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Düzce-TÜRKİYE
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İstanbul University-Cerrahpaşa,
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zehraisbilir@duzce.edu.tr

Editorial Secretariat
Bahar Doğan Yazıcı
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Abstract

Using simple arguments derived from the Boolean hypercube configuration, the structure
of natural spaces, and the recursive exponential generation of the set of natural numbers, a
linear classification of the natural numbers is presented. The definition of a pseudolinear
Collatz operator, the description of the set of powers of 2, and the construction of the
natural numbers via this power set might heuristically prove the Collatz conjecture from an
empirical point of view.

1. Introduction

The Collatz conjecture, associated with a simple computational algorithm over the natural set N, remains unsolved as far as the authors know,
despite having attracted the interest of many researchers; see reference [1] for literature on the subject and references [2]–[21] for recent
studies and more literature. Recently, a preprint claimed to have reached the solution, but the file still is not posted [22]. More recently, a
paper [23] indicates the intractable nature of the conjecture.

1.1. Preliminary considerations

Reference [1] reported that a good deal of computations was performed on N subsets with the assistance of a Python 3.0 program. Some
calculations were related to large Mersenne numbers, and others with numerical series of similar structures of natural numbers. Despite
the significant quantity of tested numbers in reference [1], no natural number studied was found Collatz not compliant. Any tested natural
number submitted to the Collatz algorithm, see the Appendix for more details, seems to yield unity.

The largest Mersenne number1 tested recently in this laboratory is number 39 on the list of Mersenne primes; see the web page in reference
[24]: µ2 (13466917)≈ 3 ·1021, which has 4053946 digits and has taken 51440634 steps of the Collatz algorithmic path to yield 1. Such a
calculation has expended a considerable time, even running on a ten-core i9 CPU.

One can be confident in the previous computational experience, see reference [1]. Also, while writing the present paper, we performed a
large set of additional tests. In this way, we observed more information about the behavior of the Collatz algorithm. All tests keep yielding
no natural number Collatz compliant exception.

Considering this, the present authors have carried on a previous discussion, connecting the quantum mechanical harmonic oscillator with the
Collatz conjecture [19]. The present study corresponds to another point of view of the problem based on numerical and algebraic empirical
considerations.

1A Mersenne number can be described as: µ2 (N) = 2N −1.
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1.2. Empirical computational proof of Collatz conjecture frontiers

In the opinion of the present authors, outside of the strictly computational area, some action has to be done to prove empirically that all the
elements of the set of natural numbers N are Collatz compliant. Such an aim is based, apart from the previously mentioned computations, on
two points consisting in that:

First, Gödel-like reasoning can be easily applied [25] to the solution of the Collatz conjecture by computational means. As in this case
will be no a priori limit to testing a natural number if, for instance, it is chosen as a Mersenne number µ2 (N), with N growing indefinitely.
But also, one can consider that at some step S of the Collatz path, see the Appendix for more information, which can be represented as:
CS [µ2 (N)] = M , a resultant natural number M might grow larger than µ2 (N), making any attempt to use an induction reasoning useless.

Second, the application of the Erdös discrepancy conjecture [26] permits us to admit that there will be, in any dimension, some Boolean
vector 〈hM | present, which might be the binary representation of a more significant decimal number. Note that the index M means that it can
be any binary representation of the natural numbers in the interval:

{
2N ; µ2 [M]

}
Due to all of these previous ideas, continuing to try to understand the Collatz problem by following a different way than the previous
experience, the present paper seeks to empirically demonstrate that the set of natural numbers N is heuristically Collatz compliant.

1.3. Structure of this study on Collatz conjecture

To achieve this objective, the current analysis will be developed as follows.

Initially, we set as a starting point the description of how the Collatz algorithm and the definition of a Collatz operator work. Essentially,
this corresponds to describing the operator action on the set of powers of 2 and the possibility of considering the Collatz operator (pseudo-
)distributive concerning the sum of two natural numbers.

Next appears the discussion of an essential part of this work: the structure of Boolean hypercubes and the possibility of describing a recursive
building of the natural number set. Such construct permits to devise of an empirical-heuristic demonstration of the Collatz algorithm
convergence for all elements of the natural number set.

The following section studies the formalism of natural and Collatz vector spaces, shown to correspond to an extension of the application of
the Collatz algorithm to N-tuples constructed with natural numbers.

After these preliminaries, the discussion studies the expression of any natural number, taking the set of natural powers of 2: 2N, as a basis.
That opens the door to analyzing the action of the Collatz operator, defined in reference [1] over any natural number.

Afterward, the line of work directs to the description of the classification of natural numbers using what can be named (one)classes.

Finally, such a previous step allows empirically studying the Collatz compliance of both natural numbers and natural classes. Such a view of
the natural numbers proves N is heuristically Collatz compliant.

2. Collatz Algorithm and Collatz Operator

2.1. Introduction: Collatz algorithm and operator, Collatz algorithm path and steps, and Collatz compliance

Although an algorithm variant leads to a shorter number of Collatz algorithm steps, namely the Syracuse algorithm, the original Collatz
algorithm is easily described for the present paper using pseudocode, presented in the Appendix. As already explained in reference [1],
we performed many computations within both algorithmic paths, the original and the Syracuse. The previous results yield no exception of
Collatz compliance in any of the substantial natural number set tested.

Also, the Collatz algorithm can be formally defined using:

∀n 6= m∧S ∈ N : CS [n] = m ∈ N, (2.1)

where the subindex S means the Collatz heuristic operator C [◦] has been applied S-th times over an initial natural number n yielding the
natural number m.

Such an operator, described in the equation (2.1) applied over a natural number, corresponds to arriving, after a sequence of S steps, at one
location on the Collatz n-path as defined by the Appendix algorithm, while the resultant natural number m might appear greater than 1.

In the case that the Collatz algorithm applied to the number n reaches in his n-path the ending number 1 after S steps, that is:

n ∈ N : CS [n] = 1, (2.2)

we can denominate the natural number n as Collatz compliant.
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Nonetheless, the number of times the operator is applied to a given natural number in the path to reach the number 1, is relatively irrelevant
when one tries only to see if a given natural number is Collatz compliant. If this is the case, we can simplify the notation and write the end of
the Collatz algorithm applied on any number using the operator C [◦] without a subindex, like:

n ∈ N : C [n] = 1, (2.3)

or with some explicit subindex symbol, like in the equation (2.2), meaning that for the natural number n, the Collatz algorithm has ended.
Thus, indicating that n is Collatz compliant following a corresponding n-path. That is: a sequence of natural numbers starting at n and ending
at 1 after following several n-path steps S.

