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Abstract

Two unit-speed searchers at (0,0) seek a randomly located target on the plane according
to a known unsymmetric continous distribution. The objective is to minimize the expected
time for the searchers to return to (0,0) after one of them has found the target. We find a
necessary condition which make the search strategy be optimal when the target has a
bivariate Balakrishnan skew-normal distribution. The search strategy is derived using a
dynamic programming algorithm. An example is given to show the applications of this
technique. The problem has applications to parallel processing and to the optimal choice
of drilling depths in the search for an underground mineral.
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Diizlemde koordineli arama problemi

Ozet

(0,0)’da iki birim hizli arayici, bilinen simetrik olmayan bir siirekli dagilima goére diizlemde
rastgele vyerlestiriimis bir hedef aramaktadirlar. Amag, arayicilardan birinin hedefi
bulmasinin ardindan, (0,0)’a dénmek icin beklenen sireyi her ikisi igin de minimize
etmektir. Hedefin iki dediskenli Balakrishnan carpik-normal (skew-normal) dagilimina
uygun olmasi halinde arama stratejisinin optimal dizeye getiren 6nemli bir kosul
bulunmustur. Arama stratejisi dinamik programlama algoritmasi kullanilarak tiretilmistir.
Bu teknigin uygulamasini géstermek amaciyla bir érnek verilmistir. Problemin yer alti
madenlerinin aranmasinda paralel hesaplama ve delme derinliginin optimal segiminde
uygulamalari bulunmaktadir.
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1. Introduction

Work on search theory began in the US Navy's Antisubmarine Warfare Operations
Research Group in 1942 in response to the German submarine threat in the Atlantic. After
several decades of development, search problems are still largely of the same
form as in 1942: a single target is lost, the problem is to find it efficiently. So the
searching for a lost target either located or moving is often a time-critical issue that is
when the target is very important such as searching for a bomb in known region
or a life raft on the ocean. And the prime focus is to search for and find the cast ways
in the smallest possible amount of time.

In an earlier work, many variants and extensions of the above problem, in a wide variety
of directions, have been presented in both statistical and operations research literature
since Koopman solved this problem for the unidimensional case, see [1], under some
specific hypotheses, see [2]. However, as pointed out by Koopman, there is so much
complexity in real search and rescue missions that any statistical model
can only reflect part of the real-life situation and ours is no exception, see [3, 4]. One of
these model is the graphical methods in the classical stationary search theory. These
methods are extended to a two-stage search of a submerged target, subject to
an overall budgetary constraint and with possible budget transfer between the stages,
see [5].

On search theory in general, Stone has been given a good account of various results
presently available, with some informative examples, and also has been provided a
rigorous mathematical treatment of the subject, for both discrete and continuous cases,
see [6]. On the other hand, Stone has been provided an overview of different areas in the
development of search theory, which could be designated as classical, mathematical,
algorithmic and dynamic, see [7]. Also an exhaustive surveys of works realized on this
topic has been given, see [8, 9].

Recently, this problem has been illustrated by using co-ordinated search technique on
open area when the located target has symmetric distribution, see [10]. Also, some
papers concerned with this problem when the target moves on the plane with random
process, like missing boats, submarines and missing system by applying many search
techniques such as Bayesian Search and Tracking (SAT). The Bayesian approach would
formulate for a target whose prior distribution and probabilistic motion model are known
and generalized the approach for coordinated multi-vehicle search, see [11, 12].

The primary concern of the paper thus lies in the coordinated search technique which
allows two searchers S, and S, start together and looking for the target from
the point (0,0), which is the center of the known region. The region is divided by two

roads and they are intersected in the center of this region as indicated in Figure 1. One
of these roads is vertical y —axis and the other is horizontal X —axis.

Each searcher of them start looking for the target from (0,0) using a continuous path.
The target being sought for might be in either direction from y—axis, so

the searcher has in general to retrace his steps many times before he attains the target.
The position is given by the value of independent random variables X, Y which

has known (or unknown) unsymmetric distribution W. Each searcher of them
would change his direction at suitable points on Yy —axis before attaining his goal.

At these points, the region will be divided into many sectors hi and ¢;, i=1 2, ..,
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in the right and the left part, respectively. Where the sectors h, and g, have tracks
with width a, —a,, and b, —b, ,.
Figure 1 gives an illustration of such search paths. The search process is

the continuous space and time. It is clear that, the two searchers go different
distances on Yy —axis because the position of the target has unsymmetric distribution

on the plane. Then, the two searchers must go different distance through Yy —axis
and search the two parts as in the following:

The searcher S; would conduct his search in the right part of y—axis as in the following
manner:

(i) Start at (0,0) and go to the —Vve part of y —axis as far as a, to the point (0,—a,).

(i)  Search the sector h, and its track until he reaches to the point (0,8,) on y —axis.
And, then he returns again to (0,0) through the +ve part of y—axis to tell the
other searcher if he met the target or not.

