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Astrohelicoidal Hypersurfaces in 4-space
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ABSTRACT.  We consider an astrohelicoidal hypersurface which its profile curve has astroid curve in the four
dimensional Euclidean space E*. We also calculate Gaussian curvature and the mean curvature, and Weingarten
relation of the hypersurface. Moreover, projecting hypersurface into 3-spaces, we draw some figures.
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1. INTRODUCTION

About (hyper)surfaces in the literature, we see some following papers: Arslan et al. [1], Ganchev and Milousheva
[4], Giiler et al. [6, 7], Giiler and Turgay [8], and also some books: Eisenhart [2], Hacisalihoglu [9], Nitsche [10].

In this paper, we consider the astrohelicoidal hypersurface in Euclidean 4-space E*. We give some fundamental
notions of four dimensional Euclidean geometry in Section 2. In Section 3, we define helicoidal hypersurface. We
obtain astrohelicoidal hypersurface, and calculate its curvatures in the last section.

2. PRELIMINARIES

In the rest of this work, we shall identify a vector (a,b,c,d) with its transpose (a,b,c,d)’. Let M = M(u, v, w) be a
hypersurface in E*.
The inner product of vectors X = (x1, X2, X3, X4) and7 = (¥1,¥2, 3, v4) on E* is defined by as follows:

- =
X -y =X1Y1tX2y2 + X3y3 + X4Y4.

The vector product of vectors X = (x1, X2, X3, X4), _y> = (y1,¥2,¥3,y4) and 7 = (21,22, 23, z4) on E* is defined by as
follows:

X2Y3Z4 — X2Y423 — X3Y2Z24 + X3Y422 + X4Y223 — X4Y322
7 X7 = —X1Y324 + X1Y423 + X3Y124 — X321Y4 — Y1X423 + X4Y32]

X1Y224 — X1Y4Z2 — X2Y124 + X221Y4 + Y1X422 — X4Y22)1

—X1Y223 + X1y322 + X2y13Z3 — X2Y321 — X3Y122 t+ X3)221

X x
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Considering a hypersurface M in E*, we obtain

E F A
det]:det[ F G B ]:(EG—FZ)C—A2G+2ABF—32E,
A B C
and
L M P
detllzdet[M N T =(LN—M2)V—P2N+2PTM—T2L,
P T V
where
E=M,-M,, F=M,-M,, G=M, -M,,
L=M,,-e, M=M,,-e, N=M,, e,
A=M,-M,, B=M,-M,,, C=M,,-M,,
P=M,,-e, T=M,,-¢, V=M, e,
and e is the Gauss map
_ M, xM, xM,,
eV ) = 1ML, X M, X ML

Calculating product matrices (I)~' - (I), we get the matrix of the shape operator S as follows:

1 S11 S12 813
=——| S21 S22 823

det/ ’
$31 832 833

si1 =ABM — CFM — AGP + BFP + CGL - B?L,
s12 = ABN — CFN — AGT + BFT + CGM - B*M,
s13 = ABT — CFT — AGV + BFV + CGP — B*P,

$21 = ABL — CFL + AFP — BPE + CME — A’M,
$23 = ABM — CFM + AFT — BTE + CNE — A®N,
$23 = ABP — CFP + AFV — BVE + CTE — AT,

s31 = —AGL + BFL + AFM — BME + GPE — F*P,

1 = —AGM + BFM + AFN — BNE + GTE - F*T,

s33 = —AGP + BFP + AFT — BTE + GVE — F2V.

So, we get the following formulas of the Gaussian curvature:
(LN - M?)V + 2MPT - PN - T*L
" (EG - F2)C +2ABF - A>G - B’E’

and the mean curvature:
(EN + GL - 2FM)C + (EG — F*)V — A’N — B*L — 2(APG + BTE — ABM — ATF — BPF)
3det] ’

H=

3. HEeLicopAL HYPERSURFACE

We consider a new kind helicoidal hypersurface which its profile curve has astroid curve in the four dimensional
Euclidean space E*.

vy : I — Il be a space curve for an open interval I C R, and let £ be a line in I1. A rotational hypersurface is defined
as a hypersurface rotating a curve vy profile curve around axis £ in E*.

