

Adıyaman University Journal of Science

ADYUJSCI

https://dergipark.org.tr/en/pub/adyujsci DOI: 10.37094/adyujsci.476813

Some Properties of \oplus – Cofinitely δ – Supplemented Modules

Figen ERYILMAZ*

Ondokuz Mayıs University, Faculty of Education, Department of Mathematics Education, Samsun, Turkey

fyuzbasi@omu.edu.tr, ORCID: 0000-0002-4178-971X

Abstract

In this paper, we study the properties of generalized \oplus -cofinitely δ supplemented modules or briefly \oplus - $gcof_{\delta}$ -supplemented modules. We show that any
direct sum of \oplus - $gcof_{\delta}$ -supplemented modules is a \oplus - $gcof_{\delta}$ -supplemented module.
If M is a \oplus - $gcof_{\delta}$ -supplemented module with SSP, then every direct summand of Mis \oplus - $gcof_{\delta}$ - supplemented.

Keywords: δ -small submodule, δ -supplemented module, Cofinite submodule, \oplus -cofinitely supplemented module

\oplus – Dual Sonlu δ – Tümlenmiş Modüllerin Bazı Özellikleri

Öz

Bu çalışmada, genelleştirilmiş \oplus – dual sonlu δ – tümlenmiş modüllerin özellikleri çalışıldı. Bu modüller kısaca \oplus – $gcof_{\delta}$ ile gösterildi. Genelleştirilmiş \oplus – dual sonlu δ – tümlenmiş modüllerin keyfi toplamının da genelleştirilmiş \oplus – dual sonlu δ – tümlenmiş modül olduğu gösterildi. M modülünün direkt toplam terimlerinin toplama özelliğine sahip (DDT) genelleştirilmiş \oplus – dual sonlu δ – tümlenmiş bir modül olması durumunda M modülünün her bir direkt toplam teriminin de genelleştirilmiş \oplus – dual sonlu δ – tümlenmiş modül olduğu ispatlandı.

* Corresponding Author

Received: 02 November 2018

Anahtar Kelimeler: δ -küçük alt modül, δ -tümlenmiş modül, Dual sonlu alt modül, \oplus - dual sonlu tümlenmiş modül

1. Introduction

In this study *D* is used to show a ring which is associative and has an identity. All mentioned modules will be unital left *D*-module. The notation $A \le B$ means *A* is a submodule of *B*. Any submodule *A* of an *D*-module *B* is called *small* in *B* and showed by A = B whenever $A + C \ne B$ for all proper submodule *C* of *B*. Dually, a submodule *A* of a *D*-module *B* is called to be *essential* in *B* which is showed by $A(B \text{ where } A \cap K \ne 0 \text{ for each nonzero submodule } K \text{ of } B$. A module *B* is called *singular* when $B \cong \frac{A}{K}$ for any module *A* and a submodule *K* of *A* with *K*(*A*.

Zhou firstly mentioned the definiton of " δ -small submodule" as a generalization of small submodules in [1]. Remember that a submodule A of a module B is called as δ -small in B and which is showed by $A = {}_{\delta} B$ if $B \neq A + X$ for any submodule X of B where $\frac{B}{X}$ singular. The symbol $\delta(B)$ will be used for the sum of all δ -small submodules, that represents a preradical on the category of D-modules.

Let A and K be submodules of B. Then A is called a *supplement* of K in B when A is minimal with the property B = A + K; in other words B = A + K and $A \cap K = A$. Definiton of *supplemented module* B is every submodule of B has a supplement in B. There are a lot of papers related with supplemented modules. One can examine the manuscripts [2,3].

Let A be a submodule of B. The submodule K is called a δ -supplement of A in B if B = A + K and $B \neq A + X$ for any proper submodule X of K where $\frac{K}{X}$ singular, in other words B = A + K and $A \cap K = {}_{\delta} K$. Therefore B is called δ -supplemented if all submodules of B have δ -supplement in B [4,5]. Nevertheless, B is said to be $\oplus -\delta$ -supplemented whether all submodules of B have $\oplus -\delta$ -supplement that is a direct summand of B [6].