If the target is not found there, go with a distance a, towards the —Vve part

of y—axis to the point (0,—a,) and explore the sector h, and its track until he reaches

to the point (0,a,) on y—axis. He returns again to (0,0) through the +ve part
of y—axis to tell the other searcher if he met the target or not. And, if the tagret
is still not found, retrace the steps again to the —Ve part of y —axis to explore the sector

h, and its track, and so fourth until the position of the target be detected.

Also, the searcher S, would conduct his search in the left part of y—axis as in the
following manner:
(a) Start at (0,0) and go to the +ve part of y—axis If the target is not found there,
go with a distance b, towards the +ve part
of y—axis to the point (0,b,) and explore the sector g, and its track until he reaches

to the point (0,—b,) on y-—axis. He returns again to (0,0) through the —ve part
of y—axis to tell the other searcher if he met the target or not. And, if the tagret
is still not found, retrace the steps again to the +ve part of y —axis to explore the sector

g, and its track, and so fourth until the target be detected.

A problem is similar to the frequently encountered one of determining the
location of the black box of an aircraft lost at sea, with, supposedly, no survivor.

as far as b, to the point (0,b,).

(b) Search the sector ¢, and its track until he reaches to the point (0,-Db)
on Yy —axis. And, then he returns again to (0,0) through the —ve part of y—axis
to tell the other searcher if he met the target or not.
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Figure 1 The Two Search Paths Which Will Give Us The Case Of Search
When We Consider All Relative Positions Of The Starting Point (0,0)
And The Located Target
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Our aim is to calculate the expected value of the time for detecting the target;
also we wish to find the necessary conditions which give the optimal search plan (O.S.P.)
to detect it.

The rest of the paper is organized as follows. In Section 2, we disscus the problem and a
recursive solution. In Section 3, we study the necessary conditions which make
the search plan be optimal. Section 4 develops the dynamic programming algorithm
for obtaining the minimum expected value of the time of detection. Section 5 gives
simulation example with numerical resluts which can show the effectiveness of this
technique and demonstrates the applicablity of it to real world search scenarios.
Finally, section 6 concludes the paper.

2. The Problem and a Recursive Solution

Here, assumptions of the coordinate search problem with two searchers S, and S, for a
located target are described and the problem is mathematically formulated
as an allocation of searching effort which is the expected value of the first meeting
time to detect the target. The surface of the plane be a "Standard Euclidean 2 —space E
", with points designated by ordered pairs (X, Y).

The searchers S, and S, follow search paths € and f respectively to detect the target.
The first search path e, of Sl is defined as in the above steps (i) and (ii). Also the second
search path e, of S, is defined as in the above steps (i) and (ii), but after the searcher S,
goes a distance a, and searches the sector h, and its track and so on. Then, the search
path e of S, is completely defined by a sequence {e;, i>0}.

The first search path f, of S, is defined as in the above steps (a) and (b). And the
second search path f, of S, is defined as in the above steps (a) and (b), but after
the searcher S, goes a distance b, and searches the sector g, and its track and so on.
Then the search path f of S, is completely defined by a sequence {f., i>0}.

Let (X,Y) be two independent random variables which they are represent the position of
the target on the plane. Any track i has width @& -a, and b —b,
in the right and the left part such that the searchers S, and S, cover tracks with width
a, —a,, and b, —b,,. By virtue of the randomness of the position of the target, it is clear
that the cost of the search is, also, a random variable.

The searchers go different distances on Yy —axis, then we have unequal two sectors h,
and ¢,, i=1 2, .., as in Figure 2. These sectors made two unequal searching area

(tracks of the sectors h, ¢, with width a —a,, and b, —b,, respectively) in the two
parts. Let the target has unsymmetric distribution. We consider, the searchers go
on Yy -—axis with equal speeds (V, =V, =1) and they search the sectors and its tracks
with "regular speed" [, where the searching process done only on the sectors
and its tracks. The time which the searchers taked it through going on Yy —axis will
added to the time of the searching process. The searchers wish to minimize
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the expected cost to detect the target, so that if any searcher of them can
detect the target before the other, he will return to the origin in the shortest path
to wait him and he will tell him that he finds the target.

Let the probability density function of the target position on the region is w(x,y) and the
distribution function is W(X,y). Each part is divided into sectors as in Figure 2
and each sector is also divided into an equal small sectors Ik, k=1 2, ..., n. These small

sectors make small search area of the track which the search done on it by which
we mean for the moment that the searcher searches for every thing from his position,
and nothing beyond that.

Small search area

which made by the X
small sector |n_3 of
the track made by the
searcher S, inside the
sector (3.
Figure 2 The Small Search Area Which Made By Small Sectors
l., k=1, 2, ..., N made by the searchers inside the sectors

with radiuses @ and b, i1=2, 3, 4, 5, ....