It is interesting to note that, according to the Collatz algorithm shown in the Appendix, the equalities: C [0] = 1 and C [1] = 1 hold in any case.

When the Collatz algorithm path ends with unit 1, the Collatz operator, if the Collatz conjecture is true, can be considered as a transformation
of each element of the whole natural number set N into 1. That is, one can suppose the following equality involving all the natural number
set:

C [N] = (1,1,1, . . .1, . . .) = 〈1|

will hold, and thus symbolically represents the so-called Collatz conjecture.

2.2. The behavior of the Collatz operator and stopping Collatz algorithm before the end

A remark about the application of the Collatz operator (2.1) is due here. Any Collatz n-path sequence of a given number n, if converging to 1,
implies that at some n-path step, one shall necessarily arrive at a number that has to be lesser than the initial tested number.

It must be kept in mind now that there is no problem in supposing that, when applying the Collatz operator to a number n, all the previous
numbers m < n tested are Collatz compliant: C [m] = 1.

That is, supposing that the application of the operator depicted in the equation (2.1) to a number n is performed after using, previously and
systematically, the Collatz operator on an increasing sequence of natural numbers like:

Mn = {0,1,2, . . . ,m, . . . ,(n−1)} (2.4)

and we can hypothesize that we previously found it Collatz compliant fulfilling:

C [Mn] = 〈1n| . (2.5)

If at some step S of the n-path the Collatz algorithm arrives at some number m ∈Mn, being m < n, then at this moment the Collatz algorithm
does not need to continue, whenever one can suppose that the m-path is known and converges:

i f CS [n] = m∧m < n∧C [m] = 1⇒C [n] = 1.

Such a possibility might shorten the number of steps dramatically in the Collatz algorithm in some cases, at the expense of compulsorily
implementing a comparison between the initial number and the number resulting at each Collatz algorithmic step. Nevertheless, such a
modification could slow the Collatz algorithm application computational speed in cases where the lesser number lies far from the algorithmic
beginning within many steps of the Collatz path.

Looking for this feature, we tested many Collatz compliant numbers.

2.2.1. Testing Collatz compliance of even natural numbers

In this sense, even natural numbers present a Collatz compliant condition at the first iteration. The result of the Collatz algorithm will
transform the number into half of the initial value. Therefore, the set of even natural numbers can be considered Collatz compliant, a
consequence already described in the reference [1].

One can easily prove even natural numbers Collatz compliance. Just consider the sequence of the equation (2.4) submitted to the property of
being Collatz compliant with the equation (2.5). We can write the even numbers associated with the sequence (2.4) as:

En = 2⊗Mn = {0,2,4, . . . ,2m, . . . ,2(n−1)} ,

where the symbol 2⊗ means that every element of the set Mn is multiplied by 2. Then, the application of the Collatz algorithm first step to
the even set En can be symbolized by:

C〈1| [En] =Mn

thus, in the following steps, one can suppose that the Collatz compliance expressed in the equation (2.5) holds for the set Mn; therefore, this
is the same to say En being Collatz compliant, that is:

C〈S| [En] =C(〈S|−〈1|) [Mn] = 〈1| .

Empirically, odd natural numbers possess a similar property to even numbers at other positions of the Collatz path.
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2.3. Third step concerning Collatz compliance

For several odd numbers, it has been computationally found within this research that the Collatz path for them provides lesser natural
elements than the initial tested number, just at the algorithm’s third step.

For the set of Mersenne twins, defined as ν2 (N) = µ2 (N)+2 = 2N +1, we already found such an occurrence, see reference [1]. Whatever
the attached Boolean hypercube dimension N, one obtains: C3 [ν2 (N)]< ν2 (N), meaning that the Mersenne twins are heuristically Collatz
compliant.

On the contrary, the Collatz operator applied on Mersenne numbers yields, after some indefinite number of steps S, a value less than the
starting Mersenne number: CS [µ2 (N)] = m < µ2 (N).

2.3.1. Example about a Collatz algorithm third step concerning a lesser number

Another interesting example of the Collatz algorithm yielding a lesser number at the third step corresponds to the sequence of pairs of the
powers of odd natural numbers, using prime numbers in both the basis B and the power P:{

Z (B,P) = BP± (B−1) |B;P = 3,5,7, ...
}
⇒C3 [Z]< Z; (2.6)

which corresponds to a sequence associated with some generalization of Mersenne numbers and his twins. For example, the pair:

Z (11,7) = 117±10≡ {19487161;19487181} ,

submitted to the Collatz Algorithm produces at the third step, two numbers less than the Z (11,7) pair:

C3 [Z] = {14615371;14615386} .

Finally, meaning that these numbers might be empirically considered Collatz compliant or that the following property holds for the whole set
Z (B,P) defined in the equation (2.6):

∀Z : C3 [Z] = 1

Noting that using composite numbers as a basis B, the finding of a lesser number is apparent in the Z-path, but the path position of this
occurrence fluctuates. However, some cases keep the 3-step trend in one of the pairs, for example:(

67−5
)
>C13

[
67−5

]
∧
(

67 +5
)
>C3

[
67 +5

]
.

The third step rule, though, does not disappear whenever the composite number used as a basis is a product of prime numbers. Also, if the
basis is a composite of products of primes, we can choose the power as an even number without losing the third step property somehow. For
example: (

206−19
)
>C3

[
206−19

]
∧
(

206 +19
)
>C6

[
206 +19

]
,

those results indicate that a systematic search of this kind of extended numbers could be interesting from the point of view of the Collatz
algorithm properties.

The whole situation is interesting because it opens a heuristic Collatz compliance landscape to a large set of natural numbers represented not
only by the Mersenne twins but by the extended Z (B,P) set.

2.4. Powers of two and the Collatz operator action on them

When applied over the natural number set, the tree’s central trunk generated by the Collatz algorithm or operator appears as the set of the
powers of 2.

First of all, considering this, we can write the set of all powers of two as:

2N =
{

20,21,22, ...,2N , ...
}
=
{

1,2,4, ...,2N , ...
}
≡
〈

2N
∣∣∣ , (2.7)

one can see that it possesses as many elements as the natural number set:

N= {0,1,2, ...,N, ...} ≡ 〈N| , (2.8)

yet one has to write:

2N ⊂ N

Anyway, when applying the Collatz operator over any power of 2 using the number of Collatz operator 2N− path steps explicitly, one can
describe that the following relation holds:

∀N ∈ N : CN

[
2N
]
= 1≡C

[
2N
]
= 1, (2.9)
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according to equations (2.7) and (2.8), a general application result of the Collatz operator over the whole set of powers of 2 is easy to write
as:

C〈N|
[
2N
]
= 〈1| (2.10)

It must be repeated that, in general, the Collatz operator might be applied to any natural number for a certain number of steps until it yields 1.
Then this number could be considered Collatz compliant. In this sense, all the elements of the even number set 2N are Collatz compliant with
certainty.

