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ABSTRACT. Our aim is to introduce the vector-valued weighted variable exponent Lebesgue spaces. We discuss
two different type of Holder inequalities in this spaces. We will also show that every elements of vector-valued
weighted variable exponent Lebesgue spaces are locally integrable. Hence we can define vector-valued weighted
variable exponent Sobolev spaces. Finally under some conditions we will investigate some basic properties of
vector-valued weighted variable exponent Sobolev spaces.

2010 AMS Classification: 46E30, 46E35.

Keywords: Vector-valued weighted variable Sobolev spaces, Holder Inequality, Radon-Nikodym property.

1. INTRODUCTION

Spaces of weakly differentiable functions, so called Sobolev spaces, play an important role in modern Analysis.
Since their discovery by Sergei Sobolev in the 1930’s they have become the base for the study of many subjects such as
partial differentiable equations and calculus of variations. Vector-valued Lebesgue and Sobolev spaces are now widely
used in analysis, abstract evolution equations and in the theory of integral operators [1,2, 11, 13, 14]. Also, the use
of theory of vector-valued Sobolev spaces can be applied for solutions of some elliptic partial differential equations,
new embedding results for weighted Sobolev spaces. The variable exponent Lebesgue space L”(R") and Sobolev
space WEPO(R™) were introduced by Kovécik and Rdkosnik [12] in 1991. Since 1991, variable exponent Lebesgue,
Sobolev, Besov, Triebel-Lizorkin, Lorentz, amalgam and Morrey spaces, have attracted many attentions (see [6,8,12]).
Vector-valued variable exponent Bochner-Lebesgue spaces LP¢) (R", E) defined by Cheng and Xu [5] in 2013. They
proved dual space, the reflexivity, uniformly convexity and uniformly smoothness of L") (R", E). Furthermore, they
gave some properties of the Banach valued Bochner-Sobolev spaces with variable exponent. In this study, we focus on
vector-valued weighted variable exponent Lebesgue Lg(') (R, E) and Sobolev spaces Wll;’p Y(@®", E), and discuss some
basic properties, such as completeness, reflexive and uniformly convex.
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2. DEFINITION AND PRELIMINARY RESULTS
Definition 2.1. For a measurable function p : R” — [1, o) (called a variable exponent on R"), we put

p~ = essinfp(x), pt = esssupp(x).
xeR”

xeR?

The variable exponent Lebesgue spaces LP)(R") consist of all measurable functions f such that 0p()(Af) < oo for some
A > 0, equipped with the Luxemburg norm

71, = inf {/l >0: Qp(.)(]zc) < 1},

where

0 (f) = f P dx.
RII

If p* < oo, then f € LPO(R") iff o) (f) < co. The space (LP(')(R”), ||.||p(_)) is a Banach space. If p(.) = p is a constant
function, then the norm ||.||,, coincides with the usual Lebesgue norm |||, [6, 8, 12]. In this paper we assume that
p < oo,

A positive, measurable and locally integrable function ¥ : R” — (0, o) is called a weight function. The weighted
modular is defined by

era$) = [ 7P B0,
Rll
The weighted variable exponent Lebesgue space Lg(')(R”) consists of all measurable functions f on R" for which

11,000 = Hfﬂﬁ H 0 < co. The relations between the modular o) 9(.) and ||.|[ ¢ are in the following:
: " :

L L

. L i
min {op00 (N7 00007} < Il < max {0 (NP 0pa (N |
min{IA10 5 A0 0] < 0p0a(F) < max {IFIL 5 AL )

[3]. Moreover, if 0 < C < ¢, then we have Lg(')(R") — LPO(R™), since one easily sees that

c f O dx < f P 9
R2 R7

and C I/l < 1/ 1lp0).0-
Theorem 2.2. Let 1% + ﬁ =1and 9* = 9790, Then for f € Ll’;(')(R") and g € ng')(R"), we have fg € L'(R") and
flf(x)g(x)ldx < ClAl o ey 18l 20 ey »

R’l
where 9* = 91790,

Proof. By the Holder inequality for variable exponent Lebesgue spaces, we get

f If (x)g(x)| dx f LF(x)g ()| 9(x) 7~ 7 dx
RVI

RIX
: clot], Jot|
p(.) q()
for some C > 0. That is the desired result. ]
So the dual space of L§(')(R”) is Lg(;) (R™), where 1% + ﬁ =1 and 9* = 9790,

Let (E, ||.||g) be a Banach space and E* its dual space.