Let t;, J =1, 2 be the time which the searchers S, and S, take them in the search paths
{e,, i20} and {f, 120} in the right and the left parts respectively
to (0,0). They go on y-—axis from the origin before searching the sectors.
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And, they return after finishing on the sectors to the origin with equal speeds (v, =V, =1),
then in this case the time of going through Yy —axis is equal to the distances which
done. They searching on the sectors hi, 0, i=1 2, .., and its tracks (searching areas

of the sectors) with "regular speed" [. Then, we consider, the searching time
on the sectors and inside them is the "time league". Assuming that the time league

2 2
on the right part is equal to r, =7 and in the left part is & =?ﬂ, where @, and I;
).

1 i
are called "the angular velocity". The searching time 7, and ¢& are depend on
@, and I, respectively, which they depend on the radiuses @ and b,. Let t(y)

be the time of detecting the target.

Theorem 1 The expected value of the time for the searchers to return to the point
(0,0) after one of them has detected unsymmetric distributed target is given by :

E(t(y)) = i[LZa +—j[22 | J o, e)rdrd@}

i s=i k=lp 6,

(2b +—J[i n j Tg(r,e)rdrdej .

k=1 asg 6y

(1)

Proof.

12
IF the target lies in any point of the track of ¢,, then t, =a, += 2 a, =2a, + L

d 2]
L . 1 1
IF the target lies in any point of the track of ¢,, then t, = 2(a1 + a2)+7z —+— |
o W
IF the target lies in any point of the track of 0s, then
1 1 1
:2(a1+a2 +a3)+7r —+—+—, and so on.
o O, 0y
1 27

IF the target lies in any point of the track of h,, then t, =b, +§ —+b, =2b + X,
1 1

1 1
IF the target lies in any point of the track of h,, then t, = 2(b, +b,)+ 7[[— +—].

1 2

IF the target lies in any point of the track of h,, then

=2(b, +b, +b,)+ 7{%+i+ri} and so on.

1 2 3
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However, each sector is divided into an equal small sectors Ik, k=1 2, ..., n, where

these sectors make a set of an equal cones have the same vertex (0,0)
as in Figure 2. But the searchers S, and S, can cover a tracks with width a —a,

and b, —b. ,, so that each one can cover an equal small areas from cones in the
track number i. The cones is determined by a set of lines with equations
x=my=tanfy, where =6, -6, k=1 2, .., n, where this set of equations

make a set of an equal small areas, by which we mean for the moment that
the searcher searches for every thing from his position, and nothing beyond that.
So that, to evaluate the expected value of the time for the searchers to detect
the target, we use the polar coordinates with X=rcosd and y=rsing,

r:a_, —a, i=1 2, .., in the right part and r:b_, —>b, i=1 2, .., in the left part,

0:6,,—>6, k=12, .., n, where a,=r,=0, 6,=0. The searchers search the sectors
and its tracks in anti clockwise. Hence

E(t(l//))=(2&1 +;j{”g(r &)rdrdé + .. +I Ig(r G)rdrde}

1 06,4

1 1)) %%
+ 2(a1+a2)+7{;+—D@..[g(r &)rdrdé + .. +j Ig(r G)rdrde}

) b 6, 4

+| 2(a, +a, +a3)+7{i+i+in{”g(r O)rdrdé + .. +_|. Ig(r e)rdrde}

0 W, s b, 6,

+ 2bl+FJ{”1g(r O)rdrdé + .. +Hg(r e)rdrde}

06,4

+ 2(b1+b2)+7r[ri+riD{Hg(r O)rdrdo + . +Hg(r H)rdrde}

1 2 3 6,4

+| 2(b, +b, +b )+7{Fi+—+—DB£g(r,e)rdrde+...+THfg(r,e)rdrda}

v I a, 0,4
+...

and so on, then

[

E(iv)- [zaﬁ—j{ 1 oo eydrdg}

O

=
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7{2(611 ra)+ [6%@)} {ij ?g(r e)rdrde}

k=l 6,4

11 1))t
+[2(ai+a2 +a,)+ 7{—+—+—j]{ j J‘g(r,e)rdrde}
o, @, o,

k=1, 6,4

+...

+| 2b, +—J{ n TTg(r e)rdrde}

b1

a 6

; 2(b1+b2)+;z[ri —D{Z [ [o. e)rdrde}

2 k=1 & 6,

+| 2(b, +b, +b )+z(%+%+EJHZT Tg(r H)rdrde}

k=L a, 6,

b, 6 n b 6

=[2a1 +£J{ 3 T(jf g(r, 9)rdrd0+2j' jg(r 9)rdrd0+ZI J'g(r O)rdrdo + .. }

) k=l by G4 k=1 b, G,

n b 6

j' (r, 0)rdrd¢9+2[ I g(r, 0)rdrd9+Zj _[g(r O)rdrdé +...

