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ABSTRACT. Let R be a commutative ring with identity and M be an R-module.
Let ¢ : S(M) — S(M) U {0} be a function, where S(M) denote the set of
all submodules of M. The main purpose of this paper is to introduce and
investigate the notion of -secondary submodules of an R-module M as a

generalization of secondary submodules of M.
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1. Introduction

Throughout this paper, R will denote a commutative ring with identity, Z and
N will denote the ring of integers and the set of positive integers, respectively. We
will denote the set of ideals of R by S(R) and the set of all submodules of M by
S(M), where M is an R-module.

Let M be an R-module. A proper submodule P of M is said to be prime if for
any 7 € R and m € M with rm € P, we have m € Porr € (P :g M) [5]. A
non-zero R-module M is said to be secondary if for each a € R the endomorphism
of M given by multiplication by a is either surjective or nilpotent [8]. A non-zero
submodule N of M is said to be second if for each a € R, the endomorphism of NV
given by multiplication by a is either surjective or zero [9].

Anderson and Bataineh in [1] defined the notation of ¢-prime ideals as follows:
let ¢ : S(R) — S(R)U{0} be a function. Then, a proper ideal P of R is ¢-prime if
forr,s € R, rs € P\ ¢(P) implies that r € P or s € P [1]. A proper ideal I of R is
said to be ¢-primary if for a,b € R with ab € I'\ ¢(I), then either a € T or b € /T
[1].

Zamani in [10] extended this concept to prime submodule. For a function ¢ :
S(M) — S(M) U {0}, a proper submodule N of M is called ¢-prime if whenever
r € Rand x € M with ro € N\ ¢(N), then r € (N :g M) or x € N. Bataineh

and Kuhail in [4] generalized the concept of ¢-prime submodules to ¢-primary
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submodules. For a function ¢ : S(M) — S(M) U {0}, a proper submodule N of M
is called ¢-primary if whenever r € R and € M with rz € N\ ¢(N), then z € N
or r™ € (N :g M) for some n € N.

Let ¢ : S(M) — S(M) U {0} be a function. Farshadifar and Ansari-Toroghy
in [6], defined the notation of t-second submodules of M as a dual notion of ¢-
prime submodules of M. A non-zero submodule N of M is said to be a 1-second
submodule of M if r € R, K a submodule of M, rN C K, and r¢(N) € K, then
NCKorrN=0.

The main purpose of this paper is to introduce and study the concept of -
secondary submodules of M as a generalization of the notion of secondary submod-
ules of M. Also, the notion of 1-secondary submodules of M can be regarded as a
generalization of the notion of 1-second submodules of M. We say that a non-zero
submodule N of M is a ¥-secondary submodule of M if r € R, K a submodule of
M, rN C K, and r(N) € K, then N C K or v N = 0 for some n € N. In fact
the notion of i-secondary submodules is a dual notion of ¢-primary submodules.
There are some works about ¢-primary submodules. It is natural to ask the follow-
ing question: To what extent does the dual of these results hold for -secondary
submodules of an R-module? The aim of this paper is to provide some information
in this case. Among the other results, we have shown that if N is a -secondary
submodule of M such that Anng(N)(N) € N, then N is a secondary submodule
of M (see Theorem 2.5). Also, we have proved that if H is a submodule of M such
that far all ideals I and J of R, (H :pr I) C (H :p J) implies that J C I, then H
is a secondary submodule of M if and only if H is a t-secondary submodule of M
(see Corollary 2.9). In Theorem 2.10, it is shown that for a submodule S of M, we

have

(a) If S is a ¢-secondary submodule of M such that Anng(1(S)) C ¢(Anng(S)),
then Anng(S) is a ¢-primary ideal of R.

(b) If ¥(S) = (0 :pr Pp(Anng(S)), M is a comultiplication R-module and
Anng(S) is a ¢-primary ideal of R, then S is a t-secondary submodule
of M.

The Example 2.11 shows that the condition “M is a comultiplication R-module”
in Theorem 2.10 (b) can not be omitted. Also, it is shown that if a is an element
of R such that (0 :p7 a) C a(0 :ps aAnng((0 :pr a))) and (0 :ps a) is a 1)1-secondary
submodule of M, then (0 :ps a) is a secondary submodule of M (see Theorem 2.17).