When a profile curve y rotates around the axis ¢, it simultaneously displaces parallel lines which are orthogonal to
the axis ¢, so that the speed of displacement is proportional to the speed of rotation. Hence, obtaining hypersurface is
named the helicoidal hypersurface has axis ¢ and pitches p and g for positive real numbers.
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We may suppose that £ is the line spanned by the vector (0,0, 0, 1)’. The orthogonal matrix which fixes the above
vector is

cosvcosw —sinv —cosvsinw 0
sinvcosw cosv —sinvsinw 0
Z(v,w) = . s
sinw 0 cosw 0
0 0 0 1

where v, w € R.
The matrix Z can be found by solving the following equations, simultaneously,

Zt=¢, 77Z=77" =1, detZ = 1.

When the axis of rotation is ¢, there is an Euclidean transformation by which the axis is ¢ transformed to the x4-axis
of E*. Parametrization of the profile space curve is given by

y(w) = (f (W), gu),0,¥ W),

where f (u),g(u),¥ (1) : I ¢ R — R are differentiable functions for all u € I.
Hence, the helicoidal hypersurface which is spanned by the vector (0, 0,0, 1)’ is as follows

H@u, v, w) = Z(v,w).y@)" + (pv + gw) .L,

rotation translation

where 0 < u,v,w < 2.
In the end, we write following helicoidal hypersurface:

f () cosvcosw — g(u)sinv
f () sinvcosw + g(u) cosv
f(uw)sinw
Y (u) + pv+ gw

Hu,v,w) =

4. ASTROHELICOIDAL HYPERSURFACE

Now, by using rotational matrix in E*, and profile curve y with translation vector on axis x4, we find helicoidal
hypersurface which has astroid curve. Resulting hypersurface we called is astrohelicoidal hypersurface A(u, v, w).

Considering function ¥ () on the profile curve vy, we calculate the Gauss map of the hypersurface. Then we find the
Gaussian curvature and the mean curvature of the astrohelicoidal hypersurface.

We also draw some figures of the astrohelicoidal hypersurface, and its Gauss map with projection from four dimen-
sional Euclidean space to the three dimensional Euclidean space.

In E*, astrohelicoidal hypersurface W(u, v, w) which is spanned by the vector (0,0, 0, 1) for pitches p, g € R*, and
also a € R, is defined by as follows:

—asin® usinv + acos? ucos vcosw x1(u, v, w)
. 3 3 .
asin’ ucosv + acos’ usinvycosw xo(u, v, w
(u, v, w) = 3. . _ | W) , 4.1
acos® usinw x3(u, v, w)
Y(u) + pv + gw x4(u, v, w)

where the parametrization of the profile space curve is given by
y(u) = (a cos’ u,asin’ u, 0, ‘P(u)),
¥ : I ¢ R — R is differentiable function for all 0 < u, v, w < 2.

Taking W(u) = cos’ u in y(u), w = /4 in (4.1), we get some projection surfaces into 3-space as in Figure 1, and in
Figure 2.
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Ficure 2. Projections of A(u, v, w), Left: into x; x3x4-space, Right: into x;,x3x4-space

Using the first differentials of (4.1) with respect to u, v, w, we get the first quantities as follows

and have

E = 9a%sin’ucos’ucosw + V72,

F = 3sin®ucos’ucosw + p¥’,

G = -d*cos’u (cos4 usin®w + 3 sin? u) s
7

A = q¥,

_ 2.3 3
B = a°sin’ ucos’ usinw + pgq,
C = d*cos®u+ q2,
det/ = {3cos*ucos’w (1 — 3 sin” u cos? u) P2 — 6sin ucos® u(p cos® u — g sin® u sinw) ¥’
+sin? u[—36a2 cos® usin® ucos® w + 9((a2 + qz) cos® w + (p2 - qz)) cos® u

