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Abstract: Back-to-back Mechanically Stabilized Earth (MSE) walls are commonly used for bridge approach embankments.  Artificial 

Neural Network (ANN) analysis conducted in this study was applied for the first time in literature to estimate the seismic-induced 

permanent displacements of retaining walls under dynamic loads. For this purpose, a parametric study of seismic response analysis of 

reinforced soil retaining structures was performed to train the ANN using finite element analysis. The variables used to define wall 

geometry were reinforcement length, reinforcement spacing, wall height and facing type. The harmonic motion had three different levels 

of peak ground accelerations, namely 0.2g, 0.4g and 0.6g and had a duration of 6 sec with a frequency of 3 Hz.  Although developing an 

analytical or empirical model is feasible in some simplified situations, most data manufacturing processes are complex and, therefore, 

models that are less general, more practical and less expensive than the analytical models are of interest. The agreement of the neural 

network predicted displacements and deformation classification with Finite Element Analyses results were encouraging by the means of 

correlation since the coefficient values of R=0.99 for ANN regression analysis were achieved. 

Keywords: Finite element analysis, Artificial neural network, Reinforced soil wall. 

 

1. Introduction 

According to their economic advantages and superior engineering 

properties, construction of back to back mechanically stabilized 

earth (MSE) walls for bridge abutments are becoming more 

common throughout the world. Displacement based seismic 

performance studies of these structures have a vital role for the 

continuity of urban transportation after earthquakes. Although it is 

known that the seismic performance is related to wall geometry 

and earthquake characteristics, to gain better insight into 

mechanisms affecting the behaviour of these structures under 

dynamic loading conditions several engineering approaches are 

still being enhanced. The performance of MSE walls under seismic 

loading can be performed not only with physical testing methods 

(shaking table, centrifuge, full scale model) but also with analytical 

and numerical approaches which can be divided into pseudo-static 

(Monobe-Okabe) methods, displacement (Newmark) methods and 

finite element methods (FEM). 

Finite element analysis is a preferred method because of its time 

and cost efficiency and holds much promise for simulating the 

behaviour of reinforced soil retaining structures under dynamic 

loading conditions. Especially for parametric studies that require 

large numbers of analysis, the validated FEM technique is 

preferred instead of time consuming and expensive physical tests. 

In this study Plaxis v.11.0, a popular FEM software program was 

used in the analysis of seismic response of reinforced soil walls. 

Geotechnical applications require advanced constitutive models 

for the simulation of the nonlinear and time dependent behaviour 

of soils. The modelling of the soil itself is an important issue; many 

geotechnical engineering projects involve the modelling of the 

structures and the interaction between the structures and the soil.  

Although developing an analytical or empirical model is feasible, 

most numerical analysis data manufacturing processes are 

complex and, therefore, models that are less general, more 

practical and less expensive than the analytical models are of 

interest. An important advantage of using Artificial Neural 

Network (ANN) over regression in process modelling is its 

capacity in dealing with multiple inputs or responses while each 

regression model is able to deal with only one response. Another 

major advantage for developing ANN process models is that they 

do not depend on simplified assumptions such as linear behaviour 

or production heuristics. Neural networks possess a number of 

attractive properties for modelling a complex mechanical 

behaviour or a system: universal function approximation 

capability, resistance to noisy or missing data, accommodation of 

multiple nonlinear variables for unknown interactions, and good 

generalization capability. ANNs can efficiently be used as a tool 

for performing tasks such as function approximation (regression) 

and classification. 

In the literature starting from 1990s, ANNs have been used 

productively for solving major particular problems in geotechnical 

engineering. Classical constitutive modelling is unable to imitate 

the situation of geomaterials because of formulation complexity, 

and undue empirical options. According to this, many researchers 

[2-21-22]; claimed that constitutive modelling is based on the 

elasticity and plasticity theoretician, and suggest neural networks 

as a dependable and practical disjunctive to modelling the 

constitutive monotonic and hysteretic behaviour of geomaterials. 

To prevent damage caused by failure of soils as in liquefaction, 

there are different types of ANNs which take into account many 

applications in geotechnical engineering which include retaining 

walls ([6-12], dams [10], blasting [14], geo-environmental 

engineering [15], and tunnels and underground openings [4-18]. 

