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Abstract
In the present paper, by considering nonlinear integral operators and using their approxi-
mations via regular summability methods, we obtain characterizations for some function
spaces including the space of absolutely continuous functions, the space of uniformly con-
tinuous functions, and their other variants. We observe that Bell-type summability meth-
ods are quite effective to generalize and improve some related results in the literature. At
the end of the paper, we discuss some special cases and applications.
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1. Introduction
Integral operators of convolution type and Mellin type are widely used in approximation

theory. Some of them have a linear structure (see [14,19–21,28]) while others are nonlinear
(see [2–4]). Beside approximation theory, there are many engineering applications of
these operators, such as in optical physics, image processing and signal processing (see
[13,17,22,23]). They also play a crucial role in the characterization of absolutely continuous
functions (see [5–7]). In our recent papers, we also consider regular summability methods
instead of the usual convergence in the approximation by these operators (see [9–11]) in
order to generalize and improve the known results in the literature. We should note that,
in the approximation by these operators, we consider suitable functions spaces endowed
with the variation semi-norm, the uniform (supremum) norm, the Lp norm, and so on.

In mathematical analysis, a summability method is an alternative formulation of con-
vergence of a series or a sequence which is divergent in the conventional sense. So, it
is quite useful to overcome the divergence problem in some kind of divergent series or
sequences. It is also possible to accelerate the rate of convergence by using a suitable
summability method (see [30,33]). Furthermore, so far many applications of summability
methods have been studied in approximation theory (see [1, 8, 12,29,31]).

Since, in this work, we mainly consider Bell-type summability (see [15, 16]), we first
recall this concept as follows.
∗Corresponding Author.
Email addresses: ismail-aslan@hacettepe.edu.tr (I. Aslan), oduman@etu.edu.tr (O. Duman)
Received: 02.07.2019; Accepted: 13.11.2019

https://orcid.org/0000-0001-9753-6757
https://orcid.org/0000-0001-7779-6877


Characterization of absolute and uniform continuity 1551

Let A = {Aυ} := {[aυ
nk]} (n, k, υ ∈ N) be a family of infinite matrices of real or

complex numbers. Then, for a sequence x = {xk}k∈N , A−transform of x is denoted by
Ax := {(Ax)υ

n}, which is given by (Ax)υ
n =

∑∞
k=1 aυ

nkxk (n, υ ∈ N) if the series is convergent
for every n, υ. Then, we say that x is A−summable to a number L if limn→∞ (Ax)υ

n = L
uniformly in υ ∈ N, which is denoted by

A− lim x = L.

In particular, we focus on nonnegative regular summability methods satisfying the prop-
erty A− lim x = L whenever lim x = L. Note that a method A = {Aυ} is called row finite
if, for every υ ∈ N, each row of the matrix Aυ contains at most a finite number of nonzero
terms.

Observe that Bell-type summability methods are quite general and contain many well-
known methods, such as, the Cesàro mean, the almost convergence and the order summa-
bility (see [18,24–27]).

In this work, our goal is, using summability methods, to give some characterizations for
absolute continuity and uniform continuity, which will be more general than the results
by Angeloni and Vinti [2, 6]. For this process, we use nonlinear integral operators of
convolution type and Mellin type, which are defined in the next sections. We also discuss
some significant applications and special cases of our results.

2. Characterizations of absolute continuity
In this section, we obtain characterizations of the absolute continuity. By using the

periodicity of functions, we first get a characterization in one dimension. Later, without the
periodicity, we give characterizations in N -dimension with the help of the approximation
by nonlinear integral operators constructed with respect to the Lebesgue measure and the
Haar measure.

Throughout the section, let A = {[aυ
nk]} (n, k, υ ∈ N) be a nonnegative regular summa-

bility method.
We now study the above cases in the following three subsections.

2.1. Characterization in one dimension with periodicity
We first need the following function spaces:

• BV2π, the space of all 2π-periodic measurable functions of bounded variation on
the interval [−π, π].

• AC2π, the space of all 2π-periodic and absolutely continuous functions on the
interval [−π, π].

• L1
2π, the space of all 2π-periodic and Lebesgue integrable functions.

Then, we consider the nonlinear integral operators introduced in [10] (see also [2, 3] in
the case of A = {I}, the identity matrix):

Tn,υ(f ; s) =
∞∑

k=1
aυ

nkTk(f ; s), (2.1)

where
Tk(f ; s) =

π∫
−π

Kk(t, f(s − t))dt. (2.2)

We assume that f is a 2π-periodic measurable function for which the series in (2.1) is
well-defined. The kernel Kk : R × R → R is a family of measurable functions such that
Kk(t, s) = Lk (t) Hk (s) for every s, t ∈ R, where Lk ∈ L1

2π and the functions Hk : R → R
with Hk (0) = 0 have the uniform Lipschitz property, i.e., there exists a constant C > 0
such that |Hk (x) − Hk (y)| ≤ C |x − y| for every x, y ∈ R and k ∈ N.

