Conference Proceeding of 8th International Eurasian Conference on Mathematical Sciences and Applications (IECMSA-2019).

# Fractional Solutions of a $k$-hypergeometric Differential Equation 

Resat Yilmazer ${ }^{1, *}$ Karmina K. Alii ${ }^{1,2}$<br>${ }^{1}$ Faculty of Science, Department of Mathematics, Firat University, Elazig, Turkey, ORCID:0000 000250593882<br>${ }^{2}$ Faculty of Science, Department of Mathematics, University of Zakho, Iraq, ORCID:0000-0002-3815-4457<br>* Corresponding Author E-mail: rstyilmazer@gmail.com


#### Abstract

In the present work, we study the second order homogeneous $k$-hypergeometric differential equation by utilizing the discrete fractional Nabla calculus operator. As a result, we obtained a novel exact fractional solution to the given equation.


Keywords: Discrete fractional, the $k$-hypergeometric differential equation, Nabla operator.

## 1 Introduction

Fractional calculus deal with derivatives and integrals of arbitrary orders, their applications seem in different areas of science such as physics, applied mathematics, chemistry, engineering [1-4]. Mathematical models have significant applications in physical and technical processing phenomena [5-9]. The solutions of the differential equations relevant to many interesting special functions in mathematics, physics, and engineering, such as the hypergeometric series [10], the zeta function [11], the continued fraction [12], the power series [13], the Fourier analysis [14]. The discrete fractional Nabla calculus operator have been applied to various singular ordinary equations such as the second-order linear ordinary differential equation of hypergeometric type [15], the modified Bessel differential equation [16], the radial equation of the fractional Schrödinger equation [17, 18], the Gauss equation [19], the non-Fuchsian differential equation [20], the Chebyshev's equation [21]. The aim of this study is to apply the Nabla calculus operator to a well-known ordinary differential equation $k$-hypergeometric equation [22], which is expressed by

$$
\begin{equation*}
k r(1-k r) \frac{d^{2} w}{d r^{2}}+[\alpha-(k+\rho+\sigma) k r] \frac{d w}{d r}-\rho \sigma w=v(r), \tag{1}
\end{equation*}
$$

where $k \in \mathbb{R}^{+}, \alpha, \rho, \sigma \in \mathbb{R}^{+}$and $v(r)$ is holomorphic in an interval $D \subseteq \mathbb{C}$. If $k=1$ and the function $v(r)$ be vanishes identically, then Eq. (1) reduce to a linear homogenous hypergeometric ordinary differential equation (ODE) as follows

$$
\begin{equation*}
r(1-r) \frac{d^{2} w}{d r^{2}}+[\alpha-(1+\rho+\sigma) r] \frac{d w}{d r}-\rho \sigma w=0 \tag{2}
\end{equation*}
$$

Many researchers have been studied the hypergeometric differential equation by different schemes, such as Kummer, presented the concurrent of hypergeometric equation in physical models [23]. Campos, finalize that this kind of equation contains complex calculations, and also the singularities of the differential equation are orderly. [24].

## 2 Preliminaries

Here, we have some imperative knowledge about the discrete fractional calculus theory and also some necessary notes, $\mathbb{N}$ is the set of natural numbers including zero, and $\mathbb{Z}$ is the set of integers. The $\mathbb{N}_{b}=\{b, b+1, b+2, \ldots\}$ for $b \in \mathbb{Z}$. Let $f(t)$ and $g(t)$ are the real valued functions defined on $\mathbb{N}_{0}^{+}$. For more details see [15-21].
Definition 1. The rising factorial power is defined by

$$
z^{\bar{n}}=t(z+1)(z+2) \ldots(z+n-1), n \in \mathbb{N}, z^{\overline{0}}=1 .
$$

Given $\alpha$ be a real number, then $z^{\bar{\alpha}}$ is expressed by

$$
\begin{equation*}
t^{\bar{\alpha}}=\frac{\Gamma(t+\alpha)}{\Gamma(t)}, \tag{3}
\end{equation*}
$$

where $z \in \mathbb{R} \backslash\{\ldots,-2,-1,0\}$, and $0^{\bar{\alpha}}=0$.
Let us symbolize that

$$
\begin{equation*}
\nabla\left(z^{\bar{\alpha}}\right)=\alpha z^{\overline{\alpha-1}} \tag{4}
\end{equation*}
$$

here $\nabla u(z)=u(z)-u(z-1)$. For $n=2,3, \ldots$ describe $\nabla^{n}$ by $\nabla^{n}=\nabla \nabla^{n-1}$.
Definition 2. The $\alpha^{t h}$ order fractional sum of $f$ is defined by

$$
\begin{equation*}
\nabla_{b}^{-\alpha} f(z)=\sum_{s=b}^{z} \frac{[s-\delta(z)]^{\overline{\alpha-1}}}{\Gamma(\alpha)} f(s) \tag{5}
\end{equation*}
$$