Definition 2.3 ( [9]). A function f : R" — E is Bochner (or strongly) measurable if there exists a sequence {f,} of

simple functions f, : R” — E such that f,(x) 5 f(x) as n — oo for almost all x € R”.
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Definition 2.4 ( [9]). A measurable function f : R” — E is called Bochner integrable if there exists a sequence of
simple functions {f,} such that

lim f 1fy = fllp dx =0
Rn

for almost all x € R”.

Theorem 2.5 (Bochner’s Theorem [9]). A measurable function f : R" — E is Bochner integrable if and only if

fIIfIIE dx < oo, that is, ||f||g is Lebesgue integrable.
R)X

Definition 2.6 ( [5,9]). Let (Q, Z, u) be a measure space. Then a function F : ¥ — E is called a vector measure, if for

n=1 n

all sequences (A,) of pairwise disjoint members of X such that | J A, € X and F ( A,,) = Y F(A,), where the series
= =1 n=1

converges in the norm topology of E.
Let F : £ — E be a vector measure. The variation of F is the function ||F|| : £ — [0, co] defined by

IFIl(4) = sup ) IF (B,

T Ben
where the supremum is taken over all finite disjoint partitions 7 of A. If ||[F|| (€2) < oo, then F is called a measure of
bounded variation.

Definition 2.7 ( [5,9]). A Banach space E has the Radon-Nikodym property (RNP) with respect to (2, X, u) if for
each vector measure F : ¥ — E of bounded variation, which is absolutely continuous with respect to u, there exists a
function g € L' (@, E) such that

F(A) = f gdu
A
forall A € X.

Definition 2.8. Let & be a weight function and 1 < p~ < p(x) < p* < co. The weighted variable exponent Bochner-
Lebesgue space Lg(') (R, E) stands for all (equivalence classes of) E-valued Bochner integrable functions f on R” such
that

LYY ®"E) = {f : I8 < o0}

where
o : i
fllyy0z = “ 970 “p(.),E = inf {/l >0 0p008(7) < 1}

and

000 (f) = f @I 9(x)dsx.
Rn

The following properties proved by Cheng and Xu [5];
) f e LY ®R" E) & IOl € Ly ®") & IfOllg € L5 ®").
(ii) L") (R", E) is a generalization of the L! (R", E) spaces.
(iiii) If E = R or C, then L) (R",R) = L") (R").

Theorem 2.9. Lg(') (R", E) is a Banach space with respect to ||.||,¢) 9. -

Proof. Let (u j) be a Cauchy sequence in Lg(‘)(R”,E). Then, (u jﬁﬁ) is a Cauchy sequence in the Banach space
LPOR", E) in [7] due to

-0

”u/ - uj‘”p(_)’ﬁ’E = ”(M] - Mjl)ﬂﬁ

)l

|p(.),E

4,
so it converges to some u in L’(R", E). Consequently, (u ]‘) converges to ut 70 in Lg(')(R”, E). O
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Theorem 2.10 (Holder’s Inequality, scalar-valued case). Let z% + ﬁ =1 and 9 = 9'790, Then for f € Lg(') (R",E)

and g € Lg(,,‘) (R",R) we have fg € L' (R", E) and Hélder inequality implies

Wfglh e < Clfllp)0.e 18llg0) 0
for some C > 0.

Proof. By the Holder inequality for variable exponent Lebesgue spaces, we get

fllf(X)g(X)IIE dx f”f(x)“E lg(x)l dx
Rn

R®

f 1A (Ol lgCOl 00 77 dx
R’l

IA

o [ W L

for some C > 0. The proof is completed. O
The following Lemma for variable exponent case can be used to prove the Theorem 2.12.
Lemma 2.11. If p > 1,q > 1 and % + é = 1, then for any positive real numbers r and s we have
P
rs < — + —.
P q

Proof. Define a function k by k(¢) = % + % for all ¢ > 0. Then the derivative of k is k’(¢) = #*~! =971, Now k’(1) = 0,
so k has a critical point at # = 1. Furthermore, it is clear that if # > 1 then k’(¢) > 0, whereas if 0 < ¢ < 1 then k’'(¢) < 0.
Thus k has an absolute minimum 7 = 1. But k(1) = 1, so for every ¢ > 0 we have 1 < % + % Setting ¢ = r%/s% we

P q
. q 7 P q
obtain 1 < 2~ + 3£ sothatrs < = + <. m]
ps  qr ]

Theorem 2.12 (Holder’s Inequality, dual-valued case). Let 1% + ﬁ = 1 and 9" = 9'~40. Then for f € L) (R", E)

and g € Lg(;) (R, E*) the dual pair < f(.), g(.) >€ L' (R*,R) and Holder inequality implies
< £, >lhg < Clfllp0)0.e18llg0) 00 £
for some C > 0, where E* has the Radon-Nikodym Property (RNP).