Finally, in Theorem 2.18, we characterize 1-secondary submodules of M.
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2. Main results

Definition 2.1. Let M be an R-module. We say that a non-zero submodule N of
M is a weak secondary submodule of M if r € R, K a submodule of M, rN C K|
and rM ¢ K, then N C K or r"N = 0 for some n € N.

Clearly, every secondary submodule of an R-module M is a weak secondary
submodule of M. But the converse is not true in general, as we see in the following

example.

Example 2.2. Due to the fact that in logic if P is false, then P = @ is true,
every R-module is a weak secondary submodule of itself but not every R-module is
a secondary R-module. For example, the Z-module Z is weak secondary which is

not secondary.

Definition 2.3. Let M be an R-module, S(M) be the set of all submodules of M,
and let ¢ : S(M) — S(M)U {0} be a function. We say that a non-zero submodule
N of M is a i-secondary submodule of M if r € R, K a submodule of M, rN C K,
and ri(N) € K, then N C K or r"N = 0 for some n € N.

In Definition 2.3, since rp(N) € K implies that r(¢(N) + N) € K, there is no
loss of generality in assuming that N C ¢ (/) in the rest of this paper. Let M be
an R-module. We use the following functions 1 : S(M) — S(M) U {0}.

Vi(N) = (N :pr Ann'y(N)), VN € S(M), Vi € N,

o (N) = Zwi(N), YN € S(M).

¢ (N) =M, VN € S(M).

Then it is clear that the set of all ¥);-secondary submodules is exactly the set of
all weakly secondary submodules. Clearly, for any submodule and every positive

integer n, we have the following implications:
secondary = Vn_1 — secondary = 1, — secondary = ¥, — secondary.
For functions v,0 : S(M) — S(M) U {0}, we write ¢ < 8 if (N) C 0(N) for each

N € S(M). So whenever ¢ < 6, any 1-secondary submodule is #-secondary.

Theorem 2.4. [3, 2.8]. For a submodule S of an R-module M the following state-

ments are equivalent.

(a) S is a secondary submodule of M.



80 F. FARSHADIFAR AND H. ANSARI-TOROGHY

(b) S # 0 and rS C K, where r € R and K is a submodule of M, implies
either rS =0 for somen € N or S C K.

Theorem 2.5. Let M be an R-module and ¢ : S(M) — S(M)U{0} be a function.
Let N be a v-secondary submodule of M such that Anng(N)Y(N) € N. Then N

is a secondary submodule of M.

Proof. Let a € R and K be a submodule of M such that aN C K. If ayp(N) € K,
then we are done because N is a w-secondary submodule of M. Thus suppose
that ayp(N) C K. If ap(N) € N, then ap(N) € NN K. Hence aN C NN K
implies that N € NN K C K or a"N = 0 for some n € N, as required. So let
atp(N) C N. If Anng(N)Y(N) € K, then (a+ Anng(N))y(N) € K. Hence, there
exists © € Anngr(N) such that (a + 2)¥(N) € K. Thus (a + z)N C K implies
that N C K or a"N = (a" + 2™)N C (a + )"N = 0 for some n € N, since N is
a 1)-secondary submodule of M. So suppose that Anng(N)y(N) C K. Since by
assumption, Anng(N)yY(N) € N, there exists b € Anng(N) such that by)(N) Z N.
Hence by)(N) € N N K. This in turn implies that (a + 0)¥(N) € NN K. Thus
(a+b)N C NNK implies that N C NNK C K or a”N = (a"+b")N C (a+b)"N =

0 for some n € N, as desired. O

Corollary 2.6. Let N be a weak secondary submodule of an R-module M such that
Anngp(N)M € N. Then N is a secondary submodule of M.

Proof. In Theorem 2.5 set ¥ = ). ([

Corollary 2.7. Let M be an R-module and ) : S(M) — S(M)U{0} be a function.
If N is a ¢-secondary submodule of M such that (N :py Ann%(N)) C o(N), then
N is a YP,-secondary submodule of M.