Ural and Saka [17]; Young-Su and Byung-Tak [19] also carried 

out studies to investigate the applicability of ANNs for predicting 

liquefaction. 
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Goh et al. [6] developed a neural network model to provide initial 

estimates of maximum wall deflections for braced excavations in 

soft clay. The neural network was used to synthesize data derived 

from finite element studies on braced excavations in clay. The 

input parameters used in the model were the excavation width, soil 

thickness/excavation width ratio, wall stiffness, height of 

excavation, soil undrained shear strength, undrained soil 

modulus/shear strength ratio and soil unit weight. The maximum 

wall deflection was the only output. 

Table 1. Comparison of neural network prediction and field 

measurements [6] 

 

2. Theory and Methodology 

2.1. Artificial Neural Networks 

Zurada [23] and Fausett [5] explained that ANNs consist of a 

number of artificial neurons known as 'processing elements' (PEs), 

'nodes' or 'units'. For multilayer perceptrons (MLPs), which are the 

most commonly used ANNs in Geotechnical engineering, 

processing elements are situated as an input layer, an output layer 

and one or more intermediate layers called hidden layers (Fig. 1). 

The dissemination of data in MLPs begins at the input layer where 

the input data are submitted. During the process each input is 

weighted, summed and elapsed through a transfer function to make 

the nodal output. If the network cannot find a set of weights that 

perform the input-output mapping, it will be still regulating its 

weights on presentation of a set of training. This process is called 

‘learning’ or 'training'.  

Since the training set of a model has been finished effectively it 

must be validated. The aim of validation is to check the capacity 

of the model to generalize the limits set by the training data. If this 

type of procedure is appropriate, the model is considered robust 

enough to be generalized. 

The coefficient of correlation, r, the root mean squared error, 

RMSE, and the mean absolute error, MAE, are the main criteria 

that are often used to evaluate the prediction performance of ANN 

models. The coefficient of correlation, a value defined between 0.0 

and 1.0, is a measure that is used to determine the relative 

correlation and the goodness-of-fit between the predicted and 

observed data.  

The objective of the linear regression model is to find the unknown 

function f, which relates the input variable x to the output variable 

y. The function f can be obtained by changing the slope tanφ and 

intercept β of the straight line in Fig. 2.a, so that the error between 

the actual outputs and outputs of the straight line is minimized. The 

same principle is also used in ANN models. ANNs can form the 

simple linear regression model by having one input, one output, no 

hidden layer nodes and a linear transfer function (Fig. 2.b). The 

connection weight w in the ANN model is equivalent to the slope 

tanφ and the threshold θ is equivalent to the intercept β, in the ANN 

linear regression model.  

 

 

Fig. 2. Linear regression versus ANN models [5]. 

It is known from previous studies [7] that the peak ground 

acceleration and the wall displacements are not linearly related. 

When there are non-linear problems, ANNs can deal with these by 

changing the transfer function or network structure, and the type 

of non-linearity can be replaced by changing the number of hidden 

layers and the number of nodes in each layer. 

2.2. Strong Ground Motion and Intensity Measures 

In estimating strong-motion characteristics for seismic design, 

there is a need to define the parameters that reflect the destructive 

potential of the motion. Providing quantitative estimates of 

expected levels of seismic ground-motion requires characterizing 

the complex nature of strong-motion accelerograms by using 

simple parameters and the development of predictive relationships 

for these parameters.  

The main elements of earthquake engineering field and structural 

dynamics are ground motion time history records of acceleration, 

velocity and displacement. Among the information included in 

time history record, amplitude, frequency content and duration 

characteristics of the strong ground motion are the most crucial 

ones for engineering purposes [11]. Several ground motion 

parameters have been defined in the literature and are listed as 

follows; peak ground acceleration (PGA), peak ground velocity 

(PGV), effective peak acceleration (EPA), arias intensity (AI), 

cumulative absolute velocity (CAV), acceleration spectrum 

Fig. 1. Typical structure and operation of ANNs [23]. 
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intensity (ASI), and velocity spectrum intensity (VSI). 

In this study SeismoSignal, software used to process strong motion 

data, was utilized to determine all these IM’s from acceleration 

time history for three different harmonic motions that are varied 

with respect to PGA values. This software comprises an efficient 

and simple way to process strong-motion data, featuring a user-

friendly visual interface and the capability of deriving a number of 

strong-motion parameters.  

