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Abstract. Let R be an associative ring with 1 6= 0 which is not a domain. Let

A(R)∗ = {I ⊆ R | I is a left or right ideal of R and l.ann(I)∪ r.ann(I) 6= 0} \
{0}. The total graph of annihilating one-sided ideals of R, denoted by Ω(R), is

a graph with the vertex set A(R)∗ and two distinct vertices I and J are adjacent

if l.ann(I+J)∪r.ann(I+J) 6= 0. In this paper, we study the relations between

the graph-theoretic properties of this graph and some algebraic properties of

rings. We characterize all rings whose graphs are disconnected. Also, we study

diameter, girth, independence number, domination number and planarity of

this graph.

Mathematics Subject Classification (2010): 16U99, 05C69

Keywords: Total graph, diameter, reversible ring, semicommutative ring,

skew polynomial ring

1. Introduction

In recent years, using graph theoretical tools in the study of algebraic structures

attracted many researchers, see, for instance, [1,2,11]. I. Beck in [2] introduced the

idea of a zero-divisor graph of a commutative ring, where he was mainly interested

in colorings. Authors in [1] introduced the zero-divisor graph of a commutative

ring R, denoted by Γ(R), as the graph with vertices Z(R)∗, the set of all nonzero

zero-divisors of R, and two distinct vertices x and y are adjacent if xy = 0. They

investigate the relations between the ring-theoretic properties of R and the graph-

theoretic properties of Γ(R). For a commutative ring R, authors in [11] introduced

and studied a graph, denoted by Ω(R), with the vertex-set A(R)∗, the set of all

nonzero annihilating ideals of R, and two distinct vertices I and J are adjacent if

I + J is an annihilating ideal. They study some connections between R and the

graph Ω(R).

Throughout this paper, R is an associative ring with nonzero identity which is

not a domain. The nonzero elements of X ⊆ R will be denoted by X∗. For a

nonempty subset X ⊆ R, let l.ann(X) = {a ∈ R | aX = 0} be the left annihilator
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of X, and r.ann(X) = {b ∈ R | Xb = 0} be the right annihilator of X. We write

Z`(R), Zr(R), Z(R), Min(R) and J(R) for the set of all left zero-divisors of R,

the set of all right zero-divisors of R, the set Z`(R) ∪Zr(R), the set of all minimal

prime ideals of R and the Jacobson radical of R, respectively. Moreover, we assume

that I(R)∗ = {I $ R | I is a left or right ideal of R} \ {0} and A(R)∗ = {I $
R | I is a left or right ideal of R and l.ann(I) ∪ r.ann(I) 6= 0} \ {0}. A ring R is

called semicommutative if ab = 0 implies aRb = 0 for a, b ∈ R. Also, a ring R

is said to be reversible if ab = 0 implies ba = 0 for a, b ∈ R. A ring R is called

abelian if every idempotent is central, that is, xe = ex for any e2 = e, x ∈ R. A

ring R is called local, if R has a unique maximal left ideal. An ideal P of R is called

completely prime if R/P is a domain. We denote the number of elements in a set

S by |S|.
Let G = (V,E) be a simple graph, where V = V (G) is the set of vertices

and E = E(G) is the set of edges. By |G|, diam(G), gr(G), γ(G), β(G) and

ω(G), we mean the number of vertices, the diameter, the girth, the domination

number, the independence number and the clique number of G, respectively. For

two distinct vertices u and v in G, the notation u − v means that u and v are

adjacent. The set of neighbors of a vertex v in G is denoted by N(v), that is,

N(v) := {u ∈ V \ {v} | {u, v} ∈ E}. For any undefined notation or terminology in

graph theory, we refer the reader to [12].

Let R be a ring and P1, P2, . . . , Pn a finite number of ideals of R, and S a subring

of R that is contained in the set theoretic union P1 ∪ · · · ∪ Pn. Then by a similar

way as used in [7, Theorem 81], one can prove that if at least n− 2 of the P ’s are

completely prime, then S is contained in some Pj .

In this paper, we extend the concept of the graph introduced in [11] to a non-

commutative ring with nonzero identity as follows:

Definition 1.1. Let R be an associative ring with nonzero identity which is not a

domain. The total graph of annihilating one-sided ideals of R, denoted by Ω(R),

is a simple graph with the vertex-set A(R)∗ and two distinct vertices I and J are

adjacent if and only if l.ann(I + J) ∪ r.ann(I + J) 6= 0.

We study the relations between the graph-theoretic properties of Ω(R) and some

algebraic properties of rings. We characterize all rings whose graphs are discon-

nected. Also, we study diameter, girth, independence number, domination number

and planarity of Ω(R). It is worth to mention that some of our results in this paper

appear at first time for the case of noncommutative rings, for example, see Theorem

2.1(2), Propositions 2.2, 2.11(3), 2.16, 2.19 and 3.4.
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2. The diameter and girth of Ω(R)

In this section we study the diameter and girth of Ω(R). Also, we characterize

all rings whose graphs are disconnected. One of our main results in this section is

the following theorem.

