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Abstract

Zinc (Zn) deficiency is occurring in different climate re
common micronutrient deficiency in plants and causes

gions and almost in all countries. Zinc deficiency is a
severe reductions in crop production. In this study the

effect of zinc deficiency on pigment content and peroxidase activity in early growth phase of tomato seedlings
was investigated. For this purpose, Hoagland solutions with or without zinc (ZnCl,) were used as growth
medium to determine the possible effects of zinc deficiency. In order to elucidate the physiological consequences
of zinc deficiency; anthocyanin, carotenoid. and chlorophyll content and peroxidase enzyme activity were
measured in roots, hypocotyls, and cotyledons of 8 day-old plants. Zn deficiency promoted anthocyanin and
carotenoid accumulation in hypocotyl and cotyledon tissues of tomato seedlings. Furthermore, Zn deficiency
enhanced peroxidase activity especially in the root and hypocotyl tissues of tomato seedlings.
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Introduction

Zinc (Zn) is one of the essential
micronutrients playing a significant role in
many vital metabolic processes (Rout and Das
2003; Aravind and Prasad 2005a, b). For
instance, Zn is a cofactor for several enzymes
such as anhydrases (Aravind and Prasad 2004a;
2005c),  dehydrogenases, oxidases and
peroxidases (Vallee and Auld 1990: Aravind
and Prasad 2003). Furthermore, Zn could be
also involved in chlorophyll formation by
taking part in the regulation of cytoplasmic
concentrations of nutrients. For example,
Fischer (1997) reported that Mg-deficiency
decreased chlorophyll concentration in beans,
and Welkie et al. (1990) recorded that there was
a linear relationship between leaf-Fe and
chlorophyll content in peppers. Zn could also
increase the biosynthesis of chlorophyll and
carotenoids ultimately proving beneficial for
the photosynthetic machinery of the plant
system (Aravind and Prasad 2004b).

Conclusively, Zn is a must for plant
development. Zinc deficiency is a major global
problem hindering plant cultivation, and this
problem is especially exacerbated in acidic
calcareous soils which is the most common soil
type in and and semi-arid regions of the world
(Cakmak 2000 Hacisalihoglu et al. 2004). Zinc
deficiency reduces plant growth and inhibits
photosynthesis in a wide variety of plants
including maize (Wang and Jin 2005) and rice
(Wenrong et al. 2008). Since the most parts of
Turkey lie in arid or semi-arid climatic zones.
zinc deficieny is one of the most serious
problems restricting plant yield, particularly in
Central Anatolia. Although Turkish soils are
rich in total Zn content, the bioavailability of
Zn is extremely low due to the highly acidic
nature of soils and results in stunted plant
growth and reduced yields (Eyiipoglu et al.
1994; Giilser et al. 2004).

Peroxidases have various physiological roles
in plant cells and participate in many reactions
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including lignification, cross linking of cell
elongation and phenol oxidation, all linked to
growth reductions (Mocquot et al. 1996).
Peroxidase activity shows a close correlation
with changes in physiological processes such
as, respiration, photosynthesis and transpiration,
and thereforc has the potential to serve as a
sensitive indicator of compromised metabolic
activity (Verkleij and Schat 1990; Aravind and
Prasad 2005a). Inhibition of photosynthesis by
some stressors in higher plants 1s well
documented. Reduction in the levels of
photosynthetic pigments, including chlorophylls
a and b and accessory pigments such as
carotenoids, on exposure to biotic or abiotic
stressors have been observed in many species
(Macfarlane and Burchett 2001; Thao and
Yanyun 2005; Lau et al. 2006). The inhibition
of both photosystem Il and photosystem I
generating lipid peroxidation from active
oxygen radicals, may also result in the
destruction of photosynthetic pigments and
thylakoid membrane structure (Droppa and
Horvath 1990). Anthocyanins are best known
as the characteristic red, blue, and purple of
plant tissues. They belong to the widespread
class of phenolic compounds collectively
named flavonoids. produced in the cytoplasm
and then transported into the vacuole (Harborme
1988; Shirley 1996). The synthesis of
anthocyanins is induced by UV-B (Wilson et al.
1998, Warren et al. 2003), nutrient deficiency
(Pinto et al. 1999), low temperature (Rabino
and Mancinelli 1986), water deficit (Nogués et
al. 1998), and heavy metal stress (Ling-Peng et
al. 2006). Thus, both peroxidases and pigments
may have the potential to be employed as
sensitive indicators of biotic or abiotic stressors
and may predict subsequent events at the
organism level (Dietz et al. 1999).

