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1. Introduction

Braided categories were introduced by Joyal and Street [5]. They are related to
knot invariants, topology and quantum groups, since they can express symmetries.

Some examples of braided categories are:

graded modules over a commutative ring,

(co)modules over a (co)quasi-triangular Hopf algebra,

the Braid category, [5, Section 2.2],

e the center of a tensor category.

In the last example, we begin with a tensor category and construct a braided one. In
a general scenario, a natural question is it is possible to construct braidings starting
with tensor categories. In particular, if G is a finite group, can a G-extension of a
tensor category be braided? In this work we show that this can be done in very
few cases. Then, an extension of a braided category is not necessarily braided, so
it is really complicated to extend that property.

However, constructing examples of non-braided categories is also important. A
big family of these come from the category of (co)modules of a Hopf algebra without
a (co)quasi-triangular structure, see [9, T 10.4.2]. Masuoka in [6] and [7] constructs
explicit examples of non-Quasi-triangular or non-CoQuasi-triangular Hopf algebras.
In particular these Hopf algebras can not be obtained from any group algebra by

twist (or cocycle) deformation. Other examples were constructed in [4].
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In the literature there are a few explicit examples of tensor categories, for this
reason we construct in [8] eight tensor categories, following the description intro-
duced in [3] of Crossed Products. These categories extend the module category
over certain quantum groups, called supergroup algebras. In a few words, a crossed
product tensor category is, as Abelian category, the direct sum of copies of a fixed
tensor category, and the tensor product comes from certain data. Then founding
all possible data, we explicitly construct tensor categories.

In the same work [3], the author also describes all possible braidings over a
crossed product. Following this, three conditions were introduced to decide if a

G-crossed product is braidable:

(1) the base category has to be braided,

(2) G has to be Abelian, and the biGalois objects associated to each crossed
product have to be trivial,

(3) the 3-cocycle associated to each crossed product over an specific supergroup

algebra has to be trivial, if G is the cyclic group of order 2.

The goal in the present paper is to obtain all possible braidings over the categories
introduced in [8]. With this, only two categories of the eight found in [8] are braided
with the trivial braiding only, and the other 6 are not braidable.

In [8, Theorem 6.3], using the Frobenius-Perron dimension, we proved that these
eight categories are the module category of a quasi-Hopf algebra. Although we do
not know how to explicitly compute these algebras, as a corollary of this work,
we know that six of these algebras are non-Quasi-triangular and two are Quasi-
triangular only. In particular, we are obtaining information about certain quasi-
Hopf algebras without knowing them explicitly; showing how useful it is to work in
the category world. In a future, when we can explicitly describe these quasi-Hopf

algebras, we will already know how their Quasi-triangular structures are.

2. Preliminaries and notation

Throughout this paper we shall work over an algebraically closed field k of char-
acteristic zero. For basic knowledge of Hopf algebras see [9]. Let H be a finite-
dimensional Hopf algebra and A be a left H-comodule. Then A is also a right
H-comodule with right coaction a — ag ® S(a—_1), see [1, Proposition 2.2.1(iii)].
A left H-Galois extension of A1) is a left H-comodule algebra (A, p) such that
ARpeoiy A > HRA, a®b— (1®a)p(b) is bijective. Similarly, we define right

H-Galois extension.
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Consider L another finite-dimensional Hopf algebra. An (H,L)-biGalois object
[10] is an algebra A that is a left H-Galois extension and a right L-Galois exten-
sion of the base field k such that the two comodule structures make it an (H, L)-
bicomodule. Two biGalois objects are isomorphic if there exists a bijective bico-
module morphism that is also an algebra map. For A an (H, L)-biGalois object,

define the tensor functor
Fa: Comod(L) — Comod(H), Fa=AOL —.

By [10], every tensor functor between comodule categories is one of these, and
Fa ~ Fp as tensor functors if and only if A ~ B as biGalois objects.