Proof. If N is a secondary submodule of M, then the result is clear. So sup-
pose that N is not a secondary submodule of M. Then by Theorem 2.5, we have
Anng(N)y(N) C N. Therefore, by assumption,

(N :ar Anng(N)) C9(N) C (N :ar Anng(N)).
This implies that ¥(N) = (N :p Ann%(N)) = (N :p Anng(N)) because always
(N s Anng(N)) € (N 3 AnnZ(N)). Now
(N :ar Anng,(N)) = ((N 2y Annk(N)) :ar Anng(N)) =
((N :ar Anng(N)) :ar Anng(N)) = (N :ar Anngy(N)) = $(N).

By continuing, we get that ¥/(N) = (N :p Ann%y(N)) for all ¢ > 1. Therefore,
Y(N) = 1,(N) as needed. O
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Theorem 2.8. Let M be an R-module and ¢ : S(M) — S(M)U{0} be a function.
Let H be a submodule of M such that far all ideals I and J of R, (H :pr I) C
(H :pr J) implies that J C I. If H is not a secondary submodule of M, then H is

not a ¥ -secondary submodule of M.

Proof. As H is not a secondary submodule of M, there exists r € R and a sub-
module K of M such that r"H # 0 for each n € N and H € K, but rH C K by
Theorem 2.4. We have H € KN H and rH C KNH. If r(H :pr Anng(H)) €
K N H, then by our definition H is not a w-secondary submodule of M. So let
r(H :pp Anng(H)) € KN H. Then r(H :p Anng(H)) € KN H C H. Thus
(H :p Anngp(H)) C (H :p ) and so by assumption, r € Anng(H). This is a

contradiction. O

Corollary 2.9. Let M be an R-module and ¢ : S(M) — S(M)U{0} be a function.
Let H be a submodule of M such that far all ideals I and J of R, (H :pr I) C
(H :pr J) implies that J C I. Then H is a secondary submodule of M if and only
if H is a ¥ -secondary submodule of M.

An R-module M is said to be a comultiplication module if for every submodule
N of M, there exists an ideal I of R such that N = (0 :p; I) [2]. It is easy to see
that M is a comultiplication module if and only if N = (0 :p; Anng(N)) for each
submodule IV of M.

Theorem 2.10. Let M be an R-module, ¢ : S(R) — S(R)U{0}, and ¢ : S(M) —
S(M) U{B} be functions.
(a) IfS is ap-secondary submodule of M such that Anng(¢¥(S)) C ¢(Anng(S)),
then Anng(S) is a ¢-primary ideal of R.
(b) If ¥(S) = (0 :ar p(Anng(S)), M is a comultiplication R-module and

Anng(S) is a ¢-primary ideal of R, then S is a -secondary submodule
of M.

Proof. (a) Let ab € Anng(S) \ ¢(Anng(S)) for some a,b € R. Then aby(S) # 0
by assumption. If ai(S) C (0 :pr ), then abyp(S) = 0, a contradiction. Thus
ap(S) € (0 :ps b). Therefore, S C (0 :p7 b) or ™S = 0 for some n € N because S is
a -secondary submodule of M.

(b) Let @ € R and K be a submodule of M such that a.S C K and ay(S) € K.
As aS C K, we have S C (K :ps a). It follows that

S C((0:p Annp(K)) :ar a) = (0 :pr aAnnpg(K)).
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This implies that aAnng(K) C Anng((0 :p aAnng(K))) C Anng(S). Hence,
aAnnp(K) C Anng(S). If aAnng(K) C ¢(Anng(S)), then %(S) = (0 :p
p(Anngr(S)) C ((0 :pr Anng(K) :ar a). As M is a comultiplication R-module,
we have ay(S) C K, a contradiction. Thus aAnng(K) € ¢(Anng(S)) and so as

Anng(S) is a ¢-primary ideal of R, we conclude that a™S = 0 for some n € N or
S =(0:p Anng(S)) C (0:p Anngr(K)) = K,
as needed. [l

The following example shows that the condition “M is a comultiplication R-

module” in Theorem 2.10 (b) can not be omitted.