Theorem 2.1. Let R be a ring. Then

(1) diam(Ω(R)) ∈ {0, 1, 2, 3,∞}.
(2) Ω(R) is disconnected if and only if R is a prime ring or R is a reduced ring

with exactly two minimal prime ideals.

In order to prove the above theorem, we need the following propositions.

Proposition 2.2. Let R be a prime ring. Then Ω(R) is not connected.

Proof. Since R is not a domain, there exist a, b ∈ R∗ such that ab = 0. We show

that Ra 6= bR. To see this, let Ra = bR. Then RabR = RaRa = 0 which is a

contradiction. Thus Ra and bR are two distinct vertices of Ω(R). Suppose that

Ra − I1 − · · · − In − bR is a path between Ra and bR. Since Ra is adjacent to I1

and R is a prime ring, I1 is not a right ideal. By a similar method, one can see

that In is not a right ideal. Now since bR is adjacent to In, we have l.ann(In) 6= 0

or r.ann(bR) 6= 0 which is a contradiction (because R is a prime ring). Therefore,

Ω(R) is not connected. �

Recall that a ring R is said to be simple if {0} and R are the only ideals in R.

Now, by Proposition 2.2, we conclude that if R is a simple ring, then Ω(R) is not

connected.

Example 2.3. Let K be a division ring and Mn(K) be the ring of n× n matrices

over K. Then by [10, Theorem 3.3], Mn(K) is a simple ring. Thus Ω(Mn(K)) is

disconnected.

We will use the following proposition in the sequel.

Proposition 2.4. Let R be a nonprime and nonreduced ring. Let I and J be two

distinct vertices of Ω(R). If I and J are right ideals, then d(I, J) ∈ {1, 2, 3}.

Proof. Let I and J be two distinct vertices of Ω(R) and let I and J be right ideals.

If I is adjacent to J , then d(I, J) = 1. Thus we may suppose that I is not adjacent

to J . By our assumption, there exists x ∈ R∗ such that x2 = 0. Now we consider

the following three cases:
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Case 1: Suppose that I ∩Rx = 0 and J ∩Rx = 0. Then we have Rx ⊆ r.ann(I)

and Rx ⊆ r.ann(J). Thus I−Rx−J is a path of length two in Ω(R), since x2 = 0.

Hence d(I, J) = 2.

Case 2: Suppose that I ∩Rx = 0 and J ∩Rx 6= 0. Then we have Rx ⊆ r.ann(I)

and I ⊆ l.ann(Rx). Thus I is adjacent to Rx. Let ax, where a ∈ R, be a nonzero

element of J ∩ Rx. Thus either J = axR or J is adjacent to axR. Now since

I ⊆ l.ann(Rx), we have either Rx = axR or Rx is adjacent to axR. Then the

set {I,Rx, axR, J} forms a path of length at most three between I and J . Hence

d(I, J) ≤ 3.

Case 3: Suppose that I ∩ Rx 6= 0 and J ∩ Rx 6= 0. Then there exist elements

a, b ∈ R such that 0 6= ax ∈ I ∩ Rx and 0 6= bx ∈ J ∩ Rx. Thus either axR = I

or I is adjacent to axR. Also, either bxR = J or J is adjacent to bxR. Now we

consider the following three subcases:

Subcase 1: Assume that r.ann(I) 6= 0 and r.ann(J) 6= 0. If r.ann(axR)∩ xR =

0, then r.ann(axR) ⊆ r.ann(xR). Thus, one can see that the set {I, axR, bxR, J}
forms a path of length at most three between I and J . Hence d(I, J) ≤ 3. Other-

wise, we can suppose that r.ann(axR)∩xR 6= 0. Then there exists y ∈ R such that

0 6= xy ∈ r.ann(axR) ∩ xR. Thus, either axR = Rbx or axR is adjacent to Rbx.

So the set {I, axR,Rbx, J} forms a path of length at most three between I and J .

Hence d(I, J) ≤ 3.

Subcase 2: Assume that r.ann(I) 6= 0 and r.ann(J) = 0. Then I − JI − J is a

path of length two in Ω(R). Hence d(I, J) = 2.

Subcase 3: Assume that r.ann(I) = r.ann(J) = 0. Since R is a nonprime ring,

there exists a nonzero two-sided ideal K such that l.ann(K) 6= 0. Then it is easy

to see that I ∩K 6= 0 and J ∩K 6= 0. Thus, the set {I,K ∩ I,K ∩ J, J} forms a

path of length at most three between I and J . Hence d(I, J) ≤ 3. �

By a method similar to that we used in the proof of Proposition 2.4, we have

the following proposition.

Proposition 2.5. Let R be a nonprime and nonreduced ring. Let I and J be two

distinct vertices of Ω(R). If I and J are left ideals, then d(I, J) ∈ {1, 2, 3}.

Proposition 2.6. Let R be a ring which is not reduced. Then diam(Ω(R)) ∈
{0, 1, 2, 3,∞}.