If A= H, then every natural monoidal equivalence 8 : Fg — Fpg is given by
f®idx : HOgX — HOpgX, (X, px) € Comod(H),
where f: H — H is a bicomodule algebra isomorphism.

Lemma 2.1. Every natural monoidal equivalence idcomod(rr) — 1dcomod(rr) 5

given by (ef ®idx)px.

Proof. For X € Comod(H), the coaction induces an isomorphism X ~ HOpyX
with inverse induced by ¢, the counit. Then idcomod(r) =~ Fu as tensor functors.
Since all natural monoidal autoequivalences of Fp are given by f ® idx then all

natural monoidal autoequivalences of idcomoed(m) are given by (ef ® idx)px. (I

Definition 2.2. [9, Definition 10.1.5] (H, R) is a Quasi-triangular (or QT) Hopf
algebra if H is a Hopf algebra and there exists R € H ® H, called the R-matriz,

invertible such that
(A®id)R = R“¥R*, (id®A)R=R“RY7, A°°(h)=RA(h)R ' hcH.

Dualizing we can define, (H, ) is a CoQuasi-triangular (or CQT) Hopf algebra
if H is a Hopf algebra and r : H ® H — k, called the r-form, is a linear functional
which is invertible with respect to the convolution multiplication and satisfies for

arbitrary a,b,c € H
rlec@ab) =r(c1@b)r(ca®a), r(ab®c)=r(a® c1)r(b® ca),
r(al & bl)agbz = 7“(0,2 X bg)blal.

Remark 2.3. Drinfeld defined a quantum group as a non-commutative, non-

cocommutative Hopf algebra. Examples of these are the QT Hopf algebras. The
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importance of quantum groups lies in they allow to construct solutions for the quan-
tum Yang-Baxter equation in statistical mechanics (the R-matrix is a solution of
this equation). An example of quantum group are the supergroup algebras.

A supergroup algebra is a supercocommutative Hopf algebra of the form k[G] x
AV, where G is a finite group and V is a finite-dimensional G-module. They
appear and have an interesting role in the classification of triangular algebras, see
[2, Theorem 4.3].

Example 2.4. Consider H = kC5 x kV, for V' a 2-dimensional vector space and
C5 the 2-cyclic group generated by u with u-v = —v for v € V. As an algebra, it is
generated by elements v € V, g € Cy subject to relations vw +wv = 0;gv = (g-v)g
for all v,w € V, g € Cy. The coproduct and antipode are determined by

A)=v@1+u®v;A(g) =g®g;S(w) = —uv;S(g) =g, veV,geCy.

Taking R = %(1 R1+10u+®1l —u®u), (H,R) is a QT-Hopf algebra. We
can construct a CoQuasi-triangular structure taking r = R* since H is auto-dual.
Then (H, R*) is a CQT-Hopf algebra.

Definition 2.5. A finite tensor category is a locally finite, TT-linear, rigid, monoidal
Abelian category D with Endp (1) = 7. Given a finite group I', a (faithful) I'-
grading on a finite tensor category D is a decomposition D = @y4erDy, where D,
are full Abelian subcategories of D such that

e D, #0;

o ®:Dy x Dy — Dy, for all g,h €T
We have that C := D, is a tensor subcategory of D. The category D is call a
I'-extension of C. Denote by [V, g] the homogeneous elements in D, for V' € Dy,
gel.

A braided tensor category is a tensor category C with natural isomorphisms

cxy : X ®Y =Y ® X such that

avwucuvewauv,w = (1d®cuw)av.uw(cuy ®id), (1)
ayyyvevev,wagyw = (cow ®id)agy,y (id @cyw). (2)

If (H,r) is a CQT-Hopf algebra then Comod(H) is a braided tensor category with
braiding given by cyew (r ® y) = 7(y—1 ® _1)yo ® zo, for all V,W € Comod(H).

The following theorem gives us the first condition to know when an extension

can be braided.
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Theorem 2.6. Let D = ©4ccDy be a I'-extension of C. If D is a braided tensor

category then C is a braided tensor category.