Uang and Bertero [16] examined the adequacy of the parameters 

that have been used to identify the damage potential of an 

earthquake and reported that the destructiveness of a ground 

motion record at the foundation of a structure relies on the 

intensity, frequency content, duration and the dynamic 

characteristics of the structure. They reached the conclusion that 

the most dependable parameter for measuring the damage potential 

is earthquake energy input. 

3. CALCULATIONS 

3.1. Numerical Model with FEM 

In this study, Plaxis, an extensively used finite element program 

was utilized for the numerical analysis. Two dimensional (2-D) 

plane strain analysis was performed during the study.  

As can be seen from Fig. 3, the boundary conditions were 

identified as fixities; at the bottom boundary total fixity was 

identified which means both horizontal (ux) and vertical (uy) are 

zero. Below the wall level at the right and left boundaries of the 

basement only horizontal fixities were assigned.  

 

Fig. 3. The geometry of the back to back wall model 

The absorbent boundaries were used in dynamic calculations to 

account for the fact that in reality soil is semi-infinite medium. 

Although these boundaries also affect the wall displacements, 

without these boundaries the waves would be reflected from the 

model boundaries, returning into the model and disturbing the 

results. To avoid these spurious results reflection absorbent 

boundaries were specified at the bottom right and left side 

boundary. In order to minimize absorbent boundary effects on wall 

displacements, the back to back retaining wall was used as the most 

adaptable and realistic design. The geometry of these FEM models 

was defined as in all models the width (B) was fixed at 30 m. and 

the height of the wall (H) got values between 5m and 10m. Below 

the ground level one concrete panel or one modular block was 

embedded as a foundation. 

The linear elastic perfectly-plastic Mohr-Coulomb Model (MCM) 

model was used to define the backfill soil. The model involves five 

input parameters, E and υ for soil elasticity; φ and c for soil 

plasticity and ψ as an angle of dilatancy and the values were 

assigned as stated in Table 2. 

Table 2. Material properties of soil 

 
The reinforcing elements used to define geotextiles could only 

sustain tensile forces and have no bending stiffness. For modelling 

elastoplastic behaviour, the maximum tension force in any 

direction is bound by Np. For geotextile reinforcements EA=4,000 

kN/m was chosen for elastic axial stiffness and NP=400 kN/m for 

10% strain condition. 

In our parametric analysis, modular block facing and precast 

concrete panel were used as facing elements. The modular block 

facing elements were modelled as 0.5 m in width and 0.25 m in 

height and linear elastic material model was selected to define the 

modulus (E) was 4.4x106 kN/m2 and Poisson ratio () was 0.17.  

Precast facing panels were modelled using plates of 0.60 m of 

width and height and 0.20 m of thickness. The material properties 

were defined as 23.5 kN/m3 for unit weight, 25x106 kN/m2 for 

elastic modulus, 0.20 for Poisson ratio and 28 MPa for 28-day 

compressive strength. Based on these properties, the axial stiffness 

EA was calculated as 5,000,000 kN/m. Bending stiffness EI was 

found as 16,660 kNm2/m and finally, for one meter height, the 

weight of the panels was found to be equal to 4.7 kN/m/m. 

The connection between facing panels is modelled by some 

researchers by simple hinges and the compressibility that develops 

between them due to the presence of pads is neglected. Since 

deformations are the main outcome of this study, instead of hinges 

rubber bearing pads were modeled using the same type of elements 

that were used for the facing panels. 

 

Fig. 4. Modeling of discrete bearing pads in plane strain analysis. 

Taking into account the cross sectional area of the rubber pad, 

which is 0.0085 m2, the axial stiffness is equal to 400 kN/m. 

However, this refers to one pad with dimensions 100 mm * 85 mm 

* 60 mm. In plane strain analysis illustrated in Fig. 4, the pad was 

replaced by a plate whose equivalent axial stiffness was calculated 

as 533.3 kN/m. Knowing the thickness of the pads (d = 0.085 m), 

the bending stiffness per linear meter was found equal to 0.321 

kNm2/m. Note that pads are assumed to be weightless and to have 

a very high Poisson's ratio of 0.495. 

In the present finite element model, elements were placed between 

the precast concrete panel and the backfill soil interface. The 

interfaces were also placed between all modular block elements. 

The strength reduction factor value was chosen as 0.7 between 

backfill soil and precast concrete panel and between modular 

blocks. 

