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ABSTRACT 
 

The aim of robust design models is to reduce the variability reduction as small as possible. The process bias defined as a 

difference between the desired target value and the process mean is an important concern for quality engineering problems. In 

addition, the selection of different variability measures may also change optimal operating conditions for a response variable. 

Therefore, this paper is three-fold. One, another view of the dual response model is proposed with the three different variability 

measures in order to determine optimum robust design solutions for input variables while minimizing the process bias. Two, 

the linearization of constraints is performed using the sequential quadratic programming method as an effective optimization 

method. Three, a printing process from the literature is conducted to obtain the best optimal settings for input variables. 

Finally, the results of the proposed model show approximately % 16 more variance reduction than traditional models. 

 

Keywords: Robust design, Dual response model, Response surface design, Variability measures, Sequential quadratic 

programming 

 

 

KALİTE MÜHENDİSLİĞİ PROBLEMLERİ İÇİN ÖNERİLEN BİR YANIT 

YÜZEYİ TABANLI SAĞLAM TASARIM MODELİ 
 

ÖZET 
 

Sağlam tasarım modellerinin amacı değişkenliği mümkün olduğu kadar azaltmaktır. İstenen hedef değer ile işlem ortalaması 

arasındaki fark olarak tanımlanan işlem yanlılığı, kalite mühendisliği problemleri için önemli bir husustur. Ek olarak, farklı 

değişkenlik ölçümlerinin seçimi bir yanıt değişkeni için en uygun çalışma koşullarını da değiştirebilir. Bu nedenle, bu 

makalenin üç amaçlıdır. Birincisi, yanıt modelinin bir başka görünümü işlem yanlılığını en aza indirirken girdi değişkenleri 

için en iyi sağlam tasarım çözümlerini belirlemek amacıyla üç farklı değişkenlik ölçüsüyle önerilmiştir. İkincisi, kısıtlamaların 

doğrusallaştırılması, etkin bir optimizasyon yöntemi olarak sıralı ikinci dereceden programlama yöntemi kullanılarak 

gerçekleştirilir. Üçüncüsü, girdi değişkenleri için en uygun ayarları elde etmek için literatürden bir baskı işlemi süreci 

araştırılmıştır. Son olarak, önerilen modelin sonuçları geleneksel modellere göre yaklaşık % 16 daha fazla varyansın azaldığını 

gösterir. 

 

Anahtar kelimeler: Sağlam tasarım, İkili tepki modeli, Yanıt yüzey tasarımı, Farklı değişkenlik ölçüleri, Sıralı ikinci 

dereceden programlama 

 

 

1. INTRODUCTION 
 

Robust design (RD), originally coined by Taguchi [1], has become one of the quality improvement methods in the quality 

engineering literature to find optimal design factor settings by minimizing the process variance as possible as and reaching the 

desired target value. Vining and Myers [2] offered a dual response-based RD model with a zero-bias assumption. Further, Del 

Castillo and Montgomery [3] improved the dual response model and they proposed more flexible and easier approach 

obtaining better solutions in the experimental region. The dual response approach could be improved to consider the process 

bias; therefore, Lin and Tu [4] offered a mean-squared error (MSE) criterion-based RD model. Cho et al. [5] developed the 

weighted MSE methods. Further, Copeland and Nelson [6] introduced an RD model with the desired distance for the bias. Kim 

and Lin [7] conducted another dual response modification using the fuzzy model approach to optimize input variables. In 

addition, Cho et al. [8] introduced the priority concept in the MSE approach. Tang and Xu [9] developed another approach 

with different weights for the process bias and variance. Similarly, Kim and Cho [10] developed a priority-based RD approach. 
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In addition, Koksoy and Doganaksoy [11] suggested a joint optimization technique under no constraints. There also exist some 

research attempts in the multi-objective RD optimization problems. For example, Ding et al. [12] proposed weighted methods 

in multi-objective optimization problems. In addition to these studies, Romano et al. [13] modified the dual response model 

using the quality loss function. Further, Shin and Cho [14] offered another perspective on the dual response model using a 

bias-specified method and derived the Karush-Kuhn-Tucker conditions. Additionally, Koksoy [15] and Park et al. [16] 

