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ABSTRACT 
 

In this paper, the dynamic behavior of permanent magnet synchronous motors and the nonlinear output regulation of them for 

constant reference signals are studied. The dynamic analysis is based on previous studies and new results related to chaos 

phenomena are obtained. With the state feedback control law, regulation of motor velocity and direct-axis current is achieved 

for known and unknown load torque at constant operating points. Moreover, the control law is enhanced in the sense of 

robustness with respect to parameter uncertainties by utilizing an augmented system with integral operators. 
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SABİT MIKNATISLI SENKRON MOTORUN DİNAMİK DAVRANIŞ ANALİZİ 

VE DOĞRUSAL OLMAYAN KONTROLÖR İLE KAOS KONTROLÜ 
 

ÖZET 
 

Bu çalışmada sabit mıknatıslı senkron motorların dinamik davranışları analiz edilmiş ve sabit referans sinyali için doğrusal 

olmayan çıkış regülasyon kontrolü işlenmiştir. Dinamik analiz literatürde var olan çalışmalara dayandırılarak kaos olayına 

ilişkin yeni sonuçlar elde edilmiştir. Belirli ve belirsiz yük momentleri altında sabit çalışma noktasında motor hız regülasyonu 

ve direkt eksen akımı durum geri beslemesi kontrolü ile sağlanmıştır. Bunun ötesinde kontrol kuralı integral içeren yardımcı 

sistem vasıtasıyla parametre belirsizliklerine karşı dayanıklılık anlamında geliştirilmiştir. 

 

Anahtar kelimeler: Kaos, SMSM, Doğrusal olmayan regülasyon problemi, Geri beslemeli Kontrol, Dayanıklılık 

 

 

1. INTRODUCTION 
 

In recent years, permanent magnet synchronous motors (PMSM) with their numerous advantages are extensively utilized in 

every field of industry including automation, automotive, space, computer, medical electronics, military applications, robotics 

and small household applications. Advancements in material science and electronics relieve manufacturing costs and enhances 

the properties of permanent magnets which deliver highly efficient motors with smooth and constant torque, high 

torque/current and torque/inertia ratio. Obviously, in many critical applications stable and safe operation of PMSM is an 

indispensable request. However, Hemati pointed out in his studies [1] and [2] that PMSM with certain system parameter values 

and under some operating conditions generates chaotic behaviors which may even destroy the system stability, and more 

detailed studies on PMSM chaos phenomenon were done in [3] and [4]. Thus, not surprisingly there are various studies 

focused on controlling and overcoming chaos in PMSM [5-15]. 

Dong et al. [5] studied a state feedback control law that renders PMSM system passive on the basis of study [16]. Ren and 

Liu presented a nonlinear feedback controller method to suppress chaos and stabilize the system about a set-point without the 

proof of stability [6]. Moreover, Ren et al. [7] successfully implemented the method of time delay feedback control of PMSM. 

Wei et al. revealed that the dynamic time delay feedback method can stabilize the states over a much larger domain of 

parameters compared to the static delay time feedback [8]. In another study, Wei et al. proposed an adaptive dynamic surface 

control of chaos in PMSM [9]. On the other hand, Loria presented a solution for set-point and tracking with parameter 

uncertainties output regulation problem with showing uniform global asymptotic stability of PMSM using cascaded theory 

[10]. The studies [11] and [12] are examples of Lyapunov exponents methods to control PMSM. 

https://orcid.org/0000-0002-6642-3546
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Essentially, the purpose of control problem of the PMSM is to design a feedback control law that stabilizes the closed-loop 

system, and lets motor speed asymptotically track a reference signal and regulates direct-axis current to a set point (mostly 

zero) under the presence of the load torque. Therefore, this problem can be considered as output regulation problem for a 

nonlinear system as defined by Isidori and Brynes in [17]. Based on this idea Huang and Ping studied the control problem of 

PMSM with internal model design employing the general framework established in [18]. In [14], authors studied output 

regulation problem of surface-mounted PMSM with any reference input generated by some exosystem and uncertain motor 

parameters with known bounds. They expanded the work by studying general case of PMSM (non-smooth air gap PMSM) in 

[15]. However, their approach generates nonlinear control laws, and needs definite bounds for exact constant load torque and 

perturbations of motor parameters. 

In this paper, first we present some new results related to the stability properties of PMSM. In the literature, there are two 

different affine linear transformations for dq reference frame PMSM equations, [1] and [3]. In [3], Li et al. proposed a 

transformation which converts physical parameters of the motor into two constants σ and γ. Because of physical constraints, σ 

is always a positive constant while γ is negative. However, they assigned a positive value to γ that changes stability analysis 

entirely. Furthermore, many studies in the literature [3, 4, 6, 9-13, 19-21] are based on the ground of this analysis. In our study, 

we prove that PMSM never demonstrates chaotic phenomena when the external inputs are removed. We also present that even 

if motor parameters are not in bifurcation region, PMSM may generate chaotic behaviors depending on the initial conditions of 

the states. 

The larger part of the study contains solving the output regulation problem of nonlinear PMSM system with linear state 

feedback control law when reference inputs and disturbances (load torque) are constant signals. We use directly the method 

that proposed by Isidori and Brynes for this purpose [17]. First, it is presented that the regulation of all three states of PMSM is 

not possible by using state feedback. Therefore, we solve the regulation problem of only two states (motor speed and direct-

axis current) which is sufficient and acceptable for PMSM control system. Afterwards, the robustness of the system is 

improved against measurement noise and parametric time varying uncertainties utilizing the integrator action, and then the 

output regulation problem for that “augmented” plant is solved. The proposed control law is linear and easy to implement. The 

law does not require any information about load torque except that it has constant derivative w.r.t time. Furthermore, the 

bounds for parametric uncertainty that maintain the closed loop stability are determined by controller matrix K. Finally, the 

theoretical findings are validated through simulation studies. 

The rest of the paper is organized as follows. In Section 2, the transformed mathematical model of PMSM is reviewed. In 

Section 3, new results for chaos and bifurcation analysis of PMSM are presented. In Section 4 the principles of nonlinear 

output regulation problem are given. In Section 5, the solution for nonlinear output regulation problem of PMSM with state 

feedback regulator for set-point control is exhibited and discussed. Then, the robustness properties are improved. In Section 6, 

several simulation results are presented, and finally the study is concluded in Section 7. 