Compared with the set 2N, the numbers, Z (B,P) defined in the equation (2.6) possess another kind of Collatz compliance, empirically
obtained.

2.5. When loops might be present in the Collatz algorithm

Now we must say that in the case at some step S in a Collatz path, the following circumstance is found:

CS [n] = n, (2.11)

then an infinite loop will be present in the Collatz algorithm application. Therefore, if the whole set of natural numbers has to be Collatz
compliant, the equality in the equation (2.11) cannot be present in any natural number Collatz path.

3. The Collatz Operator over a Sum of Natural Numbers

3.1. Introduction: On the possibility of defining a pseudolinear Collatz operator

Let us denote by CSa [a] the symbolic implementation of the full Collatz operation-algorithm acting on the natural number a and ending on 1,
with Sa being the number of Collatz algorithm steps associated with a. Moreover, CSb [b] is the symbolic implementation of the full Collatz
operation-algorithm acting on the natural number b and ending on 1, Sb meaning the number of Collatz algorithm steps associated with it.

Then CS(a+b) [a+b] is the symbolic implementation of the full Collatz algorithm action on the sum a+b and ending on 1, with S(a+b) being
the number of steps associated with a+b, and which do not need to be equal to Sa +Sb.

With these definitions, from now on, the present work is based on one, and only one heuristic assumption:

If, and only if, the Collatz symbolic operation satisfies the following relation for any pair of natural numbers {a,b}:

CS(a+b) [a+b]≡CSa [a]+CSb [b] , (3.1)

we will be able to show that the Collatz conjecture is true, at least in an empirical-heuristic manner.

In other words, the Collatz conjecture can be recast in the pseudolinear or pseudo distributive forms of the Collatz operator displayed by the
equation (3.1).

Strictly speaking, the equation (3.1) is not linear because when a 6= b the three symbolic operations: CSa [a] , CSb [b] , and CS(a+b) [a+b]
represent three different Collatz operator path results.

To obtain this new perspective, and without considering relevant the number of steps needed to arrive at the Collatz algorithm completion,
but the completion of the algorithm by itself, one can heuristically write for the sum of two Collatz compliant natural numbers:

i f {a,b} ∈N∧{C [a] = 1∧C [b] = 1}

→C[2] [a+b] =C [C [a]+C [b]] =C [1+1] =C [2] = 1.
(3.2)

Note that the operator C[2] [+] has to be strictly applied to the sum of two Collatz compliant numbers. It is equivalent to using the Collatz
algorithm in two steps: first, as a pseudolinear operator over the two terms of the sum, and second, as the Collatz operator over the sum of
the two final units yielded by the previous application.

3.2. Some examples

To have a particular view of what represents the equation (3.2) above, one could talk about a Collatz n-path for all the steps obtained when
applying the Collatz algorithm to a natural number n.

For instance, the Collatz 3-path possesses 7 elements or steps:

3 : 10 : 5 : 16 : 8 : 4 : 2 : 1

while the Collatz 7-path possesses 16 steps:

7 : 22 : 11 : 34 : 17 : 52 : 26 : 13 : 40 : 20 : 10: 5: 16: 8: 4: 2: 1.
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As a curiosity, the Collatz 3-path coincides with the last 7 steps of the Collatz 7-path. This fact is signaled by writing the coincident steps in
cursive. Moreover, it seems that this is a property of the Mersenne numbers, which have in common these 7 last steps, at least for several of
the continuing elements of the Mersenne sequence, for instance: 15, 31, and 63.

The significant situation in 3- and 7-path cases is that both are Collatz compliant; thus, we can write: C [3] = 1 and C [7] = 1. Therefore,
according to the previous considerations, we can also write:

C [10]≡C[2] [3+7] =C [C [3]+C [7]] =C [2] = 1,

noting the equivalence but not the equality between C [10] and C[2] [3+7].

To stress the need for the twofold application of the Collatz operator, we can alternatively write more compactly:

C[2] [3+7] =C [C [3+7]] =C [2] = 1.

That proves that the number 10 is Collatz compliant whenever the numbers 3 and 7 are Collatz compliant. It is a prominent property of the
number 10, as this number, as commented, appears in both the Collatz 3-path and Collatz 7-path and the three successive Mersenne numbers
Collatz paths.

Also, one must consider that number 10 is even, and thus in the first iteration yielding 5, a number less than 10. As commented before, this
will be sufficient to consider the number 10 as Collatz compliant.

3.3. Collatz algorithm on particular sums of natural numbers

These last considerations allow us to observe that if a natural number n ∈ N is Collatz compliant: C [n] = 1, then according to the definition
of the Collatz operator acting on a sum of natural numbers, the following equalities for even natural numbers hold:

C[2] [n+n] =C [C [n]+C [n]] =C [2] = 1

→C[2] [n+n] = 1→C [2n] = 1.
(3.3)

This last result constitutes a coherent outcome concerning the previously discussed behavior of even natural numbers.

The addition of the number 1 to any Mersenne number µ (N) provides the corresponding power of 2: µ (N)+1 = 2N , therefore one can
write:

C [µ (N)+1] =C
[
2N
]
= 1,

but according to the previous considerations about the pseudolinearity of the Collatz operator, one can also write:

C[2] [µ (N)+1] =C [C [µ (N)]+C [1]] =C [2] = 1.

Also, one must be aware that the odd numbers, derived from natural numbers which are Collatz compliant, can be considered as being
Collatz compliant too because one can write:

C [n] = 1∧C [2n] = 1⇒

C[2] [2n+1] =C [C [2n]+C [1]] =C [2] = 1→C[2] [2n+1] = 1.
(3.4)

Alternatively, this can also be written in an extended way, involving the sum of three, instead of two, natural numbers:

C [n] = 1⇒
C[2] [2n+1] =C [C [n]+C [n]+C [1]] =C [3] = 1 (3.5)

→C[2] [2n+1] = 1.

Therefore, one can deduce that if any natural number n ∈ N is Collatz compliant, that is: C [n] = 1 , then the derived even 2n and odd 2n+1
numbers are also Collatz compliant.