01 k=1 b, 6, k=L by 6,4

b, 6

T a(r, 9)fdfd9+Zj jg(r <9)rdrd0+z_|‘ Ig(r O)rdrdd + ..

1 k=L by 64 1by 6y

a & ay 6

+(2b1 +£j " jgj g(r, e)rdrde+zj [acr, e)rdrdmzj [a(r,0)rdrdo+.. }

-1 k=L a 6, =1 a, 6.

} Ig(r 49)rdrde+zej§gj5 g(r, 0)rdrd«9+ZT ?g(r O)rdrdé +.. }

k=L a, 6, k=L a; 6,

H

=
|

R

n a3 6 n
+| 20 + % r,0)rdrdd + r,0)rdrdf + r,0)rdrdd +..
[3 rg] jg( ) Zligkjlg( ) ijg( ) }
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il(za +—j[zz [ ot 9)rdrd9] [Zb +—J(ZZT [atr Q)rdrdaﬂ

i= Slklbsl'gkl S'k1a519k1

Corollary 1: In the case of a =Db, i=1 2, .., (i.e. the target has symmetric

distribution), the expected value of the time for the searchers to return to the
point (0,0) after one of them has detected it is given by:

E(t(y/))—i[(% +-_j{22]§ [a, e)rdrdeﬂ

i=1 s=i k=la_, 6,

2.1. Special Cases

Case I. If the width in the right part is fixed (i.,e. @ —a_,=a), then
a =a, a,=2a, a;,=34, ..., in (1) we get:

Et(y)) = i{[2|a+—J(ZZf jg(r H)rdrdHJ

i=1 s=i k=lp 6,

(2&; +—)(;k§;(s jl)agkjlg(r,e)rdrdeﬂ.

Case II. If the width in the left part is fixed (i.e. and b —b_,=b), then
b,=b, b,=2b, b, =3Db, ..., in (1) we get:

:iﬁza +—j[zi f gfg(r,e)rdrdeJ

i=1 | s=i k=1 (s-1)b 4, ,

[2ub+—J [ZZ j j g(r, e)rdrdeﬂ

s=i k=la_, g,

Case III. If the width in the two parts are fixed (i.e. 8, —a,; =a and b, —b,_, =b), then
a=a, a,=2a, a,=3a, .., and b, =b, b, =2b, b, =3b, ..., in (1) we get:

Et(y))= iﬂzm—j{zzj jg(r,@)rdrd@}

s=i kl(s )b 6,

(2Ib+—]{i J. Tg(r,@)rdrdeﬂ.
s=i k=l (s-1)a g,
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3. Optimal Search Plan

The goal of the searching strategy could be minimize the expected time to detect the
target.

Definition 1 Let l//*e‘lf be a search plan, then w* is an optimal search plan,
if E(t(l//*))=inf{E(t(l//)), y/e‘P}.

w will be an optimal search path if the sequences a = {ai, i> 0} and b= {b i> O}

i
are optimal sequences, i.e. a*:{ai*, iZO} and b*:{bi*, iZO}. The problem is to
find which values of the turning points & and b, are optimal for a given target

distribution function. There is obviously some similarity between this problem
and the well known Linear Search Problem which had been studied before, see [13, 14,
15, 16, 17]. In that problem a single searcher, starting at zero and moving with
speed one, aims to minimize the expected value of some function of the time taken
to find an object hidden according to a known distribution on the line. An optimizing
searcher goes to successively increasing distances in alternating directions until
the object had found. In our problem, the searchers wish to find the optimal search
paths to search the sectors and its tracks.

The search path y will be an optimal search path if the sequences a={ai, iZO} and
b={bi, i20} are optimal sequences, so we can assumed the certain conditions
(necessary) on underlying distribution under which, there exists a search path 1/
from class ¥ such that E(t(l//*))=inf {E(t(z//)), l//e‘P}.

As it can be seen that the search path depends on two unknown factors. Those
are the target distribution W and the search path w which depend on az{ai, iZO}

and b:{bi, iZO} used by the searchers in the right and the left parts, respectively.

Let us assume, from now on, that the target distribution is known. Nevertheless
we still facing a difficult optimization problem. Because this problem has an infinite

number of variables; that is a={ai, iZO}, b:{bi, iZO} and ®'s, I;'s which they

are also depended on g&;'s, b;'s.

The following recursions gives a necessary conditions for a strategy to be optimal with
respect to bivariate Balakrishnan skew-normal distribution.