A submodule A is named with *cofinite* in B as quotient module $\frac{B}{A}$ is finitely generated. Also the module B is named with "*cofinitely supplemented* if every cofinite submodule has a supplement in B" [7].

Following [8], if all submodules of *B* have a supplement which is a direct summand of *B*, then *B* is named with \oplus -supplemented. In [9], \oplus -cofinitely supplemented modules was examined and founded as a proper generalization of \oplus -supplemented modules,. Any module *B* is named \oplus -cofinitely supplemented if each cofinite submodule of *B* get a supplement which is a direct summand of *B*. As a result of this definition, finitely generated \oplus -cofinitely supplemented modules are already \oplus supplemented. Basic properties of these modules we refer to [10,11]. Another generalization of these modules was studied in [12].

According to [13], a D-module B is named as \oplus - cof_{δ} -supplemented if all cofinite submodules of B have δ -supplement which is a direct sum term of B. Some properties of these modules we refer to [14, 15].

Talebi defined generalized δ -supplemented modules. He called a submodule A of B is a generalized δ -supplement submodule of B if one can find a submodule K of B where B = A + K and $A \cap K \le \delta(A)$. A module B is called a generalized δ -supplemented or shortly δ -GS if each submodule of B possessed of a generalized δ -supplement in B [16].

B is called *generalized* \oplus – *cofinitely* δ – *supplemented* module provided that each cofinite submodule of *B* possessed of a generalized δ – supplement with direct summand of *B*. In place of writing generalized \oplus – cofinitely δ – supplemented module, we choose to use \oplus – *gcof*_{δ} – *supplemented*. In the next section, some fundamental properties of \oplus – *gcof*_{δ} – supplemented modules will be examined.

2. Main Results

Theorem 1. Any direct sum of $\oplus -gcof_{\delta}$ – supplemented modules is a $\oplus -gcof_{\delta}$ – supplemented module for any ring *D*.

Proof. Let $\{B_i\}_{i \in I}$ be a collection of generalized \oplus – cofinitely δ – supplemented modules over an arbitrary ring D and let $B = \bigoplus_{i \in I} B_i$. Suppose that A is a cofinite submodule of B. Then $B = A + \left(\bigoplus_{j=1}^n B_{i_j} \right)$ can be written and it is easy to find that $\{0\}$ is a trivial generalized δ – supplement of $B = B_{i_1} + \left(\left(\bigoplus_{j=2}^n B_{i_j} \right) + A \right)$. If we remember the following isomorphisms

$$\frac{B_{i_1}}{B_{i_1} \cap \left(A + \left(\bigoplus_{j=2}^n B_{i_j} \right) \right)} \cong \frac{B}{\left(\bigoplus_{j=2}^n B_{i_j} \right) + A} \cong \frac{\left(B / A\right)}{\left(\left(\bigoplus_{j=2}^n B_{i_j} \right) + A \right) / A},$$

then we have $B_{i_1} \cap \left(A + \begin{pmatrix} n \\ \oplus \end{pmatrix} B_{i_j} \right)$ is a cofinite submodule of B_{i_1} . Onwards B_{i_1} is $\oplus -gcof_{\delta}$ - supplemented, $B_{i_1} \cap \left(A + \begin{pmatrix} n \\ \oplus \end{pmatrix} B_{i_j} \right)$ has a generalized δ - supplement U_{i_1} in B_{i_1} where U_{i_1} is a direct summand term of B_{i_1} . With Lemma 2.4 in [17], U_{i_1} is a generalized δ - supplement of $A + \begin{pmatrix} n \\ \oplus \end{pmatrix} B_{i_j}$ in $B \cdot U_{i_1}$ is also a direct summand of B, forwhy B_{i_1} is direct summand of B. If one continues in this way, it will be obtained that A will have generalized δ - supplement $U_{i_1} + U_{i_2} + \dots + U_{i_j}$ in B such that every U_{i_j} is a direct summand of B_{i_j} for $1 \le j \le A$. Since every B_{i_j} is a direct summand of B, one can get $\bigoplus_{j=1}^{n} U_{i_j}$ is a direct summand of B. Therefore, the module B is $\oplus -gcof_{\delta}$ supplemented.