Such a property involving both even, and odd natural numbers, might be considered sufficient for a simple initial empirical proof, showing
all natural numbers are Collatz compliant.

However, one can obtain better, refined, and general heuristic proofs of the Collatz conjecture, as described below in the following paragraphs.

3.4. Collatz compliance of a sum of a Collatz compliant natural number set

The previous results about sums of two natural numbers, three in the case of the equation (3.5), and their Collatz compliance can be easily
generalized.

For this purpose, we can now suppose known a set of different natural numbers:

A= {aI |I = 1,N } ⊂ N,
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such that their elements are Collatz compliant, that is2:

∀I = 1,N : C [aI ] = 1⇒
C [〈A|] = 〈1N |= (1,1,1, ...,1)⇐ 〈A|= (a1,a2,a3, ...,aN) .

The setup shown above can be used as a first stage to prove that the sum of the elements of a Collatz compliant set A, is Collatz compliant3:

〈〈A|〉=
N

∑
I=1

aI →C [〈〈A|〉] =
N

∑
I=1

C [aI ] =
N

∑
I=1

1 = N

→C[2] [〈〈A|〉] =C [C [〈〈A|〉]] =C [N] = 1.

(3.6)

This result implies that a sum of Collatz compliant numbers is Collatz compliant whenever the total number of elements of the sum is Collatz
compliant. That is, if the equality: C [N] = 1, also holds.

Considering that the sum of N different natural numbers greater than 1 is always higher than the number of elements of the sum itself, or:
〈〈A|〉> N.

Thus, one can suppose that to be Collatz compliant, a given natural number must rely on that all the lesser natural numbers have been
previously found Collatz compliant.

The important thing to underline here is that a sum of N Collatz compliant natural numbers can be Collatz compliant whenever the number of
N terms of the sum is Collatz compliant. In other words: if the cardinality of a natural number set is Collatz compliant, the whole elements’
sum of the set is Collatz compliant.

One can be aware that we reach the minimum value of the sum of N ordered different natural numbers when all the sum terms are equal to
the set TN = {0,1,2, . . . ,N−1}.

However, as the number of elements of TN is N, if all of them are Collatz compliant, then N is Collatz compliant. That is so because if:
C [N−1] = 1 as N = (N−1)+1→C [N] = 1 using equations (3.4) and (3.5).

Therefore, when summing up the elements of a Collatz compliant natural number set having a cardinality N, it is only necessary to know the
Collatz compliance of the number N of terms to be summed up to deduce the Collatz compliance of the resultant sum.

4. Natural and Collatz Vector Spaces

We can also define an N-dimensional natural (row) vector (semi)space4 VN (N) as the Cartesian power NN of the row orderings of N natural
numbers, that is:

∀〈a| ∈ VN (N)⇒ 〈a|= (a1,a2,a3, . . . ,aN)∧{aI |I = 1,N } ⊂ N.

One might call a natural vector space a Collatz vector space when the dimension of the natural vector space is Collatz compliant; that is
when: C [N] = 1 holds.

In a Collatz space, a vector 〈a| will be called Collatz compliant when the whole set of its elements {aI |I = 1,N } is Collatz compliant. That
is, one can write:

∀I = 1,N :C [aI ] = 1⇒
C [〈a|] = (C [a1] ,C [a2] ,C [a3] , . . . ,C [aN ] ,) = (1,1,1, ...,1) = 〈1N |

for all Collatz compliant vectors.

In this case, if the Collatz conjecture holds, one can write a Collatz conjecture for natural spaces. We can write it as:

C [N] = 〈1| ⇒ ∀〈a| ∈VN (N) : C [〈a|] = 〈1N |∧C [N] = 1.

and that corresponds to a general conjecture related to ordered sets of natural numbers, including matrices and hypermatrices or tensors. It is
well-known that one can reorder them as row vectors of the adequate dimension.

Moreover, for more information, any natural vector space (see references [27]–[29]) might be considered a Banach space, where one can
define some vector norms. Among them, the simplest is the Minkowski norm, defined as:

∀〈a| ∈ VN (N) : M [〈a|] = 〈〈a|〉=
N

∑
I=1

aI →M [〈a|] ∈ N,

2An ordered set of natural numbers can be also represented for the purposes of the present work as a row vector belonging to a row vector space, defined over the natural numbers,
and using a Dirac bra notation to describe it: A = {aI |I = 1,N } ⊂ N⇔ 〈A|= (a1,a2,a3, ...,aN) ∈VN (N) .

3The bracket symbol 〈 〉 is used as a symbolic algorithm to compute the complete sum over the subindices of the elements of a vector 〈a|= (a1,a2, ...,aN): 〈〈a|〉=
N
∑

I=1
aI .

4The name (semi)space is used to stress the fact that no other addition operation is allowed than these associated to an addition semigroup. See references [28]–[30] for more
details. The particle (semi) will be omitted from now on. Such spaces can be also called orthants. In this precise context are also related to lattices.
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defined in the natural number context as the sum of the vector elements, which is of use in this paper. We can admit this, because the
Minkowski norm of the unity vector yields the dimension of the natural space, or:

M [〈1N |] = N.

Therefore, in Collatz vector spaces, one can write:

C [M 〈〈1N |〉] =C [N] = 1.

Now one must stress that this result, applied to Collatz natural vectors, looks similar to the descriptions and properties of the previous
paragraphs. Similarly, as in the equations (3.2) and (3.6), a Collatz compliant vector defined in a Collatz vector space can be associated with
the sum of the elements of the vector.

That is, in a Collatz space involving a vector, constructed with Collatz compliant natural numbers, one can write:

C [N] = 〈1| ⇒ ∀〈a| ∈ VN (N) : C [〈a|] = 〈1N |∧C [〈〈a|〉] = 1

which one can write compactly, using the previous paragraphs notation:

∀〈a| ∈ VN (N) : C[2] [〈a|] = 1,

which one can interpret as:

C[2] [〈a|] =C [C [〈〈a|〉]] =C [〈C [〈a|]〉] =C [N] = 1.

Now we can propose a Collatz extended conjecture from what one has commented on before and compactly write it as:

C[2] [VN (N)] = 〈1| .

5. N-dimensional Boolean Hypercubes and Binary Expression of any Natural Number

One can construct any N-dimensional Boolean hypercube HN , see references [27]–[30] for more information and applications, as a set of 2N

vertices. We can consider every vertex formed as a string of N bits. That is, with elements made of the two binary digits: B= {0,1}.

One can name the vertices of such a construct as the set:

HN =
{
〈h0| ;〈h1| ;〈h2| ; ...

