Adıyaman University Journal of Science

https://dergipark.org.tr/en/pub/adyujsci
DOI: 10.37094/adyujsci. 476813

ADYUJSCI

Some Properties of \oplus-Cofinitely δ-Supplemented Modules

Figen ERYILMAZ*

Ondokuz Mayls University, Faculty of Education, Department of Mathematics Education, Samsun, Turkey
fyuzbasi@omu.edu.tr,ORCID: 0000-0002-4178-971X

Abstract

In this paper, we study the properties of generalized \oplus-cofinitely δ supplemented modules or briefly $\oplus-g c o f_{\delta}-$ supplemented modules. We show that any direct sum of $\oplus-g c o f_{\delta}$ - supplemented modules is a $\oplus-g c o f_{\delta}$ - supplemented module. If M is a $\oplus-g \operatorname{cof} f_{\delta}-$ supplemented module with SSP, then every direct summand of M is $\oplus-g c o f_{\delta}-$ supplemented.

Keywords: δ-small submodule, δ-supplemented module, Cofinite submodule, \oplus - cofinitely supplemented module

\oplus - Dual Sonlu δ-Tümlenmiş Modüllerin Bazı Özellikleri

$\ddot{\mathrm{O} z}$

Bu çalışmada, genelleştirilmiş $\oplus-$ dual sonlu δ-tümlenmiş modüllerin özellikleri çalışıldı. Bu modüller kısaca $\oplus-\operatorname{gcof}_{\delta}$ ile gösterildi. Genelleştirilmiş $\oplus-$ dual sonlu $\delta-$ tümlenmiş modüllerin keyfi toplamının da genelleştirilmiş \oplus - dual sonlu δ-tümlenmiş modül olduğu gösterildi. M modülünün direkt toplam terimlerinin toplama özelliğine sahip (DDT) genelleştirilmiș \oplus - dual sonlu δ-tümlenmiş bir modül olması durumunda M modülünün her bir direkt toplam teriminin de genelleştirilmiş \oplus - dual sonlu δ tümlenmiş modül olduğu ispatlandı.

[^0]Anahtar Kelimeler: δ-küçük alt modül, δ-tümlenmiş modül, Dual sonlu alt modül, \oplus - dual sonlu tümlenmiş modül

1. Introduction

In this study D is used to show a ring which is associative and has an identity. All mentioned modules will be unital left D-module. The notation $A \leq B$ means A is a submodule of B. Any submodule A of an D-module B is called small in B and showed by $A=B$ whenever $A+C \neq B$ for all proper submodule C of B. Dually, a submodule A of a D-module B is called to be essential in B which is showed by A (B where $A \cap K \neq 0$ for each nonzero submodule K of B. A module B is called singular when $B \cong \frac{A}{K}$ for any module A and a submodule K of A with K (A.

Zhou firstly mentioned the definiton of " δ-small submodule" as a generalization of small submodules in [1]. Remember that a submodule A of a module B is called as δ-small in B and which is showed by $A={ }_{\delta} B$ if $B \neq A+X$ for any submodule X of B where $\frac{B}{X}$ singular. The symbol $\delta(B)$ will be used for the sum of all δ-small submodules, that represents a preradical on the category of D - modules.

Let A and K be submodules of B. Then A is called a supplement of K in B when A is minimal with the property $B=A+K$; in other words $B=A+K$ and $A \cap K=A$. Definiton of supplemented module B is every submodule of B has a supplement in B. There are a lot of papers related with supplemented modules. One can examine the manuscripts $[2,3]$.

Let A be a submodule of B. The submodule K is called a δ-supplement of A in B if $B=A+K$ and $B \neq A+X$ for any proper submodule X of K where $\frac{K}{X}$ singular, in other words $B=A+K$ and $A \cap K={ }_{\delta} K$. Therefore B is called δ-supplemented if all submodules of B have δ-supplement in B [4,5]. Nevertheless, B is said to be $\oplus-\delta$-supplemented whether all submodules of B have $\oplus-\delta$-supplement that is a direct summand of B [6].

A submodule A is named with cofinite in B as quotient module $\frac{B}{A}$ is finitely generated. Also the module B is named with "cofinitely supplemented if every cofinite submodule has a supplement in B " [7].