where $z \in \mathbb{N}_{b}, \delta(z)=z-1$ is backward jump operator.
Theorem 1. Let $f(z)$ and $g(z): \mathbb{N}_{0}^{+} \rightarrow \mathbb{R}, \alpha, \beta>0$, and $h, v$ are constants, then

$$
\begin{gather*}
\nabla^{-\alpha} \nabla^{-\beta} f(z)=\nabla^{-(\alpha+\beta)} f(z)=\nabla^{-\beta} \nabla^{-\alpha} f(z)  \tag{6}\\
\nabla^{\alpha}[h f(z)+v g(z)]=h \nabla^{\alpha} f(z)+v \nabla^{\alpha} g(z)  \tag{7}\\
\nabla \nabla^{-\alpha} f(z)=\nabla^{-(\alpha-1)} f(z)  \tag{8}\\
\nabla^{-\alpha} \nabla f(z)=\nabla^{(1-\alpha)} f(z)-\binom{z+\alpha-2}{z-1} f(0) \tag{9}
\end{gather*}
$$

Lemma 1. For all $\alpha>0, \alpha^{\text {th }}$ order fractional difference of the product $f g$ is expressed by

$$
\begin{equation*}
\nabla_{0}^{\alpha}(f g)(z)=\sum_{n=0}^{z}\binom{\alpha}{n}\left[\nabla_{0}^{\alpha-n} f(z-n)\right]\left[\nabla^{n} g(z)\right] \tag{10}
\end{equation*}
$$

Lemma 2. If the function $f(t)$ is single valued and analytic, then

$$
\begin{equation*}
\left[f_{\alpha}(z)\right]_{\beta}=f_{\alpha+\beta}(z)=\left[f_{\beta}(z)\right]_{\alpha},\left[f_{\alpha}(z) \neq 0, f_{\beta}(z) \neq 0, \alpha, \beta \in \mathbb{R}, z \in \mathbb{N}\right] \tag{11}
\end{equation*}
$$

## 3 Main results

Theorem 2. Let $w \in\left\{w: 0 \neq\left|w_{\vartheta}\right|<\infty, \vartheta \in \mathbb{R}\right\}$, and then the homogeneous $k$-hypergeometric equation is given by

$$
\begin{equation*}
w_{2} k r(1-k r)+w_{1}[\alpha-(k+\rho+\sigma) k r]-w \rho \sigma=0 \tag{12}
\end{equation*}
$$

has a particular solution of the form

$$
\begin{equation*}
w=h\left\{(r)^{-\left(\frac{1}{k}(\vartheta \theta k+\alpha)\right)}(1-k r)^{-\left(\frac{1}{k}(\vartheta \theta k+\rho+\sigma-\alpha+k)\right)}\right\}_{-(\vartheta+1)}, r \neq\left\{0, \frac{1}{k}\right\} . \tag{13}
\end{equation*}
$$

where $w_{m}(r)=\frac{d^{m} w}{d r^{m},},(m=0,1,2), w_{0}=w(r)$, and $\alpha, \rho, \sigma$ are given constants as well as $h$ is a constant of integration. Proof. When we applied the discrete fractional calculus operator to both sides of Eq. (12), we have

$$
\begin{equation*}
\nabla^{\vartheta} w_{2} k r(1-k r)+\nabla^{\vartheta} w_{1}[\alpha-(k+\rho+\sigma) k r]-\nabla^{\vartheta}(w \rho \sigma)=0, \tag{14}
\end{equation*}
$$

using Eq. (8), and Eq. (9) together with Eq. (14), one may obtain

$$
\begin{align*}
& w_{\vartheta+2} k r(1-k r)+w_{\vartheta+1}[\vartheta \theta k(1-2 k r)+\alpha-(k+\rho+\sigma) k r] \\
+ & w_{\vartheta}\left[-\vartheta(\vartheta-1) \theta^{2} k^{2}+\vartheta \theta(-(k+\rho+\sigma) k)-\rho \sigma\right]=0, \tag{15}
\end{align*}
$$

where $\theta$ is a shift operator.
We choose $\vartheta$ such that

$$
\vartheta(\vartheta-1) \theta^{2} k^{2}+\vartheta \theta\left(k^{2}+k \rho+k \sigma\right)+\rho \sigma=0,
$$

$$
\begin{equation*}
\vartheta=\frac{\left[\theta k-(k+\rho+\sigma) \pm \sqrt{((k+\rho+\sigma)-\theta k)^{2}-4 \rho \sigma}\right]}{2 \theta k}, \tag{16}
\end{equation*}
$$

and let $(k+\rho+\sigma-\theta k)^{2} \geq 4 \rho \sigma$, then we have

$$
\begin{equation*}
w_{\vartheta+2} k r(1-k r)+w_{\vartheta+1}[\vartheta \theta k(1-2 k r)+\alpha-(k+\rho+\sigma) k r]=0 \tag{17}
\end{equation*}
$$

