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Control and Stabilization of Distributed Systems
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Müjgan Tez, (Marmara University, Istanbul, Turkey), Statistics

Mohammad Kazim KHAN, Kent State University, Kent, Ohio, USA Applied Statistics, Communication
and Networking, Mathematical Finance, Optimal designs of experiments, Stochastic Methods in Approxi-
mation Theory, Analysis and Summability Theory
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APPROXIMATE ANALYTICAL SOLUTIONS OF THE
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Abstract. We investigate the approximate l-state solutions of the Schrödinger

equation for Hulthn plus a class of Yukawa potential. In this context, we con-
struct the bound-state energy equation and the wave function expressed by the

Gauss hypergeometric function by means of asymptotic iteration approach in

detail.

1. Introduction

Bound state solutions of the Schrödinger equation for a quantum system inter-
acting with spherical symmetric potential models are among the most important in
various fields of physics. The l-state solutions of the non-relativistic wave equation
for exponential potentials especially are of great interest in literature[1, 2, 3, 4].
Under consideration of this problem, it cannot be possible to obtain analytical
solutions without approximations. For this reason, approximations and their ap-
plications are essential in quantum mechanical models. In the present work, we
choose the proper approximate expression for investigating of analytical solutions.
Asymptotic iteration method proposed by Ciftci et al. [5, 6, 7] is a powerful tool for
solving second-order homogeneous linear differential equation. This method gives
a precise way to probe the bound state solutions of the Schrödinger wave equation
for any l-state. In this context, the purpose of this work is to apply the asymptotic
iteration approach to investigate the non-relativistic treatment of Hulthn plus a
class of Yukawa potential.
A combination of two potentials has aroused extensive research interest in liter-
ature. Many researchers have adopted this type of potential to carry out some
works[8, 9, 10, 11, 12, 13, 14, 15]. Motivated by these works, we consider the fol-
lowing form of potential model which is the superposition of Hulthn[16] and a class
of Yukawa[17] potentials
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V (r) = −2αZe2e−2αr

1− e−2αr
− Ae−αr

r
− Be−2αr

r2
(1.1)

where the parameter Z denotes the atomic number. α is the screening parameter
which determines the range of potential, A and B are the coupling strengths of
the potential. Hulthn plus a class of Yukawa potential has been newly proposed by
Ahmadov et al.[15]. Bound state solutions of the Dirac equation under the spin and
pseudospin symmetries for this potential including Coulomb-like tensor interaction
have been presented in [15]. As far as we know, no report has been made so far in lit-
erature employing this combined potential within the framework of non-relativistic
theory. For this reason, we focus on studying the model of a quantum system with
Hulthn plus a class of Yukawa potential by means of asymptotic iteration method.

2. Overview of the asymptotic iteration method

The purpose of this section is to briefly outline the asymptotic iteration approach
used to solve the second-order differential equations. The details of this approach
have been reported in [5, 6, 7]. We start with the approach by writing a general
form of the second-order differential equation

y
′′

(r) = λ0 (r) y
′
(r) + s0 (r) y(r) (2.1)

where λ0(r) and s0(r) functions in C∞(a, b) are sufficiently differentiable. The
general solution of Equation (2.1) can be obtained in the following form

y (r) = exp(−∫rα(r′)dr′)
[
C2 + C1∫r exp

(
∫r

′
[λ0(τ) + 2α(τ)] dτ

)
dr′
]

(2.2)

For sufficiently large k,
sk(r)

λk(r)
=
sk−1(r)

λk−1(r)
= α(r) (2.3)

in which
λk (r) = λ

′

k−1 (r) + sk−1 (r) + λ0(r)λk−1 (r)

sk (r) = s
′

k−1 (r) + s0 (r)λk−1 (r) (2.4)

If the eigenvalue problem has exact analytical solutions, the termination condition
Equation (2.3), or equivalently

δk (r) = λk (r) sk−1 (r)− λk−1 (r) sk (r) = 0 (2.5)

produces, at each iteration, an expression that is independent of r. It is noted
that k displays the iteration number. Physically meaningful solution of Equation
(2.1) is provided by the first term of Equation (2.2) not the second term, so we can
use the first term as the wave function generator

y (r) = C2exp

(
−
∫ r sk (r′)

λk (r′)
dr′
)

(2.6)

in which C2 denotes the integrant constant which can be determined by normaliza-
tion.

There is also an alternative way to determine the wave function within the frame-
work of AIM. The following second-order homogeneous linear differential equation
allows us to find the wave function

y
′′

= 2

(
axN+1

1− bxN+2
− (m+ 1)

x

)
y′ − wxN

1− bxN+2
y (2.7)
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in which N=-1,0,1. . . and a , w , m are the real numbers which are to be
determined. The general solution of Eq.(2.7) is found in the following form

yn (x) = (−1)
n
C2(N + 2)

n
(µ)n2F1

(
−n, t+ n; µ; bxN+2

)
(2.8)

where (µ)n = Γ(µ+n)
Γ(µ) , µ= 2m+N+3

N+2 , t = (2m+1)b+2a
(N+2)b and 2F1 denotes to the Gauss

hypergeometric function being defined as

2F1 (−n, b, c, x) =

n∑
k=0

(−n)k(b)kx
k

(c)kk!

the Pochhammer symbol (α)k is defined by (α)0 = 1 and (α)k = α (α+ 1) (α+ 2) . . .

L (α+ k − 1) = Γ(α+k)
Γ(α) for k = 1, 2, 3 . . . It should be mentioned that the details

concerning AIM can be found in [5, 6, 7].

3. Bound state solutions of Hulthn plus a class of Yukawa potential
in approximate analytic form

Firstly, we focus on the separation of variables for the Schrödinger equation. The
motion of a particle in central potential field is described in non-relativistic theory
as follows [

− }2

2µ
∇2 + V (r)

]
ψ (−→r ) = Eψ (−→r ) (3.1)

where E and µ define non-relativistic energy and reduced mass, V (r) is the central
potential, } is the Planck constant.
The following expression is the Laplace operator in three dimensions

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

r2(sinθ )
2

∂2

∂ϕ2
(3.2)

We employ a form of the total spherical wave function as

ψ (r, θ, ϕ) =
R (r)

r
Y ml (θ, ϕ) (3.3)

where R(r) and Y ml (θ, φ) are the radial wave function and the spherical harmonics.
The way of separating variables has been applied to Schrödinger equation. Based
on this way, we obtain the non-relativistic wave equation with respect to R(r)

d2R(r)

dr2
+

[
2µ

}2
(E − V (r))− l (l + 1)

r2

]
R (r) = 0 (3.4)

When inserted Equation (1.1) into Equation (3.4), the radial Schrödinger wave
equation becomes

d2R(r)

dr2
+

[
2µ

}2

(
E −

(
−2Ze2αe−2αr

(1− e−2αr)
− Ae−αr

r
− Be−2αr

r2

))
− l (l + 1)

r2

]
R (r) = 0

(3.5)
Equation (3.5) cannot be solved analytically for any l-state because of the centrifu-
gal term. Therefore, to solve this equation, we need to use an approximation of the
following form

1

r
≈ 2αe−αr

(1− e−2αr)
,

1

r2
≈ 4α2e−2αr

(1− e−2αr)
2 (3.6)

This scheme is called as the Greene-Aldrich approximation[18] which is only suit-
able for a short range (small α) potential. If we apply this approximation and
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transformation x = e−2αr to Equation (3.5), then we can rewrite the radial wave
equation in non-relativistic theory

d2R(x)

dx2
+

1

x

dR(x)

dx
+

[
−γ

2

x2
+

β2

x (1− x)
− σ2

(1− x)
2 −

l(l + 1)

x(1− x)
2

]
R (x) = 0 (3.7)

In Equation (3.7), we take the abbreviations as

β2 =
µ (V0 + V ′0)

2α2}2
, γ2 = − µE

2α2}2
, σ2 = − µB′

2α2}2
(3.8)

For simplicity, we take as V0 = 2αZe2, V ′0 = 2Aα and B′ = 4Bα2 in above
expressions. By analyzing the asymptotic behaviour of Equation (3.7) at the origin
and infinity, we can propose the wave function in terms of R(x)

R (x) = xγ(1− x)
δ+1

f(x) (3.9)

with

δ = −1

2
+

√
1 + 4σ2 + 4l(l + 1)

2
(3.10)

After taking the proposed wave function given in Equation (3.9) and inserting this
into Equation (3.7), we obtain the second-order homogeneous linear differential
equation as

d2f(x)

dx2
=

[
(2γ + 2δ + 3)x− (2γ + 1)

x(1− x)

]
df(x)

dx
+

[
(2γ + 1) (δ + 1)− β2 + l(l + 1)

x(1− x)

]
f(x)

(3.11)

This equation is convenient to apply the asymptotic iteration approach. Compar-
ison of Equation (3.11) and Equation (2.1) gives the values of λ0 and s0. With
Equation (2.4), it is then easy to obtain the values of λn(x) and sn(x) in the fol-
lowing forms

λ0 =
(2γ + 2δ + 3)x− (2γ + 1)

x(1− x)

s0 =
(2γ + 1) (δ + 1)− β2 + l(l + 1)

x(1− x)

λ1 =
(2γ + 2δ + 3)x

x(1− x)
− (2γ + 2δ + 3)x− (2γ + 1)

x2 (1− x)
+

(2γ + 2δ + 3)x− (2γ + 1)

x(1− x)
2

+
(1 + δ) (2γ + 1) + l (l + 1)− β2

x (1− x)
+

((2γ + 2δ + 3)x− (2γ + 1))
2

x2(1− x)
2

s1 = − (1 + δ) (2γ + 1) + l (l + 1)− β2

x2 (1− x)
+

(1 + δ) (2γ + 1) + l (l + 1)− β2

x(1− x)
2

+

(
(1 + δ) (2γ + 1) + l (l + 1)− β2

)
((2γ + 2δ + 3)x− (2γ + 1))

x2(1− x)
2

... (3.12)