Following [8], if all submodules of B have a supplement which is a direct summand of B, then B is named with \oplus-supplemented. In [9], \oplus - cofinitely supplemented modules was examined and founded as a proper generalization of \oplus-supplemented modules,. Any module B is named \oplus-cofinitely supplemented if each cofinite submodule of B get a supplement which is a direct summand of B. As a result of this definition, finitely generated \oplus - cofinitely supplemented modules are already \oplus supplemented. Basic properties of these modules we refer to [10,11]. Another generalization of these modules was studied in [12].

According to [13], a D-module B is named as $\oplus-\operatorname{cof}_{\delta}-$ supplemented if all cofinite submodules of B have δ-supplement which is a direct sum term of B. Some properties of these modules we refer to [14, 15].

Talebi defined generalized δ-supplemented modules. He called a submodule A of B is a generalized δ-supplement submodule of B if one can find a submodule K of B where $B=A+K$ and $A \cap K \leq \delta(A)$. A module B is called a generalized $\delta-$ supplemented or shortly $\delta-\mathrm{GS}$ if each submodule of B possessed of a generalized δ supplement in B [16].
B is called generalized \oplus-cofinitely δ-supplemented module provided that each cofinite submodule of B possessed of a generalized δ-supplement with direct summand of B. In place of writing generalized \oplus - cofinitely δ-supplemented module, we choose to use $\oplus-$ gcof $_{\delta}-$ supplemented. In the next section, some fundamental properties of $\oplus-\operatorname{gcof}_{\delta}$ - supplemented modules will be examined.

2. Main Results

Theorem 1. Any direct sum of $\oplus-g c o f_{\delta}-$ supplemented modules is a $\oplus-g c o f_{\delta}-$ supplemented module for any ring D.

Proof. Let $\left\{B_{i}\right\}_{i \in I}$ be a collection of generalized $\oplus-$ cofinitely δ-supplemented modules over an arbitrary ring D and let $B=\underset{i \in I}{\oplus} B_{i}$. Suppose that A is a cofinite submodule of B. Then $B=A+\left(\underset{j=1}{\underset{j=1}{n} B_{i_{j}}}\right)$ can be written and it is easy to find that $\{0\}$ is a
 following isomorphisms

$$
\frac{B_{i_{1}}}{B_{i_{1}} \cap\left(A+\left(\bigoplus_{j=2}^{n} B_{i_{j}}\right)\right)} \cong \frac{B}{\left(\bigoplus_{j=2}^{n} B_{i_{j}}\right)+A} \cong \frac{(B / A)}{\left(\left(\bigoplus_{j=2}^{n} B_{i_{j}}\right)+A\right) / A},
$$

then we have $B_{i_{1}} \cap\left(A+\left(\bigoplus_{j=2}^{\oplus} B_{i_{j}}\right)\right)$ is a cofinite submodule of $B_{i_{1}}$. Onwards $B_{i_{1}}$ is $\oplus-$ gcof $_{\delta}$-supplemented, $B_{i_{1}} \cap\left(A+\left(\underset{j=2}{\oplus} B_{i_{j}}\right)\right)$ has a generalized δ-supplement $U_{i_{1}}$ in $B_{i_{1}}$ where $U_{i_{1}}$ is a direct summand term of $B_{i_{1}}$. With Lemma 2.4 in [17], $U_{i_{1}}$ is a generalized δ-supplement of $A+\left(\underset{j=2}{\oplus} B_{i_{j}}\right)$ in $B . U_{i_{1}}$ is also a direct summand of B, forwhy $B_{i_{1}}$ is direct summand of B. If one continues in this way, it will be obtained that A will have generalized δ-supplement $U_{i_{1}}+U_{i_{2}}+\cdots+U_{i_{j}}$ in B such that every $U_{i_{j}}$ is a direct summand of $B_{i_{j}}$ for $1 \leq j \leq A$. Since every $B_{i_{j}}$ is a direct summand of B, one can get $\underset{j=1}{\oplus} U_{i_{j}}$ is a direct summand of B. Therefore, the module B is $\oplus-g c o f_{\delta}-$ supplemented.