Proof. Let ¢ be the braiding of D, then cpy,ow,e) : [V ® W,e] = [W ® V,¢e] and
Clv,el,w,e] = [Cv,w, €] for some natural isomorphism ¢y : V@ W — W &V, for
V,W objects in C. Since the associativity isomorphism satisfies a[y.c),(w,e],[v,e] =
[@v.w.u,e], where @ is the associativity morphism for C; then ¢ is a braiding for
C. O

In [3], the author describes and classifies a family of such extensions and calls
it crossed product tensor category. Fix H a finite-dimensional Hopf algebra. In
the case when C = Comod(H), in [8], we described crossed products in terms of
Hopf-algebraic datum. A continuation they are introduced.

If g € G(H) and L is a (H, H)-biGalois object then the cotensor product LO gk,
is one-dimensional. Let ¢(L, g) € ' be the group-like element such that LOgk, ~
kg(r,g) as left H-comodules. Assume that A is an H-biGalois object with left H-
comodule structure A : A - H ®y A. If g € G(H) is a group-like element we
can define a new H-biGalois object AY on the same underlying algebra A with
unchanged right comodule structure and a new left H-comodule structure given by
N A9 — H®yg A9, N (a) =g ta_1g®ap for all a € A.

Theorem 2.7. [8, Lemma 5.7, Theorem 5.4] Let T = (Lq, (g9(a, b), f**),7)aper be

a collection where

L, is a (H, H)-biGalois object;

g(a.b) € G(H);

fob (LaDHLb)g(“>b) — Lgp are bicomodule algebra isomorphisms;
v € Z3(G(H),k*) normalized,

such that for all a,b,c € T':

L.=H, (g(eva)’feﬂ) = (e7idLa) = (g(a7e)7fa76); (3)
¢(La, (b, ¢))g(a,bec) = g(a, b)g(ab, c); (4)
fab,c(fa,b ® idLC) — fa,bC(idLu ®fb’c)- (5)

Then Comod(H)(Y) := @4er Comod(H) as a structure of tensor category.
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Proof. We give an sketch of the proof. Let T be a collection as in the Theorem.
For VW € Comod(H), a,b € T, define

[‘/v a] ® [W7 b] = [V ® (LaDHW) ® kg(a,b)a ab]a
[V7 1]* ‘= [V*71]7

[ka a]* - = [kg(a,a—l)aail}'
Using [8, Eq (5.8)], we obtain the pentagon diagram and therefore Comod(H)(T) is
a monoidal category. Since Comod(H) is finite tensor category, then Comod(H)(Y)

is also finite tensor category. (]

The following theorem gives us a second condition to decided if our extensions

can be braided.

Theorem 2.8. If Comod(H)(Y) is braided with braiding c then the following con-
ditions have to hold

(1) Lo ~ H foralla T,
(2) T is Abelian,
(3) Y comes from a data (g, f*°,Y)aper with
e g€ Z*(T,G(H)) normalized,
o fub . H9@) s H 4 bicomodule algebra isomorphism with feb°fob =
fasbe fhic
o v € Z3(G(H),k*) normalized.

Proof. (1) Take, for any V' € Comod(H), cy,¢,q : [V,a] = [LaOgV,al, this
defines a natural isomorphism ¢, : ide — L,z — which is monoidal since c is a
braiding. Then L, ~ H as bicomodule algebras for all a € T".

(2) Consider ¢y 1.5 © [Kg(a,p), ab] = [Kg(v,a),ba] then ab = ba for all a,b € T
and I' is Abelian.