Proof. If R is a prime ring, then by Proposition 2.2, Ω(R) is disconnected and

hence diam(Ω(R)) = ∞. Thus we may assume that R is not a prime ring. Also,

suppose that I and J are two distinct vertices of Ω(R). Now, if I and J are
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right ideals (or left ideals), then by Proposition 2.4 (Proposition 2.5), we have

d(I, J) ∈ {1, 2, 3} (d(I, J) ∈ {1, 2, 3}). Hence, we can suppose that I is a right ideal

and J is a left ideal. If I is adjacent to J , then d(I, J) = 1. Thus, we may suppose

that I is not adjacent to J . Since R is not reduced, there exists x ∈ R∗ such that

x2 = 0. Now we consider the following four cases:

Case 1: Suppose that I∩Rx = 0 and J∩xR = 0. Then we have Rx ⊆ r.ann(I),

I ⊆ l.ann(Rx), J ⊆ r.ann(xR) and xR ⊆ l.ann(J). Thus, the set {I,Rx, xR, J}
forms a path of length at most three between I and J . Hence d(I, J) ≤ 3.

Case 2: Suppose that I ∩Rx 6= 0 and J ∩xR = 0. Then we have xR ⊆ l.ann(J)

and J ⊆ r.ann(xR). Let ax, where a ∈ R, be a nonzero element of I ∩ Rx. Then

it is easy to see that the set {I, axR, xR, J} forms a path of length at most three

between I and J . Hence d(I, J) ≤ 3.

Case 3: Suppose that I ∩Rx = 0 and J ∩xR 6= 0. Then we have Rx ⊆ r.ann(I)

and I ⊆ l.ann(Rx). Let xb, where b ∈ R, be a nonzero element of J ∩xR. Then the

set {I,Rx,Rxb, J} forms a path of length at most three between I and J . Hence

d(I, J) ≤ 3.

Case 4: Suppose that I∩Rx 6= 0 and J∩Rx 6= 0. Now we consider the following

two subcases:

Subcase 1: Assume that r.ann(I) 6= 0 or l.ann(J) 6= 0. If I ∩ J 6= 0, then we

can choose a nonzero element t ∈ I ∩J and so I −Rt−J or I − tR−J is a path of

length two in Ω(R). Hence d(I, J) = 2. Otherwise, we may assume that I ∩ J = 0.

Thus IJ = 0. Since RI is a two-sided ideal of R, by Proposition 2.5, there exists a

path of length at most three between RI and J . Thus since N(RI) ⊆ N(I) ∪ {I},
we have d(I, J) ≤ 3.

Subcase 2: Assume that r.ann(I) = 0 and l.ann(J) = 0. Then since I and J

are vertices of Ω(R), we have l.ann(I) 6= 0 and r.ann(J) 6= 0. Now since R is not a

prime ring, there exists a two-sided ideal K such that K is a vertex of Ω(R). Then

it is easy to see that I ∩K 6= 0 and J ∩K 6= 0. Thus, the set {I, I ∩K,J ∩K,J}
forms a path of length at most three between I and J . Hence d(I, J) ≤ 3. This

completes the proof. �

Let R be a reversible ring and X a nonempty subset of R. Then l.ann(X) =

r.ann(X) and we use ann(X) to denote the annihilator of X. In the following

lemma, we study the case that R is a reversible ring. Note that by [8, Lemma 1.4],

reversible rings are semicommutative.

Lemma 2.7. Let R be a reversible ring. If I is a vertex of Ω(R), then N(I)∪{I} =

N(RIR) ∪ {RIR}.
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Proof. Let I be a vertex of Ω(R). Since R is a reversible ring, ann(I) = ann(RIR).

Now we conclude that N(I) ∪ {I} = N(RIR) ∪ {RIR}. �

Recall that a ring R is said to be reduced if R has no nonzero nilpotent elements.

It is easy to see that reduced rings are reversible. In the next proposition, we

determine the diameter of Ω(R) when R is a reduced ring. Before that, the following

lemma is necessary.

Lemma 2.8. Let R be a reduced ring. Then diam(Ω(R)) /∈ {0, 1}.

Proof. Let R be a reduced ring and diam(Ω(R)) ∈ {0, 1}. We consider the follow-

ing two cases:

Case 1: Suppose that diam(Ω(R)) = 0. Then, we may assume that I is the

unique vertex of Ω(R). Thus I is a minimal left ideal of R. Now by [10, Lemma

10.22], we have I = Re, where e is a nontrivial idempotent element of R. Then one

can see that R(1−e) 6= Re and R(1−e) is a vertex of Ω(R), which is a contradiction.

Case 2: Suppose that diam(Ω(R)) = 1. Let I be a vertex of Ω(R). Then

ann(I) is a vertex of Ω(R). On the other hand, since R is a reduced ring, we have

I 6= ann(I). Now since diam(Ω(R)) = 1, x(I + ann(I)) = 0 for some x ∈ R∗. Thus

we have x2 = 0 which is a contradiction. �

Proposition 2.9. Let R be a reduced ring. Then diam(Ω(R)) ∈ {2,∞}.

