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Abstract 
In the present paper we introduce linear positive operators which are defined in [6] by 

generalization of Gadjiev-Ibragimov operators and give some approximation 

properties of these operators in the space of continuous functions of two variables on 

a compact set. We find certain moments of this operator and estimate for 

approximation error of the operators in terms of modulus of continuity. Then, we give 

some approximation properties of these operators. 
Keywords: Gadjiev-Ibragimov Operators; Linear Positive Operators; Volkov 

Theorem. 

 

1. Introduction 

 
Gadjiev and Ibragimov, defined a general sequence of positive operators and studied 

someapproximation properties of this operators. Several generalizations of this operator have been 

studied in the one dimensional case by different researchers[1,2,3,6]. We introduce a generalization of 

linear positive operators in two dimensions which given in [4, 5]. Then we give some approximation 

properties of two dimensional Gadjiev-Ibragimov operators. 

 

We give the construction of operators in the next section. Then we present some auxiliary result 

and approximation with the help of modulus of continuity will be given. 

 

2. Construction of Operators 

 
Definition 2.1. Let (𝛼𝑛), (𝛽𝑛) and (𝛾𝑛) be sequences of real numbers sequences such as 

lim
𝑛→∞

𝛽𝑛 = ∞, lim
𝑛→∞

𝛼𝑛

𝛽𝑛
= 0    and lim

𝑛→∞

𝛼𝑛

𝛽𝑛
𝑛 = 1 

and 

lim
𝑚→∞

𝛾𝑚 = ∞, lim
𝑚→∞

𝛼𝑚

𝛾𝑚
= 0    and lim

𝑚→∞

𝛼𝑚

𝛾𝑚
𝑚 = 1. 

𝐾𝑛,𝜗(𝑥) and 𝐾𝑚,𝜇(𝑦) get a function satisfies the following conditions; 

1) Let  𝑛, 𝑚 ∈ ℕ and  𝜗, 𝜇 ∈ ℕ0. For every finite 𝐴 and (𝑥, 𝑦) ∈ 𝐶([0, 𝐴] × [0, 𝐴]) such that 

(−1)𝜗𝐾𝑛,𝜗(𝑥) ≥ 0 and (−1)𝜇𝐾𝑚,𝜇(𝑦) ≥ 0.  
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2) For any (𝑥, 𝑦) ∈ [0, 𝐴], 

∑ 𝐾𝑛,𝜗(𝑥)
(−𝛼𝑛)𝜗

𝜗!

∞

𝜗=0

= 1  and ∑ 𝐾𝑚,𝜇(𝑦)
(−𝛼𝑚)𝜇

𝜇!

∞

𝜇=0

= 1. 

3) For any (𝑥, 𝑦) ∈ [0, 𝐴],   

𝐾𝑛,𝜗(𝑥) =  −𝑛𝑥𝐾𝑛+𝑘,𝜗−1(𝑥) and 𝐾𝑚,𝜇(𝑥) =  −𝑚𝑦𝐾𝑚+𝑙,𝜇−1(𝑦) 

where 𝑛 + 𝑘, 𝑚 + 𝑙 ∈ ℕ0 and 𝑘,𝑙 are constants independent of 𝜗, 𝜇. 

 

Taking these equations into account, let us define a two variable generalization of Gadjiev-

Ibragimov’s operator for 𝑓 ∈ 𝐶([0, 𝐴] × [0, 𝐴]) 

𝐿𝑛,𝑚(𝑓, 𝑥, 𝑦) = ∑ ∑ 𝑓(
𝜗

𝛽𝑛
,

𝜇

𝛾𝑚
)𝐾𝑛,𝜗(𝑥)𝐾𝑚,𝜇(𝑦)

(−𝛼𝑛)𝜗

𝜗!

(−𝛼𝑚)𝜇

𝜇!

∞

𝜇=0

∞

𝜗=0

                                                   (1) 

Here we use 

𝑃𝑛,𝑚(𝑥, 𝑦) = 𝐾𝑛,𝜗(𝑥)𝐾𝑚,𝜇(𝑦)
(−𝛼𝑛)𝜗

𝜗!

(−𝛼𝑚)𝜇

𝜇!
. 

 

Lemma 2.1 𝐿𝑛,𝑚 defined by Equation 1 is linear and positive operators. 

 

Proposition 2.1. Let 𝑓 ∈ 𝐶([0, 𝐴] × [0, 𝐴])for the operator given by Equation 1 we have 

𝑖)𝐿𝑛,𝑚(1, 𝑥, 𝑦) = 1. 

𝑖𝑖) 𝐿𝑛,𝑚(𝑡1, 𝑥, 𝑦) =
𝛼𝑛

𝛽𝑛
𝑛𝑥. 

𝑖𝑖𝑖)𝐿𝑛,𝑚(𝑡2, 𝑥, 𝑦) =
𝛼𝑚

𝛾𝑚
𝑚𝑦. 

𝑖𝑣)𝐿𝑛,𝑚(𝑡1
2 + 𝑡2

2, 𝑥, 𝑦) = (
𝛼𝑛

𝛽𝑛
)

2

𝑛(𝑛 + 𝑘)𝑥2 +
𝛼𝑛

𝛽𝑛
2 𝑛𝑥 + (

𝛼𝑚

𝛾𝑚
)

2

𝑚(𝑚 + 𝑙)𝑦2 +
𝛼𝑚

𝛾𝑚
2

𝑚𝑦. 

 

Proof. (𝑖) In Definition 2.1. 2) we get 

𝐿𝑛,𝑚(1, 𝑥, 𝑦) = ∑ 𝐾𝑛,𝜗(𝑥)
(−𝛼𝑛)𝜗

𝜗!

∞

𝜗=0

∑ 𝐾𝑚,𝜇(𝑦)
(−𝛼𝑚)𝜇

𝜇!

∞

𝜇=0

= 1. 

 (𝑖𝑖) Using Definition 2.1. conditional of  2) and 3)  

𝐿𝑛,𝑚(𝑡1, 𝑥, 𝑦) = ∑ ∑
𝜗

𝛽𝑛

∞

𝜇=0

∞

𝜗=0

𝑃𝑛,𝑚(𝑥, 𝑦) 

                                                       = ∑
𝜗

𝛽𝑛
𝐾𝑛,𝜗(𝑥)

(−𝛼𝑛)𝜗

𝜗!

∞

𝜗=0

 

 =
𝛼𝑛

𝛽𝑛
𝑛𝑥 ∑ 𝐾𝑛+𝑘,𝜗−1(𝑥)

(−𝛼𝑛)𝜗−1

(𝜗 − 1)!

∞

𝜗=1
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                                                             =
𝛼𝑛

𝛽𝑛
𝑛𝑥                                             (𝑛 + 𝑘) ∈ ℕ0. 

(𝑖𝑖𝑖) Definition of 𝐿𝑛,𝑚 we have 

𝐿𝑛,𝑚(𝑡2, 𝑥, 𝑦) = ∑ ∑
𝜇

𝛾𝑚
𝐾𝑚,𝜇(𝑦)

(−𝛼𝑚)𝜇

𝜇!

∞

𝜇=0

𝐾𝑛,𝜗(𝑥)
(−𝛼𝑛)𝜗

𝜗!

∞

𝜗=0

 

                                         =
−𝛼𝑚

𝛾𝑚
∑ 𝐾𝑛,𝜗(𝑥)

(−𝛼𝑛)𝜗

𝜗!
∑ −𝑚𝑦𝐾𝑚+𝑙,𝜇−1(𝑦)

(−𝛼𝑚)𝜇−1

(𝜇 − 1)!

∞

𝜇=1

∞

𝜗=0

 

                                        =
𝛼𝑚

𝛾𝑚
𝑚𝑦 ∑ 𝐾𝑛,𝜗(𝑥)

(−𝛼𝑛)𝜗

𝜗!
∑ 𝐾𝑚+𝑙,𝜇−1(𝑦)

(−𝛼𝑚)𝜇−1

(𝜇 − 1)!

∞

𝜇=1

∞

𝜗=0

 

                                       =
𝛼𝑚

𝛾𝑚
𝑚𝑦                                                                   (𝑚 + 𝑙) ∈ ℕ0. 

(𝑖𝑣)For (𝑛 + 𝑘) ∈ ℕ0 

𝐿𝑛,𝑚(𝑡1
2, 𝑥, 𝑦) = ∑ ∑ (

𝜗

𝛽𝑛
)

2∞

𝜇=0

∞

𝜗=0

𝑃𝑛,𝑚(𝑥, 𝑦) 

                            = ∑ ∑ 𝐾𝑚,𝜇(𝑦)
(−𝛼𝑚)𝜇

𝜇!

𝜗(𝜗 − 1)

𝛽𝑛
2 𝐾𝑛,𝜗(𝑥)

(−𝛼𝑛)𝜗

𝜗!

∞

𝜇=0

∞

𝜗=0

 

                 +
1

𝛽𝑛
2 ∑ ∑ 𝐾𝑚,𝜇(𝑦)

(−𝛼𝑚)𝜇

𝜇!
𝜗𝐾𝑛,𝜗(𝑥)

(−𝛼𝑛)𝜗

𝜗!

∞

𝜇=0

∞

𝜗=0

 

                           =
𝛼𝑛

2

𝛽𝑛
2 𝑛(𝑛 + 𝑘)𝑥2 ∑ 𝐾𝑛+𝑘,𝜗−2(𝑥)

(−𝛼𝑛)𝜗−2

(𝜗 − 2)!

∞

𝜗=2

+
1

𝛽𝑛

𝛼𝑛

𝛽𝑛
𝑛𝑥 

               = (
𝛼𝑛

𝛽𝑛
)

2

𝑛(𝑛 + 𝑘)𝑥2 +
𝛼𝑛

𝛽𝑛
2 𝑛𝑥.                                                                                 (2) 

Similarly for (𝑚 + 𝑙) ∈ ℕ0 we get 

𝐿𝑛,𝑚(𝑡2
2, 𝑥, 𝑦) = (

𝛼𝑚

𝛾𝑚
)

2

𝑚(𝑚 + 𝑙)𝑦2 +
𝛼𝑚

𝛾𝑚
2

𝑚𝑦                                                                 (3) 

and using Equation 2 and Equation 3 we have 

𝐿𝑛,𝑚(𝑡1
2 + 𝑡2

2, 𝑥, 𝑦) = (
𝛼𝑛

𝛽𝑛
)

2

𝑛(𝑛 + 𝑘)𝑥2 +
𝛼𝑛

𝛽𝑛
2 𝑛𝑥 + (

𝛼𝑚

𝛾𝑚
)

2

𝑚(𝑚 + 𝑙)𝑦2 +
𝛼𝑚

𝛾𝑚
2

𝑚𝑦. 

 

Theorem 2.1. For every 𝑓 ∈ 𝐶([0, 𝐴] × [0, 𝐴]) 

lim
𝑛→∞

‖𝐿𝑛,𝑚(𝑓, 𝑥, 𝑦) − 𝑓(𝑥, 𝑦)‖ = 0. 

 

Proof. We show conditional of Volkov Theorem. Clearly we have 
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lim
𝑛→∞

‖𝐿𝑛,𝑚(1, 𝑥, 𝑦) − 1‖ = 0. 

Using  
𝛼𝑛

𝛽𝑛
𝑛 → 1  we write 

‖∑ ∑
𝜗

𝛽𝑛

∞

𝜇=0

𝑃𝑛,𝑚(𝑥, 𝑦)

∞

𝜗=0

− 𝑥‖ = ‖
𝛼𝑛

𝛽𝑛
𝑛𝑥 − 𝑥‖. 

Then we have 

lim
𝑛→∞

‖𝐿𝑛,𝑚(𝑡1, 𝑥, 𝑦) − 𝑥‖ = 0. 

Similarly for  
𝛼𝑚

𝛾𝑚
𝑚 → 1 we get 

lim
𝑛→∞

‖𝐿𝑛,𝑚(𝑡2, 𝑥, 𝑦) − 𝑦‖ = 0. 

Also by  Proposition 2.1 iv)  

lim
𝑛→∞

‖𝐿𝑛,𝑚(𝑡1
2 + 𝑡2

2, 𝑥, 𝑦) − 𝑥2 − 𝑦2‖ = 0. 

 

Example 2.1. The convergence of 𝐿𝑛,𝑚(𝑓, 𝑥, 𝑦) to 𝑓(𝑥, 𝑦) = 𝑒1+2𝑥 + 𝑦  for  𝛼𝑛 =  𝛼𝑚 = 1, 𝛽𝑛 = 𝑛, 

𝛾𝑚 = 𝑚  is illustrated in Figure1.  𝑛 = 𝑚 = 1(brown), 𝑛 = 𝑚 = 3(green), 𝑛 = 𝑚 = 10(magenta) 

 

Figure 1:Approximation of 𝐿𝑛,𝑚(𝑓, 𝑥, 𝑦) 

The first three moments of operators are given next Lemma. 

 

Lemma 2.2. Let (𝑥, 𝑦) ∈ [0, 𝐴] × [0, 𝐴] and for 𝑛, 𝑚 ∈ ℕ the following equalities hold. 

𝑖)𝐿𝑛,𝑚(1, 𝑥, 𝑦) = 1. 

𝑖𝑖)𝐿𝑛,𝑚(𝑡1 − 𝑥, 𝑥, 𝑦) = 𝑥 (
𝛼𝑛

𝛽𝑛
− 1). 
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𝑖𝑖𝑖)𝐿𝑛,𝑚((𝑡1 − 𝑥)2, 𝑥, 𝑦) = [(
𝛼𝑛

𝛽𝑛
)

2

𝑛(𝑛 + 𝑘) −
2𝛼𝑛

𝛽𝑛
𝑛 + 1] 𝑥2 +

𝛼𝑛

𝛽𝑛
2 𝑛𝑥. 

Proof. 

(i) Clearly 𝐿𝑛,𝑚(1, 𝑥, 𝑦) = 1. 