 

 

2. MACHINE MODEL 
 

The dynamic equations of PMSM in 𝑑𝑞 reference frame is written as [22]   

 
𝑑𝑖𝑑

𝑑𝑡
=

1

𝐿𝑑
(−𝑅 𝑖𝑑 + 𝑛𝑝 𝜔𝐿𝑞𝑖𝑞 + 𝑣𝑑)                                                                                                                                             (1a) 

𝑑𝑖𝑞

𝑑𝑡
=

1

𝐿𝑞
(−𝑅 𝑖𝑞 − 𝑛𝑝 𝜔𝐿𝑑𝑖𝑑 − 𝜔𝜑𝑟 + 𝑣𝑞)                                                                                                                                 (1b) 

𝑑𝑤

𝑑𝑡
=

1

𝐽
(
3

2
𝑛𝑝𝜑𝑟𝑖𝑞 +

3

2
𝑛𝑝(𝐿𝑑 − 𝐿𝑞) 𝑖𝑞𝑖𝑑 − 𝑇𝐿 − 𝑏 𝜔)                                                                                                                (1c) 

 

 where 𝑖𝑞  and 𝑖𝑑 are quadrature-axis and direct-axis currents, 𝑣𝑞  and 𝑣𝑑 are quadrature-axis and direct-axis voltages, 𝐿𝑞 and 𝐿𝑑 

are quadrature-axis and direct-axis stator inductances, 𝑅 is winding resistance; 𝑛𝑝 is number of permanent pole pairs, 𝜑𝑟 is 

permanent-magnet flux constant, 𝑏 is viscous friction coefficient, 𝑇𝐿  is load torque, 𝐽 is moment of inertia, and 𝜔 is angular 

rotor velocity. Note that for a smooth-air-gap PMSM 𝐿𝑞 = 𝐿𝑑 = 𝐿 in the model (2). 

In literature PMSM equations in (1) are transformed into another environment via an affine linear transformation and time 

scaling to provide convenience for analysis, control and design [1-3, 10, 23]. They consider an affine linear transformation of 

the form  

 

𝐱 = Σ �̃� + 휁                                                                                                                                                                               (2) 

 

where 𝐱 = [𝜔  𝑖𝑞  𝑖𝑑]𝑇; Σ is a 3 × 3 constant nonsingular diagonal matrix, and 휁 is a 3 × 1 constant vector. They also consider 

a time-scaling of the form  



NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 9(1): 154-171 

 

ANALYSIS OF DYNAMIC BEHAVIOR OF PERMANENT MAGNET SYNCHRONOUS MOTORS AND CONTROLLING 

CHAOS WITH NONLINEAR OUTPUT REGULATION 

 

156 

 

 

𝑡 = 𝜏 �̃�                                                                                                                                                                                        (3) 

 

to obtain a nondimeonsionalized form. In this context, two different transformations with the same output equation set come 

into prominence. One of them is introduced by Hemati [2], and Σ, 휁, and 𝜏 are defined as follows for smooth-air-gap PMSM:  

 

𝜏 =
𝐿𝑞

𝑅
                                                                                                                                                                          (4) 

  

Σ = [

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

] =

[
 
 
 
 

𝑅

𝑛𝑝 𝐿
0 0

0
2 𝑏

3 𝑛𝑝
2 𝜏 𝜑𝑟

0

0 0
2 𝑏

3 𝑛𝑝
2 𝜏 𝜑𝑟]

 
 
 
 

                                                                                                             (5) 

  

휁 = [

휁1
휁2

휁3

] = [

0
0
−(2/3 𝜌 𝐿 𝑏 + 𝑛𝑝

2 𝜑𝑟
2𝜏)

𝑛𝑝
2𝜑𝑟 𝐿 𝜏

]                                                                                                                              (6) 

  

then, the system in (1) can be written in the form   

 

�̇̃�1 = 𝜎 (�̃�2 − �̃�1) − �̃�𝐿                                                                                                                                               (7a) 

�̇̃�2 = −�̃�2 − �̃�1 �̃�3 + 𝜌 �̃�1 + �̃�𝑞                                                                                                                                         (7b) 

�̇̃�3 = −�̃�3 + �̃�1 �̃�2 + �̃�𝑑                                                                                                                                            (7c) 

 

where 𝜌 is a free parameter, and 𝜎 =
𝜏 𝑏

𝐽
, �̃�𝐿 =

𝑛𝑝 𝜏2

𝐽
 𝑇𝐿 , �̃�𝑞 =

3 𝑛𝑝
2 𝜏2 𝜑𝑟

2 𝐿 𝑏
 𝑣𝑞 , and �̃�𝑑 =

3 𝑛𝑝
2 𝜏2 𝜑𝑟

2 𝐿 𝑏
 𝑣𝑑 +

2 𝜌 𝐿 𝑏 + 3 𝑛𝑝
2 𝜑𝑟

2𝜏

2 𝐿 𝑏
. 

On the other hand, the other most cited transformation is studied by Li et al. in [3]. They set 휁 equal to zero, and define Σ 

and 𝜏 as follows:  

 

𝜏 =
𝐿𝑞

𝑅
                                                                                                                                                                (8) 

  

Σ = [

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

] = [

1

𝜏
0 0

0 𝑘 0
0 0 𝛿 𝑘

]                                                                                                                            (9) 

 

where 𝑘 =
2 𝑏

3 𝑛𝑝
2 𝜏 𝜑𝑟

 and 𝛿 =
𝐿𝑑

𝐿𝑞
. Then the following equation system is obtained:   

 

�̇̃�1 = 𝜎 (�̃�2 − �̃�1) +  휀 �̃�2 �̃�3 − �̃�𝐿                                                                                                                             (10a) 

�̇̃�2 = −�̃�2 − �̃�1 �̃�3 + 𝛾 �̃�1 + �̃�𝑞                                                                                                                                   (10b) 

�̇̃�3 = −𝛿 �̃�3 + �̃�1 �̃�2 + �̃�𝑑                                                                                                                                    (10c) 

 

where  𝛾 = −
𝜑𝑟

𝑘 𝐿𝑞
, 𝜎 =

𝜏 𝑏

𝐽
, �̃�𝑞 =

1

𝑅 𝑘
 𝑣𝑞 , �̃�𝑑 =

1

𝑅 𝑘
 𝑣𝑑 , 휀 =

𝛿 𝜏 𝑘 (𝐿𝑑−𝐿𝑞)

𝐽 𝜑𝑟
 and �̃�𝐿 =

𝑛𝑝 𝜏2

𝐽
 𝑇𝐿 .                 