separately proposed the MSE criterion for multi-response surface optimization problems. Robinson et al. [17] introduced 

another approach using generalized linear mixed models. In addition to low-order models, Shaibu and Cho [18] considered 

higher polynomial models for the MSE approach. Further, Costa [19] proposed a variant model with the estimated mean and 

standard deviation response functions. Along the same lines, Ozdemir and Cho [20] conducted one of the recent studies in the 

response surface-based robust design models using the standard deviation and variance estimators for an integer-constrained 

experimental design region. In addition, Chan and Ozdemir [21] proposed response surface-based robust design models with a 

skew-normal distribution while considering the truncated statistics. Further, Ozdemir and Cho [22] proposed a 0-1 mixed-

integer nonlinear programming model for both qualitative and quantitative variables in the context of the response surface-

based robust design model. Lu et al. [23] developed a robust design method to apply to the renewable energy system. Then, 

Chartterjee et al. [24] proposed a response surface modeling method to robust design problems while considering 

supersaturated designs. Ouyang et al. [25] developed an interval programming model in order to measure the level of quality 

while considering the decision maker’s preferences for continuous improvement. Ouyang et al. [25] also reviewed dual 

response approaches for process optimization. Finally, Ozdemir and Cho [26] developed the D-optimality-embedded response 

surface optimization models for nonlinearly constrained irregular experimental design region. 

The main objective of this research paper is three-fold. One, the existing RD approaches may not efficiently reach optimal 

operating conditions in a number of practical industrial applications, such as deterioration and shrinkage, due to less variance 

reduction and attaining more bias. For these reasons, we may desire to control the variability measure by a specified upper 

bound in a cuboidal or a spherical design region while we may still desire to minimize the process bias as small as possible. 

The selection of different variability measures may provide alternate solutions. Thus, another view of s robust design model 

with the three different variability measures is proposed. Two, some optimization techniques, such as the Lagrangian 

multipliers and the Karush-Kuhn-Tucker conditions, may not be appropriate or inefficient due to somehow misleading, more 

complexity, and more computational time to solve the proposed model. The feasibility conditions may not also hold true. 

Therefore, it is believed that the sequential quadratic programming (SQP) has been one of the most effective techniques for 

solving the proposed RD optimization problem. Three, we also experimentally investigate the results of optimal operating 

conditions for each variability measure. 

This research article is organized as follows. First, material and method are discussed in Section 2. Then, a numerical 

example and comparisons of the results are then performed in Section 3. Finally, concluding remarks are drawn in Section 4. 

 

 

2. MATERIAL AND METHOD 
 

2.1. Material 

 

Box and Draper [27] conducted an experimental study in order to investigate the effect of three input variables, namely 
1x  

(speed), 
2x  (pressure), and 

3x  (distance), on a printing process quality for package labels (y). This experiment is a three-level 

factorial design of the three input variables with three replicates at each experimental design point. It is analyzed the same data 

set from Box and Draper [27] in order to provide fair comparisons with the previously offered models. 

Table 1 shows the abbreviations and notation used in this article. 

 

Table 1. Abbreviations and notation 

Abbreviations/ 

Notation 
Meaning 

uiy  The u
th

 response variable of the i
th

 replicate where i= 1, 2, …, m 

uy  Mean value of the u
th

 experimental run 

ix  The i
th

 input variable where i = 1, …, n 

x
 

A vector of input variables 

( )f x  An objective function 

( )kg x  The k
th

  inequality constraint 



NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 9(1): 195-205 

 

A PROPOSED RESPONSE SURFACE-BASED ROBUST DESIGN MODEL FOR QUALITY ENGINEERING PROBLEMS 

197 

 

ˆ( ) x  The estimated mean response function 

ˆ ( ) x  The estimated standard deviation response function 

2ˆ ( ) x  The estimated variance response function  

ˆln ( ) x  The estimated logarithm response function of the standard deviation 

0  An upper bound for the process standard deviation 

2

0  An upper bound for the process variance 

0ln    An upper bound for the logarithm of the standard deviation 

  Target value 

ˆ| ( ) | x  An absolute value of the process bias function 

us  The estimated standard deviation of the u
th

 run where i = 1, …, m 

2

us  The estimated variance of the u
th

 run where i = 1, …, m 

ln  us  The estimated logarithm of the standard deviation of the u
th

 run where i = 1, …, m 

2  The radius of the experimental region 

LB Lower bound 

UB Upper bound 

 

2.2. Proposed Method 

 

The proposed method consists of five stages, which are the experimental phase, the regression model selection phase, the 

formulation phase, the optimization phase, and the verification phase. Each phase is described in what follows. 