Then, assuming the following conditions
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(i) There exists a constant M > 0 such that sup
n,υ∈N

∞∑
k=1

aυ
nk ∥Lk∥2π = M < ∞,

(ii) A− lim
(

π∫
−π

Lk (t) dt

)
= 1,

(iii) for any fixed δ > 0, A− lim
( ∫

|t|≥δ

|Lk (t)| dt

)
= 0,

(iv) lim
k→∞

VJ [Gk]
m(J) = 0 uniformly with respect to every bounded interval J ⊂ R, where

Gk (u) := Hk (u)−u, m (J) is the length of the interval J and VJ denotes the total
variation on J ,

we proved in [10] that, for every f ∈ AC2π,
lim

n→∞
V2π [Tn,υ(f) − f ] = 0 uniformly in υ ∈ N (2.3)

holds, which generalizes the result in [2, 3].

Remark 2.1. Our operators Tn,υ in (2.1) are defined by using regular matrix transfor-
mations of the classical operators Tk in (2.2) introduced by Angeloni and Vinti (see [2,3]).
Observe that conditions (i), (ii) and (iii) for the operators Tk are more general than the
ones in [2,3]. However, in this subsection, we prove that it is still possible to characterize
the absolute continuity under these conditions for the operators Tk. Furthermore, the limit
given for the sequence {Tn,υ} does not need to exist for the sequence {Tk} (see Example
4.1). Of course, in order to cover the classical conditions in [2, 3] we especially use the
regular summability methods since our conditions are then satisfied at once due to the
regularity of the methods.

We also need the following condition on the kernel Lk ∈ L1
2π.

For every n, υ ∈ N and for all ε > 0, there exists a δ > 0 such that for every nonover-
lapping subintervals {[αi, βi]}m

i=1 of [−π, π],
m∑

i=1
(βi − αi) < δ implies

m∑
i=1

∞∑
k=1

aυ
nk |Lk (βi) − Lk (αi)| < ε. (2.4)

Remark 2.2. We should note that, in particular, if A is a row finite method and also
if Lk ∈ AC2π, then we immediately get (2.4). Such kernels and row finite methods will
be given in Section 4. Furthermore, if we take A = {I}, then (2.4) is equivalent to the
absolute continuity of Lk. Hence, our condition (2.4) generalizes the absolute continuity
of Lk by a nonnegative regular summability method.

Now we get the next lemma.

Lemma 2.3. Assume that (2.4) holds. If f ∈ BV2π, then Tn,υ(f) ∈ AC2π for every
n, υ ∈ N.

Proof. Since Lk is 2π-periodic, by the substitution s − t = z we may write from (2.1)
that

Tn,υ(f ; z) =
∞∑

k=1
aυ

nk

π∫
−π

Lk(s − z)Hk (f (z)) dz.

By assumption, for every ε > 0 there exists a δ > 0 such that, for every nonoverlap-
ping subintervals {[αi, βi]}m

i=1 of [−π, π], (2.4) holds whenever
∑m

i=1 (βi − αi) < δ. Using
Hk (0) = 0 and the Fubini-Tonelli theorem, we get the following inequality

m∑
i=1

|Tn,υ(f ; βi) − Tn,υ(f ; αi)| ≤ C
m∑

i=1

∞∑
k=1

aυ
nk

π∫
−π

|Lk(βi − z) − Lk (αi − z)| |f (z)| dz

= C
π∫

−π

m∑
i=1

∞∑
k=1

aυ
nk |Lk(βi − z) − Lk (αi − z)| |f (z)| dz,
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where C is the Lipschitz constant of Hk. Since
∑m

i=1 (βi − z − (αi − z)) < δ and (2.4) is
satisfied, we conclude that

m∑
i=1

|Tn,υ(f ; βi) − Tn,υ(f ; αi)| ≤ C ∥f∥1 ε,

where the symbol ∥·∥1 denotes the usual norm on L1
2π. The last inequality immediately

gives that Tn,υ(f) ∈ AC2π. �

Then, our first characterization theorem is as follows.

Theorem 2.4. Let f ∈ BV2π and assume that conditions (i) − (iv) and (2.4) hold. Then,

f ∈ AC2π ⇔ lim
n→∞

V2π [Tn,υ(f) − f ] = 0 uniformly in υ.

Proof. The necessity immediately follows from Theorem 2.3 of [10]. For the sufficiency,
assume that

lim
n→∞

V2π [Tn,υ(f) − f ] = 0

holds. Then, by Lemma 2.3, we get Tn,υf ∈ AC2π. On the other hand, since AC2π is a
closed subspace of BV2π with respect to variation semi-norm (see Lemma 2.1 of [14]), we
observe that f must belong to AC2π. �

2.2. Characterization in N-dimension (without periodicity) with respect
to the Lebesgue measure

In this part, we adopt Tonelli’s definition for the N -dimensional bounded variation (see
[32]). Here we use the following notations and definitions.