The Finite Element Model was subjected to a base excitation, 

which is a variable amplitude harmonic motion. The prescribed 

displacement feature of the program at the base of the wall was 
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employed to assign the constant frequency cyclic load. The cyclic 

load was applied at equal time intervals of 0.05 s and its variation 

with time is shown in Fig. 5. This accelerogram has been accepted 

as a good representation of commonly encountered accelerograms 

[3]. The peak amplitude of the input acceleration was selected as 

0.2, 0.4 and 0.6 g. A frequency of 3 Hz was selected to represent a 

typical predominant frequency of medium to high frequency 

content earthquake. 

 

Fig. 5. Base harmonic acceleration history used as cyclic load in the 

analysis (apeak=0.2g). 

3.2. Validation Analysis of Numerical Model 

In order to validate the finite element modeling technique under 

earthquake loading conditions, the results of a shaking table test 

reported by Ling et al. [13] were used and the results were 

compared and reported by Guler et al. [7].  

To check the accuracy of the Finite Element Model (FEM) used in 

this study, results of a 1-g shaking test reported by Anastasopoulos 

et al. [1] were modeled using the same Finite Element modeling 

technique.  

Anastasopoulos et al. [1] performed tests on back to back retaining 

walls. The configuration details of model setup are shown in Fig. 

6. Two different steel wire meshes were used in order to simulate 

flexible and stiff reinforcements. Plane strain idealization of 

discrete reinforcement elements was used in order to transform 3-

D conditions of physical test to a 2-D finite element model 

according to the study of Zevgolis [20]. After this adjustment, the 

elastic axial stiffness parameters which were required for 

numerical analysis were calculated as EA = 400 kN/m for stiff and 

40 kN/m for flexible reinforcement.  

The facing panels were made of t=2 mm Plexiglas strips (E = 3 

GPa), and were connected to each other through a customized 

connection using a ''shear key'' configuration to block relative 

horizontal displacements between consecutive panels but allowing 

differential rotation (as in reality). Based on these properties, the 

axial stiffness EA was calculated as 6,000 kN/m. Bending stiffness 

EI was found as 2x10-3 kNm2/m. Poisson’s ratio and unit weight of 

Plexiglas strip facing were assigned as 0.37 and 0.0234 kN/m/m 

respectively for numerical analysis. 

The backfill consisted of dry “longstone” sand, a very fine and 

uniform quartz sand industrially produced with adequate quality 

control. Test model was constructed with Dr = 44% to represent 

the loose state (Table 3). 

 

 

Fig. 6. Shaking table model setup showing geometry and instrumentation. 

[1] 

Table 3. Longstone sand index properties of validation model. [1]  

 

The model was subjected to an ''extreme seismic shaking 60-cycle 

cos sweep'' of dominant period To=0.5 s and PGA= 1.0 g (Fig. 7). 

 

Fig. 7. 60-cycle ''extreme shaking'' synthetic excitation [1]. 

Although not realistic (both in terms of retained soil density and 

shaking intensity), this test was conducted to derive deeper insights 

on the ultimate capacity of reinforced soil walls. 

 

Fig.8. Shaking table test results after harmonic motion. (60-cycle ''cos 

sweep'' of dominant period To=0.5 s and PGA= 1.0 g) [1]. 
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Fig. 8 shows the final position of the wall after 60-cycle ''cos 
sweep'' seismic excitation which has a period T0=0.5 s and PGA= 
1g. Fig. 9. shows the Plaxis models final deformation position. 

The order of shaking events started with smaller intensity records, 

followed by the larger ones, and completed with multi-cycle 

artificial motions: the two 30-cycle so-called ''cos sweeps'' of 

PGA=0.5 g and To=0.4 or 0.8 s.  

 

Fig. 10. Multi-cycle accelerograms used as seismic excitations [1]. 

The results of the numerical analyses are summarized in Fig. 11 

and Fig. 12. The results of FEM model are compared directly with 

shaking table test results to serve as validation of the numerical 

analysis and of the Mohr Coulomb model. 

As depicted in Fig. 11 and Fig. 12 the numerical prediction 

(analysis of shaking table model) compares well with the results of 

the shaking table tests for the two artificial 30-cycle cos-sweeps. 

The numerical analysis underestimates the cyclic component of the 

horizontal (lateral) wall displacement, but the examined herein 

(reinforcement stiffness and dominant period of residual 

displacement. 

