214	97	(269)	286	352
5	7	336	149	110	517	183	308	(279)	209	145	(23)	168	182
	x	(340)	333	150	554	387	28	513	453	249	(40)	445	204
2006	Y	(448)	309	183	(298)	397	260	(319)	367	99	(234)	229	217
	Z	(120)	178	117	(250)	173	314	(199)	151	152	(149)	186	12
	x	642	333	87	(135)	259	239	(179)	410	312	(268)	270	96
2007	Y	582	203	187	474	240	148	(160)	159	86	(145)	206	207
	Z	(118)	132	283	(146)	167	314	(90)	196	154	(32)	163	353
	Х	745	159	227	781	184	70	437	230	268	(128)	274	5
2008	Y	361	148	143	614	212	299	(254)	244	155	(72)	155	138
	Z	217	102	188	275	60	349	149	82	171	(76)	96	272
	X	603	117	211	599	172	33	642	168	227	(227)	167	65
2009	Y	407	195	133	585	183	291	488	126	104	(164)	191	312
	Z	239	119	138	434	104	320	322	79	138	(122)	100	330
	Х	443	150	257	435	217	92	(266)	154	240	(244)	117	132
2010	Y	(165)	239	229	462	254	279	374	171	92	(108)	131	291
	Z	(108)	103	98	277	112	324	176	82	155	(83)	81	334
	Х	738	246	162	892	302	18	757	245	215	(219)	258	50
2011	Y	485	139	125	568	192	269	614	175	123	(125)	224	262
	Z	(207)	120	233	318	84	344	264	98	170	(49)	102	353
	Х	1499	246	229	832	319	51	543	306	256	(95)	272	88
2012	Y	470	196	163	736	214	330	(408)	250	157	(94)	216	181
	Z	366	136	83	334	102	352	(154)	122	184	(17)	137	276
~	Х	378	196	212	839	297	31	621	212	223	(116)	270	47
2013	Y	413	178	126	456	158	295	492	168	141	(207)	169	309
	Z	364	124	130	314	135	327	(178)	104	154	(111)	94	310

Tablo 2b.SUA gözlemevi X, Y ve Z bileşenleri için dört temel lunar harmonik değerleri.

Yıl	Bilş.	l_1	$ ho_1$	λ_1	l_2	$ ho_2$	λ_2	l_3	$ ho_3$	λ_3	l_4	$ ho_4$	λ_4
		(0.01nT)	(0.01nT)	(°)	(0.01nT)	(0.01nT)	(°)	(0.01nT)	(0.01nT)	(°)	(0.01nT)	(0.01nT)	(°)
	Х	676	301	203	842	254	3	550	306	232	(211)	374	31
2014	Y	706	209	117	608	217	286	594	261	135	(65)	191	256
	Z	(154)	169	77	(229)	157	337	(223)	167	182	(33)	147	19
	X	1531	203	176	816	266	13	755	274	251	(219)	323	17
2015	Y	329	210	215	743	176	284	538	217	102	(20)	240	212
	Z	359	130	6	282	129	295	(249)	158	137	(71)	130	351
	Х	987	291	263	630	283	37	(467)	341	265	(97)	328	33
2016	Y	794	190	117	(115)	244	1	443	219	142	(164)	232	284
	Z	228	118	97	233	128	337	258	120	174	(58)	142	7

Tablo 2b. (Devamı)

Tablo 3. IZN ve SUA gözlemevleri için *s*¹ ve *l*² harmonik genlik değişimlerinin 24. Güneş çevrimi ile olan korelasyon katsayıları.

	IZ	ZN	SUA				
Bilesenler	(0.	01)	(0.01)				
Bileşenler	Solar	Lunar	Solar	Lunar			
	(<i>s</i> ₁)	(l_2)	(<i>s</i> ₁)	(l_2)			
X	-08	33	36	45			
Y	79	27	92	17			
Z	74	8	89	1			

Teşekkür

Çalışmada kullanılan veriyi sağladığı için INTERMAGNET ve World Digital Data Center (Edinburgh)'ne sonsuz teşekkürlerimizi sunarız. Ayrıca yayının gelişmesinde yapmış oldukları katkılardan dolayı hem konu editörüne hem de hakemlere teşekkür ederiz.

Conflict of Interest / Çıkar Çatışması

Yazarlar tarafından herhangi bir çıkar çatışması beyan edilmemiştir.

No conflict of interest was declared by the authors.

Kaynakça

- Bilge, A.H., Tulunay, Y.K., 1997. Spectral analysis of geomagnetic data from Kandilli Observatory, Istanbul, Ann. Geofis., XL(6), 1591–1598.
- Çelik, C., Tuncer, M.K., Tolak-Çiftci, E., Zobu, M., Oshiman, N., Tank, B., 2012. Solar and lunar geomagnetic variations in the northwest part of Turkey, Geophys. J. Int., 189, 391-399.
- Çelik, C., 2013. The solar Daily Geomagnetic variation and its dependence on sunspot number, J. Atmos. Solar-Terr. Phys., 104, 75-86.
- Çelik, C., 2014. The lunar daily geomagnetic variation and its dependence on sunspot number, J. Atmos. Solar-Terr. Phys., 119, 153-161.
- Çelik, C., 2018. Wolf ratios and the ionospheric L and S dynamo region, J. Atmos. Solar-Terr. Phys., 173, 23-27.
- Chapman, S., Bartels, J., 1940. Geomagnetism, Clarendon Press, Oxford, 2,159-270.
- Cueto, M., McKnight, D., Herraiz, M., 2003. Daily geomagnetic variations on the Iberian Peninsula, Geophys. J. Int., 152, 113-123.
- De Mayer, F., 2003. A modulation model for the solar and lunar daily geomagnetic variations, Earth Planets Space, 55, 405-418.
- Gürdal, M.A., 1997. Ankara Manyetik Rasathanesi, Harita Dergisi, Sayı 117, sayfa: 45-58, Harita Genel Komutanlığı, Ankara.

- Işıkara, A.M., 1970. The lunar tide in the E-layer above Istanbul, Pure and Applied Geophysics, V.81, Issue 1, pp 130-134.
- Işıkara, A.M., 1971. The solar and lunar influences on the Earth's magnetic field at Istanbul, Revue de la Faculté des Sciences de l'Universite d'Istanbul, Ser. C, 36, 117-127.
- Leaton, B.R., Malin, S.R.C., Finch, H.F., 1962. The solar and luni-solar daily variation of geomagnetic field at Greenwich and Abinger, R. Obs. Bull. Lond., 63, 1916–1957.
- Malin, S.R.C., Chapman, S., 1970. The determination of lunar daily geophysical variations by the Chapman-Miller Method, Geophys. J. R. astr. Soc., 19, 15-35.
- Malin, S.R.C., 1973. Worldwide distribution of geomagnetic tides, Phil. Trans. R. Soc. Lond., A 274, 551-594.
- Malin, S.R.C., Schlapp, D.M., 1980. Geomagnetic lunar analysis by least-squares, Geophys. J. R. astr. Soc., 60, 409-418.
- Malin, S.R.C., Tuncer, M.K., Yazıcı-Çakın, O., 1996. Systematic analysis of magnetic observatory data-I. A proposed method, Geophys. J. Int., 126, 635-644.
- Torta, J.M., Curto, J.J. & Bencze, P., 1997. Behavior of the quiet day ionospheric current system in the European region, *J. geophys. Res.*, **102**, 2483–2494.
- Winch, D.E., 1981. Spherical harmonic analysis of geomagnetic tides, 1964-1965, Phil. Trans. R. Soc. Lond., A 303, 1-104.