〈
hµ(N)

∣∣∣} ,
where the last subindex µ2 (N) = 2N −1 corresponds to the already encountered Mersenne number, associated in turn with the unity (or
Mersenne) vertex in any Boolean Hypercube dimension:

∀N ∈ N :
〈

hµ(N)

∣∣∣= 〈1N |= (1,1,1, . . . ,1) .

Another characteristic vertex, which is well-structured in any dimension Boolean Hypercube, agrees with the zero vertex:

∀N ∈ N : 〈h0|= 〈0N |= (0,0,0, . . . ,0) .

The remaining vertices of HN are the remnant combinations of the binary set B taken by N by N.

However, one can interpret these vertices in various manners. The following section will deal with this.

5.1. Interpretations of the Boolean hypercube vertices

One alternative is considering the two bits of B as natural numbers. Then the Boolean hypercube transforms into a natural hypercube
of the same dimension. One can also consider the natural hypercube vertices made by strings of the most straightforward natural set:
S2 = {0,1} ⊂ N, constituting the decimal translation of the vertices of the monodimensional Boolean hypercube H1.

Another possibility is to consider them as a set of logical Kronecker deltas, see references [31]–[33] for more information and applications,
which, taking L as any logical expression, can be defined as:

δ (L = .False.) = 0∧δ (L = .True.) = 1.

For example:

(1,0,0,1)⇒ (δ (L3) ;δ (L2) ;δ (L1) ;δ (L0)) ,

where we also define a logical vector with the following values:

〈L|= (L3;L2;L1;L0)≡ (.True.; .False.; .False.; .True.) .



88 Journal of Mathematical Sciences and Modelling

5.2. Binary expression of any natural number

Now, any natural number can be expressed as the complete sum of an inward (or Hadamard, or diagonal, . . .) product of two vectors
[28],[29],[34],[35], using as coordinates of one vector a vertex of an appropriate N-dimensional Boolean hypercube, and the other vector
constructed by the powers of 2 ordered in the same way.

That is, we can construct the reference binary basis as a vector made of the convenient powers of 2:〈
2N
∣∣∣= (2N−1;2N−2; ...;22;21;20

)
Then, constructing the elements of an appropriate Boolean hypercube vertex according to the rightmost bit being the less significative:

〈hn|=
(

h(N−1)n,h(N−2)n,h(N−3)n, ...,h1n,h0n

)
,

the 2N numbers in the interval:

[0,µ (N)]→ SN = {0,1,2, . . . ,n, . . . ,µ (N)} (5.1)

can be generated with the following algorithm5:

∀n ∈ SN : n =
〈
〈hn| ∗

〈
2N
∣∣∣〉=

N−1

∑
I=0

hIn2I , (5.2)

considering the bits of the vertex 〈hn| equivalent to some elements of the natural set S2.

Alternatively, one can use a logical Kronecker’s delta expression:

∀n ∈ SN : n =
〈
〈hn| ∗

〈
2N
∣∣∣〉=

N−1

∑
I=0

δ (hIn = 1)2I ,

which is valid for both Boolean and natural options to construct the hypercube vertices.

5.3. Collatz operator acting on the recursive generation of natural numbers associated with a Boolean hypercube

The equation (5.1) has been used in reference [1] to design a manner to construct the natural number set recursively. That has been so
because when describing the set defined in the equation (5.1), the attached Boolean hypercube dimension augments in one unit. One can
write the resultant natural number set:

[0,µ (N +1)]→ SN+1 = {0,1,2, . . . ,n, . . . ,µ (N +1)} ,

as the union of the initial set SN with a new set, AN say, which one can write in terms of SN , using the algorithm:

AN = 2N ⊕SN

=
{

2N ;
(

2N +1
)

;
(

2N +2
)

; . . . ;
(

2N +µ (N)
)
= µ (N +1)

}
⇒ SN+1 = SN ∪AN ;

where the symbol 2N⊕ means that the power 2N is summed to every element of the set SN .

Then, the application of the Collatz operator over the set SN , if previously found Collatz compliant:

C [SN ] = 〈12N | ,

as well as the already discussed property of powers of 2:

∀N ∈ N : CN

[
2N
]
= 1,

implies that, when used over the new natural set AN , one can write:

C [AN ] =C
[
2N ⊕SN

]
=C

[
2N
]
⊕C [SN ] = 2〈12N | ,

implying that the new set acts over the Collatz operator as:

C [SN+1] = 〈12N+1 | ,

and therefore, SN+1 might be considered Collatz compliant.

We can also see such reasoning as an inductive way to prove the Collatz compliance of the natural number set heuristically.
5The scalar product of two vectors can be expressed as the complete sum of the inward product of two vectors:

〈p|= 〈a| ∗ 〈b|= (a1b1,a2b2, ...,aN bN)→ 〈〈a| ∗ 〈b|〉= 〈a | b〉=
N

∑
I=1

aI bI .
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6. Application of the Collatz Algorithm or Operator to any Natural Number

Besides the results of the previous section, here is the possibility to obtain alternative heuristical proof that any natural number is Collatz
compliant. Considering the Collatz operator applied up to completion over a natural number yielding the unit, one can apply it to the equation
(5.2), for instance:

C [n] =
〈
〈hn| ∗C

[〈
2N
∣∣∣]〉= 〈〈hn| ∗ 〈1N+1|〉= 〈〈hn|〉 , (6.1)

and one might see the hypercube vertices as zero or unit weights or coordinates of the powers of 2 sum. As a definition of the operator action
in similar cases, in the development of equations (5.2) and (6.1), one must consider that, it has been used both the pseudolinearity of the
Collatz operator and the application of such an operator over the natural vector:

〈
2N
∣∣ only, leaving the coefficients of the Boolean Hypercube

vertex vector 〈hn| intact.

In the case of the equation (6.1), the operator does not even need to be considered linear. We must accept that when applying the Collatz
operator to any vector made by natural numbers, the result is another vector with the Collatz algorithm results of each natural number
element of the vector, as discussed in paragraph 4.

In this case, the result is the unity vector 〈1| of the appropriate dimension because every initial element is a power of 2.

The result of the sum (6.1), whenever ∀n > 0, might be considered from two points of view. Considering the vertex 〈hn| as:

A. Binary, then: 〈〈hn|〉= 1,
B. Natural, then: 〈〈hn|〉= σ1 (〈hn|),

where σ1 (〈hn|) is the number of ones contained in the hypercube vertex: 〈hn| .