• L1
(
RN

)
, the space of all Lebesgue integrable functions on RN with the usual

norm ∥·∥1.
• |x|, the Euclidean norm of the N -dimension vector x = (x1, . . . , xN ) ∈ RN .
• For a given vector x = (x1, x2, . . . , xN ) ∈ RN , the (N − 1) dimensional vector x′

j

is obtained from x by removing the j-th coordinate of x, which is given by

x′
j := (x1, x2, . . . , xj−1, xj+1, . . . , xN ) ∈ RN−1.

Then, we write x =
(
x′

j , xj

)
.

• For an interval I =
∏N

i=1 [ai, bi], we denote (N − 1)-dimensional interval by I ′
j =[

a′
j , b′

j

]
which is obtained by deleting the j-th coordinate from I, i.e., I = [a′

j , b′
j ]×

[aj , bj ], j = 1, . . . , N .
• For a given function f : RN → R, we define

Φj (f, I) :=
b′

j∫
a′

j

V[aj ,bj ]
[
f
(
x′

j , ·
)]

dx′
j for j = 1, . . . , N,

where V[aj ,bj ]
[
f
(
x′

j , ·
)]

is the usual one dimensional (Jordan) variation of the j-th

section of f , namely the function gj (xj) := f
(
x′

j , xj

)
.

• Let

Φ (f, I) :=
{

N∑
j=1

Φ2
j (f, I)

} 1
2

.

Then Φ (f, I) = ∞ if Φj (f, I) = ∞ for some j = 1, . . . , N .
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• The definition of the variation of f on an interval I ⊂ RN is given by

VI [f ] := sup
m∑

q=1
Φ (f, Jq) ,

where the supremum is taken over all the families of N -dimensional subintervals
{J1, . . . , Jm} which are partitions of I.

• Let V [f ] := sup
I⊂RN

VI [f ], where the supremum being taken over all the intervals

I ⊂ RN . If V [f ] < ∞, we say that a function f ∈ L1
(
RN

)
is of bounded variation

over RN

• BV
(
RN

)
, the space of all functions of bounded variation over RN . In this space,

∥f∥BV := V [f ] denotes the variation semi-norm of f .
• ACloc

(
RN

)
, the space of all functions f : RN → R with locally absolutely contin-

uous in Tonelli’s sense, i.e., for any N -dimensional interval I =
∏N

j=1 [aj , bj ] ⊂ RN

if, for every j = 1, . . . , N, and for every ε > 0, there exists a δ > 0 such that for
almost every s′

j ∈ RN−1 and for all finite collections of non-overlapping intervals[
αρ

j , βρ
j

]
⊂ [aj , bj ], ρ = 1, . . . , λ,

λ∑
ρ=1

(
βρ

j − αρ
j

)
< δ implies

λ∑
ρ=1

∣∣∣f (s′
j , βρ

j

)
− f

(
s′

j , αρ
j

)∣∣∣ < ε.

• AC
(
RN

)
:= BV

(
RN

)
∩ ACloc

(
RN

)
.

Now consider the following nonlinear integral operators defined in [11] (see also [5, 6]
in the case of A = {I}):

Tn,υ(f ; s) =
∞∑

k=1
aυ

nkTk(f ; s), (2.5)

where
Tk(f ; s) =

∫
RN

Kk(t, f(s − t))dt (2.6)

We assume that f : RN → R is measurable and bounded on RN for which the series in
(2.5) is well-defined. We also suppose that Kk (t, s) : RN × R → R satisfies Kk (t, s) =
Lk (t) Hk (s) for every t ∈ RN and s ∈ R, where {Lk} ⊂ L1

(
RN

)
and Hk is uniformly

Lipschitz with Hk (0) = 0.
We know from [11] that, for a given f ∈ AC

(
RN

)
, in order to get the approximation

lim
n→∞

V [Tn,υ(f) − f ] = 0 uniformly in υ (2.7)

we need the following conditions:

(i)′ There exists a constant M > 0 such that sup
n,υ∈N

∞∑
k=1

aυ
nk ∥Lk∥1 = M < ∞,

(ii)′ A− lim
( ∫
RN

Lk (t) dt
)

= 1,

(iii)′ for any fixed δ > 0, A− lim
( ∫

|t|≥δ

Lk (t) dt
)

= 0,

and condition (iv) stated in Subsection 2.1.
We should remark that the limit in (2.7) does not need to exist if we replace the sequence

{Tn,υ(f)} in (2.5) with the sequence {Tk(f)} in (2.6) (see Example 4.2).
To give a characterization of absolute continuity we also need the following assumption

on the kernel Lk.
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For every n, υ ∈ N and ε > 0, there exists a δ > 0 such that for any N -dimensional
interval I =

∏N
i=1 [ai, bi] and for every collection of nonoverlapping intervals

{[
αρ

j , βρ
j

]}λ

ρ=1
of the interval [aj , bj ]

λ∑
ρ=1

(
βρ

j − αρ
j

)
< δ implies

λ∑
ρ=1

∞∑
k=1

aυ
nk

∣∣∣Lk

(
s′

j , βρ
j

)
− Lk

(
s′

j , αρ
j

)∣∣∣ < ε (2.8)

for every j = 1, . . . , N .