To calculate the radial energy eigenvalues, we employ the termination condition
given by Equation (2.3). Thus, these energy eigenvalues are obtained as

s0

λ0
=
s1

λ1
⇒ γ0 = − l(l + 1)−β2 + δ + 1

2 (δ + 1)
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s1

λ1
=
s2

λ2
⇒ γ1 = − l(l + 1)−β2 + 3δ + 4

2 (δ + 2)

s2

λ2
=
s3

λ3
⇒ γ2 = − l(l + 1)−β2 + 5δ + 9

2 (δ + 3)

... (3.13)

Based on the preceding expressions, we can generalize in the following form

γn = − l(l + 1)−β2 + (2n+ 1)δ + (n+ 1)
2

2 (δ + n+ 1)
, n = 0, 1, 2, . . . (3.14)

Substituting the values of γ, β and σ given in Equation (3.8) and the value of δ
given in Equation (3.10) into Equation (3.14), it can be built as

E = −2α2}2

µ

 µ
}2α

(
Ze2 +A

)
− l (l + 1)−

(
n2 + n+ 1

2

)
− (2n+ 1)

√
1
4
− 2µB

}2 + l (l + 1)

2n+ 1 + 2
√

1
4
− 2µB

}2 + l (l + 1)

2

(3.15)

Thus, we find the energy spectrum for Hulthn plus a class of Yukawa potential in
spherical coordinates. By comparing with Equation (3.11) and Equation (2.7) and
following expressions below Equation (2.8), we can easily find as

b = 1, N = −1, a = δ + 1,m = 2γ − 1

µ = 2γ + 1, t =2γ + 2δ + 2 (3.16)

Directly the function of f(x) can be obtained from Equation (2.8) with the substi-
tution of Equation (3.16) in the following form

f (x) = (−1)
n
C2(2γ + 1)n2F1 (−n, 2γ + 2δ + 2 + n; 2γ + 1 ;x ) (3.17)

If we put Equation (3.17) into Equation (3.9), we can obtain the unnormalized
radial wave function for Hulthn plus a class of Yukawa potential

R (x) = (−1)
n
C2(2γ + 1)n(1− x)

δ+1
xγ

× 2F1 (−n, 2γ + 2δ + 2 + n; 2γ + 1 ;x ) (3.18)

Then, substituting x = e−2αr into Equation (3.18), we write the unnormalized
radial wave function for considered potential with respect to r

R (r) = (−1)
n
C2(2γ + 1)n

(
1− e−2αr

)δ+1
e−2αγr

× 2F1

(
−n, 2γ + 2δ + 2 + n; 2γ + 1 ; e−2αr

)
(3.19)

in which C2 is the integration constant.

4. Conclusion

We consider Hulthn plus a class of Yukawa potential because of the impor-
tance of the combined potentials. In this connection, bound state solutions of the
Schrödinger equation have been established for any l-state within the framework
of asymptotic iteration method. To achieve this, we apply a proper approximation
scheme which is called as Greene-Aldrich approximation. Therefore, we construct
the energy eigenvalues and unnormalized wave function in approximate analytic
form. We note that the theoretical results obtained for the considered potential
may shed light on the applications in different fields.
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Abstract. This paper is concerned with the finite-time stability of Ξ-Hilfer

type fuzzy fractional differential equations (FFDEs) with time delay. By apply-
ing standard theorems and a hypothetical condition, we explore the existence

of solution and stabilty results.

1. Introduction

In this manuscript, we will explore the existence and stabilty of the following
Ξ-Hilfer type FFDE with time delay

Dζ1,ζ2,Ξ
0+ w(t) = g(t, wt), t ∈ (0, b],

I 1−γ,Ξ
0+ w(0+) = w0, γ = ζ1 + ζ2 − ζ1ζ2,

w(t) = χ(t), t ∈ [−τ, 0],

(1.1)

where w ∈ Rc, g : [0, b] × C([−τ, b], Ec) → Ec is fuzzy function, where χ ∈
C([−τ, 0], Ec) and Ec is the space of fuzzy sets. Moreover I 1−γ,Ξ

0+ , Dζ1,ζ2,Ξ
0+ de-

notes the Ξ-Hilfer fractional integral and derivative of order ζ1 ∈ (0, 1) and type
ζ2 ∈ [0, 1]. Compared to the literature [1] to [35], the main contributions and
novality of this paper are reflected in the following aspects:

(i) The system (1.1) has delay terms, which can be truly reflected the object
process of change.

2020 Mathematics Subject Classification. Primary: 26A33 ; Secondaries: 33E12 .
Key words and phrases. Fuzzy differential equations; Ξ-Hilfer fractional derivative; Finite-time

stability; Fixed point; Existence.
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(ii) In view of different systems, although the method used to study the ex-
istence and stability, but there are many differences in the processes of
proof.

(iii) We are able to prove time-stability by using new assumptions.

2. Elementary results

This section of research paper is devoted to basic results and definitions that we
need for investigation of the main results.

Let us take J = [0, b]. Let C([−τ, b], Ec) be the family of all continuous fuzzy

functions from [−τ, b] into Ec, which endowed with the supremum metric: D[−τ,b][w, 0̂] =

supt∈[−τ,b]D0[w(t), 0̂] and AC(J, Ec) be the family of all absolutely continuous fuzzy

functions on the interval J with the values in Ec. Let γ ∈ (0, 1), by Cγ,Ξ(J, Ec). We
denote the family of continuous functions defined by Cγ,Ξ(J, Ec) = {w : (0, b] →
Ec|(Ξ(t)− Ξ(0))1−γw(t) ∈ C(J, Ec)}.

Let Ec denote the space of all fuzzy numbers on Rc, if w : Rc → [0, 1] satisfies
normal, convex, upper semicontinuous and compactly supported.
The q-level set of w is defined by

[w]q = {t ∈ Rc : w(t) ≥ q}, q ∈ [0, 1] and

[w]0 = {t ∈ Rc|w(t) > 0}.
It follows that the q-level set of w ∈ Ec, [w]q is a nonempty compact interval, for
any q ∈ [0, 1]. We denote by [w(q), w(q)] the q-level of a fuzzy number w.

Definition 2.1. [12] Ler w1 and w2 be two fuzzy sets defined on Ec and µ ∈ Rc.
Due to Zadeh’s extension principle, w1 + w2 and µw1 are in Ec and defined as

[w1 + w2]q =[w1]q + [w2]q,

[µw]q =µ[w]q, for all q ∈ [0, 1],

where [w1]q + [w2]q represents the usual addition of two intervals of Rc and µ[w1]q

represents the usual scalar product between µ and an real interval.

Definition 2.2. [12] The distance D0[w1, w2] between two fuzzy numbers is defined
by

D0[w1, w2] = sup
0≤q≤1

H([w1]q, [w2]q) for all w1, w2 ∈ Ec, (2.1)

where H([w1]q, [w2]q) = max{|w1(q) − w2(q)|, |w1(q) − w2(q)|} is the Hausdroff
distance between [w1]q and [w2]q.

Definition 2.3. [12] Let w1, w2 ∈ Ec. There exists w3 ∈ Ec such that w1 = w2+w3,
that is., w3 = w1 	 w2, where w3 is Hukuhara difference of w1 and w2.
The generalized Hukuhara difference of two fuzzy numbers w1, w2 ∈ Ec [gH-difference]
is defined as

w1 	gH w2 = w3 ⇔

{
(i)w1 = w2 + w3, or

(ii)w2 = w1 + (−1)w3,
(2.2)

where w1 	gH w2 is called as gH-difference of w1 and w2 in Ec.
In the q-levels, we have that for all q ∈ [0, 1],

[w1 	gH w2]q = [min{w1(s)− w2(s), w1(s)− w2(s)}, (2.3)

max{w1(s)− w2(s), w1(s)− w2(s)}]. (2.4)
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Also, the condition for the existence of w1 	gH w2 in the case(i) is d([w1]q) ≥
d([w2]q), and the condition for the existence of w1	gHw2 in the case(ii) is d([w2]q) ≥
d([w1]q).

Definition 2.4. [12] A function w : [0, b] → Ec is said to be d-increasing (d-
decreasing) on [0, b] if for every q ∈ [0, 1] the function t 7→ d[w(t)]q is nondecreasing
(nonincreasing) on [0, b]. Let w be a d-increasing or d-decreasing on [0, b], then we
say that w is d-monotone on [0, b].

Definition 2.5. [12] The generalized Hukuhara derivative of a fuzzy-valued function
w : (0, b)→ Ec at t is defined as

w
′

gH(t) = lim
h→0

w(t+ h)	gH w(t)

h
,

if w
′

gH(t) ∈ Ec, we say that w is generalized Hukuhara differentiable (gH-differentiable)
at t.

Moreover, we say that w is [(i)− gH]-differentiable at t if

[w
′

gh(t)]q =

[[
lim
h→0

w(t+ h)	gH w(t)

h

]q
,

[
lim
h→0

w(t+ h)	gH w(t)

h

]q]
,

= [(w)
′
(q, t), (w)

′
(q, t)], (2.5)

and that w is [(ii)− gH]-differentiable at t if

[w
′

gH(t)]q = [(w)
′
(q, t), (w)

′
(q, t)]. (2.6)

Definition 2.6. [12] Let us consider w ∈ L (J, Ec) as a fuzzy function and ζ1 ∈
(0, 1), then the fuzzy Ξ-type Riemann-Liouville integral of fuzzy-valued function w
is defined as follows:

(I ζ1,Ξ
0+ w)(t) =

1

Γ(ζ1)

∫ t

0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1−1w(s)ds, for all t ∈ J, (2.7)

where Γ(ζ1) is the Gamma function.