6.1. The definition of natural number (one)classes and Collatz compliance

One might consider the function σ1 (〈h|) a simple tool to classify the vertices of the N-dimensional Boolean hypercube in N +1 (one)classes,
as the vertices might possess zero, one, two, . . . up to N unit numbers, 1, which one can find within their elements.

Consequently, one can also classify the natural numbers in this way, and accordingly, in any natural subset SN of cardinality 2N , there are
present N +1 (one)classes.

For example, Mersenne numbers µ (N) are associated with the unit vector 〈1N | , attached to N ones. Thus, such numbers belong to the
N +1− th (one)class holding N ones, the unique occurrence of one vertex in this kind of N− dimensional hypercubes.

One can construct the hypercube vertices associated with the powers of 2, which with the algorithm:

∀P = 0,N−1 : 〈h2P |=
{

hI;2P = δ (I = P) |I = 0,N −1
}

→ σ1 (〈h2P |) = 〈〈h2P |〉= κ2P = 1,

are elements of the (one)class holding just one 1.

While the complementary vertices to the collection {〈h2P |} represent the numbers:

∀P = 0,N−1 : χ (P) = µ2 (N)−2P = 2P(2N−P−1)−1 = 2P
µ2 (N−P)−1,

which we can write as:

∀P = 0,N−1 :
〈

hχ(P)

∣∣∣= {hI;χ(P) = δ (I 6= P) |I = 0,N−1
}

→ σ1

(〈
hχ(P)

∣∣∣)= 〈〈hχ(P)

∣∣∣〉= κχ(P) = N−1

that is, the vector set
{〈

hχ(P)

∣∣∣} belongs to the N− th (one)class holding N−1 ones.

One must realize that the set cardinality duplicates from the set SN to the set SN+1. Similarly, the number of vertices duplicates from the
N-dimensional Boolean hypercube HN to HN+1; the number of associated (one)classes augments in one unit.

That is: defining the cardinality of (one)classes in a natural subset SN as K (SN) = N+1, then it can be written: K (SN+1) = N+2. However,
if we write the cardinality of both sets as L(SN) = 2N , then L(SN+1) = 2N+1.

6.2. Collatz compliance in natural number and natural number classes

As a consequence of the above-obtained properties, to heuristically prove that a natural number is Collatz compliant, one has just to apply the
Collatz algorithm to the natural number classes.
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To apply the Collatz operator to the resultant (one)class κn of a natural number n ∈ N , first, just consider that in any case:

C [n] = 〈〈hn|〉= σ1 (〈hn|) = κn→ 0≤ κn ≤ N.

Now, suppose that all the N +1 class numbers κn of the subset SN are Collatz compliant, or what is the same6:

∀I = 0,N : C [I] = 1.

Implying an induction reasoning might heuristically prove that (one)class numbers associated with the set SN are Collatz compliant. When
used in the set SN+1, one can consider that the following (one)class number N +1 is also Collatz compliant. Because using similar reasoning
as in the equations (3.4) and (3.5), and the pseudolinearity of the Collatz operator, one can write:

C [N +1] =C [N]+1 = 2∧C [2] = 1→C[2] [N +1] = 1.

That is, in general, for any natural number n, the following sequence holds:

∀n ∈ N : C [n] = 〈〈hn|〉= σ1 (〈hn|) = κn∧C [κn] = 1

→C[2] [n] =C [〈〈hn|〉] =C [κn] = 1,

whenever the implied (one)class number κn is Collatz compliant.

We have to consider here the squared Collatz operator, as it has been pointed out reiteratively before, as the subsequent application of the
Collatz operator over the result of some previous application of the Collatz algorithm n-path complete steps.

Note also that the number of ones in the Boolean hypercube vertex vector representing the number n, in any case, fulfills the relation: κn < n,
and as n grows larger: κn� n.

7. Conclusion

The results found all along this paper lead to the empirical proof, such that one can write:

C[2] [N] = 〈1| . (7.1)

Then Collatz conjecture appears to be heuristically true: any natural number is Collatz compliant. But also considering this statement can be
extended to N-tuple orderings of natural numbers in the way:

∀N ∈ N∧C [N] = 1 : C[2]
[
NN
]
= 〈1| . (7.2)

The reported discussion and results are of empirical and heuristic nature.

Perhaps there are no other means to prove the Collatz conjecture. Suppose this statement is true, then equations (7.1) and (7.2) constitute an
important landmark in studying the Collatz conjecture structure.
On the contrary, whenever a complete description of a mathematical proof might appear in the future, this paper’s results will still constitute
a reliable, first-step heuristic source of the natural number set Collatz conjecture compliance.

8. Appendix: Collatz Algorithm

Pseudocode depicting the original Collatz algorithm.

Algorithm: Collatz or (3x+1) procedure

Input : n ∈ N;

I = 0;

De f ine CI [n];

while n > 1;

I = I+1;c← n/2;

if 2∗ c 6= n : n← 3∗n+1; else: n← c;
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*Corresponding author

Article Info

Keywords: Finite difference scheme,
Pseudo-hyperbolic equation, Stability,
Telegraph equation.
2010 AMS: 35L82, 65M06
Received: 17 June 2022
Accepted: 2 September 2022
Available online: 18 November 2022

Abstract

Hyperbolic partial differential equations are frequently referenced in modeling real-world
problems in mathematics and engineering. Therefore, in this study an initial-boundary
value issue is proposed for the pseudo-hyperbolic telegraph equation. By operator method,
converting the PDE to an ODE provides an exact answer to this problem. After that, finite
difference method is applied to construct first order finite difference schemes to calculate
approximate numerical solutions. The stability estimations of finite difference schemes
are shown, as well as some numerical tests to check the correctness in comparison to the
precise solution. The numerical solution is subjected to error analysis. As a result of the
error analysis, the maximum norm errors tend to decrease as we increase the grid points. It
can be drawn that the established scheme is accurate and effective.