Lemma 2.5. Assume that (2.8) holds. If f ∈ BV
(
RN

)
, then Tn,υ(f) ∈ AC

(
RN

)
for

every n, υ ∈ N.

Proof. It follows from the substitution s − t = z that

Tn,υ(f ; z) =
∞∑

k=1
aυ

nk

∫
RN

Lk(s − z)Hk (f (z)) dz.

Using (2.8) and the Fubini-Tonelli theorem we get
λ∑

ρ=1

∣∣∣Tn,υ(f ;
(
s′

j , βρ
j

)
) − Tn,υ(f ;

(
s′

j , αρ
j

)
)
∣∣∣

≤ C
λ∑

ρ=1

∞∑
k=1

aυ
nk

∫
RN

∣∣∣Lk(s′
j−z′

j , βρ
j − zj) − Lk(s′

j−z′
j , αρ

j − zj)
∣∣∣ |f (z)| dz

≤ C
∫

RN

λ∑
ρ=1

∞∑
k=1

aυ
nk

∣∣∣Lk(s′
j−z′

j , βρ
j − zj) − Lk(s′

j−z′
j , αρ

j − zj)
∣∣∣ |f (z)| dz

< C ∥f∥1 ε

holds due to
λ∑

ρ=1

(
βρ

j − zj −
(
αρ

j − zj

))
< δ.

This shows that Tn,υ(f) ∈ ACloc

(
RN

)
. On the other hand, from Lemma 2.1 of [11] we

know that Tn,υ(f) ∈ BV
(
RN

)
; and hence Tn,υ(f) ∈ AC

(
RN

)
. �

Then, we get the next result.

Theorem 2.6. Let f ∈ BV
(
RN

)
and assume that conditions (i)′ − (iii)′, (iv) and (2.8)

hold. Then,

f ∈ AC
(
RN

)
⇔ lim

n→∞
V [Tn,υ(f) − f ] = 0 uniformly in υ.

Proof. The necessity part is clear from Theorem 2.3 of [11]. Now assume that

lim
n→∞

V [Tn,υ(f) − f ] = 0 uniformly in υ

holds. We know from [14] that AC
(
RN

)
is a closed subspace of BV

(
RN

)
with respect to

variation semi-norm. Combining this fact with Lemma 2.5, one can easily conclude that
f ∈ AC

(
RN

)
. �

2.3. Characterization in N-dimension (without periodicity) with respect
to the Haar measure

In this part, we use the following notations and definitions. But now, we consider the
Haar measure instead of the Lebesgue measure in the definition of the integral operators.
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• The Haar measure of a set X ⊂ RN
+ is defined by

µ (X) =
∫
X

dµ :=
∫
X

dt
⟨t⟩

,

where µ represents the Haar measure and ⟨t⟩ := t1t2 . . . tN . We remark that (Haar)
measure of a set X is invariant under multiplication.

• L1
µ

(
RN

+

)
, the space of all functions f : RN

+ → R such that

∥f∥L1
µ

:=
∫

RN
+

|f (t)| dt
⟨t⟩

< ∞.

• RN
+ := {(x1, . . . , xN ) : xi > 0 for i = 1, . . . , N}, 1 = (1, . . . , 1) is the unit vector of

RN
+ and

〈
x′

j

〉
:= ΠN

i=1,i ̸=jxi.

• V [f ] denotes the bounded variation of f ∈ L1
µ

(
RN

+

)
.

• BVµ

(
RN

+

)
, the space of all functions f ∈ L1

µ

(
RN

+

)
such that V [f ] < ∞.

• ACloc

(
RN

+

)
, the space of all functions f : RN

+ → R such that, for any N -dimension
interval I =

∏N
i=1 [ai, bi] ⊂ RN

+ and for every i = 1, . . . , N, the section gj : [aj , bj ] →
R is absolutely continuous for almost all vectors x′

j ∈ [a′
j , b′

j ].
• For a given ε > 0, assume that

λ∑
ρ=1

∣∣∣f (s′
j , βρ

j

)
− f

(
s′

j , αρ
j

)∣∣∣ < ε

holds for almost every s′
j ∈ RN−1

+ and for all finite collections of non-overlapping
interval

[
αρ

j , βρ
j

]
⊂ [aj , bj ] , ρ = 1, . . . , λ, whenever

λ∑
ρ=1

(
log

(
βρ

j

)
− log

(
αρ

j

))
< δ.