Definition 2.7. [12] Let w : J→ Ec be a continuous fuzzy mapping. The fuzzy Ξ-
type Riemann-Liouville fractional derivative of order n−1 < α < n for fuzzy-valued
function w is defined by

(Dζ1,Ξ
0+ w)(t) =

1

Γ(n− ζ1)

(
1

Ξ′(t)

d

dt

)n ∫ t

0

Ξ
′
(s)(Ξ(t)−Ξ(s))n−ζ1−1w(s)ds,∀ t ∈ J.

(2.8)
If w ∈ C(J, Ec), then the Ξ-Hilfer fractional integral of order ζ1 of the fuzzy-

valued function w is defined as follows:

wζ1,Ξ(t) = (I ζ1,Ξ
0+ w)(t) =

1

Γ(ζ1)

∫ t

0

Ξ
′
(t)(Ξ(t)− Ξ(s))ζ1−1w(s)ds.

Since [w(t)]q = [w(q, t), w(q, t)] and 0 < ζ1 < 1, let us consider the fuzzy Ξ-
fractional integral of the fuzzy-valued function w based on lower and upper func-
tions, that is,

[
(
I ζ1,Ξ

0+ w
)
(t)]q = [

(
I ζ1,Ξ

0+ w
)
(q, t),

(
I ζ1,Ξ

0+ w
)
(q, t)],
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where(
I ζ1,Ξ

0+ w
)
(q, t) = 1

Γ(ζ1)

∫ t
0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1−1w(q, s)(s)ds,

and(
I ζ1,Ξ

0+ w
)
(q, t) = 1

Γ(ζ1)

∫ t
0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1−1w(q, s)(s)ds.

In addition, it follows that the opeartor wζ1,Ξ(t) is linear and bounded from
C([J, Ec) to C(J, Ec). Indeed, we have

c ≤ ‖w‖0
1

Γ(ζ1)

∫ t

0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1−1ds =

‖w‖0
Γ(ζ1 + 1)

(
Ξ(t)− Ξ(0)

)ζ1
,

where ‖w‖0 = supt∈JD0[w(t), 0̂].

Definition 2.8. [12] Let order ζ1 and type ζ2 satisfy n−1 < ζ1 ≤ n and 0 ≤ ζ2 ≤ 1,
with n ∈ N . The fuzzy Ξ-Hilfer generalized Hukuhara fractional derivative(or Ξ-
Hilfer gH-fractional derivative) (left-sided/right-sided), with respect to t, with a
function w ∈ C1−γ,Ξ(J, Ec), is defined as follows:

(
Dζ1,ζ2,Ξ

0+ w
)
(t) =

(
I
ζ2(1−ζ1),Ξ
0+

)( 1

Ξ′(t)

d

dt

)(
I

(1−ζ2)(1−ζ1),Ξ
0+ w

)
(t)

=
(
I
ζ2(1−ζ1),Ξ
0+ fΞI

(1−ζ2)(1−ζ1),Ξ
0+ w

)
(t),

if the gH-derivative w
′

(1−ζ1),Ξ(t) exists for t ∈ J, where

w(1−ζ1),Ξ(t) :=
(
I

(1−ζ1),Ξ
0+ w

)
(t) =

1

Γ(1− ζ1)

∫ t

0

Ξ
′
(s)(Ξ(t)− Ξ(s))−ζ1w(s)ds.

Definition 2.9. [11] Let ζ1 > 0, ζ2 > 0. Then the two parameters Mittag-Leffler
function is defined as

Eζ1,ζ2(w) =

∞∑
k=0

wk

Γ(ζ1k + ζ2)
, w ∈ Ec. (2.9)

If ζ2 = 1, the one-parameter Mittag-Leffler function defined by

Eζ1(w) =

∞∑
k=0

wk

Γ(ζ1k + 1)
, w ∈ Ec, ζ1 > 0. (2.10)

Definition 2.10. [11] The fuzzy problem (1.1) is said to be finite time stable with
respect to {0, J, τ, σ, ε}, 0 < δ1 < ε, ε ∈ Ec, such that for any solution w of fuzzy

problem (1.1), if and if D0[w0, 0̂] < σ and D0[χ, 0̂] < σ, implies a solution w of

fuzzy problem (1.1) satisfying Dγ
J[w, 0̂] < ε.

For our convenience, we define N (w) = {w ∈ Cγ(J, Ec). w satisfies (3.1)}.

Lemma 2.1. [12] Let ζ1, ζ2, ϑ1 > 0. Then

(i) I ζ1Ξ
0+ I ζ2,Ξ

0+ w(t) = I ζ1,ζ2
0+ w(t).

(ii) I ζ1,Ξ
0+ (Ξ(t)− Ξ(0))ϑ1−1 =

Γ(ϑ1)

Γ(ζ1 + ϑ1)
(Ξ(t)− Ξ(0))ζ1+ϑ1−1.
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Lemma 2.2. [12] Let ζ1 > 0, 0 ≤ γ < 1. If w ∈ Cγ,Ξ[0, b] and I 1−ζ1,Ξ
0+ w ∈

C1
γ,Ξ[0, b],then

I ζ1,Ξ
0+ Dζ1,ζ2,Ξ

0+ w(t) = w(t)−
I 1−ζ1,Ξ

0+ w(t)

Γ(ζ1)
(Ξ(t)− Ξ(0))ζ1−1.

Lemma 2.3. [12] Let w ∈ L1(0, b). If D
ζ2(1−ζ1),Ξ
0+ w exists on L1(0, b), then

Dζ1,ζ2,Ξ
0+ I ζ1,Ξ

0+ w = I
ζ2(1−ζ2),Ξ
0+ D

ζ2(1−ζ1),Ξ
0+ w, for all t ∈ (0, b].

Theorem 2.4. [25](Schauder fixed point theorem) Let H 6= 0 be a bounded,
closed, convex subset of a fuzzy Banach space in X. If T : H → H be a continuous
compact operator. Then, T has at least one fixed point in H.

Lemma 2.5. [11](Generalized Gronwall’s Inequality) Let ζ1 > 0 and x1(t), x2(t)
be two nonnegative function locally integrable on [0, T ]. Assume that g is nonnega-
tive and nondecreasing, and let Ξ ∈ C1([0, T ], Ec) an increasing function such that

Ξ
′
(t) 6= 0 for all t ∈ [0, T ]. If

x1(t) ≤ x2(t) + g(t)

∫ t

0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1x1(s)ds, t ∈ [0, T ].

Then

x1(t) ≤ x2(t) +

∫ t

0

∞∑
n=1

[g(t)Γ(ζ1)]

Γ(nζ1)
Ξ
′
(s)(Ξ(t)− Ξ(s))nζ1x2(s)ds, t ∈ [0, T ].

If x2 be a nondecreasing function on [0, T ]. Then

x1(t) ≤ x2(t)Eζ1{g(t)Γ(ζ1)[Ξ(t)− Ξ(0)]ζ1}, t ∈ [0, T ].

Lemma 2.6. [12] Let g : (0, b] × Ec → Ec be a continuous fuzzy function. Then
the following problem{

Dζ1,ζ2,Ξ
0+ w(t) = g(t, wt), t ∈ (0, b],

I 1−γ,Ξ
0+ w(0+) = w0, γ = ζ1 + ζ2 − ζ1ζ2,

is equivalent to integral equation

w(t) =
(Ξ(t)− Ξ(0))γ−1

Γ(γ)
w0 +

1

Γ(ζ1)

∫ t

0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1g(s, ws)ds.

3. Existence and stability theory

In this section, we estabilish and demonstrate the existence and stabilty of (1.1).
We assume the following assumptions before begining and examining the key out-
comes. (A1) There exists a positive constants L such that

D0[g(t, w), 0̂] ≤ L (Ξ(t)− Ξ(0))1−γD[−τ,0][w, 0̂],

for all w ∈ C([−τ, 0], Ec), w ∈ Ec, t ∈ J.

with L ∈
[
0,Γ(ζ1 + 1)

(
1

Ξ(b)−Ξ(0)

)1+ζ1−γ]
.

(A2) There exists a positive constants L ∗ such that

D0[g(t, wt), g(t, w∗t )] ≤ L ∗D[−τ,0][wt, w
∗
t ]

= L ∗D[t−τ,t][w,w
∗], for all w,w∗ ∈ Ec.
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Lemma 3.1. Let g : [0, b] × C([−τ, 0], Ec) → Ec be a continuous fuzzy function,
χ ∈ C([−τ, 0], Ec). Then a d- monotone fuzzy function w ∈ C(J, Ec) is a solution
of initial value problem (1.1) if and only if w satisfies the integral equation

w(t)	gH
(Ξ(t)− Ξ(0))γ−1

Γ(γ)
w0 =

1

Γ(ζ1)

∫ t

0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1−1g(s, ws)ds, t ∈ J

(3.1)

and w(t) = χ(t), t ∈ [−τ, 0], and the fuzzy function t 7→ I 1−γ,Ξ
0+ g(t, wt) is d-

increasing on J.

Proof. Let us assume w ∈ C(J, Ec) be a d-monotone solution of (1.1) and let

y(t) = w(t) 	gH (I 1−γ,Ξ
0+ ), t ∈ J. Since w is d-monotone on J, it follows that

t 7→ y(t) is d-increasing on J. It follow from (1.1) and Lemma 2.12 we have

I ζ1,Ξ
0+ Dζ1,ζ2,Ξ

0+ w(t) = w(t)	gH
w0

Γ(γ)
(Ξ(t)− Ξ(0))1−γ , t ∈ J.

Since g(t, w) ∈ Cγ,Ξ(J, Ec) for any w ∈ Ec and by using the Eqn.(1.1), it follows
that

I ζ1,Ξ
0+ Dζ1,ζ2,Ξ

0+ w(t) = I ζ1,Ξ
0+ g(t, wt)

=
1

Γ(ζ1)

∫ t

0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1−1g(s, ws)ds, t ∈ J.