(3) Since L, is trivial, then Equation (4) of Theorem 2.7 is equivalent to g €
Z%(T,G(H)) and it is normalized by Equation (3) of Theorem 2.7. Moreover f° :
H9(@b) 5 [ is a bicomodule algebra isomorphism that satisfies fo0:€ fa-b = fa.be fb.c

which is equivalent to Equation (5) of Theorem 2.7. (]

Remark 2.9. By definition of bicomodule morphism, f** : H — H has to be
an algebra isomorphism such that f**(h); ® f**(h)y = g~ 'hig ® f**(hy) and
fub(h)y © f@P(h)g = f*(h1) @ ha, then g~ hig ® f@P(h) = f*"(h1) @ ha.
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In the case when H = AV#kCs, as Example 2.4, using the previous Theorem
we obtained eight tensor categories non-equivalent pairwise, [8, Section 6.3], named
Co(1,id, £1), Co(u, 1, 1), D(1,id, £1), D(u, ¢, £1).

In all cases, the underlying Abelian category is Comod(H) @ Comod(H) and for
V,W,Z € Comod(H) they are defined in the following way:

e The tensor product, dual objects and associativity in Cy(1,1d, +1) are given by

[V.e][W.g] =[VeoW,gd| [V, ul][W, g] = [V ® UgOu W, ugl,
[V’ e]* = [V*ae}’ [lau]* = [kv u]v

Q[V,u],[W,u),[Z,u] 18 DOt trivial, and Up is certain BiGalois object, see [8, Section 4].

e The tensor product, dual objects and associativity in Co(u, ¢, £1) are given by

(V,e][W,e] = [V @ W,1], [V, ul[W,u] = [V @ UgOgW ®ky, €]
[V, e][W,u] = [V @ W,ul, [V u][W,e] = [V @ UeduW, ul,
[V’ 6]* = [V*ve]’ [Lu]* = [kwu]v

ALV, u),[W,ul,[Z,u] is not trivial.

e The tensor product, dual objects and associativity in D(1,id, +1) are given by

[Vie][W.g] = [V & W,g, [V, u][W, g] = [V ® W, ug],
[Ke]*:[V*7e]v [1711']* :[k,u],
Q) Wl [Z] = [Eidvewsz,u] and the others are trivial.

e The tensor product, dual objects and associativity in D(u, ¢, +1) are given by

[Vie][W,e] = [V @ W,el, Vul[Wu] = [VoW @ky,el,
[Viel[W,u] = V@ W,ul, [V ul[We] = [V @ W,ul
[Vie]" =[V7",él, [1,u]” = [ky, ul,

AV ) (Wl [2w] = [T idvew @T(cipz ®idzek, ), u], where ¢ : H* — H is the unique
bicomodule algebra isomorphism which satisfies ¢(u) = —u and «(z) = —=z for
zeViand 7: X QY 2 Y®X,7(2®k) =k®z for all X,Y € Comod(H), see [8,
Remark 2.2].

Remark 2.10. By Lemma 2.8(1), we obtain that only the categories D(1,id, 1)
and D(u,t,+1) could be braided, since the BiGalois objects have to be trivial.
By direct calculation on Equation (1), D(u,t¢,—1) is not braided with trivial

braiding. So, in this case, we want to know if there exist another possible braidings.



EXAMPLES OF (NON-)BRAIDED TENSOR CATEGORIES 201

3. Braided crossed product

Let T' be an Abelian group. In [§8], following the ideas developed in [3], we
described all I'-crossed product tensor categories which are extensions of Comod(H)
for H a Hopf algebra in terms of certain Hopf-algebraic datum. Fix (H,r) a CQT-
Hopf algebra. In the first Lemma of this Section, we do the same for the braiding

of crossed products that are I'-extensions of Comod(H).

Remark 3.1. If v: H — H is a left H-comodule morphism, since the coaction is
the coproduct, v satisfies v(x); ® v(x)y = 1 @ v(x2), for all € H. In particular,

v is not a coalgebra morphism and if g € G(H), v(g) = ge(v(g)).