In this case, we say that f is log-absolutely continuous on RN
+ . From Proposi-

tion 3.5 of [5], we see that the concepts of absolute continuity and log-absolute
continuity are equivalent on RN

+ .
• ACµ

(
RN

+

)
:= BVµ

(
RN

+

)
∩ ACloc

(
RN

+

)
.

We now consider the following Mellin-type operators:

Tn,υ(f ; s) =
∞∑

k=1
aυ

nkTk(f ; s), (2.9)

where
Tk(f ; s) =

∫
RN

+

Kk(t, f(st)) dt
< t >

. (2.10)

In (2.10), st := (s1t1, . . . , sN tN ) and f is essentially bounded with respect to the Haar
measure. We should note that these operators were defined in [9], which generalize the
ones in [6]. Here Kk (t, s) : RN

+ × R → R, Kk (t, s) = Lk (t) Hk (s) for every t ∈ RN
+ and

s ∈ R such that Lk ∈ L1
µ

(
RN

+

)
and Hk is uniformly Lipschitz with Hk (0) = 0.

In [9] we proved that, for every f ∈ ACµ

(
RN

+

)
,

lim
n→∞

V [Tn,υ(f) − f ] = 0 uniformly in υ (2.11)

provided that the following conditions hold:

(i)′′ There exists a constant A > 0 such that sup
n,υ∈N

∞∑
k=1

aυ
nk ∥Lk∥L1

µ
= A < ∞,
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(ii)′′ A− lim

 ∫
RN

+

Lk (t) dt
⟨t⟩

 = 1,

(iii)′′ for any fixed 0 < δ < 1, A− lim
( ∫

|1−t|>δ

Lk (t) dt
⟨t⟩

)
= 0,

and the same condition (iv) in Subsection 2.1.
Note that the limit in (2.11) does not need to be valid for the sequence {Tk(f)} in

(2.10).
For the characterization theorem, we also need the following assumption.
For very n, υ ∈ N and for every ε > 0 there exists a δ > 0 such that for any N -

dimensional interval I =
∏N

i=1 [ai, bi] ⊂ RN
+ , and for every collection of non-overlapping

intervals
{[

αρ
j , βρ

j

]}λ

ρ=1
of the interval [aj , bj ],

λ∑
ρ=1

∣∣∣log
(
βρ

j

)
− log

(
αρ

j

)∣∣∣ < δ implies
λ∑

ρ=1

∞∑
k=1

aυ
nk

∣∣∣Lk

(
s′

j , βρ
j

)
− Lk

(
s′

j , αρ
j

)∣∣∣ < ε (2.12)

for every j = 1, . . . , N.

Remark 2.7. Using the subintervals of RN
+ instead of RN , consider the assumption (2.8).

Then, following the proof of Proposition 3.5 in [5], one can show that, for a given kernel
Lk, conditions (2.8) and (2.12) are equivalent.

Lemma 2.8. Assume that condition (2.12) (or, (2.8)) holds. If f ∈ BVµ

(
RN

+

)
, then

Tn,υ(f) ∈ ACµ

(
RN

+

)
for every n, υ ∈ N.

Proof. From Proposition 2.2 of [9] we immediately see that Tn,υ(f) ∈ BVµ

(
RN

+

)
. So, by

the equivalence of absolute continuity and log-absolute continuity, it is enough to prove
that, for a given f ∈ BVµ

(
RN

+

)
, Tn,υ(f) is log-absolutely continuous on every interval

I =
∏N

i=1 [ai, bi] of RN
+ . Now for a given ε > 0, fix a collection

{[
αρ

j , βρ
j

]}λ

ρ=1
of non-

overlapping intervals in [aj , bj ] such that

λ∑
ρ=1

(
log

(
βρ

j

)
− log

(
αρ

j

))
< δ,

where the number δ comes from condition (2.12). Now letting st = z, we get

Tn,υ(f ; s) =
∞∑

k=1
aυ

nk

∫
RN

+

Lk

(z
s

)
Hk (f (z)) dz

⟨z⟩
,

where z
s :=

(
z1
s1

, . . . , zN
sN

)
. Since

λ∑
ρ=1

(
log

(
βρ

j

)
− log

(
αρ

j

))
=

λ∑
ρ=1

∣∣∣log
(
zj/βρ

j

)
− log

(
zj/αρ

j

)∣∣∣ < δ,
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it follows from the triangle inequality, condition (2.12) and the Fubini-Tonelli theorem
that