In addition, since y(t) is d-increasing on (0, b], due to t 7→ gζ1,Ξ(t, w) is also d-
increasing on (0, b]. We obtain that

w(t)	gH
(Ξ(t)− Ξ(0))γ−1

Γ(γ)
w0 =

1

Γ(ζ1)

∫ t

0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1−1g(s, ws)ds, t ∈ J

For every t ∈ [−τ, 0], we have w(t) = χ(t). This implies that (3.1) is satisfied.
Conversely, assume that w ∈ C(J, Ec) satisfies (1.1). If t ∈ [0, b], then w(0+) = w0,

and applying Dζ1,ζ2,Ξ
0+ on both sides, we obtain

Dζ1,ζ2,Ξ
0+ w(t) = g(t, wt), t ∈ (0, b].

And we can easily prove that w(t) = χ(t) for t ∈ [−τ, 0]. �

Lemma 3.2. Let g : [0, b] × C([−τ, 0], Ec) → Ec be a continuous fuzzy function,
χ ∈ C([−τ, 0], Ec). Assume that (A1) is satisfied. Then for any w ∈ C([−τ, b], Ec)
of Eqn.(1.1), there exists a constant η > 0 such that D[−τ,b][w, 0̂] ≤ η.

Proof. Let us assume w ∈ C([−τ, 0], Ec). If t ∈ [−τ, 0], then we have that w(t) =
χ(t). In according to the boundedness of χ, which gives w(t) is bounded.
Suppose t ∈ J, which is w ∈ N (y). Then, for ξ ∈ [0, t], t ∈ (0, b], it follows that ,
we have

D[−τ,0][wξ, 0̂] = sup
θ∈[−τ,0]

D0[yξ(θ), 0̂]

= sup
θ∈[−τ,0]

D0[y(ξ + θ), 0̂]

≤ sup
r∈[−τ,0]

D0[yr, 0̂] + sup
r∈[0,ξ]

D0[y(r), 0̂]

≤ D[−τ,0][χ, 0̂] + sup
r∈[0,ξ]

D0[yr, 0̂]. (3.2)
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Hence, for t ∈ (0, b], by using (3.1), (3.2), (A1), Definition 2 and the Beta Function
B(·, ·), we have

D0[(Ξ(t)− Ξ(0))1−γw(t), 0̂]

≤ D0

[
(Ξ(t)− Ξ(0))1−γ

(
(Ξ(t)− Ξ(0))γ−1

Γ(γ)
w0

)
, 0̂

]
+D0

[
(Ξ(t)− Ξ(0))1−γ 1

Γ(ζ1)

∫ t

0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1−1g(s, ws)ds, 0̂

]
≤ 1

Γ(γ)
D0[w0, 0̂]

+
(Ξ(b)− Ξ(0))1−γ

Γ(ζ1)

∫ t

0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1−1{L (Ξ(s)− Ξ(0))1−γD[−τ,0][ws, 0̂]}ds

≤ 1

Γ(γ)
D0[w0, 0̂]

+ L (Ξ(b)− Ξ(0))1−γ
{
D[−τ,0][χ, 0̂]

1

Γ(ζ1)

∫ t

0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1−1(Ξ(s)− Ξ(0))1−γds

+
1

Γ(ζ1)

∫ t

0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1−1 sup

r∈[0,ξ]

D0[(Ξ(s)− Ξ(0))1−γys, 0̂]

}
≤ 1

Γ(γ)
D0[w0, 0̂]

+
L

Γ(ζ1)
(Ξ(b)− Ξ(0))ζ1+2−2γB(2− γ, ζ1)D[−τ,0][χ, 0̂]

+
L

Γ(ζ1)
(Ξ(b)− Ξ(0))1−γ

∫ t

0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1−1 sup

r∈[0,ξ]

D0[(Ξ(s)− Ξ(0))1−γys, 0̂]ds.

It follows from the generalized Gronwall inequality gives that,

N(t) ≤M∗Eζ1(L (Ξ(b)− Ξ(0))1−γ(Ξ(t)− Ξ(0))ζ1) = η,

where

N(t) = sup
r∈[0,ξ]

D0[(Ξ(s)− Ξ(0))1−γys, 0̂],

M∗ =
1

Γ(γ)
D0[w0, 0̂] +

L

Γ(ζ1)
(Ξ(b)− Ξ(0))ζ1+2−2γB(2− γ, ζ1)D[−τ,0][χ, 0̂].

This implies that, there exists a constant η > 0 such that D[−τ,b][w, 0̂] ≤ η. �

Theorem 3.3. Let g : [0, b]× C([−τ, 0], Ec)→ Ec be a continuous fuzzy function,
χ ∈ C([−τ, 0], Ec). Assume that (A1) is satisfied. Then the fuzzy problem (1.1) has
at least one solution w ∈ C([−τ, b], Ec) ∩ Cγ(J, Ec).

Proof. Let us define the operator Θ : C([−τ, b], Ec)→ C([−τ, b], Ec) ∩ Cγ(J, Ec) is
given by

(Θw)(t) =


(Tw)(t)	gH (Ξ(t)−Ξ(0))γ−1

Γ(γ) w0 = 1
Γ(ζ1)

∫ t
0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1−1g(s, ws)ds,

t ∈ J,

w(t) = χ(t), t ∈ [−τ, 0],
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where T : Cγ(J, Ec) → Cγ(J, Ec), let us assume w ∈ C([−τ, 0], Ec). Because
w(t) = χ(t), t ∈ [−τ, 0].
Step 1. T (Bη1) ⊆ Bη1 .
Let us define a bounded, closed and convex set Bη1 ∈ C1−γ [0, b] as follows

Bη1 = {y ∈ Cγ(J, Ec)|Dγ
[0,b][y, 0̂] ≤ η1}.

with

η1 ≥ max
{(

1

Γ(γ)
D0[w0, 0̂] +

L

Γ(ζ1)
(Ξ(b)− Ξ(0))ζ1+2−2γB(2− γ, ζ1)D[−τ,0][χ, 0̂]

)
× Γ(ζ1 + 1)

Γ(ζ1 + 1)−L (Ξ(b)− Ξ(0))1+ζ1−γ
, η

}
.

If w ∈ Bη1 . Then, for r ∈ [0, t], t ∈ (0, b], we get

D[−τ,0][wt, 0̂] ≤ sup
r∈[−τ,0]

D0[wt(s), 0̂]

= sup
ξ∈[t−τ,t]

D0[w(ξ), 0̂]

≤ D[−τ,0][χ, 0̂] +D[0,b][w, 0̂]. (3.3)

Therefore, for each t ∈ (0, b], we get

D0[(Ξ(t)− Ξ(0))1−γ(Tw)(t), 0̂]

≤ 1

Γ(γ)
D0[w0, 0̂] +

L

Γ(ζ1)
(Ξ(b)− Ξ(0))ζ1+2−2γB(2− γ, ζ1)D[−τ,0][χ, 0̂]

+
L

Γ(ζ1)
(Ξ(b)− Ξ(0))1−γ

∫ t

0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1−1 sup

r∈[0,ξ]

D0[(Ξ(s)− Ξ(0))1−γys, 0̂]]ds

≤ 1

Γ(γ)
D0[w0, 0̂] +

L

Γ(ζ1)
(Ξ(b)− Ξ(0))ζ1+2−2γB(2− γ, ζ1) +D[−τ,0][χ, 0̂]

+
κ

Γ(ζ1 + 1)
(Ξ(b)− Ξ(0))1+ζ1−γ sup

t∈J
D0[Ξ(t)− Ξ(0))1−γwt, 0̂].

This proves that T (Bη1) ⊆ Bη1 .
Step 2. T is continuous on Bη1 .
Let {wn}∞n≥1 (n = 1, 2, ...) be a sequence in Bη1 such that wn → w in C([−τ, 0], Ec).
Then, for each t ∈ J, we have
D0[(Ξ(t)− Ξ(0))1−γ(Twn)(t), (Ξ(t)− Ξ(0))1−γ(Tw)(t)]

≤ D0

[
(Ξ(t)− Ξ(0))1−γ

(
(Twn)(t)	gH

(Ξ(t)− Ξ(0))γ−1

Γ(γ)
w0

)
,

(Ξ(t)− Ξ(0))1−γ
(

(Tw)(t)	gH
(Ξ(t)− Ξ(0))γ−1

Γ(γ)
w0

)]
≤ (Ξ(b)− Ξ(0))1−γ 1

Γ(ζ1)

∫ t

0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1−1D0[g(s, wns), g(s, ws)]ds

≤ (Ξ(b)− Ξ(0))1−γ L ∗

Γ(ζ1)

∫ t

0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1−1D[−τ,0][wns, ws]ds

→ 0 as n→∞.

Now, limn→∞ wn = w ∈ Bη1 . Then, for each t ∈ (0, b], we get
limn→∞(Ξ(t)−Ξ(0))1−γwn = (Ξ(t)−Ξ(0))1−γw. Furthermore, for each t ∈ [−τ, 0],
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due to χ ∈ C([−τ, 0], Ec) that is, limn→∞ wn(t) = χ(t) = g1(w)(t) = w(t). More-
over, one has ‖wn‖C1−ζ1

≤ η1 and ‖w‖C1−ζ1
≤ η1. Hence, for r ∈ [0, t], t ∈ (0, b],

we get limn→∞ wns = ws, D[−τ,0][wns, 0̂] ≤ η1 +D[−τ,0][χ, 0̂],

D[−τ,0][ws, 0̂] ≤ η1 +D[−τ,0][χ, 0̂]. This implies that, it follows from (A1) (A2), for
r ∈ (0, t), t ∈ (0, b], one’s get

D0[g(s, wns), g(s, ws)] ≤ D0[g(s, wns), 0̂] +D0[g(s, ws), 0̂]

≤ 2L ((Ξ(b)− Ξ(0))D[−τ,0][χ, 0̂] + κη1).