 

Fig. 11. Wall displacement time histories for the multi-cycle seismic 

excitation of T=0.4 s  

 

Fig.12. Wall displacement time histories for the multicycle seismic 

excitation of T=0.8s 

3.3. ANN Analysis 

In this study, twelve input and one output parameters were used in 

order to predict the permanent displacement of back to back 

retaining walls. Five of them were about wall geometry illustrated 

in Fig. 13 as; wall height (H) varied between 5m and 10m, 

reinforcement length (L), length over height ratio (L) changed 

between 0.5 and 2, vertical spacing of reinforcement (Sv) varied 

between 0.2m and 0.8m, facing type (modular block and precast 

concrete panel). 

 

Fig. 13. Back to back retaining wall geometry. 

The other seven parameters were about intensity measures of 

dynamic loading as PGA (m/s2), PGV (m/s), EPA (m/s2), AI 

(m/s), CAV (m/s), ASI (m/s), VSI (m). The program Seismosignal 

was used to obtain the intensity measure results for a given 

acceleration time history. Table 4. gives the results of three 

harmonic ground motion analyses. 

Table 4. Seismosignal results of harmonic motion. 

 

ANN was initially trained using a set of experimental data obtained 

from the computer simulations of FE models of the back to back 

wall and this set of data was called  training data. Design of ANN 

Fig. 9. Plaxis output after harmonic motion. (60-cycle ''cos sweep'' of 

dominant period To=0.5 s and PGA= 1.0 g). 
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architecture consists of determining the number of layers, the 

number of neurons in each layer, activation functions of the 

neurons and the learning algorithm for the network. The most 

common ANN architecture is a multi-layer feed-forward structure 

also known as a multilayer perceptron (MLP) trained by Back-

Propagation (BP) algorithm [9]. There are three different types of 

layers in a MLP: an input layer representing the input design 

variables, an output layer representing the response, and a number 

of hidden layers that perform the mapping of the input data before 

they enter the output layer. (Fig. 14) 

 

Fig. 14. Multi-layer perceptron (MLP) with three layers. 

Other than the training data, validation data were used during the 

learning process. The learning halts when the error of the 

validation data falls below a threshold value or when a maximum 

number of iterations (epochs) is reached. Finally, the performance 

of the network was estimated using independent test data that had 

not been used in the learning process. The mean square error 

(MSE) is generally used for calculating the error. For this study, 

the Levenberg-Marquardt (LM) algorithm was adopted for its 

efficiency in training MLP. The details of the back propagation 

(BP) algorithm can be found in the literature [8].  

4. RESULTS 

4.1. Finite Element Analysis Results 

Fig. 15 shows deformed models lateral displacement |𝑢𝑥| after 

seismic loading by the means of shadings. Color scale on the right 

side of deformed model shows the displacement distributions of all 

systems. 

Walls with modular block facing and precast concrete panel facing 

have different displacement increments behaviour as can be seen 

from Fig. 16 and Fig. 17. Also it was obtained from figures that in 

both facing types the permanent displacements increased 

nonlinearly with increasing PGA values. It was observed that this 

increase was more obvious at higher walls for example for a 9 

meter wall the permanent displacements were 17, 28 and 32 cm for 

0.2, 0.4 and 0.6 g PGAs respectively. As an example, for a 5 meter 

wall the permanent displacement values did not vary so much with 

increasing PGA. This on the other hand shows that the relation 

between permanent displacements and wall height is also non-

linear. 

 

Fig. 16. Permanent displacement according to wall height (L/H= 0.7, Sv 

=40cm, modular block facing). 

 

Fig.17. Permanent displacement according to wall height (L/H= 0.7, Sv 

=40cm, precast concrete panel facing). 

Relative displacement r is the ratio of maximum displacement to 

wall height. Fig.18 shows the variation of r values for L/H ratios 

for a wall model example where Sv=0.4m and H=7m obtained 

from FEM analysis. It can be observed that the relative 

displacements increased nonlinearly with increasing PGA and the 

differentiation was more obvious between L/H ratios of 0,7 and 1. 

Especially for a PGA of 0.2g it is also clearly seen that the 

Fig. 15. Deformed mesh after seismic loading (PGA= 0.2g).  
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relationship between relative displacement and L/H ratio is also 

non-linear. 