1. Introduction

Mathematical models in physics, chemistry, engineering, biology and economics are often expressed using partial and ordinary differential
equations [1]–[4]. Analytical and numerical solutions of partial differential equations play a significant role in understanding the underlying
phenomena [5, 6]. Partial differential equations are classified into three types and in this study, hyperbolic type partial differential equations
are considered.
Pseudo-hyperbolic equations are hyperbolic partial differential equations which contain mixed time and space partial derivatives. For these
types of equations, there are several technics to calculate exact and approximate numerical solutions. In [7], the conformable double Laplace
transform decomposition approach was used to solve linear and nonlinear singular pseudo-hyperbolic equations. In [8], by the regularization
method and the method of continuation parameter the regular solvability of the boundary value problem for pseudo-hyperbolic equations
with variable time direction were proved. In [9, 10], numerical schemes based on H1-Galerkin mixed finite element method were constructed
for pseudo-hyperbolic equations. Some other works on pseudo-hyperbolic equations are [11]–[15].
There has been a wide range of research on finite difference schemes for approximate solutions to telegraph equations and there are
considerable approximation for stability of these difference schemes. The stability estimates of these difference schemes are constructed
applying the operator splitting approach and some energy inequalities using certain assumptions on the grid step sizes τ and h [16].
In the present work we consider pseudo-hyperbolic telegraph equation. Telegraph equation is mostly used for modeling of wave propagation
of electric signals in a cable transmission line. To get accurate and approximate numerical solutions of hyperbolic telegraph equations,
a variety of numerical and analytical approaches are applied. In [17], exact solution of the telegraph equation was solved by (G′/G)-
expansion method. In [18], a numerical technique was developed for the one-dimensional telegraph equation with purely integral conditions.
Daftardar-Gejji-Jafaris (DGJ) method was used to obtain approximate solution of the hyperbolic telegraph equation [19]. In [20], Differential
Transformation Method (DTM) has been utilized to obtain the exact solutions of the one-space-dimensional hyperbolic telegraph equation.
In [21], a new numerical scheme was constructed to solve the second-order hyperbolic telegraph equation using the collocation method.
Laplace transform homotopy perturbation method was used in [22] to solve the telegraph equation with the initial and boundary conditions.
An operator method was studied in [23] for the difference equations and partial differential telegraph equation. In [24], a numerical method
for the first and second-order of accuracy for telegraph equations was discussed and the stability of difference schemes were obtained.
Numerical solutions were computed for the telegraph equations arising in transmission lines [25].
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In this work, numerical solution of the third-order pseudo-hyperbolic telegraph equation is investigated using the first-order finite difference
technique. The numerical solution is subjected to an error analysis. The stability inequalities of finite difference schemes are presented, as
well as some numerical experiments to verify the correctness in terms of precise solution.

2. Introducing Problem

We define the pseudo-hyperbolic telegraph equation below
vηη (η ,θ)+λvη (η ,θ)+µv(η ,θ) = vηθθ (η ,θ)+ vθθ (η ,θ)+g(η ,θ),
v(0,θ) = ϕ1(θ), vη (0,θ) = ϕ2(θ), 0 < θ < L,
v(η ,0) = v(η ,L) = 0, 0 < η < T,
0 < λ , 0 < µ.

(2.1)

We can rewrite equation (2.1) as{
vηη (η)+λvη (η)+Avη (η)+Av(η)+µv(η) = g(η) 0≤ η ≤ T,
v(0) = ϕ1, v′(0) = ϕ2,

(2.2)

where A≥ δ I and A is positive definite self-adjoint operator. For positive δ and λ , the following restriction is requried

δ +µ ≥ (λ +δ )2

4
.

One can obtain equation (2.2) from (2.1) under the following conditions. In a Hilbert space L2[0,L] define

Av(θ) =−vθθ +δv(θ), (2.3)

then
(Av)η =−vθθη =−vηθθ

with the domain
D(A) = {v(θ) : v,vθ ,vθθ ∈L2,v(0) = v(L),v′(0) = v′(L)}.

Here we set g(η) = g(η ,θ) and v(η) = v(η ,θ) which are given and will be determined abstract functions in L2[0,L]. v(η) is a solution of
(2.2) if it is three times continuously differentiable on [0,T ], v(η) ∈D(A) and Av(η) is continuous on [0,T ]. Also v(η) must satisfy equation
(2.2) and the initial conditions. If the operator A satisfies the properties given above, then the partial differential equation (2.1) turns into the
ordinary differential equation (2.2). Thus the method used is know as the operator method [23]–[26].
Next we introduce the Hilbert space L2(Ω), where Ω = Ω∪S and Ω⊂ Rn is a bounded open domain with smooth boundary S, with the
norm

‖g‖L2(Ω) =

{∫
· · ·
∫

θ∈Ω

|g(θ)|2dx1...dxn

} 1
2

.

The problem (2.2) can easily be converted to a system of first order differential equation with initial conditions. Therefore we obtain



v′(η)+
λ +A

2
v(η)+ iK

1
2 v(η) = z(η), 0≤ η ≤ T,

v(0) = ϕ1, v′(0) = ϕ2,

z′(η)+ λ+A
2 z(η)− iK

1
2 z(η) = g(η),

z(0) = v′(0)+
(

λ+A
2 + iK

1
2

)
v(0).

(2.4)

where K = A+µ− (λ+A)2

4 . If we integrate (2.4), we obtain

v(η) = e
−
(

λ+A
2 +iK

1
2
)

η
v(0)+

∫
η

0
e
−
(

λ+A
2 +iK

1
2
)
(η−z)

z(s)ds, (2.5)

z(η) = e
−
(

λ+A
2 −iK

1
2
)

η
z(0)+

∫
η

0
e
−
(

λ+A
2 −iK

1
2
)

η
g(s)ds. (2.6)

Applying the method in [24] with the equations (2.5) and (2.6), we have the solution of the problem (2.2)

v(η) = e−(
λ+A

2 )η c(η)ϕ1 +
λ +A

2
e−(

λ+A
2 )η s(η)ϕ1 + e−(

λ+A
2 )η s(η)ϕ2 +

∫ t

0
e
−
(

λ+A
2 +iK

1
2
)
(η−z)

δ (η− z)g(z)dz, (2.7)

where c(η) = eiηK1/2
+e−iηK1/2

2 and s(η) = K−1/2 eiηK1/2−e−iηK1/2

2i .

Lemma 2.1. Following estimates hold

• ‖e−(
λ+A

2 )η‖L2 ≤ 1.
• ‖c(η)‖L2→L2 ≤ 1.
• ‖K1/2s(η)‖L2→L2 ≤ 1.
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• ‖A1/2K−1/2‖L2→L2 ≤M(δ ).
• ‖K−1/2ϕ1‖L2 ≤

1√
δ
‖ϕ1‖L2 .

For easy proof, see [27, 28]. Now we give the main theorem and prove it.

Theorem 2.2. Let ϕ1 ∈ D(A), ϕ2 ∈ D(A1/2), g(η) be a continuous differentiable function on [0,T] and δ +µ ≥ (λ+δ )2

4 . Then there exist a
unique solution of (2.2) and its stability estimate is

max
0≤η≤T

‖v(η)‖L2 ≤M
[
‖ϕ1‖L2 +‖A

−1/2
ϕ2‖L2 + max

0≤η≤T
‖A−1/2g(η)‖L2

]
where M is independent from ϕ1,ϕ2 and g(η).