Taking into account the fact that T is continuous, that is, D0[g(s, wns), g(s, ws)]→
0 as wn → w, which gives ‖wns − ws‖0 → 0 as wn → w,
where supt∈JD0[(Twn)(t), (Tw)(t)] ≤ ‖Twn − Tw‖0. Thus T is continuous
Step 3. T is compact in Bη1
First, we have to prove T maps bounded sets into equicontinuous sets in Bη1 .
For any t1, t2 ∈ (0, b], t1 < t2 and w ∈ Bη1 , we get
D0[(Ξ(t2)− Ξ(0))1−γ(Tw)(t2), (Ξ(t1)− Ξ(0))1−γ(Tw)(t1)]

≤ D0

[
(Ξ(t2)− Ξ(0))1−γ

(
(Tw)(t2)	gH

(Ξ(t2)− Ξ(0))γ−1

Γ(γ)
w0

)
,

(Ξ(t1)− Ξ(0))1−γ
(

(Tw)(t1)	gH
(Ξ(t1)− Ξ(0))γ−1

Γ(γ)
w0

)]
≤ 1

Γ(ζ1)
(Ξ(t2)− Ξ(0))1−γ

∫ t2

t1

Ξ
′
(s)(Ξ(t2)− Ξ(s))ζ1−1D0[g(s, ws), 0̂]ds

+
1

Γ(ζ1)

∫ t1

0

Ξ
′
(s)[(Ξ(t2)− Ξ(0))1−γ(Ξ(t2)− Ξ(s))ζ1−1 − (Ξ(t1)

− Ξ(0))1−γ(Ξ(t1)− Ξ(s))ζ1−1]D0[g(s, ws), 0̂]ds

→ 0 as t2 → t2.

The right hand sides of the above equation tends to zero independently of w ∈
Bη1 as t2 → t1, which means that D0[(Tw)(t2), (Tw)(t1)] → 0. Thus, it follows
from the Arzela-Ascoli theorem gives that the operator T is completely continuos.
Consequently, by using the Schauder’s fixed point theorem gives that the operator
T has at least one fixed point. Hence Eqn.(1.1) has at least one solution on J. This
completes the proof. �

Theorem 3.4. Assume that g : [0, b]× C([−τ, 0], Ec) → Ec be a continuous fuzzy
function, χ ∈ C([−τ, 0], Ec). Assume that (A1)-(A2) is satisfied, then the Eqn.(1.1)
is finite-time stable with respect to {0, [−τ, b], τ, σ, ε}, 0 < σ < ε, σ, ε ∈ Rc.
If M∗1Eζ1(L (Ξ(b)− Ξ(0))1−γ(Ξ(b)− Ξ(0))ζ1) < 1, t ∈ J
where

M∗1 =
1

Γ(γ)
+

L

Γ(ζ1)
(Ξ(b)− Ξ(0))ζ1+2−2γB(2− γ, ζ1).



74 R. VIVEK, D. VIVEK, K. KANAGARAJAN, AND E. M. ELSAYED

Proof. According to the similar proof (??) and by Definition 2.10, we have

D0[(Ξ(t)− Ξ(0))1−γw(t), 0̂]

≤ D0

[
(Ξ(t)− Ξ(0))1−γ

(
(Ξ(t)− Ξ(0))γ−1

Γ(γ)
w0

)
, 0̂

]
+D0

[
(Ξ(t)− Ξ(0))1−γ 1

Γ(ζ1)

∫ t

0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1−1g(s, ws)ds, 0̂

]
≤ 1

Γ(γ)
D0[w0, 0̂] +

L

Γ(ζ1)
(Ξ(b)− Ξ(0))ζ1+2−2γB(2− γ, ζ1)D[−τ,0][χ, 0̂]

+
L

Γ(ζ1)
(Ξ(b)− Ξ(0))1−γ

∫ t

0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1−1 sup

r∈[0,ξ]

D0[(Ξ(s)− Ξ(0))1−γy(s), 0̂]ds,

≤ 1

Γ(γ)
σ +

L

Γ(γ)
(Ξ(b)− Ξ(0))ζ1+2−2γB(2− γ, ζ1)σ +

L

Γ(ζ1)
(Ξ(b)− Ξ(0))1−γ

×
∫ t

0

Ξ
′
(s)(Ξ(t)− Ξ(s))ζ1−1 sup

r∈[0,ξ]

D0[(Ξ(s)− Ξ(0))1−γy(s), 0̂]ds

Now, we put

N(t) = sup
r∈[0,t]

D0[(Ξ(s)− Ξ(0))1−γy(s), 0̂],

M∗1 =
1

Γ(γ)
+

L

Γ(ζ1)
(Ξ(b)− Ξ(0))ζ1+2−2ζ1B(2− γ, ζ1).

It follows from the generalized Gronwall inequality gives that, we have

N(t) = Dγ
[0,b][w, 0̂] ≤ σM∗1Eζ1(L (Ξ(b)− Ξ(0))1−γ(Ξ(t)− Ξ(0))ζ1) < σ < ε.

Therefore, Eqn.(1.1) is finite-time stable. This completes the proof. �
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Abstract. Artificial Neural Networks are fine tuned to yield the best perfor-
mance through an iterative process where the values of their parameters are

altered. Optimization is the preferred method to determine the parameters

that yield the minima of the loss function, an evaluation metric for ANN’s.
However, the process of finding an optimal model which has minimum loss faces

several obstacles, the most notable being the efficiency and rate of convergence

to the minima of the loss function. Such optimization efficiency is imperative
to reduce the use of computational resources and time when training Neural

Network models. This paper reviews and compares the intuition and effective-

ness of existing optimization algorithms such as Gradient Descent, Gradient
Descent with Momentum, RMSProp and Adam that implement first order

derivatives, and Newton’s Method that utilizes second order derivatives for
convergence. It also explores the possibility to combine and leverage first and

second order optimization techniques for improved performance when training

Artificial Neural Networks.

1. Introduction

In Mathematics, optimization is the process of maximizing or minimizing a
real function by finding the best set of input values under certain conditions or
constraints. It can be defined as:

arg min
θ
f(θ) or arg max

θ
f(θ) (1.1)

Here, θ represents the arguments for the function. The concept of optimization is
used in abundance in real life: in GPS Systems, financial companies and airline
reservations. Similarly, optimization methods are equally important in the field
of Artificial Intelligence and Machine Learning, especially for their application to
Artificial Neural Network Models.
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1.1. Artificial Neural Networks. Artificial Neural Networks are Machine Learn-
ing Models that mimic the functionality of biological neurons. They implement
learning algorithms which are fine-tuned by training on data to improve their ac-
curacy. ANN’s comprise of an Input layer, a single or multiple hidden layers, and
an output layer. Each layer consists of a particular number of artificial neurons or
nodes and each node receives an input from all the nodes in the previous layer and
outputs values to all the nodes in the next layer. Each of the individual connec-
tions between the nodes are assigned parameter values called weights and biases.
These parameters are altered and tuned during the learning process using the input
training data for optimal performance and accuracy.

Figure 1. Artificial Neural Network with 3 hidden layers [1]

During the initial training or learning process of a Neural Network, the features
or attributes of each individual data record are passed into the first hidden layer
as an input. Each of these input features have some weight value attached to them
and all the inputs are connected to each neuron in the hidden layer. Using the
inputs, the output z of neuron j in the hidden layer is,

zj = f

(
b+

n∑
i=1

xiwi

)
, (1.2)

where n is the total number of input features, b denotes the bias value, w denotes
the weights for particular features and f is the activation or transfer function of
the layer. The activation function is a linear or non linear function that determines
the output of the neuron. Examples of activation functions are Linear function,
Sigmoid function, Hyperbolic Tangent function, Rectified Linear Unit function,
etc. The output of each neuron in a layer is passed as an input to all the neurons
in the next layer with their own weights and biases values. Similarly, each layer
receives its own input and calculates an output and passes it to the next layer. This
process is also known as forward propagation. The last layer, which is the output
layer receives the inputs from the neurons of the last hidden layer and provides the
output of the neural network.
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Figure 2. An artificial neuron with n inputs [2]

1.2. Optimization in Neural Networks. The output of a neural network repre-
sents the prediction for a particular input. The initialized values of the weights and
biases do not usually produce an accurate prediction. Hence, ANN’s use an itera-
tive process where these parameters are adjusted in each iteration to increase the
prediction accuracy. This step is also known as Backpropagation. Backpropagation
is the process of updating and finding the optimal values of weights or coefficients
which helps the model to minimize the error i.e difference between the actual and
predicted values.[3] The difference between the predicted and the actual value for
an individual data sample is calculated using a loss function. The most common
loss function for regression problems is given by,

L (ŷ) =
1

2
(ŷ − y)

2
, (1.3)

where ŷ represents the neural network prediction and y denotes the actual value.
The difference between the predicted and the actual values for all the records in
the data set is given by a Cost Function J,

J =
1

2m

m∑
k=1

Lk (ŷ) , (1.4)

where m denotes the total number of records or data samples.
Neural Networks strive to adjust the parameters of the model to minimize the

loss function. Hence, optimization is implemented to find the values of the weights
and biases that will engender the minimum value of the loss function (closest to
zero).

arg min
(W,b)

m∑
k=1

1

2m

(
f
(
WTXk + b

)
− yk

)2
, (1.5)

where W denotes an n × j weight matrix of the output layer(n is the number of
input features coming from the previous layer, and j is the number of outputs of
the network), b denotes the bias of the output layer, and f denotes the activation
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function of the output layer. Equation 1.5 can be understood as a combination of
equations 1.2,1.3 and 1.4.

There are several different approaches of optimization to find the minimum of a
function. These methods usually utilize the first and second derivatives of the func-
tion with respect to the parameters. The efficiency of such methods are evaluated
through the computational cost (memory) and time cost for optimization.