Proposition 1. If B is $a \oplus-g c o f_{\delta}$-supplemented module, then each cofinite submodule of $\frac{B}{\delta(B)}$ is a direct summand.

Proof. Assume that B is a $\oplus-g c o f_{\delta}-$ supplemented module. We know that every cofinite submodule of $\frac{B}{\delta(B)}$ has the form $\frac{U}{\delta(B)}$, such as U is a cofinite submodule of B and $\delta(B) \leq U$. By using hypothesis, we get $B=A+U, A \cap U \leq \delta(A)$ and $B=A \oplus K$ such that $A, K \leq B$. Since $\delta(A) \leq \delta(B)$, we have $A \cap U \leq \delta(B)$ and so

$$
\frac{B}{\delta(B)}=\frac{A+U}{\delta(B)}=\left(\frac{A+\delta(B)}{\delta(B)}\right) \oplus\left(\frac{U}{\delta(B)}\right)
$$

Consequently, $\frac{U}{\delta(B)}$ is a direct summand of $\frac{B}{\delta(B)}$.
A submodule A of a D-module B is named "fully invariant if one have $f(A) \subseteq A$ for all $f \in S$ where where $S=\operatorname{End}_{D}(B)$ " [3]. If $B=U \oplus V$ and A is a fully invariant submodule of B, then we obtain $A=(A \cap U) \oplus(A \cap V) . \delta(B)$ is a fully invariant submodule of B. A left D-module B is called a "duo module if any submodule of B is fully invariant" [18].

Proposition 2. Suppose that B is $a \oplus-g c o f_{\delta}-$ supplemented module. If U is a fully invariant submodule of B. Then $\frac{B}{U}$ is $a \oplus-\operatorname{gcof}_{\delta}-$ supplemented module.

Proof. Assume that $\frac{K}{U}$ is a cofinite submodule of $\frac{B}{U}$. Therefore K is a cofinite submodule of B. As B is a $\oplus-g c o f_{\delta}$-supplemented module, one can find C, A submodules of B where $B=K+C, K \cap C \leq \delta(C)$ and $B=C \oplus A$. Using Proposition 2.9 in [16], we can see that $\frac{C+U}{U}$ is one of the generalized δ-supplement of $\frac{K}{U}$ in $\frac{B}{U}$. If we remember that $U=(U \cap C) \oplus(U \cap A)$ can be written because of being fully invariant submodule of B, then we have $\frac{B}{U}=\left(\frac{C+U}{U}\right) \oplus\left(\frac{A+U}{U}\right)$. Therefore $\frac{C+U}{U}$ is a generalized δ-supplement of $\frac{K}{U}$ such that $\frac{C+U}{U}$ is a direct summand of $\frac{B}{U}$.

Corollary 1. Let B be $a \oplus-g c o f_{\delta}-$ supplemented and a duo module. Then every factor module of B is $a \oplus-$ gcof $_{\delta}$-supplemented module.

Proposition 3. Assume that B is $\oplus-\operatorname{gcof}_{\delta}$-supplemented, A is a fully invariant submodule of B and a cofinite direct summand of B. Then it's $\oplus-g \operatorname{cof} f_{\delta}-$ supplemented.

Proof. Assume that A is a cofinite direct summand of B. Then, there exists a submodule A^{\prime} of B with $B=A \oplus A^{\prime}$. If U is cofinite submodule of A, then $\frac{A}{U}, A^{\prime}$ are finitely generated and U is cofinite. As B is $\oplus-g c o f_{\delta}$-supplemented, we have $B=U+K, U \cap K \leq \delta(K)$ and $B=K \oplus K^{\prime}$ such that $K, K^{\prime} \leq B$. By Lemma 2.1 in [18], we have $A=(A \cap K) \oplus\left(A \cap K^{\prime}\right)$. Since $B=U+K$, we have $A=U+A \cap K$. Also $A \cap K$ is a direct summand of B. Hence, $A \cap K$ is a δ-supplement submodule in B. By using Lemma 2.2 in [16], we can obtain $U \cap(A \cap K) \leq \delta(A \cap K)$. Thus $A \cap K$ is a generalized δ-supplement of U in A. This means A is $\oplus-g c o f_{\delta}$-supplemented.