Example 2.11. Let R=2Z, M = Z ® Z, and S = 2Z @ 27Z. Clearly, M is not a
comultiplication R-module. Suppose that ¢ : S(R) — S(R)U {0} and ¢ : S(M) —
S(M) U {0} be functions such that ¢(I) = I for each ideal I of R and ¢ (S) = M.
Then clearly, Anng(S) = 0 is a ¢-primary ideal of R and ¢(S) = M = (0 :p
¢(Anng(S)). But as 3S C6Z @ 6Z, S £ 6Z @ 6Z, and 3™S # 0 for each n € N, we
have that S is not a i-secondary submodule of M.

The following lemma is known, but we write it here for the sake of reference.

Lemma 2.12. Let M be an R-module, S a multiplicatively closed subset of R, and
N be a finitely generated submodule of M. If ST'N C S™'K for a submodule K of
M, then there exists an s € S such that sN C K.

Proof. This is straightforward. (I

Proposition 2.13. Let M be an R-module, ¢ : S(M) — S(M)U{0} be a function,

and N be a -secondary submodule of M. Then we have the following statements.

(a) If K is a submodule of M with K C N and ¥k : S(M/K) — S(M/K)U{0}

is a function such that v (N/K) = ¢(N)/K, then N/K is a ¥ -secondary
submodule of M/K.

(b) If N is a finitely generated submodule of M, S is a multiplicatively closed

subset of R with Anng(N)NS =0, and S~ : S(STIM) — S(S~1M)U{0}

is a function such that (S71Y)(STIN) = S~ (N), then STIN is a S~1-

secondary submodule of ST1M.

Proof. (a) This is straightforward.
(b) As N is a ¢-secondary submodule of M, we have N # 0. This implies that
S—IN # 0since N is finitely generated and Anng(N)NS = () by using Lemma 2.12.
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Let a/s € ST'R and S K be a submodule of S~' M such that (a/s)S™!N C S71K
and (a/s)S™H(y(STIN)) € S7LK. It follows that (a/s)S™1(¢(N)) € S~1K. Now
the result follows from the fact that N is a 1-secondary submodule of M and
Lemma 2.12. (I

Proposition 2.14. Let M and M be R-modules and f: M — M be an R-
monomorphism. Let ¥ : S(M) — S(M) U {0} and b : S(M) — S(M) U {0}
be functions such that 1/J(f*1(1\/7)) = ffl(w(N)), for each submodule N of M. If
N is a th-secondary submodule of M such that N C Im(f), then f~Y(N) is a
-secondary submodule of M.

Proof. As N # 0 and N C Im(f), we have f~*(N) # 0. Let a € R and K
be a submodule of M such that af~*(N) C K and ay)(f~*(N)) € K. Then by
using assumptions, aN C f(K) and aty(N) € f(K). Thus a"N = 0 for some
neNorNCf (K) since Nis a 1/3—secondary submodule of M. This implies that
a”f~Y(N)=0or f~Y(N) C K, as needed. O

A proper submodule N of an R-module M is said to be completely irreducible if
N = ;e Ni, where {N;}icr is a family of submodules of M, implies that N = N;
for some ¢ € I. It is easy to see that every submodule of M is an intersection of

completely irreducible submodules of M [7].

Remark 2.15. Let N and K be two submodules of an R-module M. To prove
N C K, it is enough to show that if L is a completely irreducible submodule of M
such that K C L, then N C L.

Proposition 2.16. Let M be an R-module, ¥ : S(M) — S(M) U {0} be a func-
tion, and let N be a 1-secondary submodule of M. Then we have the following
statements.
(a) If fora € R, aN # N, then (N :ar \/Anng(N)) C (N :ar a).
(b) If J is an ideal of R such that \/Anng(N) C J and JN # N, then (N :p
Anng(N)) = (N :p J).

Proof. (a) Let a € R such that aN # N. If ¢ N = 0 for some n € N, then clearly
(N :ar /Anng(N)) € (N :ar a). So let a®N # 0 for each n € N. Now let L be
a completely irreducible submodule of M such that N C L. Then N z LnaN
and aN C L NnaN. Hence as N is a 11-secondary submodule of M, we have
a(N :p Anng(N)) € LnaN C L. Therefore, a(N :p Anng(N)) € N by
Remark 2.15. Hence, a(N :pr \/Anng(N)) C a(N :p Anng(N)) implies that
a(N :ar v/Anng(N)) € N. Thus (N :pr /Anng(N)) C (N 1 a).
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(b) As JN # N, we have aN # N for each a € J. Thus by part (a), for each
a€J, (N /Anng(N)) C (N :p a). This implies that

(N :iar J) =Naes(N iy a) 2 (N iy v/ Anng(N)).
The inverse inclusion follows from the fact that \/Anng(N) C J. O

Theorem 2.17. Let M be an R-module, b : S(M) — S(M) U {0} be a function,
and let a be an element of R such that (0 :pr a) C a(0 :as aAnng((0 :pr a))). If

(0 :p1 a) is a 1-secondary submodule of M, then (0 :ps a) is a secondary submodule
of M.