Proposition 1. If *B* is a $\oplus -gcof_{\delta}$ -supplemented module, then each cofinite submodule of $\frac{B}{\delta(B)}$ is a direct summand.

Proof. Assume that *B* is a $\oplus -gcof_{\delta}$ – supplemented module. We know that every cofinite submodule of $\frac{B}{\delta(B)}$ has the form $\frac{U}{\delta(B)}$, such as *U* is a cofinite submodule of *B* and $\delta(B) \leq U$. By using hypothesis, we get B = A + U, $A \cap U \leq \delta(A)$ and $B = A \oplus K$ such that $A, K \leq B$. Since $\delta(A) \leq \delta(B)$, we have $A \cap U \leq \delta(B)$ and so

$$\frac{B}{\delta(B)} = \frac{A+U}{\delta(B)} = \left(\frac{A+\delta(B)}{\delta(B)}\right) \oplus \left(\frac{U}{\delta(B)}\right).$$

Consequently, $\frac{U}{\delta(B)}$ is a direct summand of $\frac{B}{\delta(B)}$.

A submodule A of a D-module B is named "fully invariant if one have $f(A) \subseteq A$ for all $f \in S$ where where $S = End_D(B)$ " [3]. If $B = U \oplus V$ and A is a fully invariant submodule of B, then we obtain $A = (A \cap U) \oplus (A \cap V)$. $\delta(B)$ is a fully invariant submodule of B. A left D-module B is called a "duo module if any submodule of B is fully invariant" [18].

Proposition 2. Suppose that B is $a \oplus -gcof_{\delta}$ – supplemented module. If U is a fully invariant submodule of B. Then $\frac{B}{U}$ is $a \oplus -gcof_{\delta}$ – supplemented module.

Proof. Assume that $\frac{K}{U}$ is a cofinite submodule of $\frac{B}{U}$. Therefore *K* is a cofinite submodule of *B*. As *B* is a \oplus -gcof_{δ}-supplemented module, one can find *C*, *A* submodules of *B* where B = K + C, $K \cap C \le \delta(C)$ and $B = C \oplus A$. Using Proposition 2.9 in [16], we can see that $\frac{C+U}{U}$ is one of the generalized δ -supplement of $\frac{K}{U}$ in $\frac{B}{U}$. If we remember that $U = (U \cap C) \oplus (U \cap A)$ can be written because of being fully invariant submodule of *B*, then we have $\frac{B}{U} = \left(\frac{C+U}{U}\right) \oplus \left(\frac{A+U}{U}\right)$. Therefore $\frac{C+U}{U}$ is a generalized δ -supplement of $\frac{K}{U}$ such that $\frac{C+U}{U}$ is a direct summand of $\frac{B}{U}$.

Corollary 1. Let *B* be $a \oplus -gcof_{\delta}$ – supplemented and *a* duo module. Then every factor module of *B* is $a \oplus -gcof_{\delta}$ – supplemented module.

Proposition 3. Assume that B is $\oplus -gcof_{\delta}$ – supplemented, A is a fully invariant submodule of B and a cofinite direct summand of B. Then it's $\oplus -gcof_{\delta}$ – supplemented.