(ii) 

𝐿𝑛,𝑚(𝑡1 − 𝑥, 𝑥, 𝑦) = ∑ ∑ (
𝜗

𝛽𝑛
− 𝑥)

∞

𝜇=0

∞

𝜗=0

𝑃𝑛,𝑚(𝑥, 𝑦) = 𝑥 (
𝛼𝑛

𝛽𝑛
𝑛 − 1) 

(iii) 

𝐿𝑛,𝑚((𝑡1 − 𝑥)2, 𝑥, 𝑦) = ∑ ∑(𝑡1 − 𝑥)2

∞

𝜇=0

∞

𝜗=0

𝑃𝑛,𝑚(𝑥, 𝑦) 

              = ∑ ∑ (
𝜗

𝛽𝑛
)

2∞

𝜇=0

∞

𝜗=0

𝑃𝑛,𝑚(𝑥, 𝑦) − 2𝑥 ∑ ∑
𝜗

𝛽𝑛

∞

𝜇=0

∞

𝜗=0

𝑃𝑛,𝑚(𝑥, 𝑦) + 𝑥2 ∑ ∑ 𝑃𝑛,𝑚(𝑥, 𝑦)

∞

𝜇=0

∞

𝜗=0

 

                           = (
𝛼𝑛

𝛽𝑛
)

2

𝑛(𝑛 + 𝑘)𝑥2 +
𝛼𝑛

𝛽𝑛
2 𝑛𝑥 − 2𝑥2 (

𝛼𝑛

𝛽𝑛
𝑛) + 𝑥2 

                           = 𝑥2 [(
𝛼𝑛

𝛽𝑛
)

2

𝑛(𝑛 + 𝑘) −
2𝛼𝑛

𝛽𝑛
𝑛 + 1] +

𝛼𝑛

𝛽𝑛
2 𝑛𝑥. 

 

Remark 2.1 Similar equality is provided for 𝐿𝑛,𝑚(𝑡2 − 𝑦, 𝑥, 𝑦) and  𝐿𝑛,𝑚((𝑡2 − 𝑦)2, 𝑥, 𝑦). 

 

Now we estimate modulus of continuity of operators definition 2.1 in 𝐶([0, 𝐴] × [0, 𝐴]). 

 

Definition 2.2. Let 𝐷 ⊂ ℝ2 and 𝑓: 𝐷 → ℝ bounded function. 𝐾 ⊂ 𝐷 compact domain and let 

 (𝑥 = (𝑥1, 𝑥2),  𝑦 = (𝑦1, 𝑦2)) using partial modulus of continuity 

 

     𝜔1𝑓(𝑓, 𝛿) = 𝑠𝑢𝑝{|𝑓(𝑥1, 𝑦) − 𝑓(𝑥2, 𝑦)|: (𝑥1, 𝑦), (𝑥2, 𝑦) ∈ 𝐾, |𝑥1 − 𝑥2| ≤ 𝛿} 

  𝜔2𝑓(𝑓, 𝛿) = 𝑠𝑢𝑝{|𝑓(𝑥, 𝑦1) − 𝑓(𝑥, 𝑦2)|: (𝑥, 𝑦1), (𝑥, 𝑦2) ∈ 𝐾, |𝑦1 − 𝑦2| ≤ 𝛿}. 

 

Theorem 2.1. Every 𝑓 ∈ 𝐶([0, 𝐴] × [0, 𝐴]) and let sequences of (𝛼𝑛), (𝛽𝑛), (𝛾𝑚) defined as in 

definition 2.1. Then for sufficiently large n,m  

‖𝐿𝑛,𝑚(𝑓, 𝑥, 𝑦) − 𝑓(𝑥, 𝑦)‖
𝐶[0,𝐴]

≤ 𝐾1𝑤2(𝑓, 𝛿𝑚) + 𝐾2𝑤1(𝑓, 𝛿𝑛) 

where 𝐾 is a constant independent of n,m for 𝛿𝑛 = √(𝑛
𝛼𝑛

𝛽𝑛
− 1)

2
+

𝛼𝑛

𝛽𝑛
+

1

𝐴𝛽𝑛
  and 

𝛿𝑚 = √(𝑚
𝛼𝑚

𝛾𝑚
− 1)

2
+

𝛼𝑚

𝛾𝑚
+

1

𝐴𝛾𝑚
. 
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Proof. Clearly using Definition 2.2 and Cauchy-Schwarz inequality we get 

𝑁1 = ∑ ∑ |𝑓 (
𝜗

𝛽𝑛
,

𝜇

𝛾𝑚
) − 𝑓 (

𝜗

𝛽𝑛
, 𝑦)| 𝑃𝑛,𝑚(𝑥, 𝑦)

∞

𝜇=0

∞

𝜗=0

 

≤ ∑ 𝜔2(𝑓, 𝛿𝑚) [1 +
|

𝜇

𝛾𝑚
− 𝑦|

𝛿𝑚
] 𝐾𝑚,𝜇(𝑦)

(−𝛼𝑚)𝜇

𝜇!

∞

𝜇=0

 

≤ 𝜔2(𝑓, 𝛿𝑚) {1 +
1

𝛿𝑚
∑ |

𝜇

𝛾𝑚
− 𝑦| √𝐾𝑚,𝜇(𝑦)

(−𝛼𝑚)𝜇

𝜇!

∞

𝜇=0

√𝐾𝑚,𝜇(𝑦)
(−𝛼𝑚)𝜇

𝜇!
} 

≤ 𝜔2(𝑓, 𝛿𝑚) {1 +
1

𝛿𝑚
√∑ |

𝜇

𝛾𝑚
− 𝑦|

2

𝐾𝑚,𝜇(𝑦)
(−𝛼𝑚)𝜇

𝜇!

∞

𝜇=0

}. 

Using Proposition 2.1 

∑ |
𝜇

𝛾𝑚
− 𝑦|

2

𝐾𝑚,𝜇(𝑦)
(−𝛼𝑚)𝜇

𝜇!

∞

𝜇=0

= ∑ [(
𝜇

𝛾𝑚
)

2

− 2𝑦
𝜇

𝛾𝑚
+ 𝑦2] 𝐾𝑚,𝜇(𝑦)

(−𝛼𝑚)𝜇

𝜇!

∞

𝜇=0

 

= (
𝛼𝑚

𝛾𝑚
)

2

𝑚(𝑚 + 𝑙)𝑦2 +
𝛼𝑚

𝛾𝑚
2

𝑚𝑦 − 2𝑦
𝜇

𝛾𝑚
+ 𝑦2. 

from  (
𝜇

𝛾𝑚
− 𝑦)

2
= (

𝜇

𝛾𝑚
)

2
− 2𝑦

𝜇

𝛾𝑚
+ 𝑦2 

|𝐿𝑛,𝑚(𝑓, 𝑥, 𝑦) − 𝑓(𝑥, 𝑦)| ≤ 𝜔2(𝑓, 𝛿𝑚) {1 +
1

𝛿𝑚
(∑ (

𝜇

𝛾𝑚
)

2

𝐾𝑚,𝜇(𝑦)
(−𝛼𝑚)𝜇

𝜇!

∞

𝜇=0

 

−2𝑦 ∑
𝜇

𝛾𝑚
𝐾𝑚,𝜇(𝑦)

(−𝛼𝑚)𝜇

𝜇!
+𝑦2 ∑ 𝐾𝑚,𝜇(𝑦)

(−𝛼𝑚)𝜇

𝜇!

∞

𝜇=0

)

1
2⁄

}

∞

𝜇=0

 

                          = 𝜔2(𝑓, 𝛿𝑚) {1 +
1

𝛿𝑚
(𝐿𝑛,𝑚(𝑡2

2, 𝑥, 𝑦) − 2𝑦𝐿𝑛,𝑚(𝑡2, 𝑥, 𝑦) + 𝑦2𝐿𝑛,𝑚(1, 𝑥, 𝑦))
1

2⁄
}. 

 

For 𝑦 ∈ [0, 𝐴] we write 𝐿𝑛,𝑚(𝑡2
2, 𝑥, 𝑦), 𝐿𝑛,𝑚(𝑡2, 𝑥, 𝑦) and 𝐿𝑛,𝑚(1, 𝑥, 𝑦) using lim

𝑚→∞
𝛾𝑚 = ∞,    

lim
𝑚→∞

𝛼𝑚

𝛾𝑚
= 0  and  lim

𝑚→∞

𝛼𝑚

𝛾𝑚
𝑚 = 1 equation for a large m and using the equalites 

𝛼𝑚

𝛾𝑚
≤  1 and 

𝛼𝑚

𝛾𝑚
𝑚 ≤ 2 

|𝐿𝑛,𝑚(𝑓, 𝑥, 𝑦) − 𝑓(𝑥, 𝑦)| ≤ 𝜔2(𝑓, 𝛿𝑚) {1 +
1

𝛿𝑚
(

𝑚(𝑚 + 𝑙)

𝛾𝑚
2

𝛼𝑚
2𝐴2 +

1

𝛾𝑚

𝛼𝑚

𝛾𝑚
𝑚𝐴 

−2𝐴
𝛼𝑚

𝛾𝑚
𝑚 + 𝐴2)}

1
2⁄

 

≤ 𝜔2(𝑓, 𝛿𝑚) {1 +
𝐴

𝛿𝑚
(𝐴2 [(

𝛼𝑚

𝛾𝑚
)

2

𝑚2 − 2
𝛼𝑚

𝛾𝑚
𝑚 + 1] + 𝐴2 [(

𝛼𝑚

𝛾𝑚
)

2

𝑚𝑙 +
1

𝐴

1

𝛾𝑚

𝛼𝑚

𝛾𝑚
𝑚 + 1])

1
2⁄

} 
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Then if we choose 𝛿𝑚 = √(𝑚
𝛼𝑚

𝛾𝑚
− 1)

2
+

𝛼𝑚

𝛾𝑚
+

1

𝐴𝛾𝑚
  we have the following inequality constant 𝐾1 

independent on m 

‖𝐿𝑛,𝑚(𝑓, 𝑥, 𝑦) − 𝑓(𝑥, 𝑦)‖
𝐶[0,𝐴]

≤ 𝐾1𝑤2 (𝑓, √(𝑚
𝛼𝑚

𝛾𝑚
− 1)

2

+
𝛼𝑚

𝛾𝑚
+

1

𝐴𝛾𝑚
). 

Similarly for 𝑁2 using Cauchy-Schwarz inequality and Proposition 2.1  

𝑁2 = ∑ ∑ |𝑓 (
𝜗

𝛽𝑛
, 𝑦) − 𝑓(𝑥, 𝑦)| 𝑃𝑛,𝑚(𝑥, 𝑦)

∞

𝜇=0

∞

𝜗=0

 

≤ 𝜔1(𝑓, 𝛿𝑛) {1 +
1

𝛿𝑛
√∑ |

𝜗

𝛽𝑛
− 𝑥|

2

𝐾𝑛,𝜗(𝑥)
(−𝛼𝑛)𝜗

𝜗!

∞

𝜗=0

} 

So we get  

∑ |
𝜗

𝛽𝑛
− 𝑥|

2

𝐾𝑛,𝜗(𝑥)
(−𝛼𝑛)𝜗

𝜗!

∞

𝜗=0

= (
𝛼𝑛

𝛽𝑛
)

2

𝑛(𝑛 + 𝑘)𝑥2 +
𝛼𝑛

𝛽𝑛
2 𝑛𝑥 − 2𝑥

𝛼𝑛

𝛽𝑛
𝑛 + 𝑥2. 

Using (
𝜗

𝛽𝑛
− 𝑥)

2
= (

𝜗

𝛽𝑛
)

2
− 2𝑥

𝜗

𝛽𝑛
+ 𝑥2 and there for a large n 

|𝐿𝑛,𝑚(𝑓, 𝑥, 𝑦) − 𝑓(𝑥, 𝑦)| ≤ 𝜔1(𝑓, 𝛿𝑛) {1 +
1

𝛿𝑛
(𝐿𝑛,𝑚(𝑡1

2, 𝑥, 𝑦) − 2𝑥𝐿𝑛,𝑚(𝑡1, 𝑥, 𝑦) 

+𝑥2𝐿𝑛,𝑚(1, 𝑥, 𝑦))
1

2⁄
}. 

 

For 𝑥 ∈ [0, 𝐴] we write 𝐿𝑛,𝑚(𝑡1
2, 𝑥, 𝑦), 𝐿𝑛,𝑚(𝑡1, 𝑥, 𝑦) and 𝐿𝑛,𝑚(1, 𝑥, 𝑦) using lim

𝑚→∞
𝛽𝑛 = ∞,    lim

𝑚→∞

𝛼𝑛

𝛽𝑛
=

0  and  lim
𝑛→∞

𝛼𝑛

𝛽𝑛
𝑛 = 1 equation for a large n and using  the equalites 

𝛼𝑛

𝛽𝑛
≤ 1 and 

𝛼𝑛

𝛽𝑛
𝑛 ≤ 2 

|𝐿𝑛,𝑚(𝑓, 𝑥, 𝑦) − 𝑓(𝑥, 𝑦)| ≤ 𝜔1(𝑓, 𝛿𝑛) {1 +
1

𝛿𝑛
(

𝑛(𝑛 + 𝑘)

𝛿𝑛
2 𝛼𝑛

2𝐴2 +
1

𝛽𝑛

𝛼𝑛

𝛽𝑛
𝑛𝐴 − 2𝐴

𝛼𝑛

𝛽𝑛
𝑛 + 𝐴2)

1
2⁄

} 

≤ 𝜔1(𝑓, 𝛿𝑛) {1 +
2𝑘𝐴

𝛿𝑛
[(𝑛

𝛼𝑛

𝛽𝑛
− 1)

2

+
𝛼𝑛

𝛽𝑛
+

1

𝐴𝛽𝑛
]

1
2⁄

}. 

Then if we choose 𝛿𝑛 = √(𝑛
𝛼𝑛

𝛽𝑛
− 1)

2
+

𝛼𝑛

𝛽𝑛
+

1

𝐴𝛽𝑛
 we have the following inequality constant 𝐾2 

independent on n 

‖𝐿𝑛,𝑚(𝑓, 𝑥, 𝑦) − 𝑓(𝑥, 𝑦)‖
𝐶[0,𝐴]

≤ 𝐾2𝑤1 (𝑓, √(𝑛
𝛼𝑛

𝛽𝑛
− 1)

2

+
𝛼𝑛

𝛽𝑛
+

1

𝐴𝛽𝑛
). 

Then proof is completed. 

