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Abstract: In the present work, we study the second order homogeneous k-hypergeometric differential equation by utilizing the
discrete fractional Nabla calculus operator. As a result, we obtained a novel exact fractional solution to the given equation.
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1 Introduction

Fractional calculus deal with derivatives and integrals of arbitrary orders, their applications seem in different areas of science such as physics,
applied mathematics, chemistry, engineering [1–4]. Mathematical models have significant applications in physical and technical processing
phenomena [5–9]. The solutions of the differential equations relevant to many interesting special functions in mathematics, physics, and
engineering, such as the hypergeometric series [10], the zeta function [11], the continued fraction [12], the power series [13], the Fourier
analysis [14]. The discrete fractional Nabla calculus operator have been applied to various singular ordinary equations such as the second-order
linear ordinary differential equation of hypergeometric type [15], the modified Bessel differential equation [16], the radial equation of the
fractional Schrödinger equation [17, 18], the Gauss equation [19], the non-Fuchsian differential equation [20], the Chebyshev’s equation [21].
The aim of this study is to apply the Nabla calculus operator to a well-known ordinary differential equation k-hypergeometric equation [22],
which is expressed by

kr (1− kr) d
2w

dr2
+ [α− (k + ρ+ σ) kr]

dw

dr
− ρσw = v (r) , (1)

where k ∈ R+, α, ρ, σ ∈ R+and v (r) is holomorphic in an interval D ⊆ C. If k = 1 and the function v (r) be vanishes identically, then Eq.
(1) reduce to a linear homogenous hypergeometric ordinary differential equation (ODE) as follows

r (1− r) d
2w

dr2
+ [α− (1 + ρ+ σ) r]

dw

dr
− ρσw = 0. (2)

Many researchers have been studied the hypergeometric differential equation by different schemes, such as Kummer, presented the concurrent
of hypergeometric equation in physical models [23]. Campos, finalize that this kind of equation contains complex calculations, and also the
singularities of the differential equation are orderly. [24].

2 Preliminaries

Here, we have some imperative knowledge about the discrete fractional calculus theory and also some necessary notes, N is the set of natural
numbers including zero, and Z is the set of integers. The Nb = {b, b+ 1, b+ 2, ...} for b ∈ Z. Let f(t) and g(t) are the real valued functions
defined on N+

0 . For more details see [15–21].
Definition 1. The rising factorial power is defined by

zn̄ = t (z + 1) (z + 2) ... (z + n− 1) , n ∈ N, z0̄ = 1.

Given α be a real number, then zᾱ is expressed by

tᾱ =
Γ (t+ α)

Γ (t)
, (3)

where z ∈ R\{...,−2,−1, 0}, and 0ᾱ = 0.
Let us symbolize that

∇
(
zα
)

= αzα−1, (4)

212 c© CPOST 2019



here∇u (z) = u (z)− u (z − 1) . For n = 2, 3, . . . describe∇n by∇n = ∇∇n−1.
Definition 2. The αth order fractional sum of f is defined by

∇−α
b f (z) =

z∑
s=b

[s− δ (z)]α−1

Γ (α)
f (s) , (5)

where z ∈ Nb, δ (z) = z − 1 is backward jump operator.
Theorem 1. Let f (z) and g (z) : N+

0 → R, α, β > 0, and h, v are constants, then

∇−α∇−βf (z) = ∇−(α+β)f (z) = ∇−β∇−αf (z) (6)

∇α [hf (z) + vg (z)] = h∇αf (z) + v∇αg (z) (7)

∇∇−αf (z) = ∇−(α−1)f (z) (8)

∇−α∇f (z) = ∇(1−α)f (z)−

(
z + α− 2

z − 1

)
f (0) (9)

Lemma 1. For all α > 0, αth order fractional difference of the product fg is expressed by

∇α0 (fg) (z) =

z∑
n=0

(
α

n

)[
∇
α−n

0 f (z − n)
] [
∇ng (z)

]
. (10)

Lemma 2. If the function f (t) is single valued and analytic, then

[fα (z)]β = fα+β (z) =
[
fβ (z)

]
α
,
[
fα (z) 6= 0, fβ (z) 6= 0, α, β ∈ R, z ∈ N

]
. (11)

3 Main results

Theorem 2. Let w ∈ {w : 0 6= |wϑ| <∞, ϑ ∈ R}, and then the homogeneous k-hypergeometric equation is given by

w2kr (1− kr) + w1 [α− (k + ρ+ σ) kr]− wρσ = 0, (12)

has a particular solution of the form

w = h

{
(r)

−( 1
k

(ϑθk+α))
(1− kr)

−( 1
k

(ϑθk+ρ+σ−α+k))
}
−(ϑ+1)

, r 6=
{

0,
1

k

}
. (13)

where wm (r) = dmw
drm , (m = 0, 1, 2) , w0 = w (r), and α, ρ, σ are given constants as well as h is a constant of integration.

Proof. When we applied the discrete fractional calculus operator to both sides of Eq. (12), we have

∇ϑw2kr (1− kr) +∇ϑw1 [α− (k + ρ+ σ) kr]−∇ϑ (wρσ) = 0, (14)

using Eq. (8), and Eq. (9) together with Eq. (14), one may obtain

wϑ+2kr (1− kr) + wϑ+1 [ϑθk (1− 2kr) + α− (k + ρ+ σ) kr]

+wϑ

[
−ϑ (ϑ− 1) θ2k2 + ϑθ (− (k + ρ+ σ) k)− ρσ

]
= 0,

(15)

where θ is a shift operator.
We choose ϑ such that

ϑ (ϑ− 1) θ2k2 + ϑθ
(
k2 + kρ+ kσ

)
+ ρσ = 0,
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ϑ =

[
θk − (k + ρ+ σ)±

√
((k + ρ+ σ)− θk)2 − 4ρσ

]
2θk

, (16)

and let (k + ρ+ σ − θk)2 ≥ 4ρσ, then we have

wϑ+2kr (1− kr) + wϑ+1 [ϑθk (1− 2kr) + α− (k + ρ+ σ) kr] = 0, (17)

and set
wϑ+1 = W = W (r) ,

(
w = W−(ϑ+1)

)
. (18)

Therefore

W1 +W

[
ϑθk (1− 2kr) + α− (k + ρ+ σ) kr

kr (1− kr)

]
= 0, (19)

by using Eq. (17), and Eq. (18), then the solution of the ODE Eq. (19) has the form

W = h (r)
−( 1

k
(ϑθk+α))

(1− kr)
−( 1

k
(ϑθk+ρ+σ−α+k))

. (20)

4 Conclusion

In the present study, we applied the discrete fractional Nabla calculus operator to the homogeneous k-hypergeometric differential equation. As
a result, we obtained a new exact discrete fractional solution.
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