 

Fig.18. Relative displacement factors according to L/H. (Sv=40 cm, 

H=7m) 

As can be seen in Fig.19 displacement values normalized by height 

are increased with increasing vertical spacing between 

reinforcements. 

 

Fig. 19. Displacement / Height according to vertical spacing Sv. (L/H=0.7 

H=7 m). 

4.2. ANN Regression Analysis Result 

Squared Error (MSE) is performance metric adopted to determine 

the network performance, while regressions; R is used to measure 

the correlation between outputs and targets. The fitting curve 

between targets with inputs is shown in Fig.20 and the best 

validation performance is approached at epoch 10. 

 

 

Fig. 20. Validation performance. 

 

Fig. 21. Fitting curve between targets with inputs. 

The neural network is trained and validated using the first batch of 

110 learning points and the performance is evaluated using 83 test 

points. The performance of the ANN regression model for the first 

83 learning points using 10 neurons in the hidden layer can be seen 

in Fig. 21. Even for a relatively low number of learning points, 

ANN regression performs well on the test data. Totally 276 data 

are distributed between training, validating and testing in different 

percentages. Despite distribution of the data in various proportions, 

no significant change about R has been seen in Table 5. 

Table 5. Results for MSE and regression for Different data distribution. 

 

The same geometric input with each intensity measures gives high 

coefficients of correlation for testing data as seen in Table 6. It is 

assumed that this result was obtained because a harmonic motion 

was used in this study. 

Table 6. Search for each IM input features. 

 

The agreement of the neural network predicted displacements and 

FEA results were encouraging, as shown in Table 7. 

Table 7. Comparison of neural network predictions and FEA results. 
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5. CONCLUSION 

In the numerical analysis part of the study permanent 

displacements of back to back reinforced segmental retaining walls 

under earthquake loading condition were calculated with the finite 

elements program Plaxis. Three harmonic motions which have 

PGA values 0.2g, 0.4g and 0.6g respectively with a frequency of 3 

Hz were performed. 

The investigated parameters such as height of the wall, type of 

facing (modular block and concrete panel), reinforcement length 

and spacing of reinforcement led to the following results. The 

permanent displacement increased with the height of the wall. 

Permanent displacements of modular block facing walls were more 

than precast concrete panel facing. Increasing reinforcement length 

decreased the permanent displacements of wall facing and 

maximum tensile stress on reinforcement. Decreased 

reinforcement vertical spacing (Sv) caused a reduction on the 

permanent displacements of wall facing. The peak ground 

acceleration had strong influence on the dynamic response of the 

walls. As an example, when the peak ground acceleration was 0.2g, 

0.4g, and 0.6g permanent displacements for a wall with 9m height 

were 17cm, 28cm, and 32cm, respectively. It can be seen that peak 

ground acceleration and permanent displacements were correlated 

nonlinearly. Also the permanent displacement and L/H ratio 

correlation was nonlinear. 

The study intended to use the ANN model in order to make reliable 

predictions for geosynthetic reinforced wall design and to check 

whether the results of finite element analysis results fall between 

reasonable limits.  

The ANN was used to synthesize data derived from finite element 

studies on back to back geosynthetic reinforced retaining walls 

under seismic excitation. The input parameters used in the model 

were H, L, L/H, Sv, Ftype, PGA, PGV, EPA, AI, CAV, ASI, and 

VSI. The permanent displacement of the wall was chosen the only 

output. 

The important point of the seismic evaluation of the seismic 

response of the back to back MSE retaining wall is the selection of 

ground motion intensity measure IM for different earthquakes. In 

this study due to constant frequency (3 Hz) value of harmonic 

motions with different PGAs (0.2g, 0.4g and 0.6g), intensity 

measures; PGV, EPA, CAV, ASI, and VSI are linearly correlated 

with PGA values but AI is not. Therefore any of these IMs is 

enough to approach high coefficients of correlated ANN model. 

Using ANN regression analysis, the scatter of the predicted ANN 

displacements relative to the displacements obtained using the 

finite element method were assessed. The results produced high 

coefficients of correlation for training and testing data of 0.997 and 

0.989, respectively. So, the agreement of the neural network 

predicted displacements and deformation classification with Finite 

Element Analyses results were encouraging by the means of 

correlation since the coefficient values of R=0.99 for ANN 

regression analysis were achieved. 
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