 

2.2.1. Experimental phase 

 

The proposed model is aimed to work well in the second-order designs, such as the three-level factorial design. Table 2 

shows an experimental design format for the proposed model estimating the process mean, standard deviation, variance, and 

the logarithm of the standard deviation. 

 

Table 2. Experimental design format for data collection 

Run (u) x  Replications uy  
us  2

us  ln  us  

1 

Input variable 

settings 

11y  … 1my  
1y  

1s  2

1s  1ln  s  

2 21y  … 2my  
2y  

2s  2

2s  2ln  s  

        

u 1uy  … umy  
uy  

us  2

us  ln  us  

 

2.2.2. Regression model selection phase 

 

In general, approximation functions of the models are described as the first-order and second-order models in the literature. 

Firstly, if the response is modeled by just a linear function of input variables, then this function is denoted as the first-order 

model. The general formula of the first-order model is shown as follows: 

 

0 1 1 2 2
ˆ ... n ny x x x                                                                                                                                                          (1) 

 

where   and 
i  represent the observed error and estimated regression coefficients for the response, respectively. Secondly, 

if there is curvature in the process, then quality engineers generally use second-order models. The general formula of the 

second-order model is given for the response by 
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2

0

1 1 2 1

ˆ
n n n

i i ii i ij i j

i i i j i

y x x x x    
    

                                                                                                                                      (2) 

 

Response surface design (RSD) is a critical approach of experimental designs for developing new processes, optimizing the 

operating conditions, and enhancing the design. Many researchers and practitioners have combined robust design philosophies 

with the RSD to formulate the response as a function of input variables. In a number of situations, the response function 

depends on input variables. Furthermore, the exact response function is challenging or is unknown Thus, the RSD is applied to 

find the fitted response functions. The estimated response functions are found as follows: 

 
2 2

11 1 11 1 11 12 1 1 1

2 2

' 1 ' 21 2 21 2 21 22 2 1 2

2 2

1 1 1 2 1

1 2

1

1
ˆ ˆ ˆ( )  where ( ) ,  = ,

1

and [ ,  ,  ...,  ]

i i n n

i i n n

n ni n ni n n nn nn

n

x x x x x x x x

x x x x x x x x
a a

x x x x x x x x

y y y





 



 
 
  
 
  
 



x X X X X y X

y

                                              (3) 

 

ˆˆ( ) b x X  where 
' 1 '

1 2
ˆ ( ) ,  [ ,  ,  ...,  ]nb s s s  X X Xs s                                                                                                                (4) 

 
2ˆ ˆ( ) c x X  where 

' 1 ' 2 2 2 2 2

1 1
ˆ ( ) ,  [ ,  ,  ...,  ]nc s s s  X X X s s                                                                                                         (5) 

 

ˆˆln ( ) d x X  where 
' 1 '

1 2
ˆ ( ) ln ,  ln [ln ,  ln ,  ...,  ln ]nd s s s  X X X s s                                                                                     (6) 

 

2.2.3. Formulation phase 

 

In this section, a nonlinear programming model is formulated to obtain optimum operating conditions of the mean, standard 

deviation, and variance of the response in terms of input variables. It will be proposed the model with different variability 

measures. It is also known that the selection of the different variability measures may change optimal operating conditions in 

the RSDs [28]. Even the smallest variation is desired, it may be also considered to minimize the process bias and seek an 

optimal solution in an experimental region. Thus, the absolute value of the bias function is minimized when the estimated 

response function of the variation is controlled by a specified upper bound. The objective of the proposed model will minimize 

the process bias function; therefore, the process mean will be closer to the desired target value achieving more variability 

reduction for the process. The first constraint in Table 3 is that the estimated process standard deviation should be less than or 

equal to an upper bound for the process standard deviation. We can use the process variance as a variability measure. 