Figure 3. Forward and Backpropagation in a single neuron network.[4]

2. First Order Optimization Methods

First Order Optimization refers to methods that utilize the first derivative of the
target function with respect to the parameters. It can only be applied to functions
that are differentiable and continuous. One of the most commonly used first order
methods is Gradient Descent where the gradient is used to descend down the curve
of the function.

2.1. Gradient Descent. Gradient Descent is a first order iterative method for
optimization where the idea is to take repeated steps to update the parameters
in the opposite direction of the gradient. For a vector θ = [θ1, θ2, . . . θn] where
θn represents the parameters for the cost function J , the updated values after a
particular iteration is given by,

θ = θ − η∇θJ (θ) , (2.1)

where η denotes the learning rate or the size of the steps that are taken to reach
the minimum and

∇θJ (θ) =

[
∂J

∂θ1
,
∂J

∂θ2
, . . .

∂J

∂θn

]
With respect to Neural Networks, there are three variants of gradient descent that
are used for convergence: Batch Gradient Descent, Mini Batch Gradient Descent
and Stochastic Gradient Descent. These variants differ in terms of the number of
samples used to calculate the loss function gradient for each parameter update step.
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2.1.1. Batch Gradient Descent. Batch or Vanilla Gradient Descent computes the
gradient of the cost function with respect to the parameters θ for the entire training
dataset.[5] Here, ∇θJ (θ) =

∑m
i=1∇θJ (θ), where m denotes the total number of

records in the dataset. Hence, the summation of the gradients of the entire dataset
needs to be calculated to perform just one parameter update. In other words,
the parameters are updated once in each epoch (one epoch refers to one iteration
through the entire training data).[6] Therefore, for a large dataset, Batch Gradient
Descent is really slow since a single update is performed after going through all the
records. However, because the information of the entire dataset is being evaluated
each time the parameters are updated, the convergence path taken using Batch
Gradient Descent is smooth and free of noise which accounts for a more direct path
towards the minimum.

2.1.2. Stochastic Gradient Descent. In contrast, Stochastic Gradient Descent per-
forms a parameter update after each record in the dataset. In terms of SGD,

∇θJ (θ) = ∇(i)
θ J (θ), where (i) denotes a random record. Hence, the parameters

are updated m times in one epoch. As the gradient of the cost function with respect
to the parameters for each record will vary largely, the convergence path using SGD
is full of noise and oscillations in different directions compared to Batch Gradient
Descent. Hence, SGD requires higher number of iterations to reach the minima.
Furthermore, SGD performs frequent updates with a high variance that causes the
objective function to fluctuate heavily. The random and drastic changes in param-
eter values due to the nature of SGD enables it to jump out of local minimas into
new and potentially better minima. Due to the high variance of the gradients for
each record, SGD never actually converges completely to the minima but rather
oscillates around the region. However, SGD provides advantages of updating the
parameters almost instantly and the escaping local minimas. Furthermore, it is
less computationally expensive and converges faster than Batch Gradient Descent
when the dataset is very large.

2.1.3. Mini-Batch Gradient Descent. Batch Gradient Descent updates parameters
after going through the entire dataset while Stochastic Gradient Descent performs
updates after each record. Mini-Batch Gradient Descent leverages the efficiency of
both these methods. It divides the total dataset into small batches and updates

the parameters after going through each batch. Hence, ∇θJ (θ) =
∑k
i=1∇θJ (θ),

where k << m. By taking a small sample of the total data, Mini-Batch Gradient
Descent eliminates the heavy computational cost for large datasets

using Batch Gradient Descent while reducing the noise and variance of Stochastic
Gradient Descent leading to a more stable convergence.

2.2. Limitations of Gradient Descent. Although it addresses the limitations
of the previous two Gradient Descent methods, Mini-Batch Gradient Descent has
several limitations.

(1) Choice of Learning Rate
Learning Rates denotes the size of the steps taken during convergence.

If a learning rate is too small, the parameter updates will be insignificant
and the number of iterations required to converge will be huge. If a learning
rate is too big, the update might overshoot and jump over the minima to



82 AURAS KHANAL, MEHMET DIK

Figure 4. Loss Function fluctuations after parameter updates.[7]

the opposite side causing the loss function to fluctuate around the minima
or in worst cases, even diverge.

(2) Saddle Points and Local Minima
Saddle points are flat regions of a function where the partial derivatives

of the cost function with respect to its parameters are opposite in nature i.e
areas where one dimension has a positive partial and another has a negative
partial. Such points are usually surrounded by a plateau which makes it
very difficult for Gradient Descent to escape as the gradient is close to zero
in all dimensions.[5]

(3) Noisy Convergence The performance of Artificial Neural Networks in-
creases with the size of the data. Hence, Batch Gradient Descent is rarely
used due to its high computational cost. However, as SGD and Mini-Batch
Gradient Descent update parameters using only a small portion of the total
data, the convergence path using these methods have high variance. This
increases the number of oscillations to reach the minimum as the path taken
is not direct. The extent of noise depends on the size of the batch used (the
larger the batch the smoother the convergence path).

Hence, due to the impracticality in application of Mini-Batch Gradient Descent,
other first order methods were developed to address and eliminate such limitations.

Figure 5. Convergence path using a contour map.[8]

2.3. Gradient Descent with Momentum. One of the major challenges with
Gradient Descent is that the updated value of a parameter depends only on the
gradient of the cost function at the previous parameter value. Therefore, it gets
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stuck in areas where the gradient is very close to zero in all dimensions. Further-
more, the number of iterations to converge is higher due to the large variance in
the gradient using SGD and Mini-Batch Gradient Descent. Gradient Descent with
Momentum addresses both these challenges by using Exponentially Weighted Aver-
ages of the gradients to update the parameters. Exponentially Weighted Averages
is used in sequential noisy data to reduce the noise and smoothen the data.[7] Refer-
ring to Figure 5 above, the vertical oscillations slows gradient descent and prevents
the use of a high learning rate. By using the exponentially weighted averages, the
partial derivative with respect to the vertical direction has an average closer to zero
as it is in both (positive and negative) directions.[9] In contrast, the partial deriva-
tive with respect to the horizontal direction is always positive, hence the average in
that direction will be large. This allows for a more direct convergence path to the
minima. The exponentially weighted average of the gradient for a given iteration t
is,

Mdθt = βMdθt−1
+ (1− β)∇θtJ (θ) ,

where 0 < β ≤ 1. Similarly,

Mdθt−1
= βMdθt−2

+ (1− β)∇θt−1
J (θ)

Mdθt−2
= βMdθt−3

+ (1− β)∇θt−2
J (θ) ,

and Mdθ1 = 0. Mdθ1 is also called the momentum term. Expanding Mdθt ,

Mdθt = β
(
β(βMdθt−3

+ (1− β)∇θt−2
J (θ)

)
+(1− β)∇θt−1

J (θ))+(1− β)∇θtJ (θ)
(2.2)

Hence, using Gradient Descent with Momentum, for an iteration t, the new
parameter value is dependent on the gradients of all previous iterations. Here, β is
the hyper-parameter that determines the degree of smoothness of the convergence
path and is usually 0.9. Consequently, the weight assigned to the averages of the
previous iterations is larger compared to the weight assigned to the gradient at the
current point. The parameters are then updated using the formula,

θ = θ − ηMdθt (2.3)

For partial derivatives with respect to dimensions whose values oscillate between
positive and negative, as the averages are closer to zero, the oscillations in those
dimensions are reduced. Inversely, the momentum term increases for dimensions
whose gradients point in the same directions, resulting in a larger update step after
each iteration and gaining faster convergence.

2.4. Root Mean Square Propagation. Although Gradient Descent with Mo-
mentum reduces oscillations in dimensions where the partials point in opposite
directions in each iteration, it is more effective in accelerating the convergence in
dimensions whose derivatives point in the same direction. However, this poses some
challenges. For a large t (located closer to minima), the momentum term for these
dimensions and consequently, the parameter updates will be very large. Hence,
for parameter updates near the minima, the risk of overshooting and missing the
minima due to the large momentum term is very high. Similar to a ball rolling
down a large cliff and going back and forth across the bottom several times, GD
with Momentum increases the number of iterations to settle down into the minima.
Root Mean Square Propagation or RMSProp eliminates this risk. While momen-
tum accelerates our search in the direction of the minima, RMSProp impedes our
search in the direction of the oscillations.[10] RMSProp implements this by using
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an adaptive learning rate, or a learning rate that changes in each iteration. In
RMSProp, after each iteration the learning rate decreases independently for each
dimension based on the partial derivative of that dimension at that particular iter-
ation . If a dimension/ parameter has a higher partial derivative, than its learning
rate is lower compared to a parameter with a lower partial derivative value. Using
RMSProp, the new parameter values θ,

θ = θ − η√
Vdθt + ε

· ∇θtJ (θ) (2.4)

where

Vdθt = αVdθt−1
+ (1− α)∇θtJ (θ)

2
,

Here, ε is a very small value, usually 10−8 and 0 < α ≤ 1.
Similar to GD with Momentum, RMSProp also uses an exponential weighted

average. However, instead of taking the average of the gradient, it uses the ex-
ponentially weighted average of the squared gradient. This is to ensure the sole
dependency of the adaptive learning rate on the magnitude of the partials of the
different parameters and not the signs. Hence, in contrast to the Momentum term
Mdθt , if the partials of a parameter at different iterations has opposite signs, their
exponentially weighted average won’t cancel out but instead be added, increasing
Vdθt . The square root is added in the denominator of 2.4 to ensure that the learning
rate isn’t too small. Therefore for situations like the one shown in Figure 5, the
step taken in both directions will decrease for increasing iterations. However, the
direction that is steeper will have a significantly smaller step compared to shallower
directions.