Proof. Let N := (0 :37 a) be a 11-secondary submodule of M. Then (0 :5s a) # 0.
Now let ¢t € R and K be a submodule of M such that ¢(0 :py a) C K. If t¢(N :ps
Anng(N)) € K, then t"(0 :pr a) = 0 for some n € Nor (0:37 a) C K since (0 :p7 a)
is a 11 -secondary submodule of M. So suppose that t(N :ar Anng(N)) C K. Now
we have (t+a)(0:p a) C K. If (t+ a)(N :pr Anng(N)) € K, then as (0 :ps a) is

a 11-secondary submodule of M,
"0 a)=01"+a")0:pra) C(t+a)"(0:pra)=0
for some n € N or (0 :py a) C K, and we are done. So assume that (¢t + a)(N :ps

Anngr(N)) C K. Then t(N :p Anng(N)) C K gives that a(N :pr Anng(N)) C K.
Hence by assumption, (0 :p; a) C K and the result follows from Theorem 2.4. O

Theorem 2.18. Let N be a non-zero submodule of an R-module M and let 1 :
S(M) — S(M)U {0} be a function. Then the following are equivalent:

(a) N is a y-secondary submodule of M ;
(b) for a submodule K of M with N € K, we have

V(K :g N) = /Anng(N) U /(K :g $(N));
(c) for a submodule K of M with N € K, we have /(K :r N) = \/Annp(N)
or /(K :r N) = /(K :r ¥(N));
(d) for any ideal I of R and any submodule K of M, if IN C K and I £

V(K :g Y(N)), then IN =0 or N C K;

(e) for each a € R with a(N) € aN, we have aN = N or a®N = 0 for some
n € N.

Proof. (a) = (b) Let for a submodule K of M with N ¢ K, we have a €
V(K :r N)\ /(K :g %(N)). Then a"N C K for some n € N and a"¢)(N) € K.
Since N is a tp-secondary submodule of M, we have a € \/Anng(N). As we may
assume that N C ¢(N), the other inclusion always holds.
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(b) = (c) This follows from the fact that if a subgroup is a union of two sub-
groups, it is equal to one of them.
(¢) = (d) Let I be an ideal of R and K be a submodule of M such that IN C K

and I € m Suppose I € \/WR(N) and N ¢ K. We show that
I C /(K :gr¥(N)). Let a € I and first let a ¢ \/Anng(N). Then, since aN C K,
we have /(K :gp N) # \/Anng(N). Hence by our assumption /(K :g N) =
V(K :r 9(N)). So a € \/(K :g ¢(N). Now assume that a € I N +/Anng(N). Let
u € I'\ \/Anng(N). Then a +u € I\ \/Anng(N). So by the first case, we have
u € /(K :gr(N)and u+a € /(K :g ¢(N). This gives that a € /(K :g ¥(N).
Thus in any case a € \/m Therefore, I C \/m, as desired.

(d) = (a) This is clear.

(a) = (e) Let a € R such that ap(N) € aN. Then aN C aN implies that
N C aN or a®N = 0 for some n € N by part (a). Thus N = aN or ¢"N = 0 for
some n € N, as requested.

(e) = (a) Let a € R and K be a submodule of M such that aN C K and ayp(N) €
K. If ayp(N) C aN, then aN C K implies that ay)(N) C K, a contradiction. Thus
by part (e), aN = N or a"N = 0 for some n € N. Therefore, N C K or a"N =0

for some n € N, as needed. ([l

Example 2.19. Let N be a non-zero submodule of an R-module M and let 9 :
S(M) — S(M) U {0} be a function. If ¥)(N) = N, then N is a t-secondary
submodule of M by Theorem 2.18 (e) = (a).