Now we want to find the rate of convergence of the sequence of operators 𝐿𝑛,𝑚(𝑓, 𝑥, 𝑦). 
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Example 2.2. The error bound of the function 𝑓(𝑥, 𝑦) =
𝑥2+𝑦2

10
, 𝛼𝑛 = 1 , 𝛽𝑛 = 𝑛. 

n,m Error bound for modulus of continuity of 𝒇(𝒙, 𝒚) 

10 0.8755417528 

𝟏𝟎𝟐 0.2422741700 

𝟏𝟎𝟑 0.0731541753 

𝟏𝟎𝟒 0.0227874170 

𝟏𝟎𝟓 0.0071714175 

𝟏𝟎𝟔 0.0022643417 

𝟏𝟎𝟕 0.0007157018 

𝟏𝟎𝟖 0.0002262902 

𝟏𝟎𝟗 0.0000715558 

Table 1:The error bound of 𝑓(𝑥, 𝑦) =
𝑥2+𝑦2

10
. 

 

3. Approximation Properties in 𝑪𝝆
𝒌 

 

Definition 3.1. For (𝑥, 𝑦) ∈ (0,∞) × (0,∞) and let 𝑓 ∈ 𝐶𝜌
𝑘. Then two dimensional generalized Gadjiev-

Ibragimov operators defined by  

𝐿𝑛,𝑚(𝑓, 𝑥, 𝑦) = ∑ ∑ 𝑓 (
𝜗

𝛽𝑛
,

𝜇

𝛾𝑚
)

∞

𝜇=0

∞

𝜗=0

𝐾𝑛,𝜗(𝑥)𝐾𝑚,𝜇(𝑦)
(−𝛼𝑛)𝜗

𝜗!

(−𝛼𝑚)𝜇

𝜇!
.                                 (4) 

 

Lemma3.1.The following equalities hold for Equation 4 

𝑖)𝐿𝑛,𝑚(1, 𝑥, 𝑦) = 1 

𝑖𝑖) 𝐿𝑛,𝑚(𝑡1, 𝑥, 𝑦) =
𝛼𝑛

𝛽𝑛
𝑛𝑥 

𝑖𝑖𝑖)𝐿𝑛,𝑚(𝑡2, 𝑥, 𝑦) =
𝛼𝑚

𝛽𝑚
𝑚𝑦 

𝑖𝑣)𝐿𝑛,𝑚(𝑡1
2 + 𝑡2

2, 𝑥, 𝑦) = (
𝛼𝑛

𝛽𝑛
)

2

𝑛(𝑛 + 𝑘)𝑥2 +
𝛼𝑛

𝛽𝑛
2 𝑛𝑥 + (

𝛼𝑚

𝛾𝑚
)

2

𝑚(𝑚 + 𝑙)𝑦2 +
𝛼𝑚

𝛾𝑚
2

𝑚𝑦. 

 

Theorem 3.1. Let 𝜌(𝑥, 𝑦) = 1 + 𝑥2 + 𝑦2 and 𝐿𝑛,𝑚: 𝐶𝜌 → 𝐵𝜌 sequences of linear positive operators 

defined by Equation 4 then every 𝑓 ∈ 𝐶𝜌
𝑘 

lim
𝑛,𝑚→∞

‖𝐿𝑛,𝑚(𝑓, 𝑥, 𝑦) − 𝑓(𝑥, 𝑦)‖
𝜌

= 0. 

 

Proof. Using Volkov Theorem clearly 

lim
𝑛,𝑚→∞

‖𝐿𝑛,𝑚(1, 𝑥, 𝑦) − 1‖
𝜌

= 0. 



 

9 
 

 

Ikonion Journal of Mathematics                                                                                2019, 1(1) 

We have 𝐿𝑛,𝑚(𝑡1, 𝑥, 𝑦) =
𝛼𝑛

𝛽𝑛
𝑛𝑥 then definition of norm in 𝐶𝜌 

‖𝐿𝑛,𝑚(𝑡1, 𝑥, 𝑦) − 𝑥)‖
𝜌

= sup
(𝑥,𝑦)∈(0,∞)×(0,∞)

|
𝑥

1 + 𝑥2 + 𝑦2| |
𝛼𝑛

𝛽𝑛
𝑛 − 1| 

≤ |
𝛼𝑛

𝛽𝑛
𝑛 − 1|. 

so 

‖𝐿𝑛,𝑚(𝑡1, 𝑥, 𝑦) − 𝑥‖
𝜌

= 0. 

Similarly using 𝐿𝑛,𝑚(𝑡2, 𝑥, 𝑦) =
𝛼𝑚

𝛾𝑚
𝑚𝑦  we get 

‖𝐿𝑛,𝑚(𝑡2, 𝑥, 𝑦) − 𝑦‖
𝜌

= sup
(𝑥,𝑦)∈(0,∞)×(0,∞)

|
𝑥

1 + 𝑥2 + 𝑦2| |
𝛼𝑚

𝛾𝑚
𝑚 − 1| 

≤ |
𝛼𝑚

𝛾𝑚
𝑚 − 1| 

then 

‖𝐿𝑛,𝑚(𝑡2, 𝑥, 𝑦) − 𝑦‖
𝜌

= 0. 

We have  𝐿𝑛,𝑚(𝑡1
2, 𝑥, 𝑦) = (

𝛼𝑛

𝛽𝑛
)

2
𝑛(𝑛 + 𝑘)𝑥2 +

𝛼𝑛

𝛽𝑛
2 𝑛𝑥 then 

‖𝐿𝑛,𝑚(𝑡1
2, 𝑥, 𝑦) − 𝑥2‖

𝜌
= sup

(𝑥,𝑦)∈(0,∞)×(0,∞)

|𝐿𝑛,𝑚(𝑡1
2, 𝑥, 𝑦) − 𝑥2|

1 + 𝑥2 + 𝑦2
 

≤ |(
𝛼𝑛

𝛽𝑛
)

2

𝑛(𝑛 + 𝑘) − 1| + |
𝛼𝑛

𝛽𝑛
2 𝑛|. 

So we write 

lim
𝑛,𝑚→∞

‖𝐿𝑛,𝑚(𝑡1
2, 𝑥, 𝑦) − 𝑥2‖

𝜌
≤ lim

𝑛,𝑚→∞
[|(

𝛼𝑛

𝛽𝑛
)

2

𝑛(𝑛 + 𝑘) − 1| + |
𝛼𝑛𝑛

𝛽𝑛
2 |] . 

Using  lim
𝑛→∞

(
𝛼𝑛

𝛽𝑛
)

2
𝑛(𝑛 + 𝑘) = 1 and  lim

𝑛→∞

𝛼𝑛

𝛽𝑛
2 𝑛 = 0 we write 

lim
𝑛,𝑚→∞

‖𝐿𝑛,𝑚(𝑡1
2, 𝑥, 𝑦) − 𝑥2‖

𝜌
= 0. 

Similarly for 𝐿𝑛,𝑚(𝑡2
2, 𝑥, 𝑦) = (

𝛼𝑚

𝛾𝑚
)

2
𝑚(𝑚 + 𝑙)𝑦2 +

𝛼𝑚

𝛾𝑚
2 𝑚𝑦 

lim
𝑛,𝑚→∞

‖𝐿𝑛,𝑚(𝑡2
2, 𝑥, 𝑦) − 𝑦2‖

𝜌
≤ lim

𝑛,𝑚→∞
[|(

𝛼𝑚

𝛾𝑚
)

2

𝑚(𝑚 + 𝑙) − 1| + |
𝛼𝑚

𝛾𝑚
2

𝑚|] 

so we get 

lim
𝑛,𝑚→∞

‖𝐿𝑛,𝑚(𝑡2
2, 𝑥, 𝑦) − 𝑦2‖

𝜌
= 0. 

Consequently 

lim
𝑛,𝑚→∞

‖𝐿𝑛,𝑚(𝑡1
2 + 𝑡2

2, 𝑥, 𝑦) − (𝑥2 + 𝑦2)‖
𝜌

= 0. 
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It means that for every 𝑓 ∈ 𝐶𝜌
𝑘  

lim
𝑛,𝑚→∞

‖𝐿𝑛,𝑚(𝑓, 𝑥, 𝑦) − 𝑓(𝑥, 𝑦)‖
𝜌

= 0. 
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Abstract 

The harmonic index of a graph G is defined as the sum 𝐻(𝐺) = ∑
2

𝑑𝐺(𝑖)+𝑑𝐺(𝑗)𝑖𝑗∈𝐸(𝐺) , 

where 𝑑𝐺(𝑖) is the degree of a vertex i in G. In this paper, we examined eccentric 

version of harmonic index of graphs. 

Keywords: Topological index; Graph Parameters; Harmonic Index. 

 

1. Introduction 
 

Let G be a simple connected graph with vertex set V(G) and edge set E(G). The degree of a vertex 

u in a graph G is number of incident edges to the vertex. The degree of a vertex i is denoted by 𝑑𝐺(𝑖). 

The maximum degree is denoted by Δ. The minimum degree is denoted by 𝛿. 

 

The distance between i and j vertices, denoted 𝑑𝐺(𝑖, 𝑗) is the length of a shortest path between 

them. The eccentricity 𝜀𝐺(𝑖) of a vertex i in a connected graph is its distance to a vertex fatrhest from i. 

The radius of a connected graph, denoted r(G) is its minimum eccentricity. The diameter of a connected 

graph, denoted D(G) is maximum eccentricity. For other undefined notations and terminology from 

graph theory, the readers are referred to [5]. 

 

One of the oldest topological indices, the first and second Zagreb indices were defined by [7,8]. 

The first and second Zagreb indices are defined as  

𝑀1(𝐺) = ∑ 𝑑𝐺
2 (𝑖)     and 

𝑖∈𝑉(𝐺)

  𝑀2(𝐺) = ∑ 𝑑𝐺(𝑖)𝑑𝐺(𝑗).

𝑖𝑗∈𝐸(𝐺)

  

 

An alternative expression for the first Zagreb index is [1] 

 𝑀1(𝐺) = ∑ (𝑑𝐺(𝑖)+𝑑𝐺(𝑗)).

𝑖𝑗∈𝐸(𝐺)

 

 

The harmonic index was defined in [3] as 

𝐻(𝐺) = ∑
2

𝑑𝐺(𝑖) + 𝑑𝐺(𝑗)
𝑖𝑗∈𝐸(𝐺)

. 

Ghorbani et al. [4] and Vukičević et al. [12] defined the first and the second Zagreb eccentricity 

indices by  
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𝐸1(𝐺) = ∑ 𝜀𝐺
2(𝑖)     and 

𝑖∈𝑉(𝐺)

  𝐸2(𝐺) = ∑ 𝜀𝐺(𝑖)𝜀𝐺(𝑗).

𝑖𝑗∈𝐸(𝐺)

 

 

In 1997, The eccentricity connectivity index of a graph G was introduced by Sharma et al. [11]. 

The eccentric connectivity index is defined as 

𝜉𝑐(𝐺) = ∑ 𝑑𝐺(𝑖)𝜀𝐺(𝑖) = ∑ (𝜀𝐺(𝑖)+𝜀𝐺(𝑗))

𝑖𝑗∈𝐸(𝐺)

.

𝑖∈𝑉(𝐺)

 

 

In 2000, Gupta et al. [6] introduced the connective eccentricity index, which is defined to be 

𝜉𝑐𝑒(𝐺) = ∑
𝑑𝐺(𝑖)

𝜀𝐺(𝑖)
.

𝑖∈𝑉(𝐺)

 

 

The eccentric version of the harmonic index have been defined in [2] as follows. 

𝐻4(𝐺) = ∑
2

𝜀𝐺(𝑖) + 𝜀𝐺(𝑗)
.

𝑖𝑗∈𝐸(𝐺)

 

 

In this paper, we are concerned with the upper and lower bounds of 𝐻4(𝐺) which depend on some 

of the parameters n, m, r, D  etc. 

 

2. Main Results 
 

In this section, we give some upper and lower bounds for the eccentric harmonic index.  

 

Theorem 2.1. Let G be a simple connected graph with n vertices, m edges, r radius and D diameter. 

Then 

                                                                
𝑚

𝐷
≤ 𝐻4(𝐺) ≤

𝑚

𝑟
.                                                                    (1) 

Equality holds on both sides if and only if G is self centered graph. 

 

Proof.  We know that 2𝑟 ≤ 𝜀(𝐺)(𝑖) + 𝜀𝐺(𝑗) ≤ 2𝐷 for all 𝑖𝑗 ∈ 𝐸(𝐺). Then we have 

𝐻4(𝐺) = ∑
2

𝜀𝐺(𝑖) + 𝜀𝐺(𝑗)
𝑖𝑗∈𝐸(𝐺)

 

    ≤ ∑
2

2𝑟
𝑖𝑗∈𝐸(𝐺)

=
𝑚

𝑟
. 

In an analogous manner, 

𝐻4(𝐺) = ∑
2

𝜀𝐺(𝑖) + 𝜀𝐺(𝑗)
𝑖𝑗∈𝐸(𝐺)

 

    ≥ ∑
2

2𝐷
𝑖𝑗∈𝐸(𝐺)

=
𝑚

𝐷
. 

Now suppose that equality holds in (1). Then all the above inequalities must become equalities. Thus 

we get 𝜀(𝐺)(𝑖) = 𝜀𝐺(𝑗) for all of 𝑖𝑗 ∈ 𝐸(𝐺). So we conclude that G is self centered graph. 
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 Conversely, if G is self centered graph, it is easy to see that equalities (1) hold. 

 

Proposition 2.2. [13] Let G be a connected graph with 𝑛 ≥ 3 vertices. Then for all 𝑖 ∈ 𝑉(𝐺) we have  

𝜀𝐺(𝑖) ≤ 𝑛 − 𝑑𝐺(𝑖),                                                           (2) 

with equality if and only if 𝐾𝑛 − 𝑘𝑒, for 𝑘 = 0,1,2, … , ⌊
𝑛

2
⌋,  or 𝐺 = 𝑃4. 

 

Theorem 2.3. Let G be connected graph of order n with maximum degree Δ. Then 

                                                                            𝐻4(𝐺) ≥
𝑚

𝑛 − Δ
.                                                                          (3) 

The equality holds if and only if G is regular self centered graph. 

 

Proof.  By applying Proposition 2.2, we get  

𝐻4(𝐺) = ∑
2

𝜀𝐺(𝑖) + 𝜀𝐺(𝑗)
𝑖𝑗∈𝐸(𝐺)

 

                              ≥ ∑
2

2𝑛 − (𝑑𝐺(𝑖) + 𝑑𝐺(𝑗))
𝑖𝑗∈𝐸(𝐺)

 

                        ≥ ∑
2

2𝑛 − 2Δ
=

𝑚

𝑛 − Δ
.