2.5. Adaptive Moment Estimation. In Gradient Descent with Momentum, the
step size for parameters which have the same signed partial derivatives increases
after each iteration. In contrast, in RMSProp the step size for parameters decreases
after each iteration but to a greater extent for ones which have a higher magnitude
partial derivative. Adaptive Moment Estimation or Adam is an optimization algo-
rithm that is the combination of the features of both of these first order methods.
Adam utilizes the acceleration that is provided by GD with Momentum, but to en-
sure that the step size doesn’t infinitely increase towards latter iterations, it uses the
RMSProp term to decrease the learning rate to limit the updates as the iterations
increase. Hence, it leverages the increase in the Momentum term by decreasing the
learning rate. The Momentum and RMSProp terms are given by,

Mdθt = βMdθt−1
+ (1− β)∇θtJ (θ) ,

and

Vdθt = αVdθt−1
+ (1− α)∇θtJ (θ)

2
,

For a parameter θ, the updated value using Adam is given by,

θ = θ − η√
Vdθt + ε

·Mdθt (2.5)

Adam is the most widely used optimization method because it performs really well
in optimization test functions compared to other algorithms.
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Figure 6. Contour Plot of the Test Objective Function With
Adam [11]

3. Second Order Optimization Methods

Second Order Optimization methods are a separate set of methods for optimiza-
tion that differ from the traditional gradient descent ideology. Instead of using the
gradient of the objective function at a particular point to update the parameters,
second order methods utilize the Hessian of the function. The gradient of a function
is a vector where each element represents the partial derivative of the function with
respect to the individual parameters. For a function with a total of p parameters,
the Hessian is a p × p matrix where each element represents the second partial
derivative of the functions with respect to the parameters. The Hessian of function
f (x1, x2, . . . , xn) is given by,

Hf (x1, x2, . . . , xn) =



∂2f

∂x21

∂2f

∂x1∂x2
. . .

∂2f

∂x1∂xn

∂2f

∂x2∂x1

∂2f

∂x22
. . .

∂2f

∂x2xn
...

...
. . .

...

∂2f

∂xn∂x1

∂2f

∂xn∂x2
. . .

∂2f

∂x2n


3.1. Newton’s Method. Newton’s method is an optimization technique that uti-
lizes the approximation of a function using Taylor’s Expansion to the second order.
For a function f(x), the Taylor expansion to the second order about a certain point
x0 in the domain is given by,

f2 (x) = f (x0) + f ′ (x0) (x− x0) +
1

2
f ′′ (x0) (x− x0)

2

The approximation function f2 is a quadratic function about point x0. Newton’s
method finds the value of x, where f2 is a minimum, and assigns that value to x0,
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i.e x0 = arg minx f2(x). Taylor’s expansion is used to approximate a new f2 about
the updated x0. The minima of the new approximation is found and x0 is updated
again. Hence, Newton’s method iteratively updates the parameter x0 to values
where newly approximated Taylor Functions are a minimum until the minimum of
the actual function f is reached.

For an approximation f2, a point x is a maximum or minimum only if the gradient
at that point is 0.

df2
d (x− x0)

= 0

d

[
f (x0) + f ′ (x0) (x− x0) +

1

2
f ′′ (x0) (x− x0)

2

]
d (x− x0)

= 0

f ′ (x0) + f ′′ (x0) (x− x0) = 0

x = x0 −
f ′ (x0)

f ′′ (x0)
(3.1)

For an approximation of a multi-variable function, f2(θ) where θ is a vector of
the parameters,

θt+1 = θt − [H (θt)]
−1∇θf (θt) (3.2)

Compared to gradient descent, Newton’s method is extremely fast. For a suitably
chosen learning , gradient descent takes 229 steps to converge to the minimum
whereas Newton’s method converges to the minimum in only 6 steps.[12]

Although it is very efficient, Newton’s method has numerous limitations in ap-
plication to Neural Networks. ANN’s usually have thousands of parameters and are
non-convex by nature. However, Newton’s method isn’t applicable to non-convex
functions. The initialization of the parameters to areas closer to the maximum of
the function or at points where the Hessian is negative-definite can lead to a qua-
dratic approximation that is concave. For such an approximation, the parameter
update will lead towards the maximum point of the approximated concave function
instead of the minimum that is required. Hence, Newton’s method can lead to an
increase in the value of the loss which is undesired. Furthermore, Newtonian meth-
ods are very computationally expensive. The calculation of the Hessian is itself
an 0(N2) and inverting the Hessian is 0(N3) compared to Gradient Descent meth-
ods which scale at O(N).[12] Additionally, saddle points where the Gradient and
Hessian are almost zero might lead to computationally inaccurate values and slow
updates of the parameters. Such extreme limitations render the use of Newtonian
methods in Neural Networks useless.

However, there are methods not covered in this paper called Quasi-Newton meth-
ods that eliminate the large computational cost of traditional Newton’s method
while preserving optimization efficiency. Quasi-Newton methods utilize an approx-
imation of the Hessian using a generalized secant method, eliminating the need to
invert the Hessian. Hence, they have a computational complexity of O(N2) com-
pared to O(N3) for Newton’s method, while retaining most of the efficiency when
converging using Newton’s method.
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4. Conclusion and Future Work

Although Quasi-Newton methods such as the Broyden—Fletcher—Goldfarb—Shanno
algorithm represent significant progress in the field of second order optimization,
the lack of precision in the calculation of the Hessian can sometimes lead to slower
convergence.[13] Hence, instead of approximating the Hessian, leveraging Gradient
Descent and Newton’s Method can possibly lead to better performance. An opti-
mization algorithm can be introduced which consists of two stages, beginning with
Gradient Descent and ending with Newton’s method. The transition into Newton’s
method can be implemented at a point where the Hessian is a positive-definite ma-
trix. However, since the calculation of the Hessian is computationally expensive,
this prompts further research on finding a general method to determine the point
of transition into Newton’s Method.
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Abstract. In this paper, we present a new fixed point result for multivalued

θ-contractions on M -complete M -metric spaces using Feng-Liu’s technique.

Our results extend and generalize some related fixed point theorems in the
literature.

1. Introduction and preliminaries

Matthews [9] introduced the notion of the partial metric space, which is more
general than the metric space, and presented a fundamental fixed point theorem
on partial metric spaces. Then, Asadi, Karapınar and Salimi [5] extended the
concept of partial metric spaces to M -metric spaces and presented some fixed point
theorems for single valued mappings on M -metric spaces.

Definition 1.1 ([5]). Let X be a nonempty set. A function m : X ×X → [0,∞)
is called an M -metric if the following conditions are satisfied: for all x, y, z ∈ X

(m1) m(x, x) = m(y, y) = m(x, y) ⇔ x = y,
(m2) mxy = min{m(x, x),m(y, y)} ≤ m(x, y),
(m3) m(x, y) = m(y, x),
(m4) m(x, x)−mxy ≤ m(x, z)−mxz +m(z, y)−mzy.

Then, the pair (X,m) is called an M -metric space.

Next, Altun et al. [4] studied on the topological structures of M -metric space,
and then presented some fixed point theorems for multivalued mappings of Feng-
Liu type on M -metric space (see [4, 14, 15] and references therein). Let (X,m) be
an M -metric space, x ∈ X and ε > 0. The open ball with centered x ∈ X and
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radius ε is defined by

Bm(x, ε) = {y ∈ X : m(x, y) < mxy + ε}.

Then, the family

{Bm(x, ε) : x ∈ X, ε > 0}
is a base of a topology on X. This topology is defined by τm and the closure of a
subset A of X with respect to τm by Am.

Example 1.1. Let X =
{

1
n2 : n ∈ {1, 2, 3, · · · }

}
∪ {0} and m : X ×X → [0,∞) be

defined by m(x, y) = min{x, y}. Then, (X,m) is a M -metric space. In this case,
we have τm = {∅, X}.

Definition 1.2. Let (X,m) be an M -metric space, {xn} be a sequence in X and
x ∈ X. Then,

(1) {xn} is said to be M -converges to x if and only if

lim
n→∞

[m(xn, x)−mxnx] = 0.

(2) {xn} is said to be M -Cauchy sequence if limn,m→∞[m(xn, xm) − mxnxm
]

exists and is finite.
(3) (X,m) is said to be M -complete if every M -Cauchy sequence M -converges

to a point x ∈ X.

Note that the M -convergence of a sequence on an M -metric space coincides with
the convergence with respect to τm.

Altun et al [4] proved the following fixed point theorem, which is M -metric
version of Feng-Liu’s fixed point theorem [12].

Theorem 1.1. Let (X,m) be a M -complete M -metric space and T : X → Cm(X)
(the family of all nonempty closed subsets of X) be a multivalued map. If there
exist two constants b, c ∈ (0, 1) such that for all x ∈ X with m(x, Tx) > 0 there is
y ∈ T x

b (m) satisfying

m(y, Ty) ≤ cm(x, y),

where

T x
b (m) = {y ∈ Tx : bm(x, y) ≤ m(x, Tx)} ,

and

m(x, Tx) = inf{m(x, y) : y ∈ Tx}.
Then, T has a fixed point in X provided that c < b and the function f(x) = m(x, Tx)
is lower semicontinuous with respect to τm.

On the other hand, Jleli and Samet [12] introduced the concept of θ-contraction
and then gave a fixed point theorem. So that, they generalize Banach contraction
principle which is a quite different from many results in literature.

Let Θ be the family of all functions θ : (0,∞) → (1,∞) satisfying the following
conditions:

(Θ1) θ is non-decreasing;
(Θ2) for each sequence {tn} ⊂ (0,∞), lim

n→∞
tn = 0 if and only if lim

n→∞
θ(tn) = 1;

(Θ3) there exist r ∈ (0, 1) and ℓ ∈ (0,∞] such that lim
t→0+

θ(t)−1
tr = ℓ.
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Example 1.2. Let us consider the functions θ1(t) = e
√
t, θ2(t) = e

√
tet , θ3(t) =

2− 2
π arctan

(
1
tα

)
for 0 < α < 1 and θ4(t) = e

√
t2+t. Then it can be seen that θi ∈ Θ

for i ∈ {1, 2, 3, 4}.