Proof. Letg € Lg(,;) (R*, E*) and let (g,) be a sequence of simple functions in Lg(;) (R*, E*) converging to g a.e. Suppose

fe Lg(') (R*, E) and define < f,g > (w) = g(w) (f(w)) for w € R". Certainly < f, g, > is measurable for each n, and
it is only slightly less evident that lim,, < f, g, >=< f, g > a.e. Consequently, < f, g > is measurable. Moreover, the
absolute value of the product < f, g > can be estimated by || f||; l|gllz- - So we have

f < f().g0) >ldx < f 11 gl dx
R7 R~

IA

Cllf .0 18llg0),00 £
by the Holder inequality. O

Corollary 2.13. Let g € Lg(;) (R", E*) . Then the functional ¢, : Lg(') R", E) — C, which is defined by

po(f) = f<f(~),g(-) > dx,

Rn
.
is linear and continuous. Hence ¢, is a member of (Lg(') R", E)) whose norm is not greater than ||g||q('),ﬁ*yE* , and we

have the embedding Lg(;) (R", E*) — (Lg(') (R", E))* . Further for all g € Lgi') (R", E*) it holds that ||908“(L{;<->(R",E))* <

ClIgll )9+ g+ hence this embedding is continuous. The reverse inequality ”<pg||( > Cliglly(,9- £ was proved by

Ly @)Y
the following theorem.



1. Aydin, Turk. J. Math. Comput. Sci., 11(Special Issue)(2019), 123-131 127

Theorem 2.14 ( [S]). If E* has the Radon-Nikodym Property (RNP), then the mapping g +— g, ﬁ + ﬁ =1,
L1 (R, E*) — L'V (R, E)* which is defined by

<gog,f>=f<g,f>dx
R)l

forany f € Lf;(‘) (R, E) is a linear isomorphism and
lglly.om e < ||90g||(Lg<->(Rn,E>)* < 2llgllyc.00 - »

where 9* = 91790, Hence, the dual space Lg(') (R, E)* is isometrically isomorphic to Lgi') (R", E*), where E* has RNP.

Corollary 2.15. (i) If E is reflexive, then E* is also reflexive.
(ii) Every reflexive space has the Radon-Nikodym property.
(iii) If E is reflexive and 1 < p~ < p* < oo, then Lf;(') R™, E) is reflexive.
(iv) Let E be a Banach space such that E* has the Radon-Nikodym property, then L, ¢ R,E)" = L R, E*), where

9 9
1 1

70 + 0 = 1.

(v) If E is a uniformly convex Banach space and 1 < p~ < p* < oo, then Y R™, E) is also a uniformly convex [5].
9

The space L! (R", E) consists of all (classes of ) all E-valued measurable functions f such that fyx € L' (R", E)

loc
for any compact subset K C R". It is a topological vector space with the family of seminorms f || fxkll; g.

Pfoposition 2.16. Let O be a weight function and 1 < p~ < p(.) < p* < oo. If 9T € L}OC R™), then Lg(') (R" E) —
L (R"E).
loc ’

Proof. Suppose that f € Lg(') (R™, E) and let K C R" be any compact set. For p% +25

for variable exponent Lebesgue spaces [12], then there exists a Ax > 0 such that

g ey = Wb = [ Wl
K

= 1, by using Holder’s inequality

: f Ol x k(PR

2
< acfror], oo,
< Akl frco ]| @1

by Holder’s inequality for scalar-valued case (Theorem 2.12). It is known that H)(Kﬁ_ﬁ < oo if and only if

Lz(-)
Qq(_)(,\/,(ﬁ_ﬁ) < oo for g* < 0. Since 0T € L, . (R"), then we have

a0t ) = [ feoeo ] ax = [ o 7dx = By < 22)
R K
If we use (2.1) and (2.2), then the proof is completed. |

Remark 2.17. Let 1 < p~ < p(x) £ p* < o and g 0T € L) (R™). Then every function in Lg(') (R™, E) has

loc
distributional derivatives by Proposition 2.16.