 

In the transformation developed by Hemati, in the case of 𝐿𝑞 ≠ 𝐿𝑑, the same equation set with (10) is obtained with 

different Σ and 휁 matrices, and again with a free parameter 𝜌; for more details, see [1]. 

For simplicity only smooth-air-gap PMSM is studied (𝐿𝑞 = 𝐿𝑑 = 𝐿), and the dynamic model in (10) becomes   

 

�̇̃�1 = 𝜎 (�̃�2 − �̃�1) − �̃�𝐿                                                                                                                                           (11a) 

�̇̃�2 = −�̃�2 − �̃�1 �̃�3 + 𝛾 �̃�1 + �̃�𝑞                                                                                                                                   (11b) 

�̇̃�3 = −�̃�3 + �̃�1 �̃�2 + �̃�𝑑.                                                                                                                                          (11c) 
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Note that, since difference of the definition of electromagnetic torque, there is a minor coefficient change in the 

transformations. Also, note that the equation sets (7) and (11) have the same structure except one important point; 𝜌 and 𝛾 

parameters. In (7), 𝜌 is a free parameter, while in (11) 𝛾 is a negative valued parameter whose value depends on motor 

characteristics. 

 

 

3. NEW RESULTS IN CHAOS AND BIFURCATION ANALYSIS 
 

At first, we consider the case of which, the external inputs are set to zero, namely, 𝑣𝑑 = 0, 𝑣𝑞 = 0, and 𝑇𝐿 = 0 after an 

operation of the system. 

This case corresponds to �̃�𝑑 = 0, �̃�𝑞 = 0, and �̃�𝐿 = 0 in (2); and the transformed system becomes identical to the Lorenz 

equation. The equilibrium points of the dynamic system are (0,0,0) and (±√𝛾 − 1,±√𝛾 − 1, 𝛾 − 1). It is seen that the origin 

is an equilibrium for any values of the parameters. The other two equilibria are real if and only if 𝛾 ≥ 1. However, it is not 

possible since 𝛾 only depends on the motor parameters and it is always less than zero as mentioned before. To investigate the 

stability of origin we use Lyapunov’s theorem; consider the function  

 

𝑉(𝑥) =
1

2
(−𝛾 �̃�1

2 + 𝜎 �̃�2
2 + 𝜎 �̃�3

2).                                                                                                                         (12) 

 

The parameter constraints 𝛾 < 0 and 𝜎 > 0 ensure that over the domain 𝑅3, 𝑉(𝑥) is continuously differentiable, 𝑉(0) = 0 and 

𝑉(𝑥) > 0 for all 𝑥 ≠ 0. Then,  

 

�̇�(𝑥) = 𝛾 �̃�1
2 − 𝜎 �̃�2

2 − 𝜎 �̃�3
2 ≤ 0.                                                                                                                         (13) 

 

Therefore, �̃� = 0 is stable. Moreover, �̇�(𝑥) ≤ 0 in 𝑅3 − {0}, so �̃� = 0 is asymptotically stable. This �̃� = 0 point is equal to 

(𝑤, 𝑖𝑞 , 𝑖𝑑) = (0,0,0) in original 𝑑𝑞 motor equations. 

That result can be verified by also using Hemati’s transformation in [2]. If the external inputs are removed (𝑣𝑑 = 𝑣𝑞 =

𝑇𝐿 = 0), then �̃�𝑑 =
2 𝜌 𝐿 𝑏+3 𝑛𝑝 𝜑𝑟

2 𝜏

2 𝐿 𝑏
, �̃�𝑞 = 0, and �̃�𝐿 = 0. Equilibrium points become (0,0, �̃�𝑑) and 

(±√𝜌 − 1 − �̃�𝑑 , ±√𝜌 − 1 − �̃�𝑑 , 𝜌 − 1). The two nontrivial equilibria makes sense only when 𝜌 − �̃�𝑑 > 1. However, it is not 

possible regardless of the value of 𝜌. Again by using Lyapunov’s theorem one can show that the first equilibrium point 

(0,0, �̃�𝑑) is asymptotically stable; and this equilibria is equal to the origin in original 𝑑𝑞 motor equations. 

As a consequence, after a period of operation, if the external inputs of the system are removed, there is only one 

equilibrium point, which is (𝑤, 𝑖𝑞 , 𝑖𝑑) = (0,0,0). This point is always asymptotically stable and PMSM never demonstrates 

chaotic behavior in that case on the contrary what is studied in a large number of articles [3, 6, 9, 11, 13, 19]. 

In studies [4, 6, 9-13, 19-21], authors used transformation of Li et al. in [3] which is given in (10) and (11), however in 

their analysis and simulations they gave a positive value to 𝛾 parameter. Correspondingly, they could find chaotic behavior of 

PMSM in case of removed inputs. 

Another investigated case is 𝑣𝑑 ≠ 0, 𝑣𝑞 = 0, and 𝑇𝐿 = 0. In this case we utilize the transformation in [2] due to its 

simplicity; we can still say �̃�𝑞 = 0 by just adjusting the value of 𝜌 (it is a free parameter in the transformation). Here, the 

equation set in (7) is identical to Lorenz equation. 

It is possible to prove that the solutions of the Lorenz equations are bounded. There exists a bounded region 𝐸 such that 

every trajectory eventually enters 𝐸 and never thereafter leaves it [24]. When 𝜌 ≤ 1 origin is the only equilibrium point and all 

solutions are attracted to the origin as we showed before. When 𝜌 > 1, three real equilibrium points occur; (0,0,0) and 

(±√𝜌 − 1,±√𝜌 − 1, 𝜌 − 1). Let us call these three points as 𝐶0, 𝐶1, and 𝐶2 respectively. To determine the stability of these 

points, the Jacobian matrix of the system (7) is checked as follows  

 

𝐽(�̃�1, �̃�2, �̃�3) = [
−𝜎 𝜎 0
−�̃�3 + 𝜌 −1 −�̃�1

�̃�2 �̃�1 −1
].                                                                                                                    (14) 

 

For the point 𝐶0, the Jacobian matrix 𝐽(0,0,0) is block diagonal. The eigenvalues are −1,
−1−𝜎±√1−2 𝜎+4 𝜌 𝜎+𝜎2

2
. Note that 

for 𝜌 ≤ 1, all there eigenvalues are negative. For 𝜌 > 1, the Jacobian matrix has one positive real and two negative real 

eigenvalues. Hence, the stable node at the origin becomes an unstable manifold. 