Jleli and Samet [12] proved the following theorem.

Theorem 1.2. Let (X, d) be a complete metric space and T : X → X be a mapping.
Suppose that there exist θ ∈ Θ and k ∈ (0, 1) such that

x, y ∈ X, d(Tx, Ty) > 0 ⇒ θ (d(Tx, Ty)) ≤ [θ (d(x, y))]
k
.

Then, T has a unique fixed point.

Then, taking into account the family Θ, many authors have presented some fixed
point results for both single valued and multivalued mappings on metric space. For
example, in [2] the authors obtained a fixed point theorem for compact set valued
mappings on metric space. Also, a similar result for closed set valued mappings
on metric spaces have been provided by taking the following condition (Θ4) into
consideration (see [1, 2, 3, 6, 7, 8, 10, 11, 13] and references therein):

(Θ4) θ(inf A) = inf θ(A) for all A ⊂ (0,∞) with inf A > 0.
We denote by Ξ the set of all functions θ : (0,∞) → (1,∞) satisfying (Θ1)-(Θ4).
In this paper, we present Feng-Liu type fixed point theorems for multivalued

mappings considering the both families Θ and Ξ in M -metric spaces.

2. Main Result

Let (X,m) be an M -metric space. Pm(X) and Cm(X) denotes the family of
all nonempty subsets and the family of all nonempty closed (w.r.t. τm) subsets of
X, respectively. Also, we indicate the family of all subsets A of X satisfying the
following property by Am(X): for all x ∈ X

m(x,A) = 0 ⇒ x ∈ A
and
m(x,A) > 0 ⇒ ∃ax ∈ A, m(x,A) = m(x, ax)

 .

If (X,m) is a metric space, then it is clear that

Am(X) = {A ⊆ X : ∀x ∈ X,∃ax ∈ A,m(x,A) = m(x, ax)}

and also Am(X) ⊆ Cm(X). Let T : X → Pm(X) be a mapping, θ ∈ Θ and b ∈
(0, 1]. For x ∈ X with m(x, Tx) > 0, consider the set

Θx
b (m) =

{
y ∈ Tx : [θ (m(x, y))]

b ≤ θ (m(x, Tx))
}
.

It is clear that if b1 ≤ b2, then Θx
b1
(m) ⊆ Θx

b2
(m) for fixed x ∈ X.

Theorem 2.1. Let (X,m) be an M -complete M -metric space and T : X → Am(X)
be a multivalued map θ ∈ Θ. If there exists a constant k ∈ (0, 1) such that for any
x ∈ X with m(x, Tx) > 0, there is y ∈ Θx

b (m) for b ∈ (0, 1] satisfying

θ (m(y, Ty)) ≤ [θ (m(x, y))]
k
, (2.1)

then T has a fixed point in X provided that k < b and the function f(x) = m(x, Tx)
is lower semi-continuous with respect to τm.
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Proof. Suppose that T has no fixed point. Then, for all x ∈ X we have m(x, Tx) >
0. Since Tx ∈ Am(X) for every x ∈ X, the set Θx

b (m) is nonempty for any b ∈ (0, 1].
Let x0 ∈ X be any initial point, then there exists x1 ∈ Θx0

b (m) such that

Θ (m (x1, Tx1)) ≤ [Θ (m(x0, x1))]
k

and for x1 ∈ X, there exists x2 ∈ Θx1

b (m) satisfying

Θ (m (x2, Tx2)) ≤ [Θ (m(x1, x2))]
k
.

Continuing this process, we get an iterative sequence {xn}, where xn+1 ∈ Θxn

b (m)
and

θ (m (xn+1, Txn+1))) ≤ [θ (m(xn, xn+1))]
k
. (2.2)

We will show that {xn} is a Cauchy sequence. Since xn+1 ∈ Θxn

b (m), we have

[θ (m (xn, xn+1))]
b ≤ θ (m(xn, Txn)) . (2.3)

From (2.2) and (2.3), we have

θ (m (xn+1, Txn+1)) ≤ [θ (m (xn, Txn))]
k
b

and

θ (m (xn+1, xn+2)) ≤ [θ (m (xn, xn+1))]
k
b .

By the way, we can obtain

1 < θ (m (xn, xn+1)) ≤ [θ (m (x0, x1))]
( k

b )
n

(2.4)

and

1 < θ (m (xn, Txn)) ≤ [θ (m (x0, Tx0))]
( k

b )
n

. (2.5)

Letting n → ∞ in (2.4),

lim
n→∞

θ (m (xn, xn+1)) = 1.

From (Θ2),

lim
n→∞

m (xn, xn+1) = 0+.

Similarly, we can obtain

lim
n→∞

m (xn, Txn) = 0.

So from (Θ3), there exist r ∈ (0, 1) and ℓ ∈ (0,∞] such that

lim
n→∞

θ (m (xn, xn+1))− 1

(m (xn, xn+1))
r = ℓ.

Suppose that ℓ < ∞. In this case, let ε = ℓ/2 > 0. From the definition of the limit,
there exists n0 ∈ N such that, for all n ≥ n0∣∣∣∣θ (m (xn, xn+1))− 1

(m (xn, xn+1))
r − ℓ

∣∣∣∣ ≤ ε.

This implies that, for all n ≥ n0,

θ (m (xn, xn+1))− 1

(m (xn, xn+1))
r ≥ ℓ− ε = ε.

Then, for all n ≥ n0,

n [m (xn, xn+1)]
r ≤ An [θ (m (xn, xn+1))− 1] ,

where A = 1
ε .
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Suppose now that ℓ = ∞. Let ε > 0 be arbitrary positive number. From the
definition of the limit, there exists n0 ∈ N such that, for all n ≥ n0

θ (m (xn, xn+1))− 1

(m (xn, xn+1))
r ≥ ε.

This implies that, for all n ≥ n0,

n [m (xn, xn+1)]
r ≤ An [θ (m (xn, xn+1))− 1] ,

where A = 1
ε . Thus, in all cases, there exist A > 0 and n0 ∈ N such that, for all

n ≥ n0

n [m (xn, xn+1)]
r ≤ An [θ (m (xn, xn+1))− 1] .

Using (2.4), we obtain for all n ≥ n0

n [m (xn, xn+1)]
r ≤ An

[
[θ (m (x0, x1))]

( k
b )

n

− 1
]
.

Letting n → ∞ in the above inequality, we obtain

lim
n→∞

n [m (xn, xn+1)]
r
= 0.

Thus, there exists n1 ∈ N such that, for all n ≥ n1

m (xn, xn+1) ≤
1

n1/r
. (2.6)

In order to show that {xn} is a Cauchy sequence, consider m,n ∈ N such that
m > n ≥ n1. Using (m4) and from (2.6), we have

m (xn, xm)−mxnxm
≤

[
m (xn, xn+1)−mxnxn+1

]
+

[
m (xn+1, xm)−mxn+1xm

]
≤

[
m (xn, xn+1)−mxnxn+1

]
+ · · ·+

[
m (xm−1, xm)−mxm−1xm

]
≤ m (xn, xn+1) +m (xn+1, xn+2) + · · ·+m (xm−1, xm)

≤
m−1∑
i=n

m(xi, xi+1) ≤
∞∑
i=n

m(xi, xi+1) ≤
∞∑
i=n

1

i1/k
.

By the convergence of the series
∑∞

i=n
1

i1/k
, letting to limit n → ∞, we get

lim
n,m→∞

[m (xn, xm)−mxnxm ] = 0.

Hence, we find that {xn} is an M -Cauchy sequence. Because X is M -complete,
one sees that there exists z ∈ X such that

lim
n→∞

[m (xn, z)−mxnz] = 0

that is, {xn} converges to z with respect to τm. Now, we show that z is fixed point
of T . On the other hand, from (2.5) and (Θ2), we have lim

n→∞
m (xn, Txn) = 0. Since

f(x) = m(x, Tx) is lower semi-continuous with respect to τm, then

0 < m (z, Tz) = f(z) ≤ lim
n→∞

inf f (xn′) = lim
n→∞

infm (xn, Txn) = 0.

This is a contradiction. Hence, T has a fixed point. □

To give a fixed point result for Cm(X) valued multivalued mappings, we will
consider the family Ξ.
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Theorem 2.2. Let (X,m) be an M -complete M -metric space and T : X → Cm(X)
be a multivalued map θ ∈ Ξ. If there exists a constant k ∈ (0, 1) such that for all
any x ∈ X with m(x, Tx) > 0, there is y ∈ Θx

b (m) for b ∈ (0, 1) satisfying

θ (m(y, Ty)) ≤ [θ (m(x, y))]
k
.

Then, T has a fixed point in X provided that k < b and the function f(x) =
m(x, Tx) is lower semi-continuous with respect to τm.

Proof. Suppose that T has no fixed point. Then, for all x ∈ X we have m(x, Tx) >
0. Indeed, if m(x, Tx) = 0, then x ∈ Txm = Tx. Since θ ∈ Ξ, for any x ∈ X with
m(x, Tx) > 0, the set Θx

b (m) is nonempty for any b ∈ (0, 1). Indeed, using the
property (Θ4), we obtain

Θx
b (m) =

{
y ∈ Tx : [θ (m(x, y))]

b ≤ θ (m(x, Tx))
}

=
{
y ∈ Tx : [θ (m(x, y))]

b ≤ θ (inf {m(x, y) : y ∈ Tx})
}

=
{
y ∈ Tx : [θ (m(x, y))]

b ≤ inf {θ (m(x, y) : y ∈ Tx)}
}

̸= ∅.
The rest of the proof can be completed as in the proof of Theorem 2.1 by considering
the Tz ∈ Cm(X). □
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