3. VECTOR-VALUED WEIGHTED VARIABLE SOBOLEV SPACES

Let @ = (a1, @2, ...,@,) € N be a multi-index. Its length is defined as || = a; + a2 + ... + @,. For another vector

@p

z € R” we define z* := z{'...z;". as the multiplicity of @. Multi-indexes can be partially ordered via & < 8 & a; < B
for all k. Let Dy, := ﬁ%, then for a multi-index @ we have

D® = Df..D% = —a\‘ﬂ
1~n aztlllmazzn'
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Definition 3.1. Let C;° (R, E) (or D (R", E), test functions) denote the collection of E-valued infinitely differentiable
functions on R" with compact support in R”, that is,

Cy R"E)={peC”[R",E): suppy compact in R"}.
The space C’ (R", E) is topologized in the following way: a sequence ((,o j) Cc €y (R, E) is said to be convergent in
Cy R, E)top e C7 (R", E), ¢; L if and only if there is a compact set K € R" such that
suppp; C K, j € N, suppy C K, 3.1
and
D%p; = D%p (uniformly) for all & € Nj (3.2)
on K.
Definition 3.2. D’ (R", E) denote the collection of E-valued linear continuous functionals T over D (R”", E), that is,
T:DRE)—>E,T:9o—T(p), pe DR E),
T(ip1 + dap2) = U T(p1) + LT (p2), 1,42 €C; 1,92 € DR, E),
and
T(p;) — T(p) for j — oo whenever ¢; B) ©, 3.3)
according to (3.1) and (3.2). T € D’ (R", E) is called a distribution.

Corresponding to every u € L}UC (R, E) (all local integrable functions valued in E over R") there is a distribution
T, € D' (R", E) defined by
Tu(@) =< Tu,p >= f u(x)p(x)dx, ¢ € D(R",R). (34
R”

(3.4) generates a one-to-one correspondence

uell

loc

RYE)—T,eD (R,E).
Now we will show that 7, : D (R", E) — E is continuous. For ¢ € D (R",R), we have

A

Tl < f e dx = f Ol el dx
Rﬂ

Rn

IA

suplool [ ol dx < o
XE
K

where suppy C K and K ¢ R” is compact. Moreover, by (3.3) the proof is completed.
Remark 3.3. The chain of inclusions is obtained by the following way

D®R"E)c C®[R",E)c L' R"E)cL! (R",E)ycD (R"E).

9,loc loc

Definition 3.4. Let @ € Njand T € D’ (R, E). Then the distributional derivative D*T € D’ (R", E) is given by
(D°T) (¢) = (=)' T(D"¢), p € D(R",R).

We now define the weak derivative of a locally integrable function. Let u € Llloc (R™, E). There may or may not exist
a function v, € L}OC (R", E) such that T,, = D*T, in D’ (R", E). If such a v, exists, it is unique up to sets of measure
zero and it is called the weak derivative of u and is denoted by D*u. Thus D*u = v, in the weak (distributional) sense
provided v, € L}m_ (R", E) satisfies

[ uonrowods= -1 [ v e

R" R"
for every ¢ € D (R",R).
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Letl < p™ < p()<p* < oo, § 0T € L}oc (R™) and k € N. We define the vector-valued weighted variable Sobolev
spaces Wf;’p “(R", E) by
Wy R",E) = (f € LIP(R". E) : D"f € LiP(R", E),0 < |o] < k|

equipped with the norm

W lpore = Y, 1D Fllpori -

0<|arl<k
Clearly, W O‘” ) R"E) = Lg(‘) (R™, E). For any k, the continuous embedding Wll;”’ ) R" E) — Lg(')(R”,E) is valid.
It can be shown that Wl]; P (R") is a reflexive Banach space. Throughout this paper, we will always assume that
1<p < p(x) < p* <ocoand d 77 e L. (R".
The space Wl;’p ©(R", E) is defined by
W, (R, E) = {f € LIY(R", E) : [Vf] € L} (R", E)}.

The function o106 : Wy (R", E) — [0,00) is defined as 01,p()0.£(f) = 0p00.£(f) + 0p0.£(Vf). The norm
WA pr0.e = W00 + IVAllp00.8-
Now, we give some basic properties of Wg’p (R, E).

Proposition 3.5. The space ( WY w1 E) ). lle.p0.00 E) is a Banach space.

Proof. Let (u j) be a Cauchy sequence in Wf;"” “(R", E). We show that there exists u € Wg"’ “) (R, E) such that u iou
in Wg’p(') R™,E) as j — oo. Then, {D"uj} is a Cauchy sequences in Lg(')(R”, E) for 0 < |a| < k. Since Lg(')(R”, E)isa
Banach space there exist functions u and u, in Lg(')(R", E) such that u; — u and Du; — u, in Lg(')(R", E)as j — co.