For the points 𝐶1 and 𝐶2, eigenvalues of Jacobian matrix are roots of the polynomial  
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𝑝(𝜆) = 𝜆3 + (2 + 𝜎) 𝜆2 + (𝜎 + 𝜌)𝜆 + 2 𝜌 𝜎 − 2 𝜎.                                                                                                   (15) 

  

Note that stability characteristics of 𝐶1 and 𝐶2 are the same because of their symmetry. For 𝜌 near 1, roots of 𝑝(𝜆) are 

negative real. There is a point 𝜌𝑛𝑠 that causes a change in the character of the equilibria 𝐶1 and 𝐶2 from nodes to spirals. For 

𝜎 > 2 and 𝜌𝑛𝑠 < 𝜌 < 𝜌ℎ =
𝜎(𝜎+4)

𝜎−2
, one of the eigenvalues is negative real, other two are complex conjugate and have negative 

real parts. Therefore, 𝜌 = 𝜌ℎ is a Hopf bifurcation point of the system and 𝐶1 and 𝐶2 are stable equilibrium points for 𝜌 < 𝜌ℎ 

[3]. For 𝜌 > 𝜌ℎ real parts of all eigenvalues are positive and PMSM losses its stability. 

However, it is not possible to claim that if 𝜌 < 𝜌ℎ, the equilibrium points 𝐶1 and 𝐶2 are asymptotically stable. The most 

characteristic feature of a chaotic system is its unpredictability. The solutions of differential equations strongly depend on 

initial conditions. Small changes in an initial state can make a very large difference in the behavior of the system. 

We illustrate this phenomenon by an example. Let the system parameters be 𝜎 = 5 and 𝜌 = 14 (𝜌ℎ = 15). Then the 

equilibrium points are 𝐶0 = (0,0,0), 𝐶1 = (−3.605, −3.605, 13), 𝐶2 = (3.605, 3.605, 13), and eigenvalues of Jacobian 

matrix are 𝜆0 = (−11.602, 5.602, −1), 𝜆1,2 = (−6.955, −0.022 + 4.323 𝑖, −0.022 − 4.323 𝑖). For different initial 

conditions, different behavior of PMSM is seen in Fig. 1, Fig. 2 and Fig. 3. Hence, for 𝜌 < 𝜌ℎ it can only be said that the 

solutions are bounded. For general case of 𝑣𝑑, 𝑣𝑞  and 𝑇𝐿 , one can see [3] and [4]. 

 

 
 

Figure 1. For initial condition �̃�(0) = 5, 𝑖̃𝑞(0) = 2, 𝑖̃𝑑(0) = 10 results for time simulation and generated stable node. 

   

 
 

Figure 2. For initial condition �̃�(0) = 5, 𝑖̃𝑞(0) = 5, 𝑖̃𝑑(0) = 10 results for time simulation and generated pre-chaotic 

attractor. 
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Figure 3. For initial condition �̃�(0) = 5, 𝑖̃𝑞(0) = 5, 𝑖̃𝑑(0) = 20 results for time simulation and generated chaotic attractor. 

   

Therefore, it is important to design a control law satisfying two requirements. The first one is guaranteeing the asymptotic 

stability of the closed loop system, the second one is asymptotic tracking of reference inputs in the presence of disturbances. In 

this paper, our aim is to control the chaos in PMSM using output regulation theory for nonlinear systems. 

 

 

4. OUTPUT REGULATION PROBLEM FORMULATION 
 

Consider a multivariable nonlinear plant described by  

 

�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢 + 𝑝(𝑥)𝑤                                                                                                                                (16) 

  

�̇� = 𝑠(𝑤)                                                                                                                                                             (17) 

  

𝑒 = ℎ(𝑥) + 𝑞(𝑤)                                                                                                                                                                 (18) 

 

where 𝑥 is the plant state defined on a neighborhood 𝑋 of the origin 𝐑𝑛, 𝑢 𝜖 𝐑𝑚 is the control input, 𝑤, defined on 

neighborhood 𝑊 of the origin 𝐑𝑠, is an exogenous signal which includes references to be tracked and disturbances, and 

𝑒  𝜖  𝐑𝑝 is the regulated output. The first equation describes the dynamics of the plant, while the second equation describes 

exosystem, and models disturbances and reference signals taken into consideration. The regulated output in the third equation is 

mostly chosen as tracking error between the actual output ℎ(𝑥) and reference signal 𝑞(𝑤). 

The vectorfields/functions 𝑓(𝑥), 𝑔(𝑥), 𝑝(𝑥), 𝑠(𝑤), ℎ(𝑥), and 𝑞(𝑤) are assumed to be continuously differentiable 

mappings. It is also assumed that 𝑓(0) = 0, 𝑠(0) = 0, ℎ(0) = 0, 𝑞(0) = 0. Thus, for 𝑢 = 0, the system (16) and (17) has an 

equilibrium state (𝑥, 𝑤) = (0,0) with zero error (18). 

In [17], Isidori and Brynes defined state feedback regulator problem as follows: 

Problem: Find, if possible, 𝑢 = 𝛼(𝑥, 𝑤) such that [a)]  

1.  the equilibrium point 𝑥 = 0 of 

 

�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝛼(𝑥, 0)                                                                                                                                      (19) 

 

 is exponentially stable;  

    2.  there exists a neighborhood 𝑈 ⊂ 𝑋 × 𝑊 of (0,0) such that, for each initial condition (𝑥(0), 𝑤(0)) 𝜖 𝑈, the solution of 

(16) satisfies 

 

lim
𝑡→∞

ℎ(𝑥(𝑡)) + 𝑞(𝑤(𝑡)) = 0.                                                                                                                                     (20) 

 

They solved the problem under following assumptions [17]: 

H1: 𝑤 = 0 is a stable equilibrium of the exosystem, and there exists a neighborhood �̂� ⊂ 𝑊 of the origin with the property 

that initial condition 𝑤(0) 𝜖 �̂� is Poisson stable. 

H2: The pair 𝑓(𝑥), 𝑔(𝑥) has a stabilizable linear approximation at 𝑥 = 0. 
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Theorem 1: Under the hypotheses H1 and H2, the state feedback regulator problem is solvable if, and only if, there exist C1 

mappings 𝑥 = 𝜋(𝑤) with 𝜋(0) = 0 and 𝑢 = 𝑐(𝑤), with 𝑐(0) = 0, both defined in a neighborhood of 𝑊0 ⊂ 𝑊 of 0, satisfying 

the conditions  

 
𝛿𝜋

𝛿𝑤
𝑠(𝑤) = 𝑓(𝜋(𝑤)) + 𝑔(𝜋(𝑤))𝑐(𝑤) + 𝑝(𝜋(𝑤))𝑤                                                                                                       (21) 

  

ℎ(𝜋(𝑤)) + 𝑞(𝑤) = 0                                                                                                                                           (22) 

 

When the Byrnes-Isidori regulator equations (21) and (22) are satisfied, a control law solving the state feedback regulator 

problem is given by  

 

𝛼(𝑥, 𝑤) = 𝑐(𝑤) + 𝐾[𝑥 − 𝜋(𝑤)]                                                                                                                                             (23) 

 

where 𝐾 is any gain matrix that makes linear approximation of the system stable [17]. 