Proof. Let R be a reduced ring. Then by Lemma 2.8, |Ω(R)| ≥ 2. Assume that I

and J are two distinct vertices of Ω(R). By Lemma 2.8, we can suppose that I is not

adjacent to J . Hence ann(I)∩ann(J) = 0. Now by Lemma 2.7, we can consider the

vertices RIR and RJR instead of the vertices I and J . Since I is not adjacent to

J , we have RIR 6= RJR. Now if RIR∩RJR 6= 0, then RIR−RIR∩RJR−RJR
is a path of length two in Ω(R). So d(I, J) = 2. Thus, we may assume that

RIR ∩RJR = 0. Then IJ = 0. Now we have the following two cases:

Case 1: Suppose that Min(R) = {P1, P2}. Then, we may assume that P1 =

ann(RIR) and P2 = ann(RJR). We show that Ω(R) is not connected. To see

this, let RIR − A1 − · · · − An − RJR be a path between RIR and RJR. Then

since A1 is adjacent to RIR and R is a reduced ring with exactly two minimal

prime ideals, we have ann(RIR) = ann(A1). By a similar method, one can see that

ann(RIR) = ann(A1) = · · · = ann(An) = ann(RJR). Hence P1 = P2 which is a

contradiction. Thus d(I, J) =∞.

Case 2: Suppose that |Min(R)| ≥ 3. Then there exists P ∈ Min(R) such that

P * ann(RIR) ∪ ann(RJR). Let x ∈ P \ (ann(RIR) ∪ ann(RJR)). Now by [9,
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Lemma 1.5], we have ann(x) 6= 0. If RIR ∩ ann(x) 6= 0, then RIR−RxRI −RJR
is a path of length two in Ω(R) and hence d(I, J) = 2 (note that RxRI ⊆ RIR

and IJ = 0). Otherwise, we may assume that RIR ∩ ann(x) = 0. Thus, we have

ann(x) ⊆ ann(RIR). Then RIR − RxRJ − RJR is a path of length two in Ω(R)

and hence d(I, J) = 2. This completes the proof. �

From the proof of Proposition 2.9, we have the following corollary.

Corollary 2.10. Let R be a reduced ring. Then Ω(R) is disconnected if and only

if R is a reduced ring with exactly two minimal prime ideals.

Now, from Propositions 2.2, 2.6 and 2.9 and Corollary 2.10, the proof of Theorem

2.1 is complete.

In the next proposition, we characterize all rings R such that the edge set of

Ω(R) is empty. Note that Mn(R) is the ring of n× n matrices over a ring R.

Proposition 2.11. Let R be a ring. Then the edge set of Ω(R) is empty if and

only if one of the following statements holds:

(1) |A(R)∗| = 1.

(2) R ∼= K1 ×K2 as rings, where K1 and K2 are division rings.

(3) R ∼= M2(K) as rings, where K is a division ring.

Proof. Assume that the edge set of Ω(R) is empty and |A(R)∗| 6= 1. Now we show

that R is an Artinian ring. Since the edge set of Ω(R) is empty, every vertex of

Ω(R) is minimal as a left or right ideal. Thus we may assume that Rx ∈ A(R)∗ is

a minimal left ideal. Since Rx ∼= R/l.ann(x) as modules, R/l.ann(x) is an Artinian

left R-module. Also, by our assumption, l.ann(x) is an Artinian left R-module.

Thus by [5, Proposition 3.5], R is an Artinian left R-module. Similarly, one can

see that R is an Artinian right R-module. Thus R is an Artinian ring. On the other

hand, since the edge set of Ω(R) is empty and |A(R)∗| 6= 1, Ω(R) is disconnected

and hence by Theorem 2.1, R is a prime ring or R is a reduced ring with exactly

two minimal prime ideals. We consider the following two cases:

Case 1: Suppose that R is a reduced ring with exactly two minimal prime ideals,

say P1 and P2. Since R is an Artinian ring, P1 and P2 are maximal ideals. Now

since R = P1 + P2, by [10, Exercise 1.7] one can see that R ∼= K1 ×K2 as rings,

where K1 and K2 are division rings.

Case 2: Suppose that R is a prime ring. Since R is a prime and Artinian ring,

by [10, Theorems 10.24 and 3.5] we have R ∼= Mn(K) as rings, where K is a division

ring. Now since the edge set of Ω(R) is empty, we conclude that n = 2. Therefore,

R ∼= M2(K), where K is a division ring.
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The converse is clear. �

In the next proposition, we determine the diameter of Ω(R) when R is a semi-

commutative ring. Before that, we need the following two lemmas.

Lemma 2.12. ([5, Exercise 3T]) Let R be a ring and I be a nilpotent ideal of R.

(1) If K is a nonzero right ideal of R, then l.ann(I) ∩K 6= 0.

(2) If K is a nonzero left ideal of R, then r.ann(I) ∩K 6= 0.

Proof. (1) Assume that I is a nilpotent ideal of R and K a nonzero right ideal of

R. Suppose to the contrary that l.ann(I) ∩K = 0. Then since l.ann(I) is an ideal

of R, we have l.ann(I) ⊆ r.ann(K). Thus KIn−1 = 0, where n ∈ N is minimum

such that In = 0. Hence KI = 0 for n = 2, or KIn−2I = 0 for n ≥ 3. Now since

K is a nonzero right ideal of R, we have l.ann(I)∩K 6= 0 which is a contradiction.