𝑖𝑗∈𝐸(𝐺)

 

Suppose that equality holds in the above inequality. Then 𝜀𝐺(𝑖) = 𝑛 − 𝑑𝐺(𝑖) ve 𝑑𝐺(𝑖) = Δ for all 𝑖 ∈

𝑉(𝐺). So by Proposition 2.2 we conclude that 𝐺 ≅ 𝐾𝑛 or 𝐺 ≅ 𝐶4. 

 

 Conversely, if 𝐺 ≅ 𝐾𝑛 or 𝐺 ≅ 𝐶4 , it is easy see that equality (3) holds. 

 

Theorem 2.4. Let G be a connected graph with n vertices and m edges. Let k be the number of vertices 

with eccentricity 1 in graph G. Then  

𝐻4(𝐺) =
6𝑚 + 𝑘(2𝑛 + 𝑘 − 3)

12
. 

 

Proof.  𝐾 = {𝑖1, 𝑖2, … , 𝑖𝑘} be the set of vertices with eccentricity 1. Then we have 𝑒(𝑖) = 2 for any 𝑖 ∈

𝑉(𝐺) ∖ 𝐾. From the definition eccentric-harmonic index, we get 

𝐻4(𝐺) = ∑
2

𝜀𝐺(𝑖) + 𝜀𝐺(𝑗)
+ ∑

2

𝜀𝐺(𝑖) + 𝜀𝐺(𝑗)
 + ∑

2

𝜀𝐺(𝑖) + 𝜀𝐺(𝑗)
𝑖𝑗∈𝐸(𝐺)

𝑖,𝑗∈𝑉(𝐺)∖𝐾
𝑖𝑗∈𝐸(𝐺)

𝑖∈𝐾,𝑗∈𝑉(𝐺)∖𝐾
𝑖𝑗∈𝐸(𝐺)

𝑖,𝑗∈𝐾

 

             = ∑ 1 + ∑
2

3
 + ∑

1

2
𝑖𝑗∈𝐸(𝐺)

𝑖,𝑗∈𝑉(𝐺)∖𝐾
𝑖𝑗∈𝐸(𝐺)

𝑖∈𝐾,𝑗∈𝑉(𝐺)∖𝐾
𝑖𝑗∈𝐸(𝐺)

𝑖,𝑗∈𝐾

 

              =
6𝑚 + 𝑘(2𝑛 + 𝑘 − 3)

12
. 

So as desired. 
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Lemma 2.5. (Radon Inequality)[10] For every real numbers 𝑝 > 0, 𝑥𝑘 ≥ 0, 𝑎𝑘 > 0, for 1 ≤ 𝑘 ≤ 𝑛, the 

following inequality holds true: 

∑
𝑥𝑘

𝑝+1

𝑎𝑘
𝑝 ≥

(∑ 𝑥𝑘
𝑛
𝑘=1 )𝑝+1

(∑ 𝑎𝑘
𝑛
𝑘=1 )𝑝

.

𝑛

𝑘=1

 

The equality holds if and only if 
𝑥1

𝑎1
=

𝑥2

𝑎2
= ⋯ =

𝑥𝑛

𝑎𝑛
. 

 

Theorem 2.6. For any graph G we have  

                                                                𝐻4(𝐺) ≥
2𝑚2

𝜉𝑐(𝐺)
,                                                                       (4) 

with equality holds if and only if 𝜀𝐺(𝑖) + 𝜀𝐺(𝑗) is constant for all 𝑖𝑗 ∈ 𝐸(𝐺). 
                    

Proof. Using Lemma 2.5 we get  

𝐻4(𝐺) = ∑
(√2)

2

𝜀𝐺(𝑖) + 𝜀𝐺(𝑗)
𝑖𝑗∈𝐸(𝐺)

 

                                ≥ ∑
(∑ √2𝑖𝑗∈𝐸(𝐺) )

2

∑ (𝜀𝐺(𝑖) + 𝜀𝐺(𝑗))𝑖𝑗∈𝐸(𝐺)
𝑖𝑗∈𝐸(𝐺)

 

                                         ≥
2𝑚2

𝜉𝑐(𝐺)
     .                                                   

Suppose that equality holds in the above inequality. In this case by Lemma 2.5,  𝜀𝐺(𝑖) + 𝜀𝐺(𝑗) becomes 

constant for all 𝑖𝑗 ∈ 𝐸(𝐺). 

 

Conversely, if 𝜀𝐺(𝑖) + 𝜀𝐺(𝑗) is constant for all 𝑖𝑗 ∈ 𝐸(𝐺), we can easily see that equality hold 

in (4).  

 

Theorem 2.7. For any graph G we have  

𝐻4(𝐺) ≤
𝜉𝑐𝑒(𝐺)

2
,                                                         (5) 

with equality holds if and only if G is self centered graph. 

 

Proof. From arithmetic harmonic mean inequality we have 

𝐻4(𝐺) = ∑
2

𝜀𝐺(𝑖) + 𝜀𝐺(𝑗)
𝑖𝑗∈𝐸(𝐺)

 

                     ≤
1

2
∑ (

1

𝜀𝐺(𝑖)
+

1

𝜀𝐺(𝑗)
)

𝑖𝑗∈𝐸(𝐺)

 

                                                                       =
1

2
∑

𝑑𝐺(𝑖)

𝜀𝐺(𝑖)
=

𝜉𝑐𝑒(𝐺)

2
𝑖∈𝑉(𝐺)

 .                                                    

Suppose that equality holds in the above inequality. Then for every 𝑖𝑗 ∈ 𝐸(𝐺), 𝜀𝐺(𝑖) = 𝜀𝐺(𝑗). Thus one 

can easily see that the equality holds in (5) if and only if G is self centered graph. 
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 Conversely let G be self centered graph. Then by applying 𝜀𝐺(𝑖) = 𝜀𝐺(𝑗) = 𝑟 for all 𝑖𝑗 ∈ 𝐸(𝐺) 

we get 

𝐻4(𝐺) = ∑
2

𝜀𝐺(𝑖) + 𝜀𝐺(𝑗)
=

𝑚

𝑟
𝑖𝑗∈𝐸(𝐺)

 

and 

𝜉𝑐𝑒(𝐺)

2
=

1

2
∑

𝑑𝐺(𝑖)

𝜀𝐺(𝑖)
=

1

2
∑

𝑑𝐺(𝑖)

𝑟
=

𝑚

𝑟
.

𝑖∈𝑉(𝐺)𝑖∈𝑉(𝐺)

 

This completes the theorem. 

 

Theorem 2.8. For any graph G we have  

𝐻4(𝐺) ≥
2𝑚2𝑟

𝐸2(𝐺)+𝑚𝑟2,                                                         (6) 

with equality holds if and only if 𝜀𝐺(𝑖) + 𝜀𝐺(𝑗) is constant for all 𝑖𝑗 ∈ 𝐸(𝐺). 

 

Proof.  Since 𝜀𝐺(𝑖), 𝜀𝐺(𝑗) ≥ 𝑟, we have (𝜀𝐺(𝑖) − 𝑟)(𝜀𝐺(𝑗) − 𝑟) ≥ 0 . Then we get 

𝜀𝐺(𝑖)𝜀𝐺(𝑗) + 𝑟2

𝑟
≥ 𝜀𝐺(𝑖) + 𝜀𝐺(𝑗) . 

The equality holds 𝜀𝐺(𝑖) = 𝑟 or 𝜀𝐺(𝑗) = 𝑟 or 𝜀𝐺(𝑖) = 𝜀𝐺(𝑗) = 𝑟 for all 𝑖𝑗 ∈ 𝐸(𝐺). By applying Lemma 

2.5 we get 

𝐻4(𝐺) = ∑
2

𝜀𝐺(𝑖) + 𝜀𝐺(𝑗)
𝑖𝑗∈𝐸(𝐺)

 

             ≥ ∑
2𝑟

𝜀𝐺(𝑖)𝜀𝐺(𝑗) + 𝑟2
=

𝑖𝑗∈𝐸(𝐺)

∑
(√2𝑟)

2

𝜀𝐺(𝑖)𝜀𝐺(𝑗) + 𝑟2

𝑖𝑗∈𝐸(𝐺)

 

              ≥
(∑ √2𝑟𝑖𝑗∈𝐸(𝐺) )

2

∑ 𝜀𝐺(𝑖)𝜀𝐺(𝑗) + 𝑟2
𝑖𝑗∈𝐸(𝐺)

=
2𝑚2𝑟

𝐸2(𝐺) + 𝑚𝑟2
. 

Now suppose that equality holds in (6). Then all the inequalities in the above argument must be 

equalities. By Lemma 2.5 we have 𝜀𝐺(𝑖)+𝜀𝐺(𝑗) is constant for all 𝑖𝑗 ∈ 𝐸(𝐺). 

 

Conversely if 𝜀𝐺(𝑖)+𝜀𝐺(𝑗) is constant for all 𝑖𝑗 ∈ 𝐸(𝐺), it is easy to see that equality (6) holds.   

 

Theorem 2.9. For any graph G we have  

                            𝐻4(𝐺) ≤
√(𝑚 − 1)(𝑚𝑟2 + 1) + 1

𝑟
,                                                 (7) 

with equality holds if and only if 𝐺 ≅ 𝐾𝑛.  

 

Proof. From  definition of the eccentric harmonic index and the relation 
2

𝜀𝐺(𝑖)+𝜀𝐺(𝑗)
≤ 1, we get the 

following conclusion.  
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𝐻4
2(𝐺) = ( ∑

2

𝜀𝐺(𝑖) + 𝜀𝐺(𝑗)
𝑖𝑗∈𝐸(𝐺)

)

2

 

            = ∑
4

(𝜀𝐺(𝑖) + 𝜀𝐺(𝑗))2
+ 2

𝑖𝑗∈𝐸(𝐺)

∑ (
2

𝜀𝐺(𝑖)+𝜀𝐺(𝑗)
.

2

𝜀𝐺(𝑘)+𝜀𝐺(𝑙)
)

𝑖𝑗∈𝐸(𝐺)
𝑖𝑗≠𝑘𝑙

 

  𝐻4
2(𝐺) ≤ ∑

4

(𝜀𝐺(𝑖) + 𝜀𝐺(𝑗))2
+ 2 ∑ 1

𝑖𝑗∈𝐸(𝐺)
𝑖𝑗≠𝑘𝑙

𝑖𝑗∈𝐸(𝐺)

. 

              ≤
𝑚

𝑟2
+ 𝑚(𝑚 − 1). 

 

So we achieve the desired result. Now suppose that equality holds in (7). Then all the inequalities 

in the above argument must be equalities. In this case, for all 𝑖𝑗 ∈ 𝐸(𝐺) should be 𝜀𝐺(𝑖) = 𝜀𝐺(𝑗) = 1. 

Then the equality holds if and only if 𝐺 ≅ 𝐾𝑛.  

 

Conversely, if 𝐺 ≅ 𝐾𝑛 then it is easy to see that equality (7) holds.  

 

Lemma 2.10. (Schwetzers Inequality) Let 𝑥1, 𝑥2, … , 𝑥𝑛 be positive real numbers such that 1 ≤ 𝑖 ≤ 𝑛 

holds 𝑚 ≤ 𝑥𝑖 ≤ 𝑀. Then  

                              (∑ 𝑥𝑖

𝑛

𝑖=1

) (∑
1

𝑥𝑖

𝑛

𝑖=1

) ≤
𝑛2(𝑚 + 𝑀)2

4𝑛𝑀
.                                                     (8) 

Equality holds in the (8) only when n is even, and the if and only if 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛

2
= 𝑚 and 

𝑥𝑛

2
+1 = ⋯ = 𝑥𝑛 = 𝑀.  

 

Theorem 2.11. For any graph G we have 

                                               𝐻4(𝐺) ≤
𝑚2(𝐷 + 𝑟)2

2𝜉𝑐(𝐺)𝐷𝑟
,                                                          (9) 

with equality holds if and only if G is self centered graph. 

 

Proof. Since 2𝑟 ≤ 𝜀𝐺(𝑖) + 𝜀𝐺(𝑗) ≤ 2𝐷 for all 𝑖𝑗 ∈ 𝐸(𝐺), using (8) we have 

     ∑ (𝜀𝐺(𝑖) + 𝜀𝐺(𝑗)) ∑
1

𝜀𝐺(𝑖) + 𝜀𝐺(𝑗)
≤

𝑚2(2𝑟 + 2𝐷)2

4(2𝑟)(2𝐷)
𝑖𝑗∈𝐸(𝐺)𝑖𝑗∈𝐸(𝐺)

 

   ∑
1

𝜀𝐺(𝑖) + 𝜀𝐺(𝑗)
≤

𝑚2(𝑟 + 𝐷)2

4𝜉𝑐(𝐺)𝐷𝑟
               

𝑖𝑗∈𝐸(𝐺)

 

              𝐻4(𝐺) ≤
𝑚2(𝐷 + 𝑟)2

2𝜉𝑐(𝐺)𝐷𝑟
. 

 

The equality holds if and only if G is self centered graph. We get the required result. 
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Abstract 
In this paper we introduce some geometrical and topological properties of weighted 

Lebesgue sequence spaces 𝑙𝑝,𝑤 as a generalization of the Lebesgue sequences spaces 
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1. Introduction 

 
If  1 ≤ 𝑝 < ∞, then 𝑙𝑝  will denote the  space of sequences  of real  numbers 𝑥 = (𝑥𝑛)  such that 

∑ |𝑥𝑛|𝑝 < ∞∞
𝑛=1   [2,8] . A weight sequence 𝑤 = 𝑤(𝑛) = 𝑤𝑛 is a positive decreasing sequence such that   

𝑤(1) = 1, lim
𝑛→∞

𝑤𝑛 = 0  and  ∑ 𝑤𝑛  ∞
𝑛=1 divergent. The weighted Lebesgue  sequence space 𝑙𝑝,𝑤 for 0 <

𝑝 < ∞ is defined as follows: 

𝑙𝑝,𝑤 = {𝑥 = (𝑥𝑛): ∑ 𝑤𝑛|𝑥𝑛|𝑝 < ∞, (𝑥𝑛) ⊂ ℝ

∞

𝑛=1

} 

and 

                                           ‖𝑥‖𝑝,𝑤 = (∑ 𝑤𝑛|𝑥𝑛|𝑝

∞

𝑛=1

)

1
𝑝⁄

                                                           (1) 

where 𝑝 ≥ 1 . 