 

 

5. OUTPUT REGULATION PROBLEM OF PMSM 
 

Generally in PMSM drive systems, the control objective motor velocity, 𝜔, is desired to be constant. Since, 𝜔 is relative to 

the quadrature-axis current, 𝑖𝑞 , the desired value of 𝑖𝑞  is calculated according to 𝜔. The direct-axis current, 𝑖𝑑, can be set any 

constant value depending on control strategy, such as it is set to zero in field oriented control. Therefore, the reference signals 

of all states are constant (set-point control). Also, the motor load 𝑇𝐿  is assumed to be a constant disturbance signal in the study. 

Naturally, in the control scheme, the voltages 𝑣𝑞  and 𝑣𝑑 are controlled input variables. 

 

5.1 Regulation of all State Variables 

 

In this section, it is desired that all states to track constant reference signals. Consider the overall PMSM plant with 

reference and disturbance signals described by   

 

�̇̃�1 = 𝜎 (�̃�2 − �̃�1) − 𝑤1                                                                                                                                          (24a) 

�̇̃�2 = −�̃�2 − �̃�1 �̃�3 + 𝛾 �̃�1 + �̃�𝑞                                                                                                                                   (24b) 

�̇̃�3 = −�̃�3 + �̃�1 �̃�2 + �̃�𝑑                                                                                                                                          (24c) 

𝑒1 = �̃�1 − 𝑤2                                                                                                                                                      (24d) 

𝑒2 = �̃�2 − 𝑤3                                                                                                                                                      (24e) 

𝑒3 = �̃�3 − 𝑤4.                                                                                                                                                 (24f) 

 

where 𝑤1 denotes motor load �̃�𝐿 , and 𝑤2, 𝑤3, 𝑤4 are denote reference signals for �̃�1, �̃�2 and �̃�3 respectively. Note that the 

inputs of the system are 𝑢 = [𝑣𝑞   𝑣𝑑]𝑇. 

The exosystem is defined as 𝑤 = [𝑤1  𝑤2  𝑤3  𝑤4]
𝑇 , and given by the scalar dynamics  

 

�̇� = 0.                                                                                                                                                              (25) 

 

It is important to observe that the exosystem is neutrally stable because the solutions of (38) are only constant trajectories 

[25]. Thus, assumption H1 of Theorem 1 holds trivially. 

Linearizing the dynamics of the system in (24) at the origin, we get the system matrices   

 

𝐴 = [
𝑑 𝑓(𝑥)

𝑑 𝑥
]
𝑥=0

= [
−𝜎 𝜎 0
𝛾 −1 0
0 0 −1

]                                                                                                                            (26a) 

𝐵 = [
𝑑 𝑔(𝑥)

𝑑 𝑥
]
𝑥=0

= [
0 0
1 0
0 1

].                                                                                                                                     (26b) 

   

Kalman’s rank test for controllability, reveals that the pair (𝐴, 𝐵) is completely controllable except the case 𝜎 = 0 which is 

not possible because of psychical system (𝜎 > 0, see section 2). Thus, the assumption H2 of Theorem 1 also holds. Hence, 

Theorem 1 can be applied to solve the output regulation problem for the system (24). 
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The regulator equations of (24) are obtained as   

 

0 = 𝜎(𝜋2(𝑤) − 𝜋1(𝑤)) − 𝑤1                                                                                                                                   (27a) 

0 = −𝜋2(𝑤) − 𝜋1(𝑤) 𝜋3(𝑤) + 𝛾 𝜋1(𝑤) + 𝑐1(𝑤)                                                                                                          (27b) 

0 = −𝜋3(𝑤) + 𝜋1(𝑤) 𝜋2(𝑤) + 𝑐2(𝑤)                                                                                                                            (27c) 

0 = 𝜋1(𝑤) − 𝑤2                                                                                                                                                (27d) 

0 = 𝜋2(𝑤) − 𝑤3                                                                                                                                                (27e) 

0 = 𝜋3(𝑤) − 𝑤4.                                                                                                                                                 (27f) 

 

The equations in (27) are solvable only when 𝑤3 =
𝑤1

𝜎
+ 𝑤2. Hence, by Theorem 1, we conclude that the output regulation 

problem is not solvable for this case if 𝑤3 ≠
𝑤1

𝜎
+ 𝑤2. However, it is not reasonable to fulfill this condition because it limits the 

reference choices. Also, it requires the knowledge of load torque, 𝑇𝐿  (𝑤1). 

As mentioned before the main control objective is motor velocity. The value of 𝑖𝑞  current changes to provide desired motor 

velocity, and 𝑖𝑑 current reference is independent from these two variables. Therefore, it is sufficient to regulate the motor 

velocity and 𝑖𝑑 current to control the PMSM. 

 

5.2 Regulation of Two State Variables 

 

In this case, it is desired to regulate 𝜔 and 𝑖𝑑, namely �̃�1 and �̃�3 states respectively. Consider the plant   

 

�̇̃�1 = 𝜎 (�̃�2 − �̃�1) − 𝑤1                                                                                                                                          (28a) 

�̇̃�2 = −�̃�2 − �̃�1 �̃�3 + 𝛾 �̃�1 + �̃�𝑞                                                                                                                                   (28b) 

�̇̃�3 = −�̃�3 + �̃�1 �̃�2 + �̃�𝑑                                                                                                                                              (28c) 

𝑒1 = �̃�1 − 𝑤2                                                                                                                                                      (28d) 

𝑒2 = �̃�3 − 𝑤3.                                                                                                                                                (28e) 

 

where 𝑤1 denotes motor load �̃�𝐿 , 𝑤2 and 𝑤3 are denote reference signals for �̃�1 and �̃�3 respectively. This time, the exosystem 

is defined as 𝑤 = [𝑤1  𝑤2  𝑤3]
𝑇. The dynamics of exosystem and linearized system matrices (𝐴, 𝐵) are same with the previous 

case in (25) and (26). Thus assumptions H1 and H2 of Theorem 1 hold. Hence, Theorem 1 can be applied to the system (5.2). 