Proof. Assume that A is a cofinite direct summand of B. Then, there exists a submodule A' of B with $B = A \oplus A'$. If U is cofinite submodule of A, then $\frac{A}{U}$, A' are finitely generated and U is cofinite. As B is $\oplus -gcof_{\delta}$ -supplemented, we have B = U + K, $U \cap K \le \delta(K)$ and $B = K \oplus K'$ such that $K, K' \le B$. By Lemma 2.1 in [18], we have $A = (A \cap K) \oplus (A \cap K')$. Since B = U + K, we have $A = U + A \cap K$. Also $A \cap K$ is a direct summand of B. Hence, $A \cap K$ is a δ -supplement submodule in B. By using Lemma 2.2 in [16], we can obtain $U \cap (A \cap K) \le \delta(A \cap K)$. Thus $A \cap K$ is a generalized δ -supplement of U in A. This means A is $\oplus -gcof_{\delta}$ -supplemented.

Theorem 2. Assume that *B* is direct sum of submodules B_1 and B_2 . B_2 is $\oplus -gcof_{\delta}$ -supplemented \Leftrightarrow there is a submodule *K* of B_2 with *K* is one of the direct summand of *B* and B = U + K, $U \cap K \leq \delta(K)$ for each cofinite submodule $\frac{U}{B_1}$ of $\frac{B}{B_1}$.

Proof. Let
$$\frac{U}{B_1}$$
 be any cofinite submodule of $\frac{B}{B_1}$. If we remember $\frac{(B/B_1)}{(U/B_1)} \cong \frac{B}{U}$ and

 $\frac{B}{U} \cong \frac{B_2}{(U \cap B_2)}, \text{ then it follows that } U \cap B_2 \text{ is a cofinite submodule of } B_2. \text{ By the assumption, there are } K, K' \text{ submodules of } B_2 \text{ with } B_2 = (U \cap B_2) + K, \\ (U \cap B_2) \cap K \le \delta(K) \text{ and } B_2 = K \oplus K'. \text{ Therefore the equalities } \\ B = B_1 + B_2 = B_1 + (U \cap B_2) + K = U + K \text{ can be obtained. Also we get } \\ (U \cap B_2) \cap K = U \cap K \le \delta(K) \text{ and so } K \text{ is direct summand of } B.$

Conversely, let's take A as any cofinite submodule of B_2 . Note that

$$\frac{\left(\frac{B}{B_1}\right)}{\left(\frac{(A+B_1)}{B_1}\right)} \cong \frac{B}{(A+B_1)} = \frac{\left(A+B_1+B_2\right)}{\left(A+B_1\right)} \cong \frac{B_2}{\left(B_2 \cap (A+B_1)\right)} = \frac{B_2}{A}$$

Since the last module $\frac{B_2}{A}$ is finitely generated, $\frac{(A+B_1)}{B_1}$ is a cofinite submodule of $\frac{B}{B_1}$. By the assumption, we have a submodule K in B_2 where K is a direct summand of B with $B = K + A + B_1$ and $(A+B_1) \cap K \le \delta(K)$. Then it follows that $B_2 = A + K$ and $A \cap K \le \delta(K)$ and so B_2 is $\oplus -gcof_{\delta}$ -supplemented.

Proposition 4. Let B be $\oplus -gcof_{\delta}$ -supplemented with $\delta(B) = {}_{\delta} B$. Then B is a $\oplus -cof_{\delta}$ -supplemented module.

Proof. Let A be any cofinite submodule of B. As B is $\oplus -gcof_{\delta}$ - supplemented, there are submodules K and K' of B where B = A + K and $A \cap K \le \delta(K)$, $B = K \oplus K'$. Remember that $A \cap K \le \delta(K) \le \delta(B) = {}_{\delta} B$. Therefore $A \cap K = {}_{\delta} K$ by Lemma 1.1 in [14]. As a result, B is $\oplus -cof_{\delta}$ - supplemented.

Theorem 3. Let B be $\oplus -gcof_{\delta}$ - supplemented and $U \leq B$. If $\frac{(U+W)}{U}$ is a direct summand of $\frac{B}{U}$ for all direct summand of W of B, then $\frac{B}{U}$ is $\oplus -gcof_{\delta}$ - supplemented.