λ∑
ρ=1

∣∣∣Tn,υ(f ; s′
j , βρ

j ) − Tn,υ(f ; s′
j , αρ

j )
∣∣∣

≤ C
λ∑

ρ=1

∞∑
k=1

aυ
nk

∫
RN

+

∣∣∣∣Lk

(
z′

j

s′
j
,

zj

βρ
j

)
− Lk

(
z′

j

s′
j
,

zj

αρ
j

)∣∣∣∣ |f (z)| dz
⟨z⟩

= C
∫

RN
+

λ∑
ρ=1

∞∑
k=1

aυ
nk

∣∣∣∣Lk

(
z′

j

s′
j
,

zj

βρ
j

)
− Lk

(
z′

j

s′
j
,

zj

αρ
j

)∣∣∣∣ |f (z)| dz
⟨z⟩

≤ εC ∥f∥L1
µ

,

which completes the proof. �

Theorem 2.9. Let f ∈ BVµ

(
RN

+

)
and assume that conditions (2.12), (i)′′ − (iii)′′ and

(iv) hold. Then

f ∈ ACµ

(
RN

+

)
⇔ lim

n→∞
V [Tn,υ(f) − f ] = 0 uniformly in υ.

Proof. If f ∈ ACµ

(
RN

+

)
, then by Theorem 2.3 of [9] we get

lim
n→∞

V [Tn,υ(f) − f ] = 0 uniformly in υ.

Conversely, if we assume limn→∞ V [Tn,υ(f) − f ] = 0, since ACµ

(
RN

+

)
is a closed subspace

of BVµ

(
RN

)
with respect to variation semi-norm (see [6]), we get from Lemma 2.8 that

f ∈ ACµ

(
RN

+

)
. �

3. Characterizations of uniform continuity
In this section, for the characterization of uniform continuity we use the supremum

norm (uniform norm) instead of variation semi-norm. We consider the following three
cases.

3.1. Characterization in one dimension with periodicity
We first recall some concepts.

• As usual, C2π denotes the space of all 2π-periodic and continuous functions with
the usual supremum norm ∥·∥2π

• B2π denotes the space of all 2π-periodic and bounded functions.
For the nonlinear operators given by (2.1), in addition to the conditions (i)−(iii) stated

in Subsection 2.1. it is needed to replace the condition (iv) with the following
(iv)′ lim

k→∞
∥Gk∥J = 0 for every bounded interval J ⊂ R, where ∥·∥J denotes the supre-

mum norm on the interval J . Note that, this convergence does not need to be
uniform with respect to J ⊂ R.

We also assume the next condition.

For every n, υ ∈ N and for all ε > 0 there exists a δ > 0 such that

|x − y| < δ implies
∞∑

k=1
aυ

nk |Lk (x) − Lk (y)| < ε. (3.1)

Lemma 3.1. Assume that (3.1) holds. If f ∈ B2π ∩ L1
2π, then Tn,υ(f) ∈ C2π for every

n, υ ∈ N.
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Proof. As in the proof of Lemma 2.3, the operators (2.1) can be written as follows:

Tn,υ(f ; z) =
∞∑

k=1
aυ

nk

π∫
−π

Lk(s − z)Hk (f (z)) dz.

Using Hk (0) = 0 it is not hard to see that

|Tn,υ(f ; y) − Tn,υ(f ; x)| ≤ C
∞∑

k=1
aυ

nk

π∫
−π

|Lk(y − z) − Lk (x − z)| |f (z)| dz

= C
π∫

−π

∞∑
k=1

aυ
nk |Lk(y − z) − Lk (x − z)| |f (z)| dz.

Then, by (3.1), for all x, y satisfying
|x − y| = |x − z − (y − z)| < δ

we get
|Tn,υ(f ; y) − Tn,υ(f ; x)| ≤ C ∥f∥1 ε,

which gives the proof. �
The characterization theorem is the following.

Theorem 3.2. Let f ∈ B2π ∩ L1
2π and assume that conditions (3.1), (i) − (iii) and (iv)′

hold. Then,
f ∈ C2π ⇔ lim

n→∞
∥Tn,υ(f) − f∥2π = 0 uniformly in υ.

Proof. The necessity is clear from Theorem 3.3 of [10]. The sufficiency part follows from
Lemma 3.1 and the fact that C2π is a closed subspace of B2π. �

3.2. Characterization of uniform continuity

In this part, by BUC
(
RN

)
we denote the space of all bounded and uniformly continuous

functions on RN endowed with the supremum norm ∥·∥∞. Then using the operators (2.5)
we give a characterization of uniform continuity. Besides the conditions (i)′ − (iii)′ given
in Subsection 2.2, we need (iv)′ in Subsection 3.1. We also assume the next property.

For every n, υ ∈ N and for all ε > 0 there exists a δ > 0 such that

|x − y| < δ implies
∞∑

k=1
aυ

nk |Lk (x) − Lk (y)| < ε. (3.2)

Lemma 3.3. Assume that (3.2) holds. If f ∈ B
(
RN

)
∩ L1

(
RN

)
, then Tn,υ(f) ∈

BUC
(
RN

)
for every n, υ ∈ N.

Proof. From the proof of Lemma 2.5, we get

Tn,υ(f ; z) =
∞∑

k=1
aυ

nk

∫
RN

Lk(s − z)Hk (f (z)) dz.