The regulator equations of (28) are obtained as   

 

0 = 𝜎(𝜋2(𝑤) − 𝜋1(𝑤)) − 𝑤1                                                                                                                                   (29a) 

0 = −𝜋2(𝑤) − 𝜋1(𝑤) 𝜋3(𝑤) + 𝛾 𝜋1(𝑤) + 𝑐1(𝑤)                                                                                                          (29b) 

0 = −𝜋3(𝑤) + 𝜋1(𝑤) 𝜋2(𝑤) + 𝑐2(𝑤)                                                                                                                            (29c) 

0 = 𝜋1(𝑤) − 𝑤2                                                                                                                                                (29d) 

0 = 𝜋3(𝑤) − 𝑤3.                                                                                                                                                (29e) 

 

Solving the regulator equations in (29), we have the solution   

 

𝜋1(𝑤) = 𝑤2                                                                                                                                                      (30a) 

𝜋2(𝑤) =
𝑤1

𝜎
+ 𝑤2                                                                                                                                               (30b) 

𝜋3(𝑤) = 𝑤3                                                                                                                                                      (30c) 

𝑐1(𝑤) =
𝑤1

𝜎
+ 𝑤2 + 𝑤2 𝑤3 − 𝛾 𝑤2                                                                                                                             (30d) 

𝑐2(𝑤) = −
𝑤1 𝑤2

𝜎
− 𝑤2

2 + 𝑤3.                                                                                                                                   (30e) 

 

By Theorem 1, a state feedback control law solving the output regulation problem is given by (23). Here, 𝐾 is a 2 × 3 

matrix, and control law is formed as   

 

�̃�𝑞 = 𝑐1(𝑤) + 𝑘11(�̃�1 − 𝜋1(𝑤)) + 𝑘12(�̃�2 − 𝜋2(𝑤)) + 𝑘13(�̃�3 − 𝜋3(𝑤))                                                                              (31a) 

�̃�𝑑 = 𝑐2(𝑤) + 𝑘21(�̃�1 − 𝜋1(𝑤)) + 𝑘22(�̃�2 − 𝜋2(𝑤)) + 𝑘23(�̃�3 − 𝜋3(𝑤)).                                                                  (31b) 

 

Assume that load torque 𝑇𝐿  (consequently, 𝑤1) is known. Then, finding a gain matrix 𝐾 such that 𝐴 + 𝐵 𝐾 in (5.1) is 

Hurwitz, solves the state feedback regulator problem of the system (28). 
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Let us assume now that load torque is unknown. In this case, we can eliminate the load torque knowledge from control law 

in (31) by tuning the gains in 𝐾 matrix such that 𝑘12 = 1 and 𝑘22 = −𝑤2. At this stage, it may seem that the internal stability 

of the controller depends on reference signal for velocity (𝑤2), and this is not acceptable. Nevertheless, a little analysis reveals 

that the eigenvalues of 𝐴 + 𝐵𝐾 are independent from 𝑤2 if 𝑘13 = 0. This approach is not irrational since �̃�𝑞 voltage is not 

required to contain information about 𝑖̃𝑑 current. Then (31) becomes   

�̃�𝑞 = 𝑤2 𝑤3 − 𝑤2 𝛾 + 𝑘11(�̃�1 − 𝑤2) + �̃�2                                                                                                                       (32a) 

�̃�𝑑 = 𝑤3 + 𝑘21(�̃�1 − 𝑤2) − 𝑤2 �̃�2 + 𝑘23(�̃�3 − 𝑤3).                                                                                                          (32b) 

 

As seen from (32), the knowledge of load torque is not required in this case. Other gains (𝑘11, 𝑘21, 𝑘23) are determined to 

achieve internal stability of state feedback regulator problem. 

 

5.3 Augmented System for Robustness 

 

It may be reasonable argued that the control law (5.2) may present poor performance under parametric variations since it 

has a constant part that depends on motor parameter 𝛾. Even if the motor parameters are known precisely, once motor starts to 

turn, winding temperature rises and stator winding resistance and inductances will change.     Therefore, some precautions 

must be taken. 

For this purpose, we present an integral control approach. The use of integral control ensures the output regulation under 

parameter perturbations that do not destroy the stability of closed-loop system. Parameter perturbations force equilibrium point 

to change, but through the instrument of integral action, desired equilibrium point will be maintained. Thus, as long as the 

perturbed equilibrium point remains asymptotically stable, regulation will be achieved [26]. To apply integral action, we 

integrate the regulation errors and add them to the control signal. Then, the following “augmented” plant with 2 additional 

states 𝜉1 and 𝜉2 is obtained.   

 

�̇̃�1 = 𝜎 (�̃�2 − �̃�1) − 𝑤1                                                                                                                                                              (33a) 

�̇̃�2 = −�̃�2 − �̃�1 �̃�3 + 𝛾 �̃�1 + 𝜉1 + �̃�𝑞                                                                                                                            (33b) 

�̇̃�3 = −�̃�3 + �̃�1 �̃�2 + 𝜉2 + �̃�𝑑                                                                                                                                   (33c) 

𝜉1̇ = 𝑤2 − �̃�1                                                                                                                                                      (33d) 

𝜉2̇ = 𝑤3 − �̃�3                                                                                                                                                      (33e) 

𝑒1 = �̃�1 − 𝑤2                                                                                                                                                      (33f) 

𝑒2 = �̃�3 − 𝑤3.                                                                                                                                                  (33g) 

 

The control task now is to find a control law (�̃�𝑞, �̃�𝑑) pair that solves the output regulation problem of the augmented plant. 

Finally, augmented control law will become,   

 

�̃�𝑞𝑎 = 𝜉1 + �̃�𝑞                                                                                                                                                (34a) 

�̃�𝑑𝑎 = 𝜉2 + �̃�𝑑 .                                                                                                                                                (34b) 

 

The exosystem is identical with the previous case. Thus assumption H1 of Theorem 1 holds. Linearizing the augmented 

plant at 𝑥 = 0, we obtain   

 

𝐴𝑎 = [
𝑑 𝑓𝑎(𝑥𝑎)

𝑑 𝑥𝑎
]
𝑥𝑎=0

=

[
 
 
 
 
−𝜎 𝜎 0 0 0
𝛾 −1 0 1 0
0 0 −1 0 1
−1 0 0 0 0
0 0 −1 0 0]

 
 
 
 

                                                                                                           (35a) 

𝐵𝑎 = [
𝑑 𝑔𝑎(𝑥𝑎)

𝑑 𝑥𝑎
]
𝑥𝑎=0

=

[
 
 
 
 
0 0
1 0
0 1
0 0
0 0]

 
 
 
 

.                                                                                                                              (35b) 

 

The pair (𝐴𝑎, 𝐵𝑎) is completely controllable except the case 𝜎 = 0 which is not reasonable as mentioned before. Thus 

assumption H2 of Theorem 1 also holds. Therefore, Theorem 1 can be applied to the system (33). 