Proof. Assume that $\frac{A}{U}$ is a cofinite submodule in $\frac{B}{U}$ where A cofinite submodule of B and $U \le A$. Since B is a $\oplus -gcof_{\delta}$ – supplemented module, one can find a direct summand V' of B such that B = A + W, $A \cap W \le \delta(W)$ and $B = W \oplus V'$ where V' is any submodule of B. Now, we have $\frac{B}{U} = \frac{A}{U} + \left(\frac{U+W}{U}\right)$. Also, by hypothesis, $\frac{U+W}{U}$ is a direct summand of $\frac{B}{U}$. Let $f: B \to \frac{B}{U}$ be canonical epimorphism. Since $A \cap W \le \delta(W)$ and

$$\begin{pmatrix} \underline{A} \\ U \end{pmatrix} \cap \left(\frac{U+W}{U} \right) = \frac{A \cap (U+W)}{U} = \frac{U+(A \cap W)}{U}$$
$$= f(A \cap W) \le f(\delta(W)) \le \delta\left(\frac{U+W}{U}\right)$$

by Lemma 1.5 in [1], it follows that $\frac{U+W}{U}$ is generalized δ -supplement of $\frac{A}{U}$ in $\frac{B}{U}$ which is a direct summand.

A D-module B has SSP "(Summand Sum Property) if the sum of two direct summand of B is again a direct summand of B " [3].

Theorem 4. If B is $\oplus -gcof_{\delta}$ – supplemented with SS property, then each direct summand of B is $\oplus -gcof_{\delta}$ – supplemented.

Proof. Assume that U_1 is a direct summand of B. Therefore we get $B = U_1 \oplus U'$ for $U' \leq B$. Let A be a direct summand of B. Having SS property of B, we can write that $B = (U' + A) \oplus K$ such that $K \leq B$. Thus, the equality $\frac{B}{U'} = \frac{(U' + A)}{U'} \oplus \frac{(K + U')}{U'}$ implies that $\frac{B}{U'}$ is a $\oplus -gcof_{\delta}$ – supplemented module by Theorem 3.

We already know from [19] that, a D-module B is named weakly distributive if each submodule of B is a weak distributive submodule of B, H is called a weak distributive submodule of B if $H = (H \cap M) + (H \cap N)$ for all submodules of B where B = M + N.

Theorem 5. If B is $\oplus -gcof_{\delta}$ – supplemented and weakly distributive, then $\frac{B}{E}$ is $\oplus -gcof_{\delta}$ – supplemented for each submodule E of B.

Proof. Suppose that M is a direct summand of B. Then $B = M \oplus N$ for some submodule N of B and we can write $\frac{B}{E} = \left(\frac{E+M}{E}\right) + \left(\frac{E+N}{E}\right)$. By distributive property of B, we have $E = E + (M \cap N) = (E+M) \cap (E+N)$. This equality says that $\frac{B}{E} = \left[\frac{E+M}{E}\right] \oplus \left[\frac{E+N}{E}\right]$ and therefore $\frac{B}{E}$ is a $\oplus -gcof_{\delta}$ -supplemented module by Theorem 3.

A D – module B is said to have property (D_3) "if B_1 and B_2 are direct summands of B with $B = B_1 + B_2$, then $B_1 \cap B_2$ is also a direct summand of B" [2].

Theorem 6. If B is $a \oplus -gcof_{\delta}$ – module with the property (D_3) , then all cofinite direct summand terms of B is $a \oplus -gcof_{\delta}$ – module.

Proof. Assume that U is any cofinite direct summand of B. Then we can find a submodule U' of B where $B = U \oplus U'$ and U' is finitely generated. If A is any cofinite submodule of U, then A is also cofinite submodule of B by the fact that $\frac{B}{A} \cong \frac{U}{A} \oplus U'$ is finitely generated. Since B is $\oplus -gcof_{\delta}$, we have a direct summand W of B whereas B = A + W, $A \cap W \le \delta(W)$. Note that B = U + W and $U = A + (U \cap W)$. Having (D_3) property of B implies that $U \cap W$ is a direct summand of B. Thus $A \cap (W \cap U) = A \cap W \le \delta(W \cap U)$ by using Lemma 2.2 of [16]. Furthermore $U \cap W$ is a direct summand of U forwhy so does $W \cap U$ of B. Hence U is $\oplus -gcof_{\delta} - gcof_{\delta} - g$

Lastly, there is a module example which is $\oplus -gcof_{\delta}$ -supplemented but not $\oplus -\delta$ -supplemented.