 

In other words, the weighted sequence space is defined the weight as a multiplier. That is 𝑥 ∈

𝑙𝑝,𝑤 ⇔ 𝑥𝑤
1

𝑝⁄ ∈ 𝑙𝑝 weighted sequence spaces 𝑙𝑝,𝑤 which is considered by author in [9],[10] . It is 

known that 𝑙𝑝,𝑤 a Banach space. 

      

A Banach space X is said to be strictly convex if 𝑥, 𝑦 ∈ 𝑋with ‖𝑥‖ = 1, ‖𝑦‖ = 1 and 𝑥 ≠ 𝑦, then 

‖(1 − 𝜆)𝑥 + 𝜆𝑦‖ < 1 for all 𝜆 ∈ (0,1). A Banach space X is said to be uniformly convex if the 

conditions 

                               ‖𝑥‖ ≤ 1, ‖𝑦‖ ≤ 1 and ‖𝑥 − 𝑦‖ ≥ 𝜀 imply ‖
𝑥 + 𝑦

2
‖ ≤ 1 − 𝛿                        (2) 
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holds for all  𝑥, 𝑦 ∈ 𝑋. The number 

                  𝛿(𝜀) = 𝑖𝑛𝑓 {1 − ‖
𝑥 + 𝑦

2
‖: ‖𝑥‖ = 1, ‖𝑦‖ = 1 , ‖𝑥 − 𝑦‖ ≥ 𝜀}                         (3) 

is called the modulus of convexity. If 𝜀1 < 𝜀2, then 𝛿(𝜀1) < 𝛿(𝜀2) and 𝛿(0) = 0 since 𝑥 = 𝑦 if 𝜀 = 0[1]. 

Recently there has been a lot of interest in investigating geometric properties of sequence  spaces besides 

topological. The geometric properties of different sequence spaces are discusssed by some authors. 

Agarwal, O'regan&Sahu [1] and Castillo&Rafeiro [2] have studied the strict convexity and uniform 

convexity properties of sequence spaces 𝑙𝑝 where 1 < 𝑝 < ∞. Savaş, Karakaya and Şimşek [11] have 

studied some geometric properties of l(p)- type new sequence spaces. Oğur, O [7] has studied some 

geometric properties of weighted function spaces 𝐿𝑝,𝑤(𝐺) where 1 < 𝑝 < ∞ . In this paper, we 

introduce some geometric properties of topological of weighted sequence spaces 𝑙𝑝,𝑤 as a generalization 

of the 𝑙𝑝 . 

 

We will need some auxiliary lemmas to prove that the spaces 𝑙𝑝,𝑤 are uniformly convex whenever 

1 < 𝑝 < ∞ . 

 

Proposition 1. (Hölder Inequality) Let 𝑥 = (𝑥𝑛) ∈  𝑙𝑝, 𝑦 = (𝑦𝑛) ∈ 𝑙𝑞 and 1 < 𝑝, 𝑞 < ∞ with 
1

𝑝
+

1

q
=

1. Then 

                                           ∑|𝑥𝑘𝑦𝑘| ≤ (∑|𝑥𝑘|𝑝

∞

𝑘=1

)

1
𝑝⁄

+ (∑|𝑦𝑘|𝑞

∞

𝑘=1

)

1
𝑞⁄

                                          (4)

∞

𝑘=1

 

 

Proposition 2. (Minkowski Inequality) Let 𝑥 = (𝑥𝑛), 𝑦 = (𝑦𝑛) ∈ 𝑙𝑝,  If 𝑝 ∈ [1, ∞) , then 

                          (∑(|𝑥𝑘| + |𝑦𝑘|)𝑝

∞

𝑘=1

)

1
𝑝⁄

≤ (∑|𝑥𝑘|𝑝

∞

𝑘=1

)

1
𝑝⁄

+ (∑|𝑦𝑘|𝑝

∞

𝑘=1

)

1
𝑝⁄

                            (5) 

If 𝑝 ∈ (0,1) , then 

                              (∑(|𝑥𝑘| + |𝑦𝑘|)𝑝

∞

𝑘=1

)

1
𝑝⁄

≥ (∑|𝑥𝑘|𝑝

∞

𝑘=1

)

1
𝑝⁄

+ (∑|𝑦𝑘|𝑝

∞

𝑘=1

)

1
𝑝⁄

                  (6) 

 

We need some lemmas dealing with inequalities. 

 

Lemma 1. Let 0 < 𝑝 < 1, we have 

                                                     (𝑎 + 𝑏)𝑝 ≤ 𝑎𝑝 + 𝑏𝑝                                                                   (7) 

for 𝑎 ≥ 0 , 𝑏 ≥ 0 [8]. 

 

Lemma 2. If 𝑝 ≥ 1 and 𝑎, 𝑏 > 0, then  

                                                             (𝑎 + 𝑏)𝑝 ≤ 2𝑝−1(𝑎𝑝 + 𝑏𝑝)                                                             (8) 

 

[6]. 
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2. Main Results 

 
Proposition 3. Let 𝑤 = (𝑤𝑘) a weighted sequence and 𝑤𝑘 > 1 for all 𝑘 ∈ ℕ . Then 𝑙𝑝,𝑤  ⊂ 𝑙𝑝. Also if 

0 < 𝑝 < 𝑞 < ∞ , 𝑙𝑝,𝑤 ⊊ 𝑙𝑞,𝑤 for 𝑤𝑘 > 1 . 

 

Proof. It can be easily seen that 𝑙𝑝,𝑤  ⊂ 𝑙𝑝 and 𝑙𝑝,𝑤  ⊂ 𝑙𝑞,𝑤 for 0 < 𝑝 < 𝑞 < ∞ .To show that 𝑙𝑝,𝑤  ≠

𝑙𝑞,𝑤, we take the sequences 𝑥𝑘 = 𝑘
−1

2𝑝⁄  and 𝑤𝑘 =
1

√𝑘
 for all 𝑘 ∈ ℕ with 1 ≤ 𝑝 < 𝑞 < ∞. Since 𝑝 < 𝑞, 

we have 
𝑞

𝑝
> 1 and 

𝑞

2𝑝
+

1

2
> 1. We write 

∑ 𝑤𝑘|𝑥𝑘|𝑞 = ∑
1

𝑘
1

2⁄
.

1

𝑘
𝑞

2𝑝⁄

∞

𝑘=1

∞

𝑘=1

= ∑
1

𝑘𝑞 2𝑝+1 2⁄⁄

∞

𝑘=1

< ∞ 

The last series is convergent since it is a hyper-harmonic series with exponent bigger than 1, therefore 

 𝑥 ∈ 𝑙𝑞,𝑤 . On the other hand 

∑ 𝑤𝑘|𝑥𝑘|𝑝 = ∑
1

𝑘
1

2⁄
.

1

𝑘
1

2⁄

∞

𝑘=1

∞

𝑘=1

= ∑
1

𝑘

∞

𝑘=1

 

and 𝑥 ∉ 𝑙𝑝,𝑤 . 

 

Proposition 4.  The space 𝑙𝑝,𝑤 is seperable whenever 1 ≤ 𝑝 < ∞ and 𝑤 a weighted sequence. 

 

Proof. Let M be the set of all sequences of the form 𝑞 = (𝑞1, 𝑞2, ⋯ , 𝑞𝑛, 0,0, ⋯ ) where 𝑛 ∈ ℕ and  𝑞𝑘 ∈

ℚ . We will show that M  is dense in  𝑙𝑝,𝑤  .  Since  ∑ |𝑥𝑘|𝑝𝑤𝑘 ∞
𝑘=1 there exists 𝑛𝜀 ∈ ℕ   such that 

∑ |𝑥𝑘|𝑝𝑤𝑘 <
𝜀𝑝

2

∞

𝑘=𝑛+1

 

for all 𝜀 > 0 . Since ℚ̅ =  ℝ , we have that for each (𝑥𝑘) there exists a rational 𝑞𝑘 such that 

|𝑥𝑘 − 𝑞𝑘| <
𝜀

√2𝑛𝑝  

hence 

∑|𝑥𝑘 − 𝑞𝑘|𝑤𝑘 <
𝜀𝑝

2𝐾

𝑛

𝑘=1

 

where 𝐾 = 𝑚𝑎𝑘𝑠{𝑤1 ,𝑤2 , ⋯ , 𝑤𝑛}. We write  

‖𝑥 − 𝑞‖𝑝,𝑤
𝑝

= ∑|𝑥𝑘 − 𝑞𝑘|𝑝𝑤𝑘 +

𝑛

𝑘=1

∑ |𝑥𝑘|𝑝𝑤𝑘 < 𝜀𝑝

∞

𝑘=𝑛+1

 

and so ‖𝑥 − 𝑞‖𝑝,𝑤
 < 𝜀 . This shows that M is dense in 𝑙𝑝,𝑤. 

 

Theorem 1. The space 𝑙𝑝,𝑤 is convex, whenever 0 < 𝑝 < ∞. 

 

Proof. This show that 𝑡𝑥 + (1 − 𝑡)𝑦 ∈ 𝑙𝑝,𝑤 for 𝑥 = (𝑥𝑛), 𝑦 = (𝑦𝑛) ∈ 𝑙𝑝,𝑤 and 𝑡 ∈ [0,1] . Let us 

distinguish two cases: 

 



 

21 
 

 

Ikonion Journal of Mathematics                                                                                       2019, 1 (1) 

First case 𝑝 ≥ 1 . By Lemma 2 and Minkowski’s inequality , we write 

∑ |𝑡𝑥𝑛 + (1 − 𝑡)𝑦𝑛|𝑝𝑤𝑛 

∞

𝑛=1 

= ∑ |(𝑡𝑥𝑛 + (1 − 𝑡)𝑦𝑛)𝑤𝑛 
1

𝑝⁄ |
𝑝

                                                

∞

𝑛=1 

 

                              = [( ∑ |(𝑡𝑥𝑛 + (1 − 𝑡)𝑦𝑛)𝑤𝑛
1

𝑝⁄ |
𝑝

∞

𝑛=1 

)

1
𝑝⁄

]

𝑝

               

                                                     ≤ [( ∑ |(𝑡𝑥𝑛)𝑤𝑛
1

𝑝⁄ |
𝑝

∞

𝑛=1 

)

1
𝑝⁄

+ ( ∑ |((1 − 𝑡)𝑦𝑛)𝑤𝑛
1

𝑝⁄ |
𝑝

∞

𝑛=1 

)

1
𝑝⁄

]

𝑝

 

                                     ≤ 2𝑝−1 [ ∑ |(𝑡𝑥𝑛)𝑤𝑛
1

𝑝⁄ |
𝑝

∞

𝑛=1 

+ ∑ |((1 − 𝑡)𝑦𝑛)𝑤𝑛
1

𝑝⁄ |
𝑝

∞

𝑛=1 

] 

                    = 2𝑝−1 ∑|𝑡𝑥𝑛|𝑝𝑤𝑛

∞

𝑛=1

+ 2𝑝−1 ∑|(1 − 𝑡)𝑦𝑛|𝑝

∞

𝑛=1

𝑤𝑛 

                       = 2𝑝−1|𝑡|𝑝 ∑|𝑥𝑛|𝑝𝑤𝑛 + 2𝑝−1|1 − 𝑡|𝑝 ∑|𝑦𝑛|𝑝𝑤𝑛

∞

𝑛=1

∞

𝑛=1

 

< ∞                                                             

which shows that 𝑡𝑥 + (1 − 𝑡)𝑦 ∈ 𝑙𝑝,𝑤 for 𝑝 ≥ 1.  

 

Second case 0 < 𝑝 < 1 . Let 𝑥 = (𝑥𝑛), 𝑦 = (𝑦𝑛) ∈ 𝑙𝑝,𝑤 and 𝑡 ∈ [0,1] . By Lemma 1, we have 

∑ |𝑡𝑥𝑛 + (1 − 𝑡)𝑦𝑛|𝑝𝑤𝑛

∞

𝑛=1 

= ∑ |(𝑡𝑥𝑛 + (1 − 𝑡)𝑦𝑛)𝑤𝑛
1

𝑝⁄ |
𝑝

∞

𝑛=1 

                           

                                               ≤ ∑ |(𝑡𝑥𝑛)𝑤𝑛
1

𝑝⁄ |
𝑝

+ ∑ |((1 − 𝑡)𝑦𝑛)𝑤𝑛
1

𝑝⁄ |
𝑝

∞

𝑛=1

∞

𝑛=1

 

                               = ∑|𝑡𝑥𝑛|𝑝𝑤𝑛 + ∑|((1 − 𝑡)𝑦𝑛)|
𝑝

∞

𝑛=1

∞

𝑛=1

𝑤𝑛 

                                            = |𝑡|𝑝 ∑|𝑥𝑛|𝑝𝑤𝑛 + |1 − 𝑡|𝑝 ∑|𝑦𝑛|𝑝

∞

𝑛=1

∞

𝑛=1

𝑤𝑛 < ∞ 

This completes the proof. It is known that the space 𝑙𝑝 is strictly convex for 𝑝 ≥ 1 [1]. 

 

Theorem 2.  The space 𝑙𝑝,𝑤   is strictly convex for 𝑝 ≥ 1. 

 

Proof.  Let  𝑥 = (𝑥𝑛), 𝑦 = (𝑦𝑛) ∈ 𝑙𝑝,𝑤  with 𝑥 ≠ 𝑦 , ‖𝑥‖𝑝,𝑤 = 1, ‖𝑦‖𝑝,𝑤 = 1 and 0 < 𝑝 < 1. Then 

‖𝑥𝑤
1

𝑝‖
𝑝

= 1 , ‖𝑦𝑤
1

𝑝‖
𝑝

= 1. Since 𝑙𝑝 is strictly convex for 𝑝 ≥ 1, we have 

‖(1 − 𝑡)𝑥𝑤
1
𝑝 + 𝑡𝑦𝑤

1
𝑝‖

𝑝

= ‖((1 − 𝑡)𝑥 + 𝑡𝑦)𝑤
1
𝑝‖

𝑝

< 1.  
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Hence 

‖(1 − 𝑡)𝑥 + 𝑡𝑦‖𝑝,𝑤 = (∑ |((1 − 𝑡)𝑥 + 𝑡𝑦)𝑤
1
𝑝|

𝑝∞

𝑛=1

)

1
𝑝⁄

 

                              =  ‖((1 − 𝑡)𝑥 + 𝑡𝑦)𝑤
1
𝑝‖

𝑝

 < 1  

We will need the following inequality. 