Since Hk (0) = 0, by the Fubini-Tonelli theorem, the inequality

|Tn,υ(f ; y) − Tn,υ(f ; x)| ≤ C
∞∑

k=1
aυ

nk

∫
RN

|Lk(y − z) − Lk (x − z)| |f (z)| dz

= C
∫

RN

∞∑
k=1

aυ
nk |Lk(y − z) − Lk (x − z)| |f (z)| dz

holds. Considering the assumption, we observe that
|Tn,υ(f ; y) − Tn,υ(f ; x)| ≤ C ∥f∥1 ε

whenever |x − y| = |x − z − (y − z)| < δ. Here ∥f∥1 < ∞ since f ∈ L1
(
RN

)
. And finally

by Lemma 3.1 of [11], we know that Tn,υ(f) ∈ B
(
RN

)
. Hence, the proof is completed. �
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Theorem 3.4. Let f ∈ B
(
RN

)
∩L1

(
RN

)
and assume that conditions (3.2) and (i)′−(iv)′

hold. Then,

f ∈ BUC
(
RN

)
⇔ lim

n→∞
∥Tn,υ(f) − f∥∞ = 0 uniformly in υ.

Proof. For the necessity, apply Theorem 3.3 of [11]. For the sufficiency, use Lemma 3.3
and the fact that BUC

(
RN

)
is a closed subspace of B

(
RN

)
. �

3.3. Characterization of log-uniform continuity
Some notations and definitions used in this part are as follows.

• Let a function f : RN
+ → R be given. We say that f is log-uniformly continuous

on RN
+ if, for every ε > 0 there is a δ > 0 such that, for all x, y ∈RN

+ satisfying
|log x − log y| < δ, |f (x) − f (y)| < ε holds, where log x := (log x1, . . . , log xN ).
The space of all bounded and log-uniformly continuous functions on RN

+ is denoted
by BUClog

(
RN

+

)
, which is endowed with the usual supremum norm ∥·∥∞.

• By B
(
RN

+

)
we denote the space of all bounded functions on RN

+ .
Notice that, in general, log-uniform continuity and uniform continuity are different con-

cepts on RN
+ ; however they are equivalent on a bounded N -dimensional interval

∏N
i=1 [ai, bi]

of RN
+ , where bi ≥ ai > 0 for all i = 1, . . . , N .

We use the assumptions (i)′′ − (iii)′′ in Subsection 2.3 and (iv)′ in Subsection 3.1. We
also need the next condition.

For every n, υ ∈ N and for all ε > 0, there exists δ > 0 such that

|log x − log y| < δ implies
∞∑

k=1
aυ

nk |Lk (x) − Lk (y)| < ε. (3.3)

For the characterization theorem, we first prove the following two lemmas.

Lemma 3.5. Assume that (3.3) holds. If f ∈ B
(
RN

+

)
∩ L1

µ

(
RN

+

)
, then Tn,υ(f) ∈

BUC
(
RN

+

)
for every n, υ ∈ N.

Proof. After writing the operators (2.9) in the following form

Tn,υ(f ; s) =
∞∑

k=1
aυ

nk

∫
RN

+

Lk

(z
s

)
Hk (f (z)) dz

⟨z⟩
,

we may write that

|Tn,υ(f ; y) − Tn,υ(f ; x)| ≤ C
∞∑

k=1
aυ

nk

∫
RN

+

∣∣∣∣Lk( z
y) − Lk

( z
x

)∣∣∣∣ |f (z)| dz
⟨z⟩

= C
∫

RN
+

∞∑
k=1

aυ
nk

∣∣∣∣Lk( z
y) − Lk

( z
x

)∣∣∣∣ |f (z)| dz
⟨z⟩

Then assumption (3.3) gives that, for a given ε > 0, there is a δ > 0 such that, for all x, y
satisfying |log x − log y| =

∣∣∣log z
y − log z

x

∣∣∣ < δ, we get

|Tn,υ(f ; y) − Tn,υ(f ; x)| ≤ C ∥f∥L1
µ

ε.

Combining this with Proposition 3.1 of [9], the proof is completed. �

Lemma 3.6. BUClog
(
RN

+

)
is a closed subspace of B

(
RN

+

)
with respect to the supremum

norm.

Proof. It is clear. �
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Figure 1. The kernel function Lk given by (4.1) for k = 2, 4, 6

Theorem 3.7. Let f ∈ B
(
RN

+

)
∩ L1

µ

(
RN

+

)
and assume that (3.3), (i)′′ − (iii)′′ and (iv)′

hold. Then,

f ∈ BUClog
(
RN

+

)
⇔ lim

n→∞
∥Tn,υ(f) − f∥∞ = 0 uniformly in υ.

Proof. Use Theorem 3.2 of [9] and Lemmas 3.5 and 3.6. �

4. Applications and special cases
In this section, we give some suitable kernel functions satisfying our assumptions and

also discuss some special cases of the characterization theorems.