The regulator equations of (33) are obtained as   
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0 = 𝜎(𝜋2(𝑤) − 𝜋1(𝑤)) − 𝑤1                                                                                                                              (36a) 

0 = −𝜋2(𝑤) − 𝜋1(𝑤) 𝜋3(𝑤) + 𝛾 𝜋1(𝑤) + 𝜋4(𝑤) + 𝑐1(𝑤)                                                                                               (36b) 

0 = −𝜋3(𝑤) + 𝜋1(𝑤) 𝜋2(𝑤) + 𝜋5(𝑤) + 𝑐2(𝑤)                                                                                                           (36c) 

0 = 𝑤2 − 𝜋1(𝑤)                                                                                                                                           (36d) 

0 = 𝑤3 − 𝜋1(𝑤)                                                                                                                                           (36e) 

0 = 𝜋1(𝑤) − 𝑤2                                                                                                                                            (36f) 

0 = 𝜋3(𝑤) − 𝑤3.                                                                                                                                           (36g) 

 

Since the fourth and fifth equation pair, and the sixth and seventh equation pair are identical in (5.3), five equations with 

seven unknowns are obtained and naturally degree of freedom is two. Solutions of 𝜋1(𝑤), 𝜋2(𝑤) and 𝜋3(𝑤) are unique and 

same with the previous case (30). There is freedom for choice of 𝜋4(𝑤) and 𝜋5(𝑤) depending on 𝑐1(𝑤) and 𝑐2(𝑤) as follows   

 

𝑐1(𝑤) =
𝑤1

𝜎
+ 𝑤2 + 𝑤2 𝑤3 − 𝜋4(𝑤) − 𝑤2 𝛾                                                                                                                 (37a) 

𝑐2(𝑤) =
−𝑤1 𝑤2

𝜎
− 𝑤2

2 + 𝑤3 − 𝜋5(𝑤).                                                                                                                       (37b) 

 

Thus, the regulator equations are solvable. As a result, the state feedback regulator problem is solvable for this augmented 

plant. Then, a state feedback control law can be formed with a 2 × 5 𝐾𝑎 matrix as described in (23). In this case, we use the 

previous 2 × 3 𝐾 matrix as the first three columns of augmented gain matrix; and set 𝑘15 and 𝑘24 to zero. By this assignment, 

integration of velocity error appear only quadrature-axis voltage, �̃�𝑞; and similarly integration of direct-axis current error 

appear only direct-axis voltage, �̃�𝑑. Then, the control law becomes,  

  

�̃�𝑞 = 𝑘11(�̃�1 − 𝑤2) + �̃�2 + 𝑘14(𝜉1 − 𝜋4(𝑤)) + 𝑤2 𝑤3 − 𝑤2 𝛾 − 𝜋4(𝑤)                                                                    (38a) 

�̃�𝑑 = 𝑘21(�̃�1 − 𝑤2) − 𝑤2 �̃�2 + 𝑘23(�̃�3 − 𝑤3) + 𝑘25(𝜉2 − 𝜋5(𝑤)) + 𝑤3.                                                                             (38b) 

 

Now, it is reasonable to define 𝜋4(𝑤) and 𝜋5(𝑤) as follows:   

 

𝜋4(𝑤) = −
𝑤2 𝛾

𝑘14+1
                                                                                                                                                (39a) 

𝜋5(𝑤) =
𝑤3

𝑘25+1
.                                                                                                                                                (39b) 

 

Note that, this assignment is always possible since 𝜋(0) = 0 and 𝑐(0) = 0 (see (37)) as stated in Theorem 1. Hence, the 

control law is found as  

  

�̃�𝑞 = 𝑘11(�̃�1 − 𝑤2) + �̃�2 + 𝑘14 𝜉1 + 𝑤2 𝑤3                                                                                                            (40a) 

�̃�𝑑 = 𝑘21(�̃�1 − 𝑤2) − 𝑤2 �̃�2 + 𝑘23(�̃�3 − 𝑤3) + 𝑘25 𝜉2.                                                                                                    (40b) 

 

Then finally, the augmented control law becomes   

 

�̃�𝑞𝑎 = 𝜉1 + 𝑘11(�̃�1 − 𝑤2) + �̃�2 + 𝑘14 𝜉1 + 𝑤2 𝑤3                                                                                                           (41a) 

�̃�𝑑𝑎 = 𝜉2 + 𝑘21(�̃�1 − 𝑤2) − 𝑤2 �̃�2 + 𝑘23(�̃�3 − 𝑤3) + 𝑘25 𝜉2.                                                                                         (41b) 

 

The last step is choosing other gains in 𝐾𝑎 matrix such that 𝐴𝑎 + 𝐵𝑎 𝐾𝑎 is Hurwitz. In this point, it is worthy of note that 

the limits of uncertainty of motor parameters that do not destroy closed loop stability, can be determined according to gains of 

𝐾𝑎 matrix under the condition that 𝐴𝑎 + 𝐵𝑎  𝐾𝑎 is Hurwitz. 

 

 

6. SIMULATIONS 
 

In this section, we have used MATLAB/Simulink to investigate the performance of the controllers proposed in the previous 

section. For simulations, the motor specifications are taken as in [3]: 𝐿𝑑 = 𝐿𝑞 = 14.25 mH, 𝑅 = 0.9 Ω, 𝜑𝑟 = 0.031 Nm/A, 

𝑛𝑝 = 1, 𝐽 = 4.7 × 10−5 kgm2, and 𝑏 = 0.0162 Ns/rad. We also have used the transformation in [3], and found system 

parameters as 𝜎 = 5.46 and 𝛾 = −0.066. Note that, 𝛾 is a negative valued parameter. 
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We have run simulations using the controllers (32) and (41). First, we have chosen a 2 × 3 matrix 𝐾 by considering the 

constraints (𝑘12 = 1, 𝑘22 = −𝑤2 and 𝑘13 = 0), such that 𝐴 + 𝐵𝐾 is Hurwitz for the controller (5.2). With the choice 𝐾 =

[
−10 1 0
−5 −𝑤2 −20

] the matrix 𝐴 + 𝐵𝐾 is Hurwitz with eigenvalue set {−21,−2.73 ± 6.89 𝑖}. 