3 2 2

—18pg sin® ucos® u sinw — 9¢° sin u cos® u (cos3 w+ 3)]}a4 cos” u.
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The Gauss map ey (u, v, w) of the astrohelicoidal hypersurface A(u, v, w) is as follows

e (u,v,w)
L ex(u,v,w)

ey, v,w) = —
1l VW) = 30 o vy w)
eq(u, v, w)

, “4.2)

where

ey = W(cos®ucosvcosw —sin’ usinv)cos® ucosw
+3p(— sin® u cos v cos w + sin u cos u sin v) cos® u

+3¢q((— cos usin v + sin u cos v cos w) cos*u + (2 cos®u — 1) cosusiny)sinw,

e; = W(cos®usinvcosw + sin® ucosv)cos® ucosw
+3p(— sin® u sin v cos w — sin u cos u cos v) cos® u

+3¢g((cos ucos v + sin u sin v cos w) cos”* u — (2 cos®u — 1) COS 14 COS V) sin w,

es = W cos’ usinwcosw — 3psin® ucos’® usinw + 3g(cos* u sin®> w — (2 cos’ u — l)) sin u,

es = 3a(2cos’u-— 1)sinu cos’ ucosw,

and

W = {3cos*ucos®w (1 — 3sin’ ucos® u) ¥’2 — 6sin ucos® u(p cos® u — g sin® u sin w) ¥’

8 2

+sin? u[—36a2 cos® usin® ucos® w + 9((a2 + qz) cos>w + (p2 - qz)) cos® u

2 1/2

—18pg sin® ucos® usinw — 9¢° sin” u cos” u (cos3 w+ 3)]}

Finally, the Gaussian curvature of the astrohelicoidal hypersurface is as follows:

)
(det1*/%’

where

O = —144V2CT(C*=C2+1/6)(C*=C2+1/2)¥"3 - 1/2C2(((C'2=3/2 C10+5/6 C8 —1/6 CO)¥" —41C*-20C2 -1 +
72C10-223/2C8 +91C0+10C%) V25 —30C3+87C —99C9 +58C7 —18C +2C3) W2 —4S 2C(( V2CX(C-1/2)(C-19/8
CO+5/2C*=5/4C*+1/4)¥"-3C""-399/16 C°+105/8 C®—63/8 C>+9/8+339/16 C*+3/4C'?)-3/2C°S (C°-3/2
C*+5/6C2—1/6)¥” —8CO+29/2 C*—37/4 C2+ 11/4)¥ —3/2(C — )((CHC? - 1/2)(C3 + 12C° - 19C* + 10C? -
W — 12 +48C"2 +12C"10 - 567/2 C® +867/2 C6 = 291C* + 93C2) V25 +(—16C"3 +46C" —49C° +23C7 — 4CO)Y”
—30C"3 +273C" — 600C° + 543C7 — 222C° + 36C3)(C + 1))C3.

The mean curvature of it is as follows:

B Q
(det 1)*?

where

Q=1/12((-6C'" +6C°-2CT)¥P3-36C*S (C3-9/4 CO+2C*-5/6 C*+1/6)¥"*+(36a*C -72a>C3 +(30a>-6)C'!
+(6a® +186)C? + (—=3a® —453)C7 +420C° — 186C> + 30C)¥’ + 18(C*(C? - 1/2)(2/3 +a*C'* - a>C¥ + 1/3(1 +a*)C® +
2C* = 2CHY” + 1+ 124*C" - 364*C"%2 + (97/2 a* + 10)C'0 + (=77/2 a® - 7/2)C® + (174> — 43/2)C® + (-3a* + 22)C*
—8CHS)V2+27(C—=1)((1/9 C*=1/27 C2=5/27 COW'2 —2/27 CS(C*+2C% + 1/2)¥ + (=2/27CC +1/9 C* - 1/27
CHY” +5/9 +d>C'° - 13/6 a®C8 + (14/9 &> — 2/9)CO + (11/6 — 1/3 a®>)C* = 2C*)C3(C + 1).

Here, C := cosuand S := sinu.

Corollary 1. Let A : M? —s B* be an immersion given by (4.1). Then M? has following Weingarten relation

30 H+W'QK =0,

where © and € are the numerator functions of K and H, respectively.
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