Example 4.1. We first consider one dimensional case with periodicity. In the definition
of the integral operators (2.1) and (2.2), take A = {C1} = {cnk} (Cesàro method) given
by

cnk :=
{ 1

n ; k = 1, 2, . . . , n
0; otherwise

and also define the 2π-periodic kernel Lk by

Lk (t) :=


(
(−1)k + 1

)
2k sin

(
3kt
5

)
; if 0 ≤ t ≤ 5π

3k(
(−1)k + 1

)
17
10k sin

(
3kt
5

)
; if − 5π

3k ≤ t < 0
0; if π ≥ |t| > 5π

3k ,

(4.1)

which is extended by periodicity to the whole real line (see Figure 1).
In this case, observe that Lk satisfies our conditions (i)-(iii) and (2.4). Furthermore,

some suitable Lipschitz functions Hk satisfying (iv) may be found in the papers [3,4,6,9–
11]. Hence, the corresponding operators are given by

Tn := Tn,υ = 1
n

n∑
k=1

Tk

where
Tk(f ; s) =

π∫
−π

Lk(t)Hk(f(s − t))dt. (4.2)

Theorem 2.4 implies that

f ∈ AC2π ⇔ lim
n→∞

V2π

[
T1(f) + T2(f) + . . . + Tn(f)

n
− f

]
= 0. (4.3)
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Figure 2. The kernel functions Lk given by (4.4) for k = 2, 4, 6

The limit on the right-hand side of (4.3) shows that the arithmetic mean of the sequence
{Tk(f)} in (4.2) converges to f with respect to the variation semi-norm. However, one
can observe that, for any nonconstant function f , the sequence {Tk(f)} itself cannot be
convergent to f with respect to the variation semi-norm. Indeed, it follows from (4.1) and
(4.2) that L2k−1(t) = 0, which implies T2k−1(f) = 0 for all k ∈ N. Hence, we immediately
get

lim
k→∞

V2π [T2k−1(f) − f ] = V2π [f ] ̸= 0

for any nonconstant function f . So, the characterization in (4.3) is still valid although the
sequence {Tk(f)} in (4.2) does not converge to f with respect to the variation semi-norm.

Example 4.2. Now take A = F = {cυ
nk} (almost convergence method) given by

cυ
nk :=

{ 1
n ; k = υ, υ + 1, . . . , υ + n − 1
0; otherwise,

and define the kernel Lk of two variables by

Lk (x, y) =
{ (

(−1)k + 1
)

3k3

π

(
1
k −

√
x2 + y2

)
; if

√
x2 + y2 ≤ 1

k

0; if
√

x2 + y2 > 1
k ,

(4.4)

which is indicated in Figure 2.
Then, it is easy to check that all conditions in Subsection 2.2 hold. Hence, for the

corresponding operators

Tn,υ = 1
n

υ+n−1∑
k=υ

Tk,

where
Tk(f ; s, t) =

∞∫
−∞

∞∫
−∞

Lk(x, y)Hk(f(s − x, t − y))dxdy, (4.5)

it follows from Theorem 2.6 that

f ∈ AC
(
RN

)
⇔ lim

n→∞
V

[
Tυ(f) + Tυ+1(f) + . . . + Tυ+n−1(f)

n
− f

]
= 0, (4.6)
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Figure 3. The kernel functions Lk given by (4.7) for k = 2, 4, 6

uniformly in υ. As in Example 4.1, it is easy to see that

lim
k→∞

V [T2k−1(f) − f ] = V [f ] ̸= 0

for any nonconstant function f . So, the characterization in (4.6) is still valid although the
sequence {Tk(f)} in (4.5) does not converge to f with respect to the variation semi-norm.

Example 4.3. Finally, take again A = F and define the kernel Lk by

Lk (x, y) :=



3k3xy
π

√
1

k2 − (x − 1)2 − (y − 1)2 ;
√

(x − 1)2 + (y − 1)2 ≤ 1
k

and k = m2,

3k3xy
2π

√
1

k2 − (x − 1)2 − (y − 1)2 ;
√

(x − 1)2 + (y − 1)2 ≤ 1
k

and k ̸= m2

0 ; otherwise,

(4.7)

which is indicated in Figure 3.
Then, for the corresponding operators

Tn,υ = 1
n

υ+n−1∑
k=υ

Tk,

where
Tk(f ; s, t) =

∞∫
0

∞∫
0

Lk(x, y)Hk(f(s − x, t − y))dxdy

xy
, (4.8)

we may write from Theorem 2.9 that

f ∈ ACµ

(
RN

+

)
⇔ lim

n→∞
V

[
Tυ(f) + Tυ+1(f) + . . . + Tυ+n−1(f)

n
− f

]
= 0,

uniformly in υ.

One can also find suitable applications and some special cases (with respect to the
supremum norm) of the results in Section 3.
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