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Abstract: In the present work, we study the second order homogeneous k-hypergeometric differential equation by utilizing the
discrete fractional Nabla calculus operator. As a result, we obtained a novel exact fractional solution to the given equation.
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1 Introduction

Fractional calculus deal with derivatives and integrals of arbitrary orders, their applications seem in different areas of science such as physics,
applied mathematics, chemistry, engineering [1-4]. Mathematical models have significant applications in physical and technical processing
phenomena [5-9]. The solutions of the differential equations relevant to many interesting special functions in mathematics, physics, and
engineering, such as the hypergeometric series [10], the zeta function [11], the continued fraction [12], the power series [13], the Fourier
analysis [14]. The discrete fractional Nabla calculus operator have been applied to various singular ordinary equations such as the second-order
linear ordinary differential equation of hypergeometric type [15], the modified Bessel differential equation [16], the radial equation of the
fractional Schrodinger equation [17, 18], the Gauss equation [19], the non-Fuchsian differential equation [20], the Chebyshev’s equation [21].
The aim of this study is to apply the Nabla calculus operator to a well-known ordinary differential equation k-hypergeometric equation [22],
which is expressed by
d?w dw

kr(lfkr)WJr[af(k+p+a)kr]gfpow:v(r), (1)
where k € R™, o, p, o € RTand v (r) is holomorphic in an interval D C C. If k = 1 and the function v (r) be vanishes identically, then Eq.
(1) reduce to a linear homogenous hypergeometric ordinary differential equation (ODE) as follows
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Many researchers have been studied the hypergeometric differential equation by different schemes, such as Kummer, presented the concurrent
of hypergeometric equation in physical models [23]. Campos, finalize that this kind of equation contains complex calculations, and also the
singularities of the differential equation are orderly. [24].

2  Preliminaries

Here, we have some imperative knowledge about the discrete fractional calculus theory and also some necessary notes, N is the set of natural
numbers including zero, and Z is the set of integers. The Ny, = {b,b+ 1,b+2,...} for b € Z. Let f(¢) and g(¢) are the real valued functions
defined on Na' . For more details see [15-21].

Definition 1. The rising factorial power is defined by

P =t(z4+1)(2+2) .. (z+n—1), neN, 20 =1.

Given « be a real number, then 2 is expressed by

a_ Tt+a)
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where z € R\{..., —2, —1,0}, and 0% = 0.
Let us symbolize that
\Y (za) =z, )
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here Vu (z) = u (z) —u(z — 1). Forn = 2,3,. .. describe V" by V"* = VvV~ 1,
Definition 2. The o'’ order fractional sum of f is defined by

V()=

where z € Ny, §(2) = z — 1 is backward jump operator.
Theorem 1. Let f (2) and g (2) : NSr — R, a, 8> 0, and h, v are constants, then

v—av—ﬁf (z) = V—(a+/3)f (z) = V_Bv_af (2)

VE[hf (2) +vg (2)] = V£ (2) + vV (2)

VV () =V Vg (2)

z4+a—2
VOVS () =V () - < ) ) 1)
¥ —
Lemma 1. For all o > 0, o™ order fractional difference of the product fg is expressed by
S« a-n
Vi (f9) () = <n> Vo "f(z=m)| [V"9(=)] -

n=0

Lemma 2. If the function f (¢) is single valued and analytic, then

[fo ()] = fa+p (2) = [f5 (2)] o [fa(2) #0, f3(2) #0, 0, BER, z€N].

3 Main results

Theorem 2. Let w € {w : 0 # |wy| < oo, ¥ € R}, and then the homogeneous k-hypergeometric equation is given by

wokr (1 —kr) +wi [a— (k+ p+ o) kr] —wpo =0,

has a particular solution of the form

w = h{(r)_(%<§ek+a)) (1- kr)_(%wskﬂ”_aw))} et {o, l} .
—(0+1) k

where wm, (r) = %,

Proof. When we applied the discrete fractional calculus operator to both sides of Eq. (12), we have

VY wokr (1—kr)+ vy [a—(k+p+o)kr]— v (wpo) =0,

using Eq. (8), and Eq. (9) together with Eq. (14), one may obtain

wyokr (1 — kr) + wy41 [00k (1 — 2kr) + o — (k+ p+ o) kr]

g [—19(19—1)92k2+ﬁe(—(k+p+a)k)—pa] —0,

where 6 is a shift operator.
We choose 1 such that

19(1971)92k2+199(k2+kp+k0)+pa:0,
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(m=0,1,2), wp = w(r),and o, p, o are given constants as well as h is a constant of integration.
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Ok — (k + p+0) £ \/ ((k+ p+ o) — 0k)* — 4p0

9= 50k ) (16)

and let (k + p + o — 0k)? > 4po, then we have

wyo2kr (1 —kr) +wyqq [00k (1 = 2kr) +a — (k+p+ o) kr] =0, (17)
and set
wysr =W =W (r), (w=W_gg41)). (18)
Therefore
Wi+ W 90k (1 —2kr)+a— (k+p+o)kr ~o, (19)
kr (1 —kr)
by using Eq. (17), and Eq. (18), then the solution of the ODE Eq. (19) has the form
—(LWok+a) —(L(90k+p+o—a+k)
W = h(r) (& )(l—kr) (eooere ). (20)

4

Conclusion

In the present study, we applied the discrete fractional Nabla calculus operator to the homogeneous k-hypergeometric differential equation. As
a result, we obtained a new exact discrete fractional solution.
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