(2) By a similar method as one we used in item (1), one can prove it. �

Lemma 2.13. Let R be a semicommutative ring and I be a nonzero nilpotent ideal

of R. Then I is adjacent to every other vertex of Ω(R).

Proof. Assume that I is a nonzero nilpotent ideal of R and J 6= I is a vertex

of Ω(R). Without loss of generality, we can suppose that l.ann(J) 6= 0. Since R

is a semicommutative ring, l.ann(J) is an ideal. Now by Lemma 2.12, l.ann(J) ∩
l.ann(I) 6= 0. Thus there exists x ∈ R∗ such that x(I + J) = 0. Therefore, we

conclude that I is adjacent to every other vertex. �

Recall that a ring R is called semiprime if R contains no nonzero nilpotent ideals

[10].

Proposition 2.14. Let R be a semicommutative ring. Then

(1) diam(Ω(R)) ∈ {0, 1, 2,∞}.
(2) Ω(R) is disconnected if and only if R is a reduced ring with exactly two

minimal prime ideals.

Proof. (1) Let R be a semicommutative ring. If R is not a semiprime ring, then

by Lemma 2.13, we have diam(Ω(R)) ∈ {0, 1, 2}. Otherwise, we may assume that

R is a semiprime ring. We show that R is a reduced ring. To see this, let x ∈ R∗

such that x2 = 0. Since R is a semicommutative ring, we have RxRx = 0 which

is a contradiction. Thus R is a reduced ring. Now by Proposition 2.9, we have

diam(Ω(R)) ∈ {2,∞}.
(2) It follows from Theorem 2.1. �
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In the next theorem, we determine the girth of Ω(R).

Theorem 2.15. Let R be a ring. Then gr(Ω(R)) ∈ {3,∞}.

Proof. Suppose that Ω(R) contains three distinct vertices I, J and K such that

K $ I and J $ I. Then it is easy to see that gr(Ω(R)) = 3. Thus, we may assume

that every vertex of Ω(R) contains at most two nonzero one-sided ideals. We show

that gr(Ω(R)) = ∞. To see this, let I1 − I2 − · · · − In − I1 be a cycle in Ω(R).

Since I1 is adjacent to I2 and every vertex of Ω(R) contains at most two nonzero

one-sided ideals, we can suppose that I1 ⊆ I2. Now since I2 is adjacent to I3, we

have I2 ⊆ I3 or I3 ⊆ I2, which is a contradiction. �

Recall that if α is an endomorphism of a ring R, then the additive map δ : R→ R

is called an α-derivation if δ(ab) = δ(a)b + α(a)δ(b) for each a, b ∈ R. Let α be

an endomorphism of a ring R and let δ be an α-derivation of R. Then the R-

module R[x] with associative and distributive multiplication induced by the rule

xr = α(r)x + δ(r) is known as skew polynomial ring, and is denoted by R[x;α, δ].

If δ = 0, then we obtain a skew polynomial ring of endomorphism type R[x;α]. If α

is the identity, then our α-derivation becomes an ordinary derivation and we obtain

a skew polynomial ring of derivation type R[x; δ]. If α is the identity and δ = 0,

then we obtain the standard polynomial ring R[x]. An endomorphism α of a ring

R is called rigid if aα(a) = 0 implies a = 0 for a ∈ R. A ring R is said to be α-rigid

if there exists a rigid endomorphism α of R. Also, a ring R is called α-compatible

if ab = 0 ⇔ aα(b) = 0 for a, b ∈ R. In the next proposition, we study the relation

between the connectivity of Ω(R) and Ω(R[x;α, δ]) when R is an α-rigid ring.

Proposition 2.16. Let R be an α-rigid ring and let δ be an α-derivation of R.

Then Ω(R) is connected if and only if Ω(R[x;α, δ]) is connected.

Proof. Since R is an α-rigid ring, by [6, Page 4] R is a reduced ring. Now by

[9, Theorem 3.3], R[x;α, δ] is a reduced ring and every minimal prime ideal of

R[x;α, δ] is of the form P [x;α, δ] where P is a minimal prime ideal of R. Thus by

Corollary 2.10, we conclude that Ω(R) is connected if and only if Ω(R[x;α, δ]) is

connected. �

Example 2.17. Let R = D1 ×D2, where D1 and D2 are division rings. Then it

is easy to see that Ω(R) is disconnected. Moreover, by Proposition 2.16, Ω(R[x])

is disconnected. In addition, since R[x][y] ∼= R[x, y] as rings, Ω(R[x, y]) is discon-

nected.

We need the following lemma in the sequel.
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Lemma 2.18. Let R be a reversible and α-compatible ring. Let I ∈ A(R[x;α])∗.

(1) If l.ann(I) 6= 0, then there exists a ∈ R∗ such that aI = 0 and Ia = 0.

(2) If r.ann(I) 6= 0, then there exists b ∈ R∗ such that bI = 0 and Ib = 0.

Proof. (1) Let I ∈ A(R[x;α])∗ and l.ann(I) 6= 0. We choose g = a0 + a1x+ · · ·+
anx

n ∈ R[x;α]∗ of least degree n such that gI = 0. Let f = b0 +b1x+ · · ·+bmx
m ∈

I∗, where bm 6= 0. Since gf = 0, we have anx
nbmx

m = 0 and hence anα
n(bm) = 0.