Example 1. [13, Example 1]. Let D = Z and $B = \bigoplus_{i \in I} B_i$, with each $B_i = Z_{p^{\infty}}$, where p is a prime number. Then B_i are δ -supplemented. By Theorem 1, B is $\oplus -gcof_{\delta} -$ supplemented. However B is not $\oplus -\delta$ -supplemented.

References

[1] Zhou, Y., *Generalizations of perfect, semiperfect, and semiregular rings*, Algebra Colloqium, 7(3), 305-318, 2000.

[2] Mohamed, S.H., Müller, B.J., Continuous and Discrete Modules, London Mathematical Society, Cambridge University Press, Cambridge, 1990.

[3] Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.

[4] Koşan, M.T., δ -lifting and δ -supplemented modules, Algebra Colloqium, 14(1), 53-60, 2007.

[5] Wang, Y., δ -small submodules and δ -supplemented Modules, International Journal of Mathematics and Mathematical Sciences, Article ID 58132, 8 pages, 2007.

[6] Ungor, B., Halicioğlu, S., Harmanci, A., On a class of δ -supplemented Modules, Bulletin of the Malaysian Mathematical Sciences Society (2), 37(3), 703-717, 2014.

[7] Alizade, R., Bilhan, G., Smith, P.F., *Modules whose maximal submodules have supplements*, Communications in Algebra, 29, 2389-2405, 2001.

[8] Harmancı, A., Keskin, D., Smith, P.F., $On \oplus$ – supplemented modules, Acta Mathematica Hungarica, 83, 161-169, 1999.

[9] Çalışıcı, H., Pancar, A., \oplus – *cofinitely supplemented modules*, Czechoslovak Mathematical Journal, 54 (129), 1083-1088, 2004.

[10] Wang, Y., Sun, Q., A note on \oplus -cofinitely supplemented modules, International Journal of Mathematics and Mathematical Sciences, Article ID 10836, 5 pages, 2007.

[11] Zeng, Q., \oplus – *cofinitely supplemented modules*, Southeast Asian Bulletin of Mathematics, 33, 805-819, 2009.

[12] Nişancı, B., Pancar, A., On generalization of \oplus – cofinitely supplemented modules, Ukrainian Mathematical Journal, 62(2), 203-209, 2010.

[13] Thuyet, L.V., Koşan, M.T., Quynh, T.C., On cofinitely δ -semiperfect modules, Acta Mathematica Vietnamica, 33(2), 197-207, 2008.

[14] Alattass, A.Ö., Cofinitely δ_M – supplemented and cofinitely δ_M – semiperfect modules, International Journal of Algebra, 5(32), 1575-1588, 2011.

[15] Al-Takhman, K., Cofinitely δ -supplemented and cofinitely δ -semiperfect modules, International Journal of Algebra, 1(12), 601-613, 2007.

[16] Talebi, Y., Talaee, B., On generalized δ -supplemented modules, Vietnam Journal of Mathematics, 37(4), 515-525, 2009.

[17] Yüzbaşı, F., Eren, Ş., *Generalized cofinitely* δ -semiperfect modules, Analele Ştiinţ. University of Alexandru Ioan Cuza Iaşi Secţ. I. Mathematics, 59(2), 269-280, 2013.

[18] Özcan, A.Ç., Harmancı, A., Smith, P.F., *Duo modules*, Glasgow Mathematical Journal, Trust, 48, 533-545, 2006.

[19] Büyükaşık, E., Demirci, Y.M., *Weakly distributive modules, applications to supplement submodules*, Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 120 (5), 525-534, 2010.