Let M be an R-module and let ¢ : S(M) — S(M) U {0} be a function. The
following example shows that if N1 and Ns are two ¥-secondary submodules of M,

then N7 + N3 and N1 N Ny are not ¥-secondary submodules of M in general.

Example 2.20. (a) Let p, ¢ be two prime numbers, N =< 1/p+ Z >, and
K =< 1/¢+7Z >. Then clearly, N ® 0 and 0 ® K are weak secondary
submodules of the Z-module Z,c @ Zgo but as p(N + K) C K, p(Zp~ &
Zgo) L K, N+ K ¢ K, and p"(N + K) # 0 for each n € N we have that
N + K is not a weak secondary submodule of the Z-module Zyec @ Zgeo.

(b) Clearly, the submodules 2Zg and 3Zg are 1)-secondary submodules of Zg,
where 9 : S(Zg) — S(Zg) U {0} is a function. But 2Zg N 3Zg = 0 is not a

1p-secondary submodule of Zg.

Proposition 2.21. Let M be an R-module and let N1 and N be weak secondary
submodules of M such that Ny N Ny # 0 and (N1 N No) = rNy N rNy for each
r € R, then N1 N Ny is a weak secondary submodule of M.
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Proof. Let a € R with aM € a(N; N Ny). If aM C aN; and aM C aNs, then
aM C a(N; N Ny), a contradiction. If aM ¢ aN; and aM € aNs, then by
Theorem 2.18 (a) = (e), aNy = Ny or a"N; = 0 for some n € N and aN» = N
or a™Ny = 0 for some m € N. If @™ Ny = 0 or a” Ny = 0, then a’(N3 N N3) = 0
for some t € N and we are done. So suppose that aN; = N; and aNy = Ns. Then
a(N1 N N3) = Ny N Ny, Finally if aM € aNy, aM C aNs, and aN7 = Ny, then
aN1 C aM C aNs. Hence, Ny N Ny C N7 = aNy = aNy NalNy = a(N1 N Ny). It
follows that a(Ny; N Ny) = N1 N Na, as needed. O

Let R; and Rs be two commutative rings with identity. Let M; and Ms be Ry
and Rp-module, respectively and put R = Ry X Ry. Then M = M; x Ms is an R-
module and each submodule of M is of the form N = N; x N5 for some submodules
N; of My and Ny of M,. Suppose that ¢ : S(M;) — S(M;) U {0} be a function
for i = 1,2. One can see that the R = Ry X Ry-module S; x 0 and 0 x Sy, where
S1 is a secondary submodule of M; and Ss is a secondary submodule of My, are
secondary submodules of M. The following example, shows that this is not true for

correspondence ! x 12-secondary submodules in general.

Example 2.22. Let Ry = Ry = My = My = S; = Zg. Then clearly, S; is
a weak secondary submodule of M;. However, (2,1)(Z¢ x 0) C 2Zg x 3Zg and
(2,1)(Ze x Zs) € 27 x 3Zg. But (2,1)"(Ze x 0) = 2Zg x 0 # 0 x 0 for each n € N,
and Zg x 0 € 2Z¢ x 3Z¢. Therefore, S; x 0 is not a weak secondary submodule of
My x Ms.

Theorem 2.23. Let R = Ry X Ry be a ring and M = M; X Ms be an R-module,
where M, is an Ri-module and My is an Ro-module. Suppose that 1 : S(M;) —
S(M;)U{D} be a function fori = 1,2. Then S x0 is a ! xp?-secondary submodule
of M, where Sy is a Y'-secondary submodule of My and 1*(0) = 0.

Proof. Let (r1,r2) € R and K; x K3 be a submodule of M such that (r1,72)(S1 x
0) - K1 X K2 and
(’I‘l,’l“g)((’@/Jl X 1/)2)(81 X O)) = Tlll)l(sl) X T2¢2(0) = lel(sl) x 0 g K1 X Kg.

Then 7151 C K and 719*(S;) € K;. Hence, (r1)"S; = 0 for some n € N or S C
K, since S is a 9!-secondary submodule of M;. Therefore, (r1,72)"(S1 x0) = 0x0
or S1 x 0 C K; x Ks, as requested. O
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