The main objective of this study was to
investigate the effects of zinc deficiency on
pigment content and peroxidase activity in the
early growth phase of tomato seedlings. In this
study. we determined quantitatively the change
in chlorophyll, carotenoid, anthocyanin, and

peroxidase activity which will be expected to
shed light on the role of pigment in tomato
seedlings and zinc deficiency.

Material and Methods

Tomato plants (Lycopersicon esculentum
Mill.) were grown in standard Hoagland and
Arnon (1938) medium, with Zn [+(Zn), ZnCl,,
control] and without Zn [-(Zn), treatment].
After sterlization with 70 % ethanol, tomato
seeds were imbibed at room temperaturc for 24
hours. Subsequently, the seeds were washed
with distilled water and transferred into petri
dishes and wrapped into the filter papers wetted
with appropriate nutrient solutions (+Zn and -
Zn). Next, each petri dish was watered with
distilled water for every two days. Experimental
plants were grown for 12 hours of light and 12
hours of dark cycles in 25 =1 °C and 8000 lux
light intensity. For analyses, roots, hypocotyls
and cotyledons of the plants were collected at
appropriate times.

After the 8 days of growth under the above
mentioned conditions the same method was
employed as in Manchinelli et al. (1990) for the
determination of anthocyanin amounts in the
cotyledons and hypocotyls of 8 day-old
seedlings. For the determination of chlorophyll
and carotenoid amounts in the same tissues, the
same approach was utilized as explained by
Parsons and Strickland (1963). Finally,
peroxidase enzyme activity in the roots,
cotyledons and hypocotyls were calculated by
the absorbance ratios at 470 nm in 0.1 mM
phosphate buffer (pH 5.8), 15 mM guaiacol and
5 mM H,0; solutions (Birecka et al. 1973).

One-way ANOVA test was employed for
statistical analyses of the obtained data
(P<0.01). Vertical bars show standard errors.

Results

The anthocyanin content in the hypocotyls
and cotyledons of the tomato seedlings grown
n the medium without ZnCl, was much higher
than the control (Fig. 1).
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Figure I. The amount of anthocyanin, hypocotyls, and cotyledons of 8§ day old tomato scedlings grown in normal
Hoagland solution containing zinc (control) and without zinc (-Zn).

As for chlorophyll, it was observed that the
amount of chlorophyll in the hypocotyls of
seedlings grown in -Zn increased compared to
the control plants. When we compared the level
of chlorophyll in the cotyledon tissues of plants

grown in control medium and in Hoagland
solution without -Zn, the total amount of
chlorophyll was almost equal. but there was
some difference in the relative ratios of
chlorophyll a and chlorophyll b (Table 1 and
Fig. 2).

Table 1. Chlorophyll contents (pg/g FW) of hypocotyls, and cotyledons of tomato seedlings grown in normal Hoagland
solution containing zinc (control) and without zinc (-Zn).

Hypocotyl Cotyledon
Chlorophylla  Chlorophyllb  Total Chlorophyll  Chlorophylla  Chlorophyllb  Total Chlorophyll
Control 952+6.8 46,755 1419=97 6421 =11,1 4094 =106 1051,5£219
(-Zn) 112,7 £ 10,1 579+74 1706 = 15,1 57534394 47791429 105324303
ElControl O(-Zn)
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Figure 2. Total chlorophyll contents of hypocotyls, and cotyledons of tomato secdlings grown in normal Hoagland
solution containing zin¢ (control) and without zinc (-Zn).
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There was an increase n the carotenoid level in comparison to the control plants. The
of the secdlings grown in Ioagland solutions peroxidase activity in the root and hypocotyl
containing -Zn (Fig. 3). tissues of tomato seedlings grown in the -Zn

The peroxidase enzyme activity of tomato medium was noticeably higher than the control
seedlings which were grown -Zn was increased (Fig. 4).