3.1. The Case of Position Given by a Bivariate Balakrishnan Skew-Normal
Distribution

If we assume (from now on), that the target has a bivariate Balakrishnan
skew-normal distribution with parameters A4, 4, and A #A4,, see [18]. And, we

consider, the surface of the region be a standard Eculidean 2-space E, with points
designated by ordered pairs (X,Yy). This is a reasonable assumption for small areas
about the target's reported position. In this coordinate system, the target's reported
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position is (0,0). A two-dimensional random variables (X,Y) have the bivariate
Balakrishnan skew-normal distribution if it has the following density:

W, (X, Ys Ay A, £) = C(y, A, YR (X + Y)B(X Y, p),  for — (X,Y)eE.  (2)
where ¢(X, Y, p) is the density of N,(0,0,11, p) and
1
Elo™(4x+4,Yy)|

Whatever, Ax+ 4,y ~N(0,Z +4 +244,p), we can calculate E[CDm(ZiX+/12y)]
by using orthant probability (Lemma 1 see [18]). But, if (X,Y) give the target's actual

position then X is independent of Y. Then, p =0, where p is the correlation coefficient
of X and Y. So that, (2) becomes

Cr (A Aoy p) =

(3)

W, (X, ¥ A4y, A,) = € (A, L)D™ (AX+ L,Y)P(x,y),  for  (X,Y)eE, (4)
such that
1 1 1
Cm( ’A‘Z)z
8GR TE R 2] T oy
— r 1 1 o
Elo" 22+ 2U |

where U ~ N(0,1) and by using orthant probability, see [19], with o =0, one can
find that: b (4,4,)==, b,(4,4,)==, b (/11,/12):1 and so on,

#(X, Y) =%exp[—%(x2 + yz)} :

and
1 AX+Ay 1 )
) (Aix+/12y)=E _[0 exp{—i(z )sz, where 4 x+ 4,y ~ N(0,)),
then
. 1 X+ A yj
O"(Ax+AYy)==|1+erf| 2T—=22 ||,
(Ax+2,Y) 5 ( NE j
Without loss of generality, let m=1 then b, (1, 4,) :%. Thus (4) becomes :
AX+ Ay [ 1/, 2}
A 1 . —-= . 5
W(x, yi 4, )27[[+ ( S e -5 ¢ ) (5)
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Figure 3 The Density Of The Bivariate Balakrishnan Skew-Normal
Distribution For 4, =1, A4, =2.

Then the structure of the search path becomes easy and even simple as we shall see

below.

Definition 2 If y is a search path from class ¥ such that the derivative of E(t(l//)) with
respect to @ and b does exist and all partial derivatives of E(t(l//)) with respect to
the @,'s and b's are vanish, then y is said to be a critical search path (C.S.P)
from class ‘P.

Remark 1 We infer that if E(t(l//)) is differentiable on W then the set of critical
search paths from W will contain all of the relative minimal and relative
maximal search paths. Of course this set may also contain search paths
at which ¥ does not have relative minimal or maximal search paths.
In addition the function ¥ may have relative extremum at a search path from ¥
at which the derivative of E(t(l//)) with respect to a and b does not exist

or E(t(l//)) may have a relative extremum at a search path which is not an interior
point from Y.

If w is a (C.S.P) from class ¥, then %ﬁ/)) and %kfw)) are exist for all pertinent

values of i, and then

) _EW)_,  ug ©
oa, ob,

Theorem 2 Let (X,Y) be two independent random variables have a bivariate
Balakrishnan skew-normal distribution with joint density function W(X, y;ﬂl,ﬂ?)
as in (5), then a's and b's of a (C.S.P) weW are given by the following
relations with (a, = b, =0):
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b, 6 i
n B2 & 4 A CoS O+ A,rsin g 1
b =| 1272 P -3 — | 1+erf 2 j .exp[—rz}rdfd@
T { - ?'; 9!127[( ( N2 J 2

a_ exp (— % af_l)j x (z 66, +64,72cos(6,_, )a,_, — 676, +62,725sin(6, Ja,
k=1

——— 1

— 22 4\2sin(, )ad, + 22,2 sin(6, )a?, cos?(6,)
— 2,2 c0s% (6, )A2ad, —64,+/2 cos(6, )a, ,
+ 2,712 cos®(6, )22, —64,4/2sin(6, 4 )a,,
+ 2222sin(6,,)ad, — 2AA2sin(6, , )a, cos(6, ))] :
i>1 (7)
and

b, , exp (— % ble X (z 676, +64,72cos(6,_, b, — 6376, , +64~2sin(6, )b, ,
k=1

a_, 6, .
Lol A,rcos @+ A,rsin @ 1
a =|127%% P~ — 1+erf( 2 j g {—rz}rdrde
{ = ! 3!1 2%( J2 P72

1

— 22 22sin(6, )b, + 2222 sin(6, b2, cos?(6,)
— 2,72 cos?(6,, )22b%, —64,~/2 cos(6, )b, ,
+ 2,72 c0s?(6, )02, —6.4,+/2sin(6,_, o,
+ BANZsin(, 0}, ~ A Zsin(, 7, 05?0, )]
i>1. (8)
Proof: From (1) we get:

E(t(w)):i[[zai +%j[iz | Hk_g(r,@)rdrd@}

= N (zbi n Fﬁj(iz 2 Hfg(r' g)rdrdﬁ]]-

Since v, =Iir, and speed Vv, was "regular speed" on any sector so if we take

v, = =const. we will obtain the ‘"angular velocity" in any sector from

B B

I ==, i=1 2, 3, .., alsoin the right part », =—, i=1 2, 3, ..., then
I I
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E(t(y/)):(2+%}(al){ ; T j i(uerf(“mw” rs'”en exp[_lrz rdrde

k=1 67,127[ 2
n b 6 B 7

+ jji(ue (’UCOSQJJ "SI0 ]exp —%rz rdrdé
kL b g, <7 L -

S Tjﬁi[ne (ﬂlrcose+/1 rsme ] _—lrz_rdrd¢9+...
k=L b, 6, d - -

1+ erf (ﬂircose+ﬂ rsm6’ jEXp[ % ¢ lrdrde

+
7\

N

+
\__/

A~

QD

~

—
1
=~
'l =}
& ——— &
7%'—.@
Qe
7\

Yy i ]
N Iji Lierf ﬂlrcosé?+}t rsiné o _lrz rdrdo
k:1b29k7127z. - ° B
b, 4 i l
n By g q }tlrc059+ﬂrsmt9 1,
+ J'J'Z—(H rf ( D | =1 rdrdé + ...
k=l b, 6, , a - B

J'i(l+er1‘(ﬂirCOSQJF;t rsin D L rdrdé
k=1 3, 6, , 27 L 2 h
n as 6 r ]
+Z_|'_|'i 1+erf ﬂlrcosé’+ﬂ,rsm¢9 —lr2 rdrd@ +...
k=1 2z
=ap by - -
n & 6
+(2+£].(b2). I I i(1+erf(/11rcosg+/1 rsm¢9 Jexp[—lr2 rdrd¢9
ﬂ k=1 a 64 27[ 2
n a8 6 r .
+ J‘i 1+ erf ﬂlrc0549+/1 rsin6 .exp _L e lrdrae
k=1 3,4, , 272' L 2 i
n a r N
+ _[ _[ 1 1+erf ﬂlrc030+}t rsm@ .exp —lr2 rdrdé +...
k=1 272' 2
= azb, - -

+...

By differentiate with respect to a;, then we get:
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oay

=0,

GE(t(y)) _ (“‘JM

6, . _
c 1 Arcos@+ A,rsin @ 1,
_— .exp| —=r- |rdrdé@
¥ ( ( 2 D 2 }

O

3

k=1

b, 6

J-zi(l erf[ﬂlrcose+ﬂ, rsmej 0 —%I’Z cdrdo

fr
(1+erf(ﬂ'lrcow+}L rsin 9) .exp —%rz rdrd6?+...]

N

k=1

+

!
n;Tk

2 O

[Z 676, + 64,42 cos(6,_, Ja, — 6/76,_, +64,/25in(6, )a,

— 22 2,N25sin(6, )ad + 222,N2 sin(8, )a cos?(8,)

— 2,72 cos®(6,_, )A2a® —64,+/2 cos(6, Ja,

+ 2,72 cos®(6, )%ad — 62,42 sin(6, , )a,

+ 2 2N2sin(6,,)ad - 224,42 sin(6,, )ad cos?(B, )]

since the target had unsymmetric distribution, then

o n b 6

>3 | [o(r.0rdrdo=1- ZZ] jg(r o)rdrdo.

i=1 k lb, 101

i=l k=la_ 6.,

Thus, if we consider, the probability of detecting the target in the left part is P, then the
probability of detecting it in the right part is 1— P, which leads to

P

ool
& eXp 231
- 1272_3/2

~~—

= (bz

X

Zn: 676, +64,+/2 cos(6,_, Ja, — 6/76,_, +64,/25in(6), ),
L k=1

— 22 42sin(, )ad + A24,+/2 s5in(6, )a cos? (6, )

— 2,2 cos?(6,, )2a® — 6.4,+/2 cos(6, )a,

+ 2,42 cos®(6, )A2ad —64,+/2sin(6, , )a,

+ 2 22sin(6, ,)ad — 224,42 5in(6, , )8l cos? (6, )]
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then

b [].27[3/2P)/
, =

[ai exp[— % afﬂ x LG;‘ 676, +64,+/2 cos(6, , Ja, —6/76,_, + 64,2 5in(6, )a,

—22 2,\2sin(6, )ad + 222,72 sin(6, )ad cos?(8, )
— 2,2 cos® (6, )A2a® — 64,2 cos(6), Ja,
+ 4,42 cos® (6, )22a® —6.4,+/2sin(6, , )a,
+ 222sin(6,,)ad — 224,+2sin(6,, )a? cosz(ekfl)]