Theorem 2. Assume that B is direct sum of submodules B_{1} and $B_{2} . B_{2}$ is $\oplus-$ gcof $_{\delta}-$ supplemented \Leftrightarrow there is a submodule K of B_{2} with K is one of the direct summand of B and $B=U+K, \quad U \cap K \leq \delta(K)$ for each cofinite submodule $\frac{U}{B_{1}}$ of $\frac{B}{B_{1}}$.

Proof. Let $\frac{U}{B_{1}}$ be any cofinite submodule of $\frac{B}{B_{1}}$. If we remember $\frac{\left(B / B_{1}\right)}{\left(U / B_{1}\right)} \cong \frac{B}{U}$ and $\frac{B}{U} \cong \frac{B_{2}}{\left(U \cap B_{2}\right)}$, then it follows that $U \cap B_{2}$ is a cofinite submodule of B_{2}. By the assumption, there are $K, K^{\prime} \quad$ submodules of $\quad B_{2} \quad$ with $\quad B_{2}=\left(U \cap B_{2}\right)+K$, $\left(U \cap B_{2}\right) \cap K \leq \delta(K) \quad$ and $\quad B_{2}=K \oplus K^{\prime}$. Therefore the equalities $B=B_{1}+B_{2}=B_{1}+\left(U \cap B_{2}\right)+K=U+K \quad$ can be obtained. Also we get $\left(U \cap B_{2}\right) \cap K=U \cap K \leq \delta(K)$ and so K is direct summand of B.

Conversely, let's take A as any cofinite submodule of B_{2}. Note that

$$
\frac{\left(\frac{B}{B_{1}}\right)}{\left(\frac{\left(A+B_{1}\right)}{B_{1}}\right)} \cong \frac{B}{\left(A+B_{1}\right)}=\frac{\left(A+B_{1}+B_{2}\right)}{\left(A+B_{1}\right)} \cong \frac{B_{2}}{\left(B_{2} \cap\left(A+B_{1}\right)\right)}=\frac{B_{2}}{A} .
$$

Since the last module $\frac{B_{2}}{A}$ is finitely generated, $\frac{\left(A+B_{1}\right)}{B_{1}}$ is a cofinite submodule of $\frac{B}{B_{1}}$. By the assumption, we have a submodule K in B_{2} where K is a direct summand of B with $B=K+A+B_{1}$ and $\left(A+B_{1}\right) \cap K \leq \delta(K)$. Then it follows that $B_{2}=A+K$ and $A \cap K \leq \delta(K)$ and so B_{2} is $\oplus-g c o f_{\delta}$-supplemented.

Proposition 4. Let B be $\oplus-g c o f_{\delta}-$ supplemented with $\delta(B)={ }_{\delta} B$. Then B is a $\oplus-\operatorname{cof}_{\delta}-$ supplemented module.

Proof. Let A be any cofinite submodule of B. As B is $\oplus-g c o f_{\delta}$ - supplemented, there are submodules K and K^{\prime} of B where $B=A+K$ and $A \cap K \leq \delta(K)$, $B=K \oplus K^{\prime}$. Remember that $A \cap K \leq \delta(K) \leq \delta(B)={ }_{\delta} B$. Therefore $A \cap K={ }_{\delta} K$ by Lemma 1.1 in [14]. As a result, B is $\oplus-\operatorname{cof}_{\delta}$-supplemented.

Theorem 3. Let B be $\oplus-\operatorname{gcof}_{\delta}$-supplemented and $U \leq B$. If $\frac{(U+W)}{U}$ is a direct summand of $\frac{B}{U}$ for all direct summand of W of B, then $\frac{B}{U}$ is $\oplus-g \operatorname{cof} f_{\delta}-$ supplemented.