 

Lemma 3. Let 𝑝 ≥ 2. We have  

                                (|𝑎 + 𝑏|𝑝 + |𝑎 − 𝑏|𝑝)1 𝑝⁄ ≤ (|𝑎 + 𝑏|2 + |𝑎 − 𝑏|2)1 2⁄                                (9) 

for all 𝑎, 𝑏 ∈ ℝ [2]. 

 

Lemma 4. Let 2 ≤ 𝑝 < ∞ and 𝑥, 𝑦 ∈ 𝑙𝑝 , we have   

                                                   ‖𝑥 + 𝑦‖𝑝
𝑝

+ ‖𝑥 − 𝑦‖𝑝
𝑝

≤ 2𝑝−1(‖𝑥‖𝑝
𝑝

+ ‖𝑦‖𝑝
𝑝

)                            (10) 

[1]. 

Proposition 5. If 2 ≤ 𝑝 < ∞ , then we have 

                          ‖𝑥 + 𝑦‖𝑝,𝑤
𝑝

+ ‖𝑥 − 𝑦‖𝑝,𝑤
𝑝

≤ 2𝑝−1(‖𝑥‖𝑝,𝑤
𝑝

+ ‖𝑦‖𝑝,𝑤
𝑝

)                         (11) 

for 𝑥 = (𝑥𝑛) , 𝑦 = (𝑦𝑛) ∈ 𝑙𝑝,𝑤 .  

 

Proof. Let 𝑥, 𝑦 ∈ 𝑙𝑝,𝑤 . Then 𝑥𝑤
1

𝑝, 𝑦𝑤
1

𝑝 ∈ 𝑙𝑝.  By Lemma 4,  we write 

‖𝑥 + 𝑦‖𝑝,𝑤
𝑝

+ ‖𝑥 − 𝑦‖𝑝,𝑤
𝑝

= ‖𝑥𝑤
1
𝑝 +  𝑦𝑤

1
𝑝‖

𝑝

𝑝

+ ‖𝑥𝑤
1
𝑝 −  𝑦𝑤

1
𝑝‖

𝑝

𝑝

                    

                ≤ 2𝑝−1 (‖𝑥𝑤
1
𝑝‖

𝑝

𝑝

+ ‖ 𝑦𝑤
1
𝑝‖

𝑝

𝑝

) 

             = 2𝑝−1(‖𝑥‖𝑝,𝑤
𝑝

+ ‖𝑦‖𝑝,𝑤
𝑝

)       

 

Theorem 3. The space 𝑙𝑝,𝑤 is uniformly convex for 2 ≤ 𝑝 < ∞ . 

 

Proof . Let 𝑥 = (𝑥𝑛), 𝑦 = (𝑦𝑛) ∈ 𝑙𝑝,𝑤 with 

‖𝑥‖𝑝,𝑤 ≤ 1, ‖𝑦‖𝑝,𝑤 ≤ 1 and ‖𝑥 − 𝑦‖𝑝,𝑤 ≥ 𝜀 

By Proposition 5, we have 

‖𝑥 + 𝑦‖𝑝,𝑤
𝑝

≤ 2𝑝−1(‖𝑥‖𝑝,𝑤
𝑝

+ ‖𝑦‖𝑝,𝑤
𝑝

) − ‖𝑥 − 𝑦‖𝑝,𝑤
𝑝

 

      ≤ 2𝑝−1. 2 − 𝜀𝑝                                

= 2𝑝 (1 − (
𝜀

2
)

𝑝

)                    
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so it follows that ‖
𝑥+𝑦

2
‖

𝑝,𝑤

𝑝
≤ 1 − (

𝜀

2
)

𝑝
and hence we get ‖

𝑥+𝑦

2
‖

𝑝,𝑤
≤ 1 − 𝛿 such that  

𝛿(𝜀) = 1 − (1 − (
𝜀

2
)

𝑝

)

1
𝑝⁄

 

 

Lemma 6. Let 1 < 𝑝 ≤ 2  and 𝑞 =
𝑝

𝑝−1
 , then 

                                                        |𝑎 + 𝑏|𝑞 + |𝑎 − 𝑏|𝑞 ≤ 2(|𝑎|𝑝 + |𝑏|𝑝)𝑞−1                                       (12) 

for all real numbers 𝑎 and 𝑏 [3]. 

 

Lemma 7.  1 < 𝑝 ≤ 2 and 𝑞 =
𝑝

𝑝−1
 , we have 

                                                    ‖𝑥 + 𝑦‖𝑝
𝑞

+ ‖𝑥 − 𝑦‖𝑝
𝑞

≤ 2(‖𝑥‖𝑝
𝑝

+ ‖𝑦‖𝑝
𝑝

)
𝑞−1

                                         (13) 

for all 𝑥, 𝑦 ∈ 𝑙𝑝 [5]. 

 

Proposition 6. If 1 < 𝑝 ≤ 2 , then  

                                     ‖𝑥 + 𝑦‖𝑝,𝑤
𝑞

+ ‖𝑥 − 𝑦‖𝑝,𝑤
𝑞

≤ 2(‖𝑥‖𝑝,𝑤
𝑝

+ ‖𝑦‖𝑝,𝑤
𝑝

)
𝑞−1

                           (14) 

for 𝑥 = (𝑥𝑛) , 𝑦 = (𝑦𝑛) ∈ 𝑙𝑝,𝑤  and 𝑞 =
𝑝

𝑝−1
 . 

 

Proof . Let 𝑥 = (𝑥𝑛), 𝑦 = (𝑦𝑛) ∈ 𝑙𝑝,𝑤 and by the Minkowski’s inequality for 0 < 𝑟 < 1, we have 

                               (∑|𝑎𝑛|𝑟

∞

𝑛=1

)

1 𝑟⁄

+ (∑|𝑏𝑛|𝑟

∞

𝑛=1

)

1 𝑟⁄

≤ (∑|𝑎𝑛 + 𝑏𝑛|𝑟

∞

𝑛=1

)

1 𝑟⁄

                         (15) 

If 1 < 𝑝 ≤ 2 , we replace 𝑟 by  
𝑝

𝑞
 in Equation (15) , for  𝑎𝑛 = |((𝑥𝑛 + 𝑦𝑛)𝑤𝑛

1
𝑝⁄ )|

𝑞

, 𝑏𝑛 = |(𝑥𝑛 −

𝑦𝑛)𝑤𝑛
1

𝑝⁄ |
𝑞

, then by Lemma 6  we get 

(∑ |(𝑥𝑛 + 𝑦𝑛)𝑤𝑛
1

𝑝⁄ |
𝑝

∞

𝑛=1

)

𝑞
𝑝⁄

+ (∑ |(𝑥𝑛 − 𝑦𝑛)𝑤𝑛
1

𝑝⁄ |
𝑝

∞

𝑛=1

)

𝑞
𝑝⁄

≤ [∑ (|(𝑥𝑛 + 𝑦𝑛)𝑤𝑛
1

𝑝⁄ |
𝑞

+ |(𝑥𝑛 − 𝑦𝑛)𝑤𝑛
1

𝑝⁄ |
𝑞

)

𝑝
𝑞⁄

∞

𝑛=1

]

𝑞
𝑝⁄

 

                          = [∑ (|𝑥𝑛𝑤𝑛
1

𝑝⁄ + 𝑦𝑛𝑤𝑛
1

𝑝⁄ |
𝑞

+ |𝑥𝑛𝑤𝑛
1

𝑝⁄ − 𝑦𝑛𝑤𝑛
1

𝑝⁄ |
𝑞

)

𝑝
𝑞⁄

∞

𝑛=1

]

𝑞
𝑝⁄

 

                    ≤ (∑ [2 (|𝑥𝑛𝑤𝑛
1

𝑝⁄ |
𝑝

+ |𝑦𝑛𝑤𝑛
1

𝑝⁄ |
𝑝

)
𝑞−1

]

𝑝
𝑞⁄∞

𝑛=1

)

𝑞
𝑝⁄

                                                    

                 = 2 [∑ (|𝑥𝑛𝑤𝑛
1

𝑝⁄ |
𝑝

+ |𝑦𝑛𝑤𝑛
1

𝑝⁄ |
𝑝

)

∞

𝑛=1

]

𝑞
𝑝⁄
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                   = 2 [∑|𝑥𝑛|𝑝𝑤𝑛 + ∑|𝑦𝑛|𝑝𝑤𝑛

∞

𝑛=1

∞

𝑛=1

]

𝑞
𝑝⁄

                                                                                

where 𝑞 =
𝑝

𝑝−1
⇒ 𝑞 − 1 =

𝑞

𝑝
 . Thus , we obtain 

  ‖𝑥 + 𝑦‖𝑝,𝑤
𝑞

+ ‖𝑥 − 𝑦‖𝑝,𝑤
𝑞

≤ 2(‖𝑥‖𝑝,𝑤
𝑝

+ ‖𝑦‖𝑝,𝑤
𝑝

)
𝑞−1

          

 

Theorem 4. The space 𝑙𝑝,𝑤 is uniformly convex for 1 < 𝑝 ≤ 2 . 

 

Proof. Let 𝑥 = (𝑥𝑛), 𝑦 = (𝑦𝑛) ∈ 𝑙𝑝,𝑤 , 1 < 𝑝 ≤ 2 with 

                              ‖𝑥‖𝑝,𝑤 ≤ 1, ‖𝑦‖𝑝,𝑤 ≤ 1 and ‖𝑥 − 𝑦‖𝑝,𝑤 ≥ 𝜀 

Then by the Proposition 6, we have 

‖𝑥 + 𝑦‖𝑝,𝑤
𝑞

≤ 2 [‖𝑥‖𝑝,𝑤
𝑝

+ ‖𝑦‖𝑝,𝑤
𝑝

]
𝑞−1

− ‖𝑥 − 𝑦‖𝑝,𝑤
𝑞

 

≤ 2. 2𝑞−1 − 𝜀𝑞                           

= 2𝑞 (1 − (
𝜀

2
)

𝑞

)                         

Hence, we write  

‖
𝑥 + 𝑦

2
‖

𝑝,𝑤
≤ (1 − (

𝜀

2
)

𝑞

)

1
𝑞⁄

 

where  𝛿(𝜀) = 1 − (1 − (
𝜀

2
)

𝑞

)

1
𝑞⁄

. 
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Abstract 
We define Dini-type helicoidal hypersurface in the four dimensional Euclidean space 

𝔼4. We calculate the Gauss map, Gaussian curvature and the mean curvature of the 

helicoidal hypersurface. Additionally, we find some special relations and symmetries 

for the curvatures. 

Keywords: Dini-type helicoidal hypersurface; Four dimensional Euclidean space; 

Gauss map. 

 

1. Introduction 

 

After Moore [27,28], Takahashi [32], and also Chen and Piccinni [8], the theory of submanifolds 

has been studied by many mathematicians. For some papers about the topic, see [1 − 7, 9 − 12, 14 −

26, 29 − 31, 33 − 35]. 

 

In this work, considering Ulisse Dini's paper [13] in Euclidean 3-space 𝔼3, we study Dini-type 

helicoidal hypersurface in Euclidean 4-space 𝔼4. We give some basic notions of the geometry of the 𝔼4 

in this section. In section 2, we define helicoidal hypersurface. Moreover, we give Dini-type helicoidal 

hypersurface, and calculate its curvatures obtaining some special symmetries in the last section. 

 

Next, we will introduce the first and second fundamental forms, matrix of the shape operator S,  

Gaussian curvature K, and the mean curvature H of hypersurface 𝐌 = 𝐌(𝑢, 𝑣, 𝑤) in Euclidean 4-space 

𝔼4. We shall identify a vector (a,b,c,d) with its transpose (a,b,c,d)
t.  

 

Let 𝐌 = 𝐌(𝑢, 𝑣, 𝑤) be an isometric immersion of a hypersurface 𝑀3 in the 𝔼4. The triple vector 

product of 𝑥⃗ = (𝑥1, 𝑥2, 𝑥3, 𝑥4), 𝑦⃗ = (𝑦1, 𝑦2, 𝑦3, 𝑦4), 𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4)  on 𝔼4 is defined as follows: 
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x  y  z  x 2y3z4  x 2y4z3  x 3y2z4  x 3y4z2  x 4y2z3  x 4y3z2 ,

 x 1y3z4  x 1y4z3  x 3y1z4  x 3z1y4  y1x 4z3  x 4y3z1 ,

x 1y2z4  x 1y4z2  x 2y1z4  x 2z1y4  y1x 4z2  x 4y2z1 ,

 x 1y2z3  x 1y3z2  x 2y1z3  x 2y3z1  x 3y1z2  x 3y2z1.
 

For a hypersurface 𝐌 = 𝐌(𝑢, 𝑣, 𝑤) in 4-space, we compute 

detI  det

E F A

F G B

A B C

 EG  F2C  A2G  2ABF  B2E,

 

detII  det

L M P

M N T

P T V

 LN  M2 V  P2N  2PTM  T2L,

 

where 

E  M u  M u , F  Mu  M v, G  M v  M v,

L  M uu  e, M  M uv  e, N  M vv  e,

A  M u  Mw, B  M v  Mw, C  Mw  Mw,

P  M uw  e, T  M vw  e, V  Mww  e,

 

and 𝑒 is the Gauss map 

e  Mu  M v  Mw

Mu  M v  Mw
.

 

Using (𝐼)−1. (𝐼𝐼), we get shape operator matrix 𝐒, as follows: 

S  1
detI

s11 s12 s13

s21 s22 s23

s31 s32 s33

,   #   

 

where 
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s11  ABM  CFM  AGP  BFP  CGL  B2L,

s12  ABN  CFN  AGT  BFT  CGM  B2M,

s13  ABT  CFT  AGV  BFV  CGP  B2P,

s21  ABL  CFL  AFP  BPE  CME  A2M,

s22  ABM  CFM  AFT  BTE  CNE  A2N,

s23  ABP  CFP  AFV  BVE  CTE  A2T,

s31  AGL  BFL  AFM  BME  GPE  F2P,

s32  AGM  BFM  AFN  BNE  GTE  F2T,

s33  AGP  BFP  AFT  BTE  GVE  F2V.