Therefore, the second constraint in Table 3 is that the estimated process variance should be less than or equal to an upper 

bound for the process variance. In some cases, the estimated logarithm of the standard deviation may give better solutions. 

Thus, the third constraint in Table 3 is that the estimated logarithm of the standard deviation should be less than or equal to an 

upper bound for the logarithm of the standard deviation. In addition, the boundary constraints are given in Table 3 for a 

cuboidal or a spherical design region. It is also noted that the boundary requirements should be satisfied in order to obtain 

optimal solutions for input variables. Table 3 shows the proposed robust design model with different variability measures. 

 

Table 3. Proposed model with the different variability measures 

Minimize ( )f x = 
' 1 ' 2

0

1 1 2 1

( )
n n n

i i ii i ij i j

i i i j i

x x x x      

    

        X X X X y  

Satisfy to Constraint 1 

' 1 ' 2

0 0 0

1 1 2 1

( )
n n n

i i ii i ij i j

i i i j i

b b x b x b x x 

    

        X X X X s   

or Constraint 2 

' 1 ' 2 2 2 2

0 0 0

1 1 2 1

( )
n n n

i i ii i ij i j

i i i j i

c c x c x c x x 

    

        X X X X s   

or Constraint 3 
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' 1 ' 2

0 0 0

1 1 2 1

( ) ln ln ln
n n n

i i ii i ij i j

i i i j i

d d x d x d x x 

    

        X X X s  

Given 2

0 0

2 2

1

 and the variability measure (  or  or ln )

A cuboidal design region [ ,  ]

Design regions
A spherical design region  where 1,  2,  ...,  

o

n

i

i

LB UB

x i n

   




 



  




x
 

Find Input variable settings 
*

x  and f(x) 

 

2.2.4. Optimization phase with the sequential quadratic programming procedure and verification phase for the results 

 

The SQP procedure is an effective method for nonlinearly constrained models. This approach solves a sequence of 

quadratic sub-problems with the linearization of constraints iteratively. The SQP is an appropriate method for small and large 

scale optimization problems. It is believed that it is well-suited to solving robust design problems with nonlinearly constrained 

optimization schemes. In addition, a detailed discussion of the SQP can be found in Ruszczyński [29] and Fishback [30]. 

The general form of the proposed model is denoted as follows: 

 

 

' 1 '

1

Minimize ( ) ( )

subject to ( ) 0

                

f

g

X


 





x X X X X y

x

x

                                                                                                                                           (7) 

 

where { | }n

iX R R LB x UB    x  and 
' 1 '

1 0( ) ( )g  x X X X X s  or ' 1 ' 2 2

1 0( )= ( )g  x X X X X s  or 

' 1 '

1 0( ) ( ) ln lng  x X X X s . Further, : nf R R  and 1( ) : ng R Rx  are twice continuously differentiable. We then 

formulate the Lagrangian function : n mL R R R   as follows: 

 

 ( , ) ( ) ,  ( )L f g x  λ x λ x                                                                                                                                                           (8) 

 

In addition, the necessary conditions of the proposed model are given as follows: 

 

 ( , ) 0,  ( ) 0,  0 and ,  ( ) 0xL g g    x  λ x λ λ x                                                                                                                       (9) 

             

Next, the functions ( , )xL x  λ  and ( )g x  are linearized at a given point ( ,x  λ ) by 

 

 

2( , ) ( , )( ) 0

( ) ( )( ) 0

x xx

T

L L

g g

   

  

x  λ x  λ x x

x x x x
                                                                                                                                              (10) 

 

It is also given the quadratic programming problem as follows: 

 
21Minimize ( ),  ,  [ ( , )]( )

2

subject to ( ) ( )( ) 0

xx

T

f L

g g

     

  

x x x x x x  λ x x

x x x x
                                                                                                       

(11) 

 

Given the approximation of the solution 
k

x  and multiplier 
k

λ  at iteration k, the sequential quadratic programming model 

is solved as follows: 

 

 
1Minimize ( ),  ,  [ ]

2

subject to ( ) ( ) 0

k

k T k

f

g g

    

  

x x x H x

x x x
                                                                                                                              (12) 
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where 
1k k  x x x  and 2 ( , )k k

k xx L H x  λ . This algorithm is terminated when x  is smaller than the sufficiently chosen 

tolerance. Further, ˆk x x , ˆk  λ λ , the point 0 x , and ˆ λ λ  satisfy second-order sufficient conditions of optimality in 

Equation (12) where x̂  is the global minimum with the multipliers λ̂  due to the bounded convex set. These second-order 

sufficient conditions are the same as in Equation (7). The second-order sufficient conditions of optimality are true at the 

solution ( ,  x  λ ) by the continuity of 
kH . The solution provided that ( , k k

x  λ ) are in ( ˆˆ,  x λ ) based on the chosen tolerance. 