Proof. Assume that $\frac{A}{U}$ is a cofinite submodule in $\frac{B}{U}$ where A cofinite submodule of B and $U \leq A$. Since B is a $\oplus-g c o f_{\delta}$ - supplemented module, one can find a direct summand V^{\prime} of B such that $B=A+W, A \cap W \leq \delta(W)$ and $B=W \oplus V^{\prime}$ where V^{\prime} is any submodule of B. Now, we have $\frac{B}{U}=\frac{A}{U}+\left(\frac{U+W}{U}\right)$. Also, by hypothesis, $\frac{U+W}{U}$ is a
direct summand of $\frac{B}{U}$. Let $f: B \rightarrow \frac{B}{U}$ be canonical epimorphism. Since $A \cap W \leq \delta(W)$ and

$$
\begin{aligned}
\left(\frac{A}{U}\right) \cap\left(\frac{U+W}{U}\right) & =\frac{A \cap(U+W)}{U}=\frac{U+(A \cap W)}{U} \\
& =f(A \cap W) \leq f(\delta(W)) \leq \delta\left(\frac{U+W}{U}\right)
\end{aligned}
$$

by Lemma 1.5 in [1], it follows that $\frac{U+W}{U}$ is generalized δ-supplement of $\frac{A}{U}$ in $\frac{B}{U}$ which is a direct summand.

A D-module B has SSP "(Summand Sum Property) if the sum of two direct summand of B is again a direct summand of B " [3].

Theorem 4. If B is $\oplus-g c o f_{\delta}$-supplemented with SS property, then each direct summand of B is $\oplus-g c o f_{\delta}$-supplemented.

Proof. Assume that U_{1} is a direct summand of B. Therefore we get $B=U_{1} \oplus U^{\prime}$ for $U^{\prime} \leq B$. Let A be a direct summand of B. Having SS property of B, we can write that $B=\left(U^{\prime}+A\right) \oplus K$ such that $K \leq B$. Thus, the equality $\frac{B}{U^{\prime}}=\frac{\left(U^{\prime}+A\right)}{U^{\prime}} \oplus \frac{\left(K+U^{\prime}\right)}{U^{\prime}}$ implies that $\frac{B}{U^{\prime}}$ is a $\oplus-g c o f_{\delta}-$ supplemented module by Theorem 3 .

We already know from [19] that, a D-module B is named weakly distributive if each submodule of B is a weak distributive submodule of B, H is called a weak distributive submodule of B if $H=(H \cap M)+(H \cap N)$ for all submodules of B where $B=M+N$.

Theorem 5. If B is $\oplus-g c o f_{\delta}$-supplemented and weakly distributive, then $\frac{B}{E}$ is $\oplus-\mathrm{gcof}_{\delta}-$ supplemented for each submodule E of B.

Proof. Suppose that M is a direct summand of B. Then $B=M \oplus N$ for some submodule N of B and we can write $\frac{B}{E}=\left(\frac{E+M}{E}\right)+\left(\frac{E+N}{E}\right)$. By distributive property of B, we have $E=E+(M \cap N)=(E+M) \cap(E+N)$. This equality says that $\frac{B}{E}=\left[\frac{E+M}{E}\right] \oplus\left[\frac{E+N}{E}\right]$ and therefore $\frac{B}{E}$ is a $\oplus-\operatorname{gcof}_{\delta}-$ supplemented module by Theorem 3.

A D-module B is said to have property $\left(D_{3}\right)$ "if B_{1} and B_{2} are direct summands of B with $B=B_{1}+B_{2}$, then $B_{1} \cap B_{2}$ is also a direct summand of $B "[2]$.

Theorem 6. If B is $a \oplus-g \operatorname{cof} f_{\delta}-$ module with the property $\left(D_{3}\right)$, then all cofinite direct summand terms of B is $a \oplus-$ gcof $_{\delta}$ - module.

Proof. Assume that U is any cofinite direct summand of B. Then we can find a submodule U^{\prime} of B where $B=U \oplus U^{\prime}$ and U^{\prime} is finitely generated. If A is any cofinite submodule of U, then A is also cofinite submodule of B by the fact that $\frac{B}{A} \cong \frac{U}{A} \oplus U^{\prime}$ is finitely generated. Since B is $\oplus-g c o f_{\delta}$, we have a direct summand W of B whereas $B=A+W, A \cap W \leq \delta(W)$. Note that $B=U+W$ and $U=A+(U \cap W)$. Having $\left(D_{3}\right)$ property of B implies that $U \cap W$ is a direct summand of B. Thus $A \cap(W \cap U)=A \cap W \leq \delta(W \cap U)$ by using Lemma 2.2 of [16]. Furthermore $U \cap W$ is a direct summand of U forwhy so does $W \cap U$ of B. Hence U is $\oplus-g \operatorname{cof} f_{\delta}-$ supplemented.