 

Finally, we obtain following formulas of the Gaussian curvature K, and the mean curvature H, 

respectively, 

K 
LN  M2 V  2MPT  P2N  T2L

EG  F2C  2ABF  A2G  B2E
,   #   

 

and 

H 
EN  GL  2FMC  EG  F2V  A2N  B2L  2APG  BTE  ABM  ATF  BPF

3EG  F2C  2ABF  A2G  B2E
.   #   

 
When 𝐾 = 0, hypersurface is flat; and 𝐻 = 0, then hypersurface is minimal. 

 

2. Helicoidal Hypersurface 

 
In this section, we define the rotational hypersurface and helicoidal hypersurface in 𝔼4. Let 𝛾: 𝐼 ⊂

ℝ → Π be a curve in a plane Π in 𝔼4, and let ℓ be a straight line in Π. In 𝔼4, a rotational hypersurface 

is defined by a hypersurface rotating profile curve 𝛾 around axis ℓ. 

 

Suppose that when a profile curve 𝛾 rotates around the axis ℓ, it simultaneously displaces parallel 

lines orthogonal to the axis ℓ, so that the speed of displacement is proportional to the speed of rotation. 

Resulting hypersurface is called helicoidal hypersurface with axis ℓ, pitches 𝑎, 𝑏 ∈ ℝ − {0}. Supposing 

ℓ is the line spanned by the vector (0,0,0,1)𝑡, we consider following orthogonal matrix: 

Zv,w 

cosv cosw  sinv cosv sinw 0

sinv cosw cosv  sinv sinw 0

sinw 0 cosw 0

0 0 0 1

,   #   

 

where 𝑣, 𝑤 ∈ ℝ. The matrix 𝑍 supplies the following equations, simultaneously, 
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𝑍ℓ = ℓ,   𝑍𝑍𝑡 = 𝑍𝑡𝑍 = 𝐼4,   det𝑍 = 1. 

 

When the axis of rotation is ℓ, there is an Euclidean transformation by which the axis is ℓ 

transformed to the 𝑥4-axis of 𝔼4. The profile curve is given by 𝛾(𝑢) = (𝑢, 0,0, 𝜑(𝑢)), where 𝜑(𝑢): 𝐼 ⊂

ℝ → ℝ is a differentiable function for all 𝑢 ∈ 𝐼. Therefore, the helicoidal hypersurface, spanned by the 

vector (0,0,0,1), is defined by as follows: 

 

H(𝑢, 𝑣, 𝑤) = 𝑍𝛾𝑡 + (𝑎𝑣 + 𝑏𝑤 )ℓ𝑡, 

 

where 𝑢 ∈ 𝐼, 𝑣,𝑤 ∈ [0,2𝜋], 𝑎,𝑏 ∈ ℝ − {0}. More clear form of the helicoidal hypersurface in 4-space 

is given by as follows: 

Hu,v,w 

ucosv cosw

usinv cosw

usinw

u  av  bw

.   #   

 

 

3. Dini-Type Helicoidal Hypersurface 

 
We consider Dini-type helicoidal hypersurface as follows: 

Du,v,w 

sinucosv cosw

sinu sinv cosw

sinusinw

u  av  bw

,   #   

 

where 𝑢 ∈ ℝ − {0}, 𝑣,𝑤 ∈ [0,2𝜋]. Using the first differentials of 𝔇 with respect to 𝑢,𝑣,𝑤, we get the 

first quantities as follows 

I 

 2  cos2u a  b 

a  a2  cos2ucos2w ab

b  ab b2  sin2u

,

 

and have 

detI  sin2ucos2ucos2w  a2 cos2u   2 cos2w,
 

where 𝜑 = 𝜑(𝑢), 𝜑′ =
𝑑𝜑

𝑑𝑢
.  Using the second differentials of 𝔇 with respect to 𝑢,𝑣,𝑤, we have the 

second quantities as follows 
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II 


sin 2u cosw   cosu  sin u

det I

a cos2u sin u cosw

det I

b sin u cos2u cosw

det I

a cos2u sin u cosw

det I

sin 2u cos2w b cosu sin w  sin u cosw

det I
 a sin 2u cosu sin w

det I

b sin u cos2u cosw

det I
 a sin 2u cosu sin w

det I

  sin 3u cosw

det I

,

 

and we get 

detII 

 2  sin8ucosucos5w  b   sin7ucos2usinw cos4w

a2  sin6ucos3u sin2w cosw

 3 sin9ucos5w  b 2 sin8ucosusinw cos4w

a2 sin7ucos2usin2w cosw  a2 sin5ucos4ucos3w  b2 sin5ucos4ucos5w 

2a2bsin4ucos5usinw cos2w  b3 sin4ucos5usinw cos4w

detI3/2
.

 

The Gauss map 𝑒 of the helicoidal hypersurface 𝔇 is 

eD  1

detI

  sinucosv  acosusinv  bcosucosv sinw coswsinu

  sinusinv  acosucosv  bcosusinv sinw coswsinu

  sinusinw  bcosucoswsinucosw

 sin2ucosucosw

.   #   

 

Finally, we calculate the Gaussian curvature of 𝔇, as follows: 

K 
1 2   2    3   4 3  5 2  6   7

sin2ucos2ucos2w  a2 cos2u   2 cos2w5/2
,   #   

 

where 

1  sin8ucosucos5w,

2  b sin7ucos2u sinw cos4w,

3  a2 sin6ucos3u sin2w cosw,

4  sin9ucos5w,

5  b sin8ucosu sinw cos4w,

6  a2 sin7ucos2u sin2w cosw  a2 sin5ucos4ucos3w  b2 sin5ucos4ucos5w,

7  2a2b sin4ucos5u sinw cos2w  b3 sin4ucos5u sinw cos4w,

 

and we calculate the mean curvature of 𝔇, as follows: 
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H 
1   2 3  3 2  4   5

3sin2ucos2ucos2w  a2 cos2u   2 cos2w3/2
,   #   

 

where 

1  b2  sin2ucos2w  a2 sin4ucosucosw,

2  2sin3ucos3w,

3  b sin4ucosu sinw cos2w,

4  2  cos4u

2
 b 2

2
 b2 cos2u  1

2
cos2w  a2 cos2u  1

2
sin2ucosw,

5  b2  sin2ucos2w  a2 sin3ucos3u.

 

Hence, we have following theorems: 

 

Theorem 1. Let  𝔇 ∶ 𝑀3 →  𝔼4  be an isometric immersion. If 𝑀3 is minimal, then we get 

1  23  3 2  4   5  0.
 

Theorem 2. Let  𝔇 ∶ 𝑀3 →  𝔼4  be an isometric immersion. If 𝑀3 is flat, then we have 

12  2  3  43  52  6   7  0.
 

Solutions of these two eqs. are attracted problem. 

 

Now, taking 𝜑(𝑢) = cos𝑢 + 𝑙𝑛 (tan
𝑢

2
) in Theorem 1, and Theorem 2, we obtain following 

corollaries: 

 

Corollary 1. When Dini-type helicoidal hypersurface 𝔇 has 𝐻 = 0 in 4-space, then we have 


i0

6

 i tani u
2

 0,   #   

 

where 

6  2 ,

5  21  62 sinu  23 ,

4  92  62 cos2u  83 sinu  44 ,

3  81 cosu  182 sinu  22 sin3u  83  43 cos2u  84 sinu  85 ,

2  92  62 cos2u  83 sinu  44 ,

1  21  62 sinu  23 ,

0  2 .

  #   
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Corollary 2. When Dini-type helicoidal hypersurface 𝔇 has 𝐾 = 0 in 4-space, then we get 


j0

8

 j tanj u
2

 0,   #   

 

where 

8  1 ,

7  41 sinu  22  24 ,

6 
21  41 cosu  41 sin2u  42 sinu

43  124 sinu  45

,

5 
41 sinu  161 cosu sinu  22  82 cosu

64  244 sin2u  165 sinu  86

,

4 

81 cosu  161 cosu sin2u  162 cosu sinu

163 cosu  244 sinu  164 sin3u

85  165 sin2u  166 sinu  167

,

3 
41 sinu  161 cosu sinu  22  82 cosu

64  244 sin2u  165 sinu  86

,

2 
21  41 cosu  41 sin2u  42 sinu

43  124 sinu  45

,

1  41 sinu  22  24 ,

0  1 .

  #   

 

Remark 1. From Corollary 1, and Corollary 2, we obtain following special symmetries for Dini-type 

helicoidal hypersurface 𝔇, respectively, 

6  0 , 5  1 , 4  2 ,
 

and 

8  0 , 7  1 , 6  2 , 5  3 .
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Abstract 
In this paper, nonlocal and boundary value problems (BVP) of fractional differential 

equations involv- ing random walk on times scale is discussed. The sufficient 

conditions for existence and uniqueness of dynamical systems are obtained using 

standard fixed point methods. The stability of solutions is made sure by Ulam-Hyers 

stability method. 

Keywords: Dynamical equations, Fractional calculus, Existence, Stability. 

1. Introduction

The theory of time scales calculus allows us to study the dynamic equations, which include both difference 
and differential equations. Since the study on dynamic equations on time scales has received much attention of 
many researchers in recent days, see [1, 2, 3, 4, 5] and the references therein.

Randomness of the FDEs which arises in uncertainties and complexities. Such deterministic equations are 
hardly called as Random differential equations (RDEs). The recent development of RDEs of fractional order can 
be seen in [15, 18, 25].

Ever since the birth of Fractional differential equations (FDEs) in sixteenth century only in past few decades it 
received tremendous development in describe the real-life phenomena more accurately than integer order 
derivative. The main aspect of FDEs is to prove existence, uniqueness and stability of solutions. For the detailed 
study of FDEs one can refer to the books [11, 16, 17] and the papers [7, 9, 14, 19, 24]. The literature provides 
numerous numbers of fractional derivatives with singular kernals. Here in this article we use a special kind of 
fractional derivative called ψ-Hilfer fractional derivative integrate several classical derivative, detailed in [20]. For 
the recent works on ψ-Hilfer fractional derivative we refer the readers to [6, 10, 22, 23]
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   On the other hand, the stability investigation of differential and integral equations is important in 
applications. Here we extend the results of Ulam Hyers stability and Ulam Hyers Rassias(U-H-R) stability to 
fractional RDEs on times scale. The stability check of FDEs and theoretical analysis of Ulam type stability 
can be seen in [12, 21, 26].

From the above discussion and motivation in this work we study ψ-Hilfer fractional RDEs on times scale 
with boundary and nonlocal conditions. The existence, uniqueness and stability solutions are obtained by 
fixed point methods. First consider the BVP for ψ-Hilfer fractional RDEs on times scale of the form





T∆α,β;ψu(t, ω) = g(t, u(t, ω), ω), t ∈ J ⊆ T,

a TI1−γ;ψu(t, ω)|t=0 + b TI1−γ;ψu(t, ω)|t=T = c,
(1)

where (Ω, F, p) is a complete probability space, ω ∈ Ω, T∆α,β;ψ is the ψ-HFD defined on T, 0 < α < 1,

0 ≤ β ≤ 1 and TI1−γ;ψ is ψ-fractional integral of order 1−γ(γ = α+β−αβ). Let T be a time scale,

that is nonempty subset of Banach space. The function g : J := [0, b]×R× Ω → R is a right-dense

continuous function. Here, the Eq. (1) satisfies the random integral equation of the form

u(t, ω) =
(
c− b TI1−β+αβ;ψg(T, u(T, ω), ω)

) (ψ(t)−ψ(0))γ−1

(a+b)Γ(γ) +T Iα;ψg(t, u(t, ω), ω)∆s. (2)

In the next section, we consider the nonlocal fractional random differential equation on times

scale




T∆α,β;ψu(t, ω) = g(t, u(t, ω), ω) t ∈ J,

TI1−γ;ψu(t, ω)|t=0 =
∑m
i=1 ciu(τi, ω), τi ∈ J,

(3)

where τi, i = 0, 1, ...,m are prefixed points satisfying 0 < τ1 ≤ ... ≤ τm < b and ci is real numbers.

Here, nonlocal condition u(0, ω) =
∑m
i=1 ciu(τi, ω) can be applied in physical problems yields better

effect than the initial conditions TI1−γ;ψu(t, ω)|t=0 = u0. Further (3) is equivalent to mixed integral

type of the form

u(t, ω) =





T
Γ(α) (ψ(t)− ψ(0))

γ−1∑m
i=1 ci

∫ τi

0

ψ
′

(s) (ψ(τi)− ψ(s))
α−1

g(s, u(s, ω), ω)∆s

+ 1
Γ(α)

∫ t

0

ψ
′

(s) (ψ(t)− ψ(s))
α−1

g(s, u(s, ω), ω)∆s
(4)

where

T =
1

Γ(γ)−
∑m
i=1 ci(ψ(τi)− ψ(0))γ−1

.

The novelty of paper is given as follows: In Section 2, basic definitions and preliminary are
discussed. Existence, uniqueness and stability with random walk for BVP and nonlocal problems

are discussed in Section 3 and Section 4 respectively.

2. Preliminaries

Definition 2.1. Let C(J) be continuous function endowed with the norm

‖u‖C = max {|u(t, ω)| : t ∈ J} .

We denote the C1−γ,ψ(J) as follows

C1−γ,ψ(J) :=
{
g(t, ω) : J × Ω → R| (ψ(t)− ψ(0))

1−γ
g(t, ω) ∈ C(J)

}
, 0 ≤ γ < 1

Ikonion Journal of Mathematics 2019, 1 (1) 
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where C1−γ,ψ(J) is the weighted space of the continuous functions g on the finite interval J .

Obviously, C1−γ,ψ(J) is the Banach space with the norm

‖g‖C1−γ,ψ
=
∥∥∥(ψ(t)− ψ(0))

1−γ
g(t, ω)

∥∥∥
C
.

Definition 2.2. Let time scale be T. The forward jump operator σ : T → T is defined by

σ(t) := inf {s ∈ T : s > t}, while the backward jump operator ρ : T → T is defined by ρ(t) :=

sup {s ∈ T : s < t}.

Proposition 2.3. Suppose T is a time scale and [a, b] ⊂ T, g is increasing continuous function on

[a, b]. If the extension of g is given in the following form:

F (s) =




g(s); s ∈ T

g(t); s ∈ (t, σ(t)) /∈ T.

Then we have ∫ b

a

g(t)∆t ≤

∫ b

a

F (t)dt.