Thus, an optimal solution (
*

x ) is a global minimum in Equation (7). 

 

2.2.5. Verification phase 

 

The verification phase is the last phase of this study. Verification is an important phase that is used together for 

investigating that a process meets requirements and boundaries. In this paper, we compare to the proposed robust design model 

with the existing approaches in the current literature to provide fair comparisons in the last phase. It is also known that the 

variance reduction is an important issue for quality engineering problems. The last phase verifies that the proposed model is 

able to achieve more variance reduction than the traditional counterparts for a numerical example. 

 

 

3. RESULTS OF THE NUMERICAL EXAMPLE AND DISCUSSIONS 
 

The experiment and data are given in Table 4. A second-order model is used in this paper and it is also assumed that the 

quadratic models were adequate regardless of the significance levels of the model fitting functions. The estimated regression 

functions using the JMP [31] software are found as follows: 

 

2 2 2

1 2 3 1 2 3

1 2 1 3 2 3

The estimated mean response function using Equation (3):

ˆ ( ) 327.6 177.0 109.4 131.5 32.0 22.4 29.1

          66.0 75.5 43.6

x x x x x

x x x x x x

       

  

x                                                                                         (13) 

 

 2 2 2

1 2 3 1 2 3

1 2 1 3 2 3

ˆ ( ) 34.9 11.5 15.

The estimated s

3 29.

tandard deviation response functi

2 4.2 1.3 16.8

          7.7 5

on us

.1

ing Equation (4

1 .1

):

4

x x x x x x

x x x x x x

       

  

x                                                                                  (14) 

 

 2 2 2 2

1 2 3 1 2 3

1 2 1 3 2 3

ˆ ( ) 2348.8 1742.3 1893.7 4401.6 684.1 456.5 3027.7

           2352.1 1

The estimated variance response function using Equation 

840.3 20

(5):

49.7

x x x x x x

x x x x x x

       

  

x                                                                   (15) 

 

 2 2 2

1 2 3 1 2 3

1 2 1 3 2 3

ˆln ( ) 3.5 0.2

The estimated l

5 0.2

ogarithm response function of 

7 0.68 0.08 0.02 0.09

             0.002 0.1

the standard deviation using Equation (6):

6 0.28

x x x x x x

x x x x x x

       

  

x                                                        (16) 

 

The proposed robust design model for the printing process experiment is given to the different variability measures in Table 

5. 

The optimal solutions of each variability measure are found using the MAPLE [32] software package. In addition, Table 6 

shows optimal solutions for the printing process. Note that the necessary and second-order sufficient conditions are satisfied. 

The results of the proposed model with the three variability measures show that the logarithmic fitted function 

approximates an optimal operating condition more effective than both the variance and standard deviation fitted functions. 

Notice that process conditions are stable ( 0.1CV  ). Further, response surface plots of the model with the three different 

variability measures are shown in Figures 1-3. Note that Figures 1-3 provide the graphical view of each optimal solution with 

the three different variability measures. 
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Table 4. The printing process experiment and collected data by Box and Draper [27] 