Lastly, there is a module example which is $\oplus-g c o f_{\delta}$-supplemented but not $\oplus-\delta$-supplemented.

Example 1. [13, Example 1]. Let $D=\mathrm{Z}$ and $B=\bigoplus_{i \in I} B_{i}$, with each $B_{i}=\mathrm{Z}_{p^{\infty}}$, where p is a prime number. Then B_{i} are δ-supplemented. By Theorem 1,B is $\oplus-g \operatorname{cof} f_{\delta}-$ supplemented. However B is not $\oplus-\delta$-supplemented.

References

[1] Zhou, Y., Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloqium, 7(3), 305-318, 2000.
[2] Mohamed, S.H., Müller, B.J., Continuous and Discrete Modules, London Mathematical Society, Cambridge University Press, Cambridge, 1990.
[3] Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.
[4] Koşan, M.T., δ-lifting and δ-supplemented modules, Algebra Colloqium, 14(1), 53-60, 2007.
[5] Wang, Y., δ-small submodules and δ-supplemented Modules, International Journal of Mathematics and Mathematical Sciences, Article ID 58132, 8 pages, 2007.
[6] Ungor, B., Halıcıoğlu, S., Harmancı, A., On a class of δ-supplemented Modules, Bulletin of the Malaysian Mathematical Sciences Society (2), 37(3), 703-717, 2014.
[7] Alizade, R., Bilhan, G., Smith, P.F., Modules whose maximal submodules have supplements, Communications in Algebra, 29, 2389-2405, 2001.
[8] Harmancı, A., Keskin, D., Smith, P.F., On \oplus - supplemented modules, Acta Mathematica Hungarica, 83, 161-169, 1999.
[9] Çalışıcı, H., Pancar, A., \oplus-cofinitely supplemented modules, Czechoslovak Mathematical Journal, 54 (129), 1083-1088, 2004.
[10] Wang, Y., Sun, Q., A note on \oplus-cofinitely supplemented modules, International Journal of Mathematics and Mathematical Sciences, Article ID 10836, 5 pages, 2007.
[11] Zeng, Q., \oplus - cofinitely supplemented modules, Southeast Asian Bulletin of Mathematics, 33, 805-819, 2009.
[12] Nişancı, B., Pancar, A., On generalization of \oplus-cofinitely supplemented modules, Ukrainian Mathematical Journal, 62(2), 203-209, 2010.
[13] Thuyet, L.V., Koşan, M.T., Quynh, T.C., On cofinitely δ-semiperfect modules, Acta Mathematica Vietnamica, 33(2), 197-207, 2008.
[14] Alattass, A.Ö., Cofinitely δ_{M}-supplemented and cofinitely δ_{M}-semiperfect modules, International Journal of Algebra, 5(32), 1575-1588, 2011.
[15] Al-Takhman, K., Cofinitely δ-supplemented and cofinitely δ-semiperfect modules, International Journal of Algebra, 1(12), 601-613, 2007.
[16] Talebi, Y., Talaee, B., On generalized δ-supplemented modules, Vietnam Journal of Mathematics, 37(4), 515-525, 2009.
[17] Yüzbaşı, F., Eren, Ş., Generalized cofinitely δ-semiperfect modules, Analele Ştiinț. University of Alexandru Ioan Cuza Iaşi Secţ. I. Mathematics, 59(2), 269-280, 2013.
[18] Özcan, A.Ç., Harmanc1, A., Smith, P.F., Duo modules, Glasgow Mathematical Journal, Trust, 48, 533-545, 2006.
[19] Büyükaşık, E., Demirci, Y.M., Weakly distributive modules, applications to supplement submodules, Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 120 (5), 525-534, 2010.

[^0]: * Corresponding Author