In simulations, we have used similar scenario with [10] and set the external inputs to values, leading to chaotic behavior in 

open loop, such that �̃�𝑑 = −20, �̃�𝑞 = 0, �̃�𝐿 = 5 with initial states values of 0.01; and run simulation for 30 s. Then controller 

(5.2) is put into effect. From 30 to 50 s, control objective is set as 𝑤2 = 2 and 𝑤3 = 1.5, i.e., constant reference signals for �̃� 

and 𝑖̃𝑑 respectively. At 𝑡 = 40 s, motor load torque, �̃�𝐿 = 𝑤1, is doubled. It is followed by a set point change in reference 

motor velocity, 𝑤2 to 4 at 𝑡 = 50 s. Although not included in the controller design criteria, constant reference signal of �̃� is 

switched to a ramp function with 0.4 slope at 𝑡 = 60 s. Then the reference is changed to a step of 12 and is left constant until 

the end of simulation time. The reference for 𝑖�̃� current remains constant during the simulation. The results of the simulation 

for motor velocity and 𝑖̃𝑑 current are showed in Figs. 4 and 5, respectively. As seen from figures, the controller is quite 

effective in avoiding chaos, tolerating motor load changes and tracking set point changes. When a ramp shaped signal is 

preferred as reference, a small steady state error occurs. This result is acceptable since it is not included in the design criteria. 

Transient performance of the controller can be enhanced by tuning gains in 𝐾 matrix under the constraints given before.  

   

 
 

Figure 4. Simulation results for transformed velocity and its reference for first controller. Critical and indistinct points are 

zoomed. Actual response in blue line, reference in red line. 
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Figure 5. Simulation results for transformed direct-axis current and its reference for first controller. Critical and indistinct 

points are zoomed. Actual response in blue line, reference in red line. 

   

In second simulation scenario, we have been carried out a robustness test. To investigate the robustness of the proposed 

controller with system parameter variation, nominal values of 𝜎 and 𝛾 parameters in the motor model are changed with a time-

varying profile. Also, the measurement values of the state variables in controllers are polluted by a Gaussian noise with zero 

mean value and the variance of 1%. 

At first system has been run in open loop, and controller has been enabled at 𝑡 = 15. Throughout the entire simulation, 

control objectives are kept constant at 𝑤2 = 2, 𝑤3 = 1.5 and measurement noises on states are active.       To investigate the 

effects of parameters individually, from 25 to 50 s only 𝜎 parameter and from 50 to 75 s only 𝛾 parameter are perturbed. After 

75 s, both parameters are perturbed. in Figs. 6 and 7, parameter perturbations and measurement noise are shown respectively. 

The results of simulation are shown in Figs. 8 and 9. As seen from figures while perturbations on 𝜎 have no effect on steady 

state, perturbations on 𝛾 cause respectable steady state error. This is an expected result for the controller (32), since it does not 

involve any information about 𝜎. 
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Figure 6. Variation of 𝛾 and 𝜎 parameters. Perturbed values in blue line, nominal values in red line. 

   

 
   

Figure 7. Measurement noise on velocity. 
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Figure 8. Simulation results for transformed velocity and its reference under parameter perturbations and noise for first 

controller. Critical and indistinct points are zoomed. Actual response in blue line, reference in red line. 

   

 
 

Figure 9. Simulation results for transformed direct-axis current and its reference under parameter perturbations and noise 

for first controller. Critical and indistinct points are zoomed. Actual response in blue line, reference in red line. 

   

Then, we have repeated the previous two simulation scenarios for controller (41). Again at first, we have chosen the gain 

matrix 𝐾𝑎. As said before, the first two columns of gain matrix is equal to previous 𝐾 matrix, and 𝑘15 = 0, 𝑘24 = 0. Other two 
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gains (𝑘14 and 𝑘25) are chosen as 𝐾𝑎 = [
−10 1 0 12 0
−5 −𝑤2 −20 0 40

] which makes 𝐴𝑎 + 𝐵𝑎  𝐾𝑎 Hurwitz with the eigenvalue 

set {−18.82, −2.17, −1.44, −2 ± 6.71 𝑖}. With this matrix choice the bounds of parameter uncertainty form as follows: If 𝜎 is 

less than 13/10, then 𝛾 must be less than 
−13+10𝜎

𝜎
. If 𝜎 is greater than 13/10, then there is no bound for 𝛾. 

Simulations results for first scenario are given in Figs. 10 and 11 while results for scenario two are shown in Figs. 12 and 

13. As seen from figures, steady state errors arising from tracking ramp function (see Fig. 10) and parameter perturbations (see 

Fig. 12) are eliminated since uncertainty limits are not exceeded, but overshoot increases in some cases. Naturally, transient 

performance of the controller can be enhanced by tuning gains in 𝐾𝑎 matrix under predetermined constraints. 

 

 
   

Figure 10. Simulation results for transformed velocity and its reference for second controller. Critical and indistinct points 

are zoomed. Actual response in blue line, reference in red line. 
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Figure 11. Simulation results for transformed direct-axis current and its reference for second controller. Critical and 

indistinct points are zoomed. Actual response in blue line, reference in red line. 

   

 
 

Figure 12. Simulation results for transformed velocity and its reference under parameter perturbations and noise for second 

controller. Critical and indistinct points are zoomed. Actual response in blue line, reference in red line. 
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Figure 13. Simulation results for transformed direct-axis current and its reference under parameter perturbations and noise 

for second controller. Critical and indistinct points are zoomed. Actual response in blue line, reference in red line. 

 

 

7. CONCLUSION 
 

In this paper, first we have presented new results in chaos and bifurcation analysis of PMSM. Then, we have studied a 

complete solution of the output regulation problem of PMSM with state feedback control law for constant reference signals. 

Moreover, we have introduced integrator terms to the control law for case of parameter uncertainty. The control laws are 

derived using the regulator equations of C.I. Byrnes and A. Isidori in [17]. Simulation results have validated the effectiveness 

of proposed controllers at set point output regulation problem under parameter perturbation and measurement noise, in case of 

unknown load torque. Although it is out of the design criteria, the controller also exhibits quite good performance at tracking 

control. future work will address the experimental validation. 
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