Thus anbm = 0. Now since gI = 0, we have bmgI = 0. Hence, since R is a

reversible ring and g is of least degree n such that gI = 0, we have bmg = 0.

Thus, bmai = aibm = 0 for i = 0, 1, . . . , n. Note that if s ∈ R and san = 0, then

sai = 0 for i = 0, 1, . . . , n. Now assume that j ∈ {0, 1, . . . ,m} is maximum such

that anbj 6= 0. Then we have (anα
n(bj) + an−1α

n−1(bj+1) + · · · )xn+j 6= 0 which is

a contradiction, since gf = 0. Thus anf = 0 and hence anI = 0. Now since R is a

reversible and α-compatible ring, we have Ian = 0.

(2) Use a method similar to that we used in item (1). �

Proposition 2.19. Let R be a reversible and α-compatible ring. Then diam(Ω(R)) ∈
{0, 1} if and only if diam(Ω(R[x;α])) = 1.

Proof. Let diam(Ω(R)) ∈ {0, 1}. It is easy to see that |A(R[x;α])∗| ≥ 2. Thus, we

may assume that I and J are two distinct vertices of Ω(R[x;α]). Let ∆ be the set of

all coefficients of elements of I and Λ be the set of all coefficients of elements of J .

Then by Lemma 2.18, R∆ and RΛ are vertices of Ω(R). Since diam(Ω(R)) ∈ {0, 1},
c(R∆ +RΛ) = 0 for some c ∈ R∗. Thus, I is adjacent to J in Ω(R[x;α]) and hence

diam(Ω(R[x;α])) = 1.

Conversely, let diam(Ω(R[x;α])) = 1. If |A(R)∗| = 1, then diam(Ω(R)) = 0.

Thus, we may assume that I and J are two distinct vertices of Ω(R). Let S =

Σ∞i=0Rα
i(I)R and T = Σ∞i=0Rα

i(J)R. Then S[x;α] and T [x;α] are vertices of

Ω(R[x;α]). Since diam(Ω(R[x;α])) = 1, c(S[x;α] + T [x;α]) = 0 for some c ∈ R∗.
Thus c(I + J) = 0 for some c ∈ R∗ and hence diam(Ω(R)) = 1. �

3. Some combinatorial properties of Ω(R)

In this section we study some combinatorial properties of Ω(R) such as indepen-

dence number, domination number and planarity. We start this section with the

following proposition.

Proposition 3.1. Let R be a reduced ring such that |Min(R)| <∞. Then β(Ω(R)) =

|Min(R)|.
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Proof. Assume that Min(R) = {P1, P2, . . . , Pn}. Then every Pi is a vertex of Ω(R),

for i = 1, 2, . . . , n. We show that Min(R) is an independent set in Ω(R). To see this,

without loss of generality, assume that P1 is adjacent to P2. Then x(P1 + P2) = 0

for some x ∈ R∗. Thus, by [10, Lemma 12.6], we have x ∈
⋂n

i=1 Pi which is a

contradiction. Hence Min(R) is an independent set in Ω(R). Now we show that

β(Ω(R)) = |Min(R)|. To see this, let S = {I1, I2, . . . , In+1} be an independent set

in Ω(R) with n+1 vertices. Since R is a reduced ring, by [10, Lemma 12.6], we have

Z(R) =
⋃

P∈Min(R) P . Hence, there exist Pk ∈ Min(R) and distinct Ii, Ij ∈ S such

that Ii + Ij ⊆ Pk. Thus, Ii is adjacent to Ij which is a contradiction. Therefore,

we conclude that β(Ω(R)) = |Min(R)|. �

We use the following lemma in the sequel.

Lemma 3.2. Let R be a semicommutative ring.

(1) If R is left Noetherian, then Z`(R) =
⋃

i∈Θ Pi, where Θ is a finite set and

each Pi is a completely prime ideal and left annihilator of a nonzero element

of Zr(R).

(2) If R is right Noetherian, then Zr(R) =
⋃

i∈Θ Pi, where Θ is a finite set

and each Pi is a completely prime ideal and right annihilator of a nonzero

element of Z`(R).

(3) If R is Noetherian, then Z(R) =
⋃

i∈Θ Pi, where Θ is a finite set and each

Pi is a completely prime ideal and left or right annihilator of a nonzero

element of Z(R).

Proof. By a similar way as used in the proof of [7, Theorem 80], we can prove

it. �

Let R be a ring. By P(R), we denote the set of prime ideals of R which are

maximal with respect to the property of being contained in Z(R).

Proposition 3.3. Let R be a semicommutative and Noetherian ring. Then

β(Ω(R)) = |P(R)| <∞.

Proof. Since R is a semicommutative and Noetherian ring, by Lemma 3.2, we have

Z(R) =
⋃

P∈∆ P where ∆ is a finite set and ∆ = P(R). Now by a method similar

to that we used in the proof of Proposition 3.1, we conclude that β(Ω(R)) is finite

and β(Ω(R)) = |∆|. �

Let R be a semicommutative ring and I ∈ A(R)∗. Then one can see that

l.ann(I) = l.ann(RIR) and r.ann(I) = r.ann(RIR). Thus, we have the following

proposition.
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Proposition 3.4. Let R be a semicommutative ring. Then the following statements

are equivalent:

(1) Ω(R) is a complete graph.