Lemma 3.2. Fiz a datum (g, f*°,7)aper, as in Lemma 2.8, and let C be the
associated tensor category. Consider a pair (v, w*),er where v, w* : H — H are
left H-comodule algebra isomorphisms. Let W = cw®, V* = ev® and F*° = g f@b,
If for all a,b,c € T and X € Comod(H) we have

vl =w! =idy,

(6)
(9(a,b), f**) = (g(b, a), f**), (7)
Wh(z_3)W(z_o) (W) " Yz_)zg = F**(z_o)r(z_1 @ g(a,b)ze, z€X, (8)
V(@ 3)V* (z_2) (V) (z1)zo = r(w—2 ® g(a, b)) F**(z_1)z0, € X, (9)
Va(g(b7 C)) - (Va,b,cfyb,aa)ilﬂyb,a,cv (10)
Wb(g(c, a)) = ’Vc,a,b’yb,c,a’)’;}ia; (11)
then we obtain a braiding over C given by
Cv,al,wp = cv,w (VO ®id)py @ (W ®id)pw) ®id, V,W € Comod(H),a,b e T.
All braidings over C come from a pair (v®, w®)qer which satisfies (7) to (11).
Proof. By [3, Definition 5.3], a datum (g, f*°,v)aper has associated a braiding if
there exist a triple (0%, 7% tqp)a,bec Where

e 0% 7% :id¢ — id¢ are monoidal natural isomorphisms,

e for all a,b € G, tap : (Uap,0®®) — (Upq,0%?) are isomorphisms in Z(C),
where 0%’ = 7(ef*" @ idx)px, for (X,px) € Comod(H), and U, =
kg(a,b)u

such that for all a,b,c € I' and X € C, the following conditions hold
' =7 =id, 05 =idy =7{, te1 =t =ids, (12)

CUa,b7XU§éb = ((Tg(b)ilT)a(Tg() Y idUa,bv (13)
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0% cu, ux = idu, , @((0%)10%0%), (14)
’Ya,,b,c(etljjbyC & tbc,a)’yb,c,a = (tb,c & idUba,C)’Yb,a,c(tc,a & idUb,ac)v (15)
Voad(Toa D thca)Vyoa = (tha ®idu, ,, )70 o (te @idy,, ). (16)

By Lemma 2.1, each monoidal natural isomorphism of the identity functor comes
from a left H-comodule algebra isomorphism, then 0% := (ev® ® id)px and 7% :=
(ew*®idx )px for all X € Comod(H). Since Uy(q,p) = kg(a,p), We can take ¢, € k*.

Each t,; is a left H-comodule isomorphism if and only if g(a,b) ® ¢, idx =
g(b,a) @t, 1 idx which gives g(a,b) = g(b,a) for all a,b € I". Moreover, each ¢, is a
braided morphism if and only if O'g(’bta,b = aﬁéata’b for a,b € T and X € Comod(H)
if and only if ¢*® = ¢, Then ¢, is an isomorphism in Z(Comod(H)) if and only
if Condition (7) holds.

Condition (12) is equivalent to v' = w! = idy and t,1 = t1,, = 1, since

Op =idx = 7¢ is always true. Condition (13) is equivalent to
Foz_o)r(z_1 @ g(a,b)zo @k = Wl(x_3)W(x_2) (W) Nz_1)zo @k,
for r @ k € X ® ky(a,p), which is equivalent to Condition (8). In the same way,

Condition (14) is equivalent to Condition (9). Condition (15) is equivalent to
Ya.b,e VE(g(b, €))tbe.aVo,ca = tb.cVb,a.cte,a Dut if we take ¢ =1 then

1=tpq,, fora,bel,

so, this Condition is equivalent to Condition (10), and Condition (16) is equivalent
to Condition (11).
By [3, Theorem 5.4], this pair produces a braiding over C given by

Cv,al,wp] = [cvw (07 @ Tyy),ab],  for all VW € Comod(H),a,b €T,  (17)
and all braidings come from such a pair. (]

Now, we focus our attention into the case I' = C5. By Lemma 2.8, a datum Y’/ =
(g, f,7v) with ¢ € G(H) a group-like element, f : HY — H a bicomodule algebra
isomorphism and v € k*, 42 = 1; generates a tensor category C = Comod(H )(Y’).