Now we will show that u, = Du in the distributional sense on R” for 0 < |a| < k. Since L, (R",E) — L! (R",E)
by Proposition 2.16, then u; determines a distribution 7,,; € D’ (R", E). For any ¢ € D (R",R) we have

|70 - Tue)||, < f [l x) = u@)|| ; le(x)l dx

o
< Clluj—ull,) 5 lplly.or

for some C > 0 by Theorem 2.12, where ﬂ + T =1 and 9" = 9'74). Hence T,,(¢) — T.(g) for every ¢ € D (R",R)

as j — oco. Similarly, Tpe,,(¢) — T, (¢) for every ¢ € D (R",R). It follows that

T,,(¥)

lim Tpey, (@) = lim (-1 T, (D"¢)
J—oo j—0

(-1 T,(D")

for every ¢ € D(R",R). Thus u, = D”u in the distributional sense on R" for 0 < |a| < k, whence u € W:;"’ ) R" E).

Since lim_, ”Mj - “”k PODE = 0, Ws’p(') (R", E) is complete. m]
We say that ¥, < 1%, if and only if there exists a C > 0 such that ¥ (x) < Cih(x) for all x € R". Two weight functions

are called equivalent and written t = v, if ¥ < ¥, and %, < .

Proposition 3.6. Let v, and v, be weight functions on R". [f v < v, then the embedding Wg;p o R"E) — Wll;;p ) R" E)
holds. i

Proof. Since v; < v,, then there exists a C > 0 such that ¢ (x) < C%,(x) for all x € R". Hence we have Lgi') R" E) —
L5 (R", E) and W, (R", E) — Wy (R", E). O
Corollary 3.7. If 9, ~ 0, then Wy (R", E) = Wy (R". E).

Theorem 3.8. Suppose that v\ and v, are weight functions on R" satisfying vy < vy and k,t € Z* with k > t. Then the
embedding Wy" (R", E) — W, (R", E) holds.
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Proof. Let f € Wf;‘;' ) (R", E) be given. Then we can write D*f € Lf;i') (R", E) for 0 < |a| < k. Since v < vy, then
L§§'> (R", E) — Lf;f" (R", E) and there is a C > 0 such that

D% fll,).0,. 2 < CUD fll )0,
Using k,t € Z* with k > t, we have

D flporsne < D WD flloie+ D, 1D Fllyo,e
0<|er|<t t+1<|a|<k
= C ||Daf||k,p(,),ﬂ2,E
That is the desired result. O

Theorem 3.9. Let pi(.), p2(.) be variable exponents satisfying p1(.) < p2(.). Then the embedding Wll;’m(') R"E) —
WP (R”, E) holds.

Proof. Let f ¢ Wf;’p 20 (R, E) be given. So D*f ¢ ng(.) (R",E) for 0 < |a| < k. It is known that, if the condition
p1(.) < p2(.) holds, then the embedding ng(.) R",E) — Lf;' o (R™, E) is satisfied [7]. Similarly, it can be seen that

1D fll,, )08 < CID® fllpy0.E -

This completes the proof. .
Theorem 3.10. Let pi(.), p2(.) be variable exponents satisfying 1 < p; < p»(.) < pi(.) < py & %ﬁ]
00. Then the embedding Wll;’l/"(-) (R", E) < WZ;;Pz(J (R". E) holds. TIe=TTs
Proof Suppose that f € Wy"'") (R, E). It is known that L' (R", E) — L (R", R
(Theorem 5.1, [10]). Hence we have the embedding Wf;’]p 10) (R", E) — W’f;’z”z(') & ). PTO-p20 _

Theorem 3.11. Let p(.), q(.) be variable exponents on R". If the inclusion Wz];’lp(') R", E) C W:;’zq(') (R, E) holds for the
weights ¥ and &, if and only if the embedding W:;’Im(') R"E) — W/:;’zp'(') R™, E) is satisfied.

Proof. The sufficient condition of the theorem is clear by the definition of continuous embedding. Now, assume that the
inclusion Wkp()(R” E)cC qu() (R", E) is valid. Moreover, we define the sum norm [|[.[Il = [l.ll ()0, + [llle p)90,6- It
is easy to see that (Wk PC) R, E) [l |||) is a Banach space. If we define the unit function / from (W ( k() ®R", E), ||l |||) into

( whpe) R", E) -1l .00 ) then the function / is continuous. Because we can obtain the 1nequa11ty ||I(f)||k,p(,)ﬂ,1,E
||f||k PODLE < |lIflll. By Banach’s theorem I is a homeomorphism, see [4]. So the norms [||.[|| and ||.llx ps, £ are

equivalent. Thus, for every f € Wf;’]p ) (R", E) there exists a k > 0 such that
WA < &1 W pyo0 6

By the definition of the norm |||.||| we have
-l pey.0 2 < M < KNSl pe) o,k - O
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