u 1x  2x
 3x

 1uy
 2uy

 3uy
 uy

 us  
2

us
 

ln  us  

1 -1 -1 -1 34 10 28 24 12.49 156.00 2.52 

2 0 -1 -1 115 116 130 120.3 8.39 70.33 2.13 

3 1 -1 -1 192 186 263 213.7 42.83 1834.33 3.76 

4 -1 0 -1 82 88 88 86 3.46 12.00 1.24 

5 0 0 -1 44 178 188 136.7 80.41 6465.33 4.39 

6 1 0 -1 322 350 350 340.7 16.17 261.33 2.78 

7 -1 1 -1 141 110 86 112.3 27.57 760.33 3.32 

8 0 1 -1 259 251 259 256.3 4.62 21.33 1.53 

9 1 1 -1 290 280 245 271.7 23.63 558.33 3.16 

10 -1 -1 0 81 81 81 81 0 0.00 N/A 

11 0 -1 0 90 122 93 101.7 17.67 312.33 2.87 

12 1 -1 0 319 376 376 357 32.91 1083.00 3.49 

13 -1 0 0 180 180 154 171.3 15.01 225.33 2.71 

14 0 0 0 372 372 372 372 0 0.00 N/A 

15 1 0 0 541 568 396 501.7 92.5 8556.33 4.53 

16 -1 1 0 288 192 312 264 63.5 4032.00 4.15 

17 0 1 0 432 336 513 427 88.61 7851.00 4.48 

18 1 1 0 713 725 754 730.7 21.08 444.33 3.05 

19 -1 -1 1 364 99 199 220.7 133.82 17908.33 4.90 

20 0 -1 1 232 221 266 239.7 23.46 550.33 3.16 

21 1 -1 1 408 415 443 422 18.52 343.00 2.92 

22 -1 0 1 182 233 182 199 29.44 867.00 3.38 

23 0 0 1 507 515 434 485.3 44.64 1992.33 3.80 

24 1 0 1 846 535 640 673.7 158.21 25030.33 5.06 

25 -1 1 1 236 126 168 176.7 55.51 3081.33 4.02 

26 0 1 1 660 440 403 501 138.94 19303.00 4.93 

27 1 1 1 878 991 1161 1010 142.45 20293.00 4.96 

 

Table 5. Proposed robust design model for the printing process experiment 

Minimize ( )f x = 2 2 2

1 2 3 1 2 3

1 2 1 3 2 3

| 327.6 177.0 109.4 131.5 32.0 22.4 29.1

66.0 75.5 43.6 500 |

x x x x x x

x x x x x x

     

   
 

Subject to Constraint 1 
' 1 ' 2 2

0 1 2 3 1 2

2

3 1 2 1 3 2 3 0

( ) 34.9 11.5 15.3 29.2 4.2 1.3

16.8 7.7 5.1 14.1

x x x x x

x x x x x x x





       

    

X X X X s

 
or 

Constraint 2 
' 1 ' 2 2 2

0 1 2 3 1

2 2 2

2 3 1 2 1 3 2 3 0

( ) 2348.8 1742.3 1893.7 4401.6 684.1

456.5 3027.7 2352.1 1840.3 2049.7

x x x x

x x x x x x x x





      

     

X X X X s

 
or 

Constraint 3 
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' 1 ' 2

0 1 2 3 1

2 2

2 3 1 2 1 3 2 3 0

( ) ln ln 3.5 0.25 0.27 0.68 0.08

0.02 0.09 0.002 0.16 0.28 ln

x x x x

x x x x x x x x





      

     

X X X s

 
Given 2

0 0500,  45,  2025,  and ln =3.807 o     
 

[ ,  ] (a cuboidal region) 1 1 and  ( 1,2,3)i iLB UB x x R i      x  

Find Factor settings 
* * * *

1 2 3( ,  ,  )Tx x xx  and an objective function value of the model 

 

Table 6. Optimal solutions of each variability measure for the printing process 

Estimator type *
x  

ˆ( ) x
 

ˆ ( ) x
 

ˆ| ( ) | x
 

ˆ ( ) x
 (1.000, 0.112, -0.259) 499.082 44.975 0.918 

2ˆ ( ) x
 

(1.000, -0.474, -0.131) 423.492 44.962 76.053 

ˆln ( ) x
 

(0.523, 0.558, -0.011) 500.103 44.288 0.103 

 

 
 

Figure 1. Surface plots of the proposed model with ˆ ( ) x  

 

 
 

Figure 2. Surface plots of the proposed model with 2ˆ ( ) x  
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Figure 3. Surface plots of the proposed model with ˆln ( ) x  

 

In Figures 1-3, y-axes represent the estimated bias values for the proposed model with ˆ ( ) x , 
2ˆ ( ) x , and ˆln ( ) x , 

respectively. In Figure 1, the points (1.000, 0.112), (1.000, -0.259), and (0.112, -0.259) are the minimum estimated bias value. 