Definition 2.4. Let T be a time scale, J ∈ T. The left-sided R-L fractional integral of order α ∈ R+

of function f(t) is defined by

(
TIαg

)
(t) =

∫ t

0

ψ
′

(s)
(ψ(t)− ψ(s))

α−1

Γ(α)
g(s)∆s, (t > 0),

where Γ(·) is the Gamma function.

Definition 2.5. Suppose T is a time scale, [0, b] is an interval of T. The left-sided R-L fractional

derivative of order α ∈ [n− 1, n), n ∈ Z
+ of function f(t) is defined by

(
T∆αg

)
(t) =

(
1

ψ′(t)

d

dt

)n ∫ t

0

ψ
′

(s)
(ψ(t)− ψ(s))

n−α−1

Γ(n− α)
g(s)∆s, (t > 0).

Definition 2.6. [9] The left-sided ψ-HFD of function f(t) is defined by

T∆α,β;ψg(t) =
(
TIβ(1−α);ψ T∆(TI(1−β)(1−α);ψg)

)
(t),

where T∆ := d
dt
.

Remark 2.7. 1. The operator T∆α,β;ψ also can be written as

T∆α,β;ψ = TIβ(1−α);ψ T∆TI(1−β)(1−α);ψ = TIβ(1−α);ψ T∆γ;ψ, γ = α+ β − αβ.

2. Let β = 0, the left-sided R-L derivative can be presented as T∆α := T∆α,0.

3. Let β = 0, left-sided Caputo fractional derivative can be presented as T

c∆
α := TI1−α T∆.

Next, we review some lemmas which will be used to extabilish our existence results.

Lemma 2.8. If α > 0 and β > 0, there exist

[
TIα (ψ(s)− ψ(0))

β−1
]
(t) =

Γ(β)

Γ(β + α)
(ψ(t)− ψ(0))

β+α−1
.

Ikonion Journal of Mathematics 2019, 1 (1) 
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Lemma 2.9. Let α ≥ 0, β ≥ 0 and g ∈ L1(J). Then

TIα TIβg(t)
a.e
= TIα+βg(t).

Lemma 2.10. Let 0 < α < 1, 0 ≤ γ < 1. If g ∈ Cγ(J) and
TI1−αg ∈ C1

γ(J), then

TIα T∆αg(t) = g(t)−

(
TI1−αg

)
(0)

Γ(α)
(ψ(t)− ψ(0))

α−1
.

Lemma 2.11. Suppose α > 0, a(t, ω) is a nonnegative function locally integrable on 0 ≤ t < b (some

b ≤ ∞), and let g(t, ω) be a nonnegative, nondecreasing continuous function defined on 0 ≤ t < b,

such that g(t, ω) ≤ K for some constant K. Further let u(t, ω) be a nonnegative locally integrable on

a ≤ t < b function with

|u(t, ω)| ≤ a(t, ω) + g(t, ω)

∫ t

0

ψ
′

(s) (ψ(t)− ψ(s))
α−1

u(s, ω)∆s,

with some α > 0. Then

|u(t, ω)| ≤ a(t, ω) +

∫ t

0

[
∞∑

n=1

(g(t, ω)Γ(α))n

Γ(nα)
ψ

′

(s) (ψ(t)− ψ(s))
nα−1

]
u(s, ω)∆s, 0 ≤ t < b.

Theorem 2.12. [8](Schauder’s Fixed Point Theorem) Let E be a Banach space and Q be a nonempty

bounded convex and closed subset of E and N : Q → Q is compact, and continuous map. Then N

has at least one fixed point in Q.

Theorem 2.13. [8](Krasnoselskii’s fixed point theorem) Let X be a Banach space, let Ω be a bounded

closed convex subset of X and let T1, T2 be mapping from Ω into X such that T1x+T2y,∈ Ω for every

pair x, y ∈ Ω. If T1 is contraction and T2 is completely continuous, then the equation T1x+T2x = x

has a solution on Ω.

3. BVP for fractional RDEs on times scale

Here we list the following assumptions which are going to be useful in proving the results:

(H1) Let ℓg be a positive constant satisfies

|g(t, u, ω) − g(t, v, ω)| ≤ ℓg |u − v| .

(H2) Let m, n be a positive constants and M(ω) = sup m(t, ω), N(ω) = sup n(t, ω), such that

|g(t, u, ω) − g(t, v, ω)| ≤ m(t, ω) + n(t, ω) |u(t, ω)| .

       (H3) For the increasing function ϕ ∈ C1−γ,ψ(J), there exists λϕ > 0 such that

TIαϕ(t) ≤ λϕϕ(t, ω).

Theorem 3.1. Assume (H2) hold. Then, Eq. (1) has at least one solution.
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Proof. Consider the operator P : C1−γ,ψ(J) → C1−γ,ψ(J). The equivalent integral of (2) is of the

operator form

(Pu)(t, ω) =
(
c− b TI1−β+αβ;ψg(T, u(T, ω), ω)

) (ψ(t)− ψ(0))
γ−1

(a+ b)Γ(γ)
+T Iα;ψg(t, u(t, ω), ω) (5)

Define Br =
{
u ∈ C1−γ,ψ(J) : ‖u‖C1−γ,ψ

≤ r
}
. In order to prove the fixed point here we utilize

Theorem 2.12. We prove the result in the following steps

Step 1: We check that P(Br) ⊂ Br.

∣∣∣(ψ(t)− ψ(0))
1−γ

(Pu)(t, ω)
∣∣∣

≤
c

(a+ b)Γ(γ)
+

b

(a+ b)Γ(γ)

1

Γ(1− β + αβ)

∫ T

0

ψ
′

(s) (ψ(T )− ψ(s))
1−β+αβ−1

|g(s, u(s, ω), ω)|∆s

+
(ψ(t)− ψ(0))

1−γ

Γ(α)

∫ t

0

ψ
′

(s) (ψ(t)− ψ(s))
α−1

|g(s, u(s, ω), ω)|∆s

≤
c

(a+ b)Γ(γ)
+

b

(a+ b)Γ(γ)

1

Γ(1− β + αβ)

∫ T

0

ψ
′

(s) (ψ(T )− ψ(s))
1−β+αβ−1

(m(s, ω) + n(s, ω) |u(s, ω)|) ds

+
(ψ(t)− ψ(0))

1−γ

Γ(α)

∫ t

0

ψ
′

(s) (ψ(t)− ψ(s))
α−1

|g(s, u(s, ω), ω)| ds, (by Proposition 2.3)

≤
c

(a+ b)Γ(γ)
+

b

(a+ b)Γ(γ)

M(ω)

Γ(2− β + αβ)
(ψ(T )− ψ(0))

1−β+αβ
+

M(ω)

Γ(α+ 1)
(ψ(T )− ψ(0))

α+γ−1

+

(
b

(a+ b)Γ(γ)

N(ω)

Γ(1− β + αβ)
B(γ, 1− β + αβ) (ψ(T )− ψ(0))

α
+
N(ω)

Γ(α)
B(γ, α) (ψ(T )− ψ(0))

α

)
r

≤ r.

Which yields that P(Br) ⊂ Br.

Next we prove that the operator P is completely continuous.

Step 2: The operator P is continuous.

Let un be a sequence such that un → u in C1−γ,ψ(J). Then for each t ∈ J ,

‖Pun − Pu‖C1−γ,ψ
→ 0 as n→ ∞.

Step 3: P(Br) is relatively compact.

Thus P(Br) is uniformly bounded. Let t1, t2 ∈ J , t1 < t2, then

∣∣∣(Pu)(t2, ω) (ψ(t2)− ψ(0))
1−γ

− (Pu)(t1, ω) (ψ(t1)− ψ(0))
1−γ
∣∣∣

≤

∣∣∣∣∣
(ψ(t2)− ψ(0))

1−γ

Γ(α)

∫ t2

0

ψ
′

(s) (ψ(t2)− ψ(s))
α−1

g(s, u(s, ω), ω)∆s

−
(ψ(t1)− ψ(0))

1−γ

Γ(α)

∫ t1

0

ψ
′

(s) (ψ(t1)− ψ(s))
α−1

g(s, u(s, ω), ω)∆s

∣∣∣∣∣

≤
1

Γ(α)

∫ t1

0

ψ
′

(s)
∣∣∣(ψ(t2)− ψ(0))

1−γ
(ψ(t2)− ψ(s))

α−1

− (ψ(t1)− ψ(0))
1−γ

(ψ(t1)− ψ(s))
α−1

∣∣∣ |g(s, u(s, ω), ω)|∆s

+
(ψ(t2)− ψ(0))

1−γ

Γ(α)

∫ t2

t1

ψ
′

(s) (ψ(t2)− ψ(s))
α−1

|g(s, u(s, ω), ω)|∆s
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≤
1

Γ(α)

∫ t1

0

ψ
′

(s)
∣∣∣(ψ(t2)− ψ(0))

1−γ
(ψ(t2)− ψ(s))

α−1

− (ψ(t2)− ψ(0))
1−γ

(ψ(t1)− ψ(s))
α−1

∣∣∣ |g(s, u(s, ω), ω)| ds

+
(ψ(t2)− ψ(0))

1−γ

Γ(α)
(ψ(t2)− ψ(t1))

α+γ−1
B(γ, α) ‖g‖C1−γ,ψ

.

Thus, right-hand side of the above inequality tends to zero. Hence along with the Arzëla-Ascoli

theorem and from Step 1-3, it is concluded that P is completely continuous. Thus the proposed

problem has at least one solution.

Lemma 3.2. Assume that (H1) is fulfilled. If

(
b

(a+ b)Γ(γ)

B(γ, 1− β + αβ)

Γ(1− β + αβ)
+
B(γ, α)

Γ(α)

)
ℓg (ψ(T )− ψ(0))

α
< 1, (6)

then the problem (1) has a unique solution.

Next, we shall give the definitions and the criteria generalized U-H-R stability for ψ-HFD of

dynamic equations on time scales.

Definition 3.3. Eq. (1) is generalized U-H-R stable with respect to ϕ ∈ C1−γ,ψ(J) if there exists a

real number cg,ϕ > 0 such that for each solution v ∈ C1−γ,ψ(J) of the inequality

∣∣T∆α,βv(t, ω)− g(t, v(t, ω), ω)
∣∣ ≤ ϕ(t), (7)

there exists a solution u ∈ C1−γ,ψ(J) of equation (1) with

|v(t, ω)− u(t, ω)| ≤ cg,ϕϕ(t, ω), t ∈ J.

Theorem 3.4. Assume that (H1), (H3) and (6) are satisfied. Then, the problem (1) is generalized

U-H-R stable.

4. Nonlocal fractional RDEs on times scale

Theorem 4.1. Assume that [H1] and [H2] are satisfied. Then, Eq.(3) has at least one solution.

Proof. Consider the operator P : C1−γ,ψ(J) → C1−γ,ψ(J), it is well defined and given by

Pu(t, ω) =





T
Γ(α) (ψ(t)− ψ(0))

γ−1∑m
i=1 ci

∫ τi

0

ψ
′

(s) (ψ(τi)− ψ(s))
α−1

g(s, u(s, ω), ω)∆s

+ 1
Γ(α)

∫ t

0

ψ
′

(s) (ψ(t)− ψ(s))
α−1

g(s, u(s, ω), ω)∆s.
(8)

Set g̃(s) = g(s, 0, ω). Consider the ball Br =
{
u ∈ C1−γ,ψ(J) : ‖u‖C1−γ,ψ

≤ r
}
.

Now we subdivide the operator P into two operator P1 and P2 on Br as follows

P1u(t, ω) =
T

Γ(α)
(ψ(t)− ψ(0))

γ−1
m∑

i=1

ci

∫ τi

0

ψ
′

(s) (ψ(τi)− ψ(s))
α−1

g(s, u(s, ω), ω)∆s

and

P2u(t, ω) =
1

Γ(α)

∫ t

0

ψ
′

(s) (ψ(t)− ψ(s))
α−1

g(s, u(s, ω), ω)∆s.

Ikonion Journal of Mathematics 2019, 1 (1) 

40



The proof is divided into several steps.

Step.1 P1u+P2y ∈ Br for every u, y ∈ Br. By direct computation and utilizing condition and with

proposition 2.3 we obtain

‖P1u+ P2y‖C1−γ,ψ
≤ ‖P1u‖C1−γ,ψ

+ ‖P2y‖C1−γ,ψ
≤ r.

where

‖P1u‖C1−γ,ψ
≤
B(γ, α)T

Γ(α)

m∑

i=1

ci (ψ(τi)− ψ(0))
α+γ−1

(
ℓg ‖u‖C1−γ,ψ

+ ‖g̃‖C1−γ,ψ

)

and

‖P2u‖C1−γ,ψ
≤
B(γ, α)

Γ(α)
(ψ(t)− ψ(0))

α
(
ℓg ‖u‖C1−γ,ψ

+ ‖g̃‖C1−γ,ψ

)
.

Step.2 P1 is a contration mapping.

For any u, y ∈ Br

‖P1u− P1y‖C1−γ,ψ
≤

ℓgT

Γ(α)

m∑

i=1

ci (ψ(τi)− ψ(0))
α+γ−1

B(γ, α) ‖u− y‖C1−γ,ψ
.

The operator P1 is contraction.

Step.3 The operator P2 is compact and continuous.

According to Step 1, we know that operator P2 is uniformly bounded.

Now we prove the compactness of operator B.

For 0 < t1 < t2 < T , we have

|P2u(t1, ω)− P2u(t2, ω)| ≤ ‖g‖C1−γ,ψ
B(γ, α)

∣∣∣(ψ(t1)− ψ(0))
α+γ−1

− (ψ(t2)− ψ(0))
α+γ−1

∣∣∣

tending to zero as t1 → t2. Thus P2 is equicontinuous. Hence, the operator P2 is compact on Br

by the Arzela-Ascoli Theorem. We now conclude the result of the theorem based on the Theorem

2.13.

Theorem 4.2. If hypothesis (H1) and the constant

δ =
ℓgB(γ, α)

Γ(α)

(
T

m∑

i=1

ci (ψ(τi)− ψ(0))
α+γ−1

+ (ψ(T )− ψ(0))
α

)
< 1

holds. Then, Eq. (3) has unique solution.

Theorem 4.3. Let hypotheses (H1) and (H3) are fullfilled. Then Eq.(3) is generalized-U-H-R stable.
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