and set

$$
\begin{equation*}
w_{\vartheta+1}=W=W(r),\left(w=W_{-(\vartheta+1)}\right) \tag{18}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
W_{1}+W\left[\frac{\vartheta \theta k(1-2 k r)+\alpha-(k+\rho+\sigma) k r}{k r(1-k r)}\right]=0 \tag{19}
\end{equation*}
$$

by using Eq. (17), and Eq. (18), then the solution of the ODE Eq. (19) has the form

$$
\begin{equation*}
W=h(r)^{-\left(\frac{1}{k}(\vartheta \theta k+\alpha)\right)}(1-k r)^{-\left(\frac{1}{k}(\vartheta \theta k+\rho+\sigma-\alpha+k)\right)} . \tag{20}
\end{equation*}
$$

## 4 Conclusion

In the present study, we applied the discrete fractional Nabla calculus operator to the homogeneous $k$-hypergeometric differential equation. As a result, we obtained a new exact discrete fractional solution.

## 5 References

[1] K. S. Miller, and B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993.
[2] K. Oldham, and J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, Elsevier, 1974.
[3] I. Podlubny, Matrix approach to discrete fractional calculus. Fractional calculus and applied analysis, 3(4) (2000), 359-386.
[4] H. T. Michael, The Laplace transform in discrete fractional calculus, Computers and Mathematics with Applications 62(3) (2011) 1591-1601.
[5] M. N. Ozişik, H. R. B. Orlande, M. J. Colac, R. M. Cotta, Finite difference methods in heat transfer, CRC press, 2017.
[6] P. T. Kuchment, Floquet theory for partial differential equations, Birkhäuser, 2012.
[7] A. H. Khater, M. H. M. Moussa, and S. F. Abdul-Aziz, Invariant variational principles and conservation laws for some nonlinear partial differential equations with variable coefficients part II, Chaos, Solitons and Fractals 15(1) (2013), 1-13.
[8] P. Verdonck, The role of computational fluid dynamics for artificial organ design, Artificial organs 26(7) (2002), 569-570.
[9] A. Mandelis, Diffusion-wave fields: mathematical methods and Green functions, Springer Science and Business Media, 2013.
[10] G. M. Viswanathan, The hypergeometric series for the partition function of the 2D Ising model, Journal of Statistical Mechanics: Theory and Experiment 2015(7) (2015), 07004.
[11] C. M. Bender, C. B. Dorje, and P.M. Markus, Hamiltonian for the zeros of the Riemann zeta function, Physical Review Letters 118(13) (2017), 130201.
[12] P. Flajolet, Combinatorial aspects of continued fractions, Discrete mathematics 306(10-11) (2006), 992-1021.
[13] G. Plonka, D. Potts, G. Steidi, M. Tasche, Fourier series, Numerical Fourier Analysis, Birkhäuser, Cham, 1-59, 2018.
[14] J. W. Cooley, J. W. Tukey, An algorithm for the machine calculation of complex fourier series, Mathematics of computation, 19(90), 297-301, 1965.
[15] R. Yilmazer, M. Inc, F. Tchier, D. Baleanu, Particular solutions of the confluent hypergeometric differential equation by using the nabla fractional calculus operator, Entropy 18(2) (2016), 49.
[16] R. Yilmazer, and O. Ozturk, On Nabla discrete fractional calculus operator for a modified Bessel equation, Therm. Sci. 22 (2018) $203-209$.
[17] R. Yilmazer, $N$-fractional calculus operator $N^{\mu}$ method to a modified hydrogen atom equation, Mathematical Communications 15(2) (2010), 489-501.
[18] R. Yilmazer, Discrete fractional solutions of a Hermite equation, Journal of Inequalities and Special Functions, 10(1) (2019), 53-59.
[19] R. Yilmazer, Discrete fractional solution of a non-Homogeneous non-Fuchsian differential equations, Thermal Science, 23(1) (2019), 121-127.
$[20]$ R. Yilmazer, M. Inc, and M. Bayram, On discrete fractional solutions of Non-Fuchsian differential equations, Mathematics 6(12) (2018), 308.
[21] M. Inc and R. Yilmazer, On some particular solutions of the Chebyshev's equation by means of Na discrete fractional calculus operator, Prog. Fract. Differ. Appl. 2(2) (2016), 123-129.
[22] L. Shengfeng, and Y. Dong, k-Hypergeometric series solutions to one type of non-homogeneous $k$-Hypergeometric Equations, Symmetry 11(2) (2019), 262.
[23] E. E. Kummer, De integralibus quibusdam definitis et seriebus infinitis, Journal für die reine und angewandte Mathematik 17 (1837), 228-242.
[24] L. Campos, On some solutions of the extended confluent hypergeometric differential equation, Journal of computational and applied mathematics 137(1) (2001), 177-200.