(2) The subgraph induced by two-sided ideals is complete.

(3) The subgraph induced by left ideals is complete.

(4) The subgraph induced by right ideals is complete.

In the following two propositions, we study the case that Ω(R) is a complete

graph.

Proposition 3.5. Let R be a semicommutative ring. If Ω(R) is a complete graph,

then Z(R) is a completely prime ideal.

Proof. Let x, y ∈ Z(R). Since R is a semicommutative ring, we have RxR ⊆ Z(R)

and RyR ⊆ Z(R). On the other hand, since Ω(R) is a complete graph, there exists

t ∈ R∗ such that t(RxR + RyR) = 0 or (RxR + RyR)t = 0. Thus, we have

x + y ∈ Z(R) and hence Z(R) is an ideal of R. Now we show that Z(R) is a

completely prime ideal. To see this, let a, b ∈ R such that ab ∈ Z(R). Then

abx = 0 or xab = 0, for some x ∈ R∗. Without loss of generality, we can suppose

that abx = 0. If bx 6= 0, then we have a ∈ Z(R). Thus we conclude that Z(R) is a

completely prime ideal. �

Proposition 3.6. Let R be an abelian and left Artinian ring. Then Ω(R) is a

complete graph if and only Z(R) is a vertex of Ω(R).

Proof. Let Z(R) be a vertex of Ω(R). Then it is easy to see that Ω(R) is a complete

graph.

Conversely, assume that Ω(R) is a complete graph. Now we consider the following

two cases:

Case 1: Suppose that R is a local ring. Since R is a left Artinian ring, by [10,

Theorem 4.12] we have Z(R)n = 0 for some positive integer n. Thus Ω(R) is a

complete graph.

Case 2: Suppose that R is not a local ring. Since R is a left Artinian ring,

by [10, Lemma 19.19] R contains a nontrivial idempotent element, say e. Thus

R = Re ⊕ R(1 − e). Now since R is an abelian ring, Re and R(1 − e) are ideals.

Thus by [10, Exercise 1.7], we have R ∼= R1 × R2 as rings, where Ri is a ring for

i = 1, 2. Then, R1 × 0 is not adjacent to 0×R2 which is a contradiction. �

In the next proposition, we determine the domination number of Ω(R) when R

is a semicommutative ring.
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Proposition 3.7. Let R be a semicommutative ring. Then γ(Ω(R)) ≤ 2.

Proof. Since R is a semicommutative ring, there exists a nonzero ideal I of R such

that l.ann(I) ∪ r.ann(I) 6= 0. Without loss of generality, assume that l.ann(I) 6= 0.

If I = l.ann(I), then by Lemma 2.12, we have γ(Ω(R)) = 1. Otherwise, we can

suppose that I 6= l.ann(I). We show that the set {I, l.ann(I)} is a dominating set.

To see this, let J be a vertex of Ω(R) distinct from I and l.ann(I). Now we consider

the following two cases:

Case 1: Suppose that l.ann(J) 6= 0. If J is not adjacent to I, then we have

l.ann(I) ∩ l.ann(J) = 0. Thus l.ann(J) ⊆ l.ann(l.ann(I)) and hence J is adjacent

to l.ann(I).

Case 2: Suppose that r.ann(J) 6= 0. If J is not adjacent to l.ann(I), then we

have r.ann(J) ∩ r.ann(l.ann(I)) = 0. Thus r.ann(J) ∩ I = 0 and hence r.ann(J) ⊆
r.ann(I). Then J is adjacent to I. �

In the next proposition, we study the case that ω(Ω(R)) <∞.

Proposition 3.8. Let R be a ring such that ω(Ω(R)) <∞. Then R is an Artinian

ring.

Proof. Since R is not a domain, there exist x, y ∈ Z(R)∗ such that xy = 0. Thus

Rx is a vertex of Ω(R). Now since ω(Ω(R)) < ∞, Rx contains a minimal left

ideal as Rx1. Then Rx1
∼= R/l.ann(x1) as left R-modules. Thus R/l.ann(x1) is

an Artinian left R-module. Also, by our assumption, l.ann(x1) is an Artinian left

R-module. Thus by [5, Proposition 3.5], R is an Artinian left R-module. Similarly,

one can see that R is an Artinian right R-module. Thus R is an Artinian ring. �

We will use the following lemma in the sequel.

Lemma 3.9. Let R be an abelian and left Artinian ring. Then R ∼= R1 × R2 ×
· · · ×Rn as rings, where every Ri is a left Artinian local ring for i = 1, 2, . . . , n.