By differentiate with respect to a,, then we get:

n b 6 ' i
6E(t(t//)):(z+1} ST i(1+erf[ﬂircosemzrsmej}exp —lrz}rdfde
aaZ ﬁ k=1 b g, , 27[ \/E - 2
by G i i ]
n % q AF C0S O + A,rsin @ 1,
+ —|1+erf 2 exp|—=r° |rdrd@
klk.)[az..l 271'( [ \/E j Xp_ 2 _
b, 6 i i i
n b q A,rcos 6 + A rsmej 1,
+ —|1+erf 2 .expl—=r° |rdrdd +...
kﬂiglﬂ( ( V2 ﬂ{ 2 }

[Z 676, + 64,42 cos(4,_, Ja, — 676, , + 62,72 5in(6), )a,
k=1

— 22 ,42sin(6, )ad + A24,+/2 sin(6, )l cos? (6, )

— 2,2 cos®(6,, )22ad — 6.4,/2 cos(6, )a,

+ 2,2 cos®(6, )2%a - 64,/25in(6, 4 )a,

+ 22,2 sin(6,, )ad — 2A2sin(6,, )ad cos? (6, , )]

thus
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b 6 :
n n 1 A,rcosf+ A rsmej [ 1 2}
2+= || P- —| 1+erf : .exp|—=r" |rdrd@
( ﬂ]|: k=1'([9;'-1 271'( ( /2 ) Xp 2

[Z 676, +61,+/2 cos(f,_, Ja, — 676, , +64,7/25in(6), )a,
k=1

— 22 4,2sin(8, )ad + A24,+/2sin(6, )as cos? (6, )

— 2,2 cos®(6,_, )A%a® —6.4,+/2 cos(6), )a,

+ 2,12 cos® (6, )A%as - 64,+/2sin(6,_, )a,

+ 222N2sin(6,,)ad - 224,42 sin(6,, )al cos? (6, , )]

which leads to

b 6 .
- 1 Arcos@+ A,rsind 1
b, =|127%%| P - ~|1+erf 2 .exp| —=r? |rdrdé@
3 [ " |: k_1.[9;[1 272-( i ( 2 jJ Xp|: 2 } :|:l/

[26\/_49 +64,+/2 cos(6, , )a, — 676, , +64,+/25sin(6, )a,

— 22 ,42sin(6, )ad + 224,42 sin(6), ) cos? (6, )

— 2,\2 c0s*(6, . )22ad — 62,2 cos(6), )a,

+ 2,2 cos®(9, )28 —64,+/2sin(4,_, )a,

+ 22 22sin(6,, )ad — 224,42 sin(6,_, )as cos? (6, ))]

Similarly,
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b, 6 .
LEr 1 Arcos@+ A,rsiné 1
b, =|127%%| P - | 1+erf —2 .exp| - = r? |rdrd@

Ka3 exp (— % a’ D x (Zn: 670, +64,72 cos(6,_, Ja, — 6776, , + 64,42 sin(6, Ja,

— 22 2\2sin(, )ad + A24,+/2sin(6, )as cos? (6, )

— 2,2 cos?(6, , )A2ad —64,/2 cos(6), )a,

+ 2,72 cos®(6,)%ad — 64,12 5in(6, , )a,

+ 22 22sin(6,,)ad — 224,42 5in(6, , )al cos? (6, , ))

And so on we can get:

bi_, 6 i |
n B2 &g A CoS@+ A,rsing 1
b =|12.%2 p_ —|1+erf 2 .exp[—rz}rdfd@

k=1 O

1

a_ exp (— % aflj] x (Z 66, +64,~2cos(6,_, )a,, — 66, , +64,725sin(6, )a, ,
k=1

— 22 2\2sin(6, )ad, + 22,2 sin(6, )a?, cos?(6,)

— 2,2 cos? (6, )A2a%, —64,+/2 cos(6, )a, ,

+ 2,712 cos® (6, )22, —64,4/2sin(6, 4 )a,,

+ 22A2sin(6,,)ad, — 2AA2sin(6, , )a, cos(6, ))] )
By the same method, we can prove (8).

The searchers search inside the tracks with width & —&_, and b,—b_ in the
right and the left parts of y—axis respectively, then by choosing many values

of a, 1=1 2,3, .., we can find b, i=1 2, 3, ..., where the above theorem is true
for all values of a,, i=2, 3, .., and vice versa. So, we need to satisfy the codition
a,>a,_, and b, >b , along the searching process and this is called the optimal case

otherwise we stop the process and reject the values of a, or b, i=1 2, 3, ...

4. Algorithm

The solutions presented in the form of algorithm written in the style of computer
program. We construct an algorithm to calculate the minimum expected value

of the time of detection after choosing the optimal values of the radiuses &, and b,

=1 2, 3, ..... All these values obtained from generation method.