In Figure 2, the points (1.000, -0.474), (1.000, -0.131), and (-0.474, -0.131) are the minimum estimated bias value. In Figure 3, 

the points (0.523, 0.558), (0.523, -0.011), and (0.558, -0.011) are the minimum estimated bias value. Other points will increase 

the estimated bias values for the proposed model with ˆ ( ) x , 
2ˆ ( ) x , and ˆln ( ) x . 

For the verification phase, a number of models from the literature are used to compare with the proposed model with the 

three variability measures in Table 7. 

 

Table 7. Comparing solutions to the models for the printing process 

Proposed by *
x  

ˆ( ) x
 

ˆ ( ) x
 

ˆ| ( ) | x
 

Vining and Myers [2] (0.614, 0.228, 0.100) 500.00 51.766 0.000 

Del Castillo and Montgomery [3] (1.000, 0.1184, -0.259) 500.00 45.097 0.000 

Lin and Tu [4] (1.000, 0.070, -0.250) 494.44 44.429 5.560 

Copeland and Nelson [6] (0.9809, 0.0427, -0.1898) 499.00 45.200 1.000 

Kim and Lin [7] (1.000, 0.0860, -0.254) 496.08 44.628 3.920 

Costa [19] (1.000, 0.2049, -0.3180) 500.00 45.132 0.000 

The proposed model using ˆ ( ) x  (1.000, 0.112, -0.259) 499.082 44.975 0.918 

The proposed model using 
2ˆ ( ) x  (1.000, -0.474, -0.131) 423.492 44.962 76.508 

The proposed model using ˆln ( ) x  (0.523, 0.558, -0.011) 500.103 44.288 0.103 

 

From Table 7, the Vining and Myers [2], Del Castillo and Montgomery [3], and Costa [9] models allow no process bias. 

The estimated process standard deviation values are 51.766, 45.097, and 45.132 for the Vining and Myers [2], Del Castillo and 

Montgomery [3], and Costa [9] models, respectively. The estimated process standard deviation values are greater than the 

proposed model using ˆ ( ) x , 
2ˆ ( ) x , and ˆln ( ) x . Therefore, the results of these models are improved using the proposed 

model with ˆ ( ) x , 
2ˆ ( ) x , and ˆln ( ) x . The estimated process standard deviation value of the Copeland and Nelson [6] 

model is also greater than the proposed model with ˆ ( ) x , 
2ˆ ( ) x , and ˆln ( ) x . On the other hand, the Lin and Tu [4] model, 

the Kim and Lin model [7], and the proposed model with the three variability measures achieved more variance reduction than 

the Vining and Myers [2], Del Castillo and Montgomery [3], and Costa [9] models with resulted in zero bias values. It is also 

noted that the Lin and Tu [4] model is able to achieve variance reduction while attaining great process bias. Further, the 

proposed model with the logarithmic fitted function provides the smallest estimated standard deviation response function, 

44.288, while attaining a small process bias value, which is 0.103. Finally, it is concluded that the proposed robust design 

model identifies the smallest estimation of the variability for quality engineering problems. 
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4. CONCLUDING REMARKS 
 

One of the significant quality associated concerns is to find optimum operating conditions for input variables. In addition, 

the process variation is also another significant concern and it is desired to restrict by a specified upper bound when the process 

bias is minimized as small as possible. In this paper, the proposed model with the three variability measures is offered to 

optimize input variables. We then discuss the SQP technique to obtain optimal operating conditions efficiently. It is also 

verified the proposed model in the numerical example section. It is concluded that the proposed robust design model plays a 

critical role based on the variability measure and an upper bound for the variation in order to improve quality on a continuous 

basis. Finally, the proposed model with the three variability measures is compared with the existing RD models from the 

literature. 

In this paper, there are two limitations. The first limitation is that this paper focuses on just controllable input variables. The 

second limitation is that a single quality characteristic is considered for the proposed methodology. For future studies, further 

research work could be involving both controllable and noise input variables at the same time, and modeling in multiple 

quality characteristics for the methodology. 
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