The following theorem gives us the third and last condition to decide if our

categories are braidable.

Theorem 3.3. The category Comod(H)(Y’) is a braided Cy-extension if and only
if, there exists a pair of isomorphisms of left H-comodule algebras v,w : H — H
such that for all X € Comod H and x € X

a. e(w(z_2)w (z_1))xo =z,
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b. e(w(z_2)w(z_1))zo = f (x_2)r(T-1 ® g)0,
c. e(v(z—2)v™!(z-1))z0 = 2,
d. e(v(z_2)v(z_1))x0 =1(T_2 ® g)cf(T_1)T0,
e. e(v(g) =71,

e(w(g)) =1-

Proof. Condition (7) is always true. Condition (8) is equivalent to r(x_1 ® 1)zo =
x, and items a,b. Condition (9) is equivalent to 7(z_1 ® 1)xg = z, and items c,d.
Condition (10) is equivalent to item e. Condition (11) is equivalent to item f.
Regarding condition r(x_1®1)xo = z, it is always true over a CoQuasi-triangular
Hopf algebra. |

If H = AV#kC3, as Example 2.4, by [8, Proposition 4.10], the isomorphisms v
and w are identities. Then if the extension is braided the only possible braiding is
the trivial, see Equation (17), since the category Comod H has a braiding giving

by the r-form. With this information, Conditions a-f are equivalent to

b

a’. e(r_sx_1)x0 = X,
b’ e(x_ox_1)x0 = ef(x_2)r(2_1 ® g)xo,
(x_ow_ 1)3:0—7"(96 2 ® g)ef(xz_1)zo,
d. e(g) =
(9

e. e(g) =

)

C.

™

Since g is a group—like element, d’ and e’ imply that v = 1. Thus, the only categories
that could be braided are D(1,id, 1) and D(u,¢, 1).

Corollary 3.4. A Cs-extension over Comod (A\V#KCy) is braided if and only if,
for all comodule X, r(f(x_1) ® g)xo =z, for allx € X.

Proof. Condition a’ is always true over comodules. Since z1y17 (22 ® y2) = r(x; ®

y1)yoxs for z,y € H we have
(r_1g)r(x2®g) @ a0 =7(T_1 ® g)gT_2 @ X0-

Applying ef ® idx, we obtain r(z_2 ® g)ef(z_1)xo = ef (x_2)r(x_1 ® g)xo. This
implies that Conditions b’ and ¢’ are equivalent. Since

r(f(x) @ g) = r(f(x)1 ® 9)e(g(f(x)2)) = r(z1 @ g)e(f(x2))
we have r(f(z_1) ® g)xg = ef(x_2)r(x_1 ® g)zg, then Condition b’ is equivalent to

H(f(2-1) © 9)r0 = .

We are ready for our main result.
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Theorem 3.5. The categories D(1,id,1) and D(u,t,1) are braided tensor cate-

gories. The remaining 6 categories found in [8] are non-braidable.

Proof. By [3, Theorem 5.4], the only possible option for v and w is for there to be
the identity. Then the categories D(1,id, 1) and D(u,, 1) have associated at most
a single pair (id, id), which would give it a braided structure For the remaining six
categories, we already know that they are non-braidable.

Since D(1,id, 1) has trivial associativity and Comod(H) is braided then the
braiding for D(1,id, 1) is

Cv,al, W,y = [cv,w,ab], for all V,W € Comod(H),a,b € Cs. (18)

Over D(u,¢,1) it is enough to check Equations (1) and (2) where the associativity
is not trivial. Since (f ® id)(id ®¢) = (id ®g)(f ® id) for any f, g morphisms in the
category, also the braiding given in (18) also satisfies the desired Equations. (|

Corollary 3.6. For X € Comod (AV#kCs), r(v(x—1) ® g)xo =z, for all x € X.

Remark 3.7. Since Comod(H) is not symmetric, then these two categories are

not symmetric either.
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