The steps of the algorithm can be summarized as in the following:
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Step 1. Input the values of:
P =the probability of detecting the target in the left part,
Z = +veinteger number (number of generation),

g =the counter which used in this process, and take the initial value 1,

N =the number of angles which done during the searchers search any sector
and its track as in Figure 2,

A, A, =the parameters of bivariate Balakrishnan skew-normal distribution
and A4, #A,,

a, =the first distance which the searcher S, go it through —ve part of y —axis,

b, =the first distance which the searcher S, go it through +ve part of y —axis;

Vv, = "regular speed" on any sector.

Step 2. Compute €=06, —6, ,, where the searchers can cover an equal small areas
from cones in the track number i;

Step 3. If q<7z; Generate & and b, i=1 2, 3, ..., original solutions randomly from
(7) and (8);

Step 4. Test the condition & >a,, and b, >b,, If it is satisfied, then go to Step 5,
Else where stop the process and then go to Step 7;

Step 5. If the target is not detected, Put q=q+1 and go to Step 3, Else where go
to Step 6.

Step 6. Compute E(t(l//)) from (1) and then go to Step 8;

Step 7. Reinput another values of @, and b, and repeat the above Steps from 3
to 6 again until the target is detected;

Step 8. End (Stop).

5. Numerical Example

To illustrate the operation of the algorithm. The following simple numerical example is
considered for the sake of illustration, we have assumed an a priori knowledge of the
target.

If the probability of the target in the left part is P =0.6 then the probability
of it in the other part is 1-P=0.4. Then, we can take @& <b,. Let a =0.5

b,=06, A4 =27, A,=28 n=20 and let 9=9k—9k_1=%, so that ek=k9=‘;—’g,
(k=D .
6k_1:(k—1)9:T, then we can get &, b,, 1=1 2 3 .. from (7) and (8)

respectively, that minimize the expected value of the time to detect the target
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and satisfy the condition a >a,, and b, >b., along the searching process. We consider

the positive values for calculating a.,,, b, 1=3, 4, 5, ... after substuting in (7) and (8)
respectively as in the following: Then,

Step 1. Input the values of:
P =0.6, z =50, q=1 n=20, A4 =27, A, =28,
a, =0.5, b, =0.6, v, = [,

k k-1
Step 2. Such that 6, :kS:Z—g and 6, :(k—l)ng then =0, —49k_l:%,
where the searchers can cover an equal small areas from cones in the
track number i,

Step 3. Put q=1 and <5, Generate a, and b, original solutions randomly from
(7) and (8), respectively as follows: from (8), we get: the solution is
{b, =1.982170372]}, and for calculating a,, we use (7) and we get: the solution

is {la, =0.5855043261]}
Step 4. The condition @, >a, and b, >b, is satisfied, then go to Step 5;
Step 5. Suppose the target is not detected, then Put q=q+1 and go to Step 6;
Step 6. Such that =2 and g <5; Generate a, and b, from (7) and (8), respectively
as in Step 3, we get a, =0.6453403178 and b, =17.39328954;
Step 7. The condition a, >a, and b, > b, is satisfied, then go to Step 8;

Step 8. Consider the target is detected, then Compute E(t(l//)) from (1) as follows:

E(t(,//)):ZZZKZai +%J i 20 b T%(1+erf(27r0050\/—%28r8inQj}exp[_%rz}rdrde]

i=1 i

2 20 & 6 .
1 27rcos @+ 28rsin @ 1
Hob+ 2| E —|1+erf exp| —=r? |rdrd@ |.
( | 1_‘i] s=i k=14 J-Zﬂ-( ( V2 jJJ Xp[ ’ :|

substuite with v, = f#=const., we can obtain the "angular velocity" in any

B 14

sector in the left part from T; =b—, I=1 2, also in the right part @, =—, 1=1, 2.

After calculate E(t(y)), go to Step 10;

If the condition & >a,, and b, >b, ,, is not satisfied in Step 4 or in Step 7, then
the process must stop and go to Step 9;

Step 9. Reinput another values of a, and b, and repeat the above Steps from 3 to 6
again until the target is detected;
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Step 10. End (Stop).
b

2bi, must be satisfied to make the process continues.

We can apply this algorithm for i =3, 4, 5, ..., to obtain a such that the condition

i+11 i+1?

a,>a and b

i+l — i+1

If this condition is not satisfied before the target is found, then we must stop
the process and take another values of a, and b;.

6. Conclusion and Future Research

A coordinated search technique for a lost target has been presented. The necessary
conditions has been given to make the search plan be optimal. Also, we
have developed a dynamic programming algorithm that provides minimum expected
value of the time.

The proposed model will be extendible to the multiple searcher case by considering the
combinations of multiple lost targets on the plane.
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