[ Control [I(-Zn)

Carotenoid Content (pgfe FW )

Hypocotyl Cotyledon

Figure 3. Total carotenoid contents of hypocotyls, and cotyledons of tomato seedlings grown in normal Hoagland solution
containing zinc (control) and without zinc (-Zn).
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Figure 4. Peroxidase activitiy (AA/g FW.min.) of roots, hypocotyls, and cotyledons of tomato seedlings grown in normal
Hoagland solution containing zinc (control) and without zinc (-Zn).
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Discussion

Anthocyanins have long been considered to
act as a screen against UV-B light because the
latter induced reddcning. More recent studies
have found that anthocyanins are produced m
response to various lypes of stress. including
metal stress (Chalker-Scott 1999; Hale et al.
2001). In general, anthocyanins are believed to
increase the antioxidant response of plants in
order to uphold the regular physiological status
in tissues directly or indirectly affected by
biotic or abiotic stressors (Yamasaki 1996:
Rice-Evans et al. 1997: Neill et al. 2002).
Giilcin et al. (2005) also reported that total
anthocyanins from Perilla pankinensis had
strong antioxidant activity. reducing power.
superoxide anion scavenging. hydrogen
peroxide scavenging, and metal chelating
activities  when  compared to  standard
antioxidant compounds such as o-tocopherol
and trolox. We observed that the absence of
zinc in the medium caused the augmentation of
anthocyanin in both hypocotyls and cotyledons
of the tomato scedlings. It is a known fact that
plants defend themsclves against a variety of
hostile environmental conditions by inducing
the biosvnthesis of certain chemicals such as
anthocyanins and antioxidants, and by hyping
the activity of certain enzymes (Weckx and
Clijsters 1997: Mazhoudi et al. 1997). Thus.
from the results of our trials, we can claim that
zine deficiency 1s a stress [actor and it increascs
the anthocyanin contents of tomato seedlings
(Iig. 1).

Despite the amount of chlorophyll in the
hypocotyl tissues of the tomato seedlings.
seedlings grown in the -Zn medium were higher
relative to the control, the chlorophyll amount
in the cotyledon tissues of these seedlings was
not very different than the control but there was
some difference in the relative ratios of
chlorophyll a and chlorophyll b (Table 1. Fig.
2). Wenrong ¢t al. (2008) reported zinc
deficiency caused extensive declines in lIcal
chlorophyll content and ratios of chl a:b . Also,
Hu and Sparks (1991) found that the =zinc
deficiency reduces the amount of chlorophyll in

the leaves of Stuart pecans. In one other
experiment. it is shown that the application of
exogenous zinc to lcaves of tomato plants
caused accumulation of chlorophyll content of
leaves al both low and high concentrations
(Kaya and Higgs 2002). However, we reached a
contradicting  result in  this  experiment;
chlorophvll content of cotyledons of the plants
grown without zinc was almost same with the
values obtained from the control plants (Table
1. Fig. 2).

We denoted that the total carolenoid content
of the tomato scedlings grown in media
containers without zinc. increased (Fig. 3). it is
shown that the decreased carotenoid levels
observed in Cd-treated  Ceratophyllum
demersum plants were well maintained with the
addition of Zn. (Aravind and Prasad 2004b).
Carolenoids are known to quench the oxidizing
species and triplet state of the chlorophyll and
other excited molecules in the pigment bed,
which are seriously involved in disrupting
metabolism through oxidative damage to
cellular components (Candan and Tarhan 2003).
It could be hypothesized that relative change in
the carotenoid content in the various tissues
could be as result of physiological response
caused by zinc deficiency.

It is shown that the peroxidase cnzyme
activity of tomato scedlings grown without
ZnCl,, was increased i comparison to the
control plants (Fig. 4). Zine is known to have a
stabilizing and protective e¢ffect on  the
biomembranes against  oxidative  and
peroxidative damage. loss of plasma membrane
integrity and also alteration of the permeability
of the membranc (Aravind and Prasad 2003).
Marschner and Cakmak (1989) had shown an
enhancement in the peroxidative damage of
crucial cell components (such as membranes,
enzymes, etc.) in plants grown under zinc
deficiency.  Subsequently, Cakmak and
Marschner (1993) reported a dccline in the
activitics of various antioxidant enzymes with
the exception of guaiacol peroxidase (POD).

The most common plant pigments are
chlorophyll, carotenoid, and anthocyanin. The
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content of chlorophyll, carotenoid, and
anthocyanin as well as their relative amount
determine color and appearance of plants
(Abbott 1999) and serve as markers of health.
In conclusion. our results showed that zinc
deficiency induced anthocyanin and carotenoid
augmentation, and peroxidase enzyme activity
erther in hypocotyls or cotyledons of tomato
scedlings.  Anthocyanin and POD may be
involved in internal detoxification mechanisms
of the hypocotyls and cotyledons against zinc
deficiency.
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