Proof. If R contains no nontrivial idempotents, then by [10, Lemma 19.19], R

is a left Artinian local ring. Thus, we may assume that R contains a nontrivial

idempotent element, say e. Then since R is an abelian ring, Re and R(1 − e) are

ideals. Then by [10, Exercise 1.7], we have R ∼= R1 × R2 as rings, where Ri is a

left Artinian ring for i = 1, 2. Now, since R1 and R2 are left Artinian and abelian

rings, by a similar method, one can see that R ∼= R′1×R′2×· · ·×R′n as rings, where

every R′i is a left Artinian local ring for i = 1, 2, . . . , n. �
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Recall that a graph is said to be planar if it can drawn in the plane so that its

edges intersect only at their ends. A subdivision of a graph is a graph obtained

from it by replacing edges with pairwise internally-disjoint paths. Note that by

[12, Theorem 6.2.2], if a graph contains a subdivision of K5 or K3,3, then it is not

planar. We use this fact frequently. In the next proposition, we study the planarity

of Ω(R).

Proposition 3.10. Let R be an abelian ring. Then Ω(R) is planar if and only if

R is a local ring with 1 ≤ |I(R)∗| ≤ 4, or R is isomorphic to one of the following

rings:

A1 ×A2 ×A3 or A× S,

where A and each Ai, for i = 1, 2, 3, are division rings, and S is an abelian ring

with |I(S)∗| ≤ 1.

Proof. Suppose that Ω(R) is planar. Then since ω(Ω(R)) ≤ 4, by Proposition 3.8

and Lemma 3.9 we have R ∼= R1 ×R2 × · · · ×Rn as rings, where every Ri is a left

Artinian local ring for i = 1, 2, . . . , n. Now we consider the following four cases:

Case 1: Assume that n ≥ 4. Then the set {R1×R2×R3×0×· · ·×0, R1×R2×
0×0×· · ·×0, R1×0×R3×0×· · ·×0, 0×R2×R3×0×· · ·×0, R1×0×0×0×· · ·×0}
forms K5 and hence Ω(R) is not planar.

Case 2: Assume that n = 3. We show that R ∼= A1 × A2 × A3, where Ai is a

division ring for i = 1, 2, 3. To see this, suppose that I1 ∈ A(R1)∗. Then the set

{I1 ×R2 ×R3, I1 × 0×R3, I1 ×R2 × 0, I1 × 0× 0, 0×R2 ×R3} forms K5 which is

a contradiction. Thus R ∼= A1×A2×A3, where Ai is a division ring for i = 1, 2, 3.

Case 3: Assume that n = 2. Suppose that R1 and R2 are not division rings.

Then we can choose Ii ∈ A(Ri)
∗ for i = 1, 2. Thus the set {R1×I2, I1×I2, R1×0, 0×

I2, I1 × 0} forms K5 which is a contradiction. Hence we may assume that R1 is a

division ring. Now we show that R2 is a ring with |I(R2)∗| ≤ 1. To see this, suppose

that I, J ∈ A(R2)∗ are distinct. Then the set {R1 × I,R1 × J,R1 × 0, 0× I, 0× J}
forms K5 which is a contradiction. Therefore, we conclude that R ∼= A× S, where

A is a division ring and S is an abelian ring with |I(S)∗| ≤ 1.

Case 4: Assume that n = 1. Then it is easy to see that R is a local ring with

1 ≤ |I(R)∗| ≤ 4.

The converse is clear. �

Let G be a simple graph with n vertices and q edges. Recall that a chord is

any edge of G joining two nonadjacent vertices in a cycle of G. Let C be a cycle

of G. We say C is a primitive cycle if it has no chords. Also, a graph G has the
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primitive cycle property, say PCP, if any two primitive cycles intersect in at most

one edge. The number frank(G) is called the free rank of G and it is the number

of primitive cycles of G. Also, the number rank(G) = qn + r is called the cycle

rank of G, where r is the number of connected components of G. The cycle rank

of G can be expressed as the dimension of the cycle space of G. By [4, Proposition

2.2], we have rank(G) ≤ frank(G). According to [4], a graph G is called a ring

graph, if it satisfies in one of the following equivalent conditions:

(1) rank(G) = frank(G),

(2) G satisfies the PCP and G does not contain a subdivision of K4 as a subgraph.

A graph is called outerplanar graph, if it can be drawn in the plane without

crossings in such a way that all of the vertices belong to the unbounded face of the

drawing. There is a characterization for outerplanar graphs that says a graph is

outerplanar if and only if it does not contain a subdivision of K4 or K2,3 (see [3,

Theorem 1]). Now, every outerplanar graph is a ring graph and every ring graph

is a planar graph. From Proposition 3.10, we have the following corollary.

Corollary 3.11. Let R be an abelian nonlocal ring. Then the following statements

are equivalent:

(1) Ω(R) is planar.

(2) Ω(R) is outerplanar.

(3) Ω(R) is a ring graph.

Recall that a unicyclic graph is a connected graph with a unique cycle. We

conclude by giving a characterization of all abelian rings whose graphs are unicyclic.

Proposition 3.12. Let R be an abelian ring. Then Ω(R) is unicyclic if and only

if R is a local ring with |I(R)∗| = 3, or R ∼= A× S as rings, where A is a division

ring and S is an abelian ring with |I(S)∗| = 1.

Proof. The proof is similar to that of Proposition 3.10, and hence is excluded. �
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