Proof. By Lemma 2.1 with A≥ δ I and using the formula (2.7), we have the following inequalities

‖v(η)‖L2 ≤ ‖c(η)‖L2→L2‖e
−( λ+A

2 )η‖L2‖ϕ1‖L2 +‖K
1/2s(η)‖L2→L2‖A

1/2K−1/2‖L2→L2 |
λ +A

2
e−(

λ+A
2 )η |

‖A−1/2
ϕ1‖L2 +‖K

1/2s(η)‖L2→L2‖A
1/2K−1/2‖L2→L2 |e

−( λ+A
2 )η |‖A−1/2

ϕ2‖L2

+
∫

η

0
‖K1/2s(η− z)‖L2→L2‖A

1/2K−1/2‖L2→L2‖A
−1/2g(s)‖L2 ds

≤ M(δ ,λ )

[
‖ϕ1‖|L2 +‖A

−1/2
ϕ2‖L2 + max

0≤η≤T
‖A−1/2g(η)‖L2

]
.

3. Stability for First Order Difference Scheme

We investigate the approximation in η of first order difference scheme


vk+1−2vk + vk−1

τ2 +λ
vk− vk−1

τ
+A

vk− vk−1
τ

+µvk +Avk = gk,

gk = g(ηk), 1≤ k ≤ N−1, Nτ = T,
v0 = ϕ1,

v1−v0
τ

+(µ +A)τv0 = (1− (λ +A)τ)ϕ2

(3.1)

for the numerical solution of the initial value problem (2.1). We can write (3.1) into the following difference problem

 (1− (λ +A)τ)vk−1− (2− (λ +A)τ− (µ +A)τ2)vk + vk+1 = τ
2gk,

1≤ k ≤ N−1,
v0 = ϕ1, v1 = (1− (µ +A)τ2)v0 +(1− (λ +A)τ)τϕ2.

(3.2)

The formula (3.2) can be simplified as

avk−1− cvk +bvk+1 = ϕk,

where a = 1− (λ +A)τ , c = 2− ((λ +A)τ +(µ +A)τ2), b = 1 and ϕk = τ2gk.

Theorem 3.1. Let ϕ1 ∈ D(A), ϕ2 ∈ D(A1/2) and δ +µ ≥ (λ+δ )2

4 . The following stability inequality for (3.1)

max
0≤k≤1

‖vk‖L2 ≤M(λ ,µ,δ )

[
‖ϕ1‖L2 +‖A

−1/2
ϕ2‖L2 + max

1≤k≤N−1
‖A−1/2gk‖L2

]
(3.3)

holds where M(λ ,µ,δ ) is independent from τ,ϕ1,ϕ2 and gk, 1≤ s≤ N−1.

The proof of Theorem 3.1 follows from [26] by using the formula for the solution of the difference scheme (3.2).
Now, we consider applications of Theorem 3.1. We begin by discretizing the problem (2.1). First we define the grid space

[0,L]h = {θ = θn : θn = nh,0≤ n≤M,Mh = L}.

L2h with the grid space [0,L]h is defined as L2([0,L]h). The following L2h norm

‖ϕh‖L2h =

(
∑

θ∈[0,L]h
|ϕ(θ)|2h

)1/2

is used for the grid functions ϕh(θ) = {ϕn}M
0 . Then we define the difference operator Ah for the differential operator A in equation (2.3)

Ahϕ
h(θ) = {−(ϕθθ )n +δϕn}M−1

1 .

Ah is a positive definite and self-adjoint operator in L2h and satifies the conditions ϕ0 = ϕM and ϕ1−ϕ0 = ϕM−ϕM−1. Now we can write
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{
vh

ηη (η ,θ)+λvh
η (η ,θ)+Ahvh

η (η ,θ)+Ahvh(η ,θ)+µv(η ,θ) = gh(η ,θ),

vh(0,θ) = ϕh
1 (θ), vh

η (0,θ) = ϕh
2 (θ), 0 < η < T,θ ∈ [0,L]h.

(3.4)

After replacing (3.4) with the difference scheme (3.1), we obtain


vh

k+1(θ)−2vh
k(θ)+ vh

k−1(θ)

τ2 +λ
vh

k(θ)− vh
k−1(θ)

τ
+Ah vh

k(θ)− vh
k−1(θ)

τ

+µvh
k(θ)+Ahvh

k(θ) = gh
k(θ),

gh
k(θ) = gh(ηk,θ), 1≤ k ≤ N−1,θ ∈ [0,L]h,ηk = kτ,Nτ = T,

vh
0(θ) = ϕh

1 (θ),
vh

1(θ)−vh
0(θ)

τ
+(µIh +Ah)τvh

0(θ) = (Ih− (λ Ih +Ah)τ)ϕh
2 (θ).

(3.5)

Theorem 3.2. The stability estimate of the solution {vh
k(θ)}

N
0 of the discretized problem (3.5)

max
1≤k≤N

‖vh
k‖L2h ≤M

[
‖ϕh

1‖L2h +‖ϕ
h
2‖L2h + max

1≤k≤N−1
‖gh

k‖L2h

]
holds where M is independent from ϕh

1 (θ),ϕ
h
2 (θ) and gh

k(θ), 1≤ k ≤ N−1.

Proof of Theorem 3.2 follows from stability estimate (3.3).

4. Simulations

In this chapter, a numerical example is provided to support the theoretical statements. Some numerical results are given as an application of
the Theorem 3.1. Consider the following problem

vηη (η ,θ)+ vη (η ,θ)+ v(η ,θ) = vηθθ (η ,θ)+ vθθ (η ,θ)+g(η ,θ),
g(η ,θ) = e−η (θ −θ 2),0 < θ < 1,0 < η < 1,
v(0,θ) = θ −θ 2, vη (0,θ) =−(θ −θ 2), 0≤ θ ≤ 1,
v(η ,0) = v(η ,1) = 0, 0≤ η ≤ 1.

(4.1)

By using Modified Double Laplace Decomposition method the exact solution of the problem (4.1) is v(η ,θ) = e−η (θ−θ 2). See [29, 30, 31]
for similar examples.
The first order difference scheme of the problem (4.1) is as follows


vk+1

n −2vk
n+vk−1

n
τ2 +

vk
n−vk−1

n
τ

+ vk
n =

1
τ

(
vk

n−1−2vk+1
n +vk

n+1
h2 − vk−1

n−1−2vk
n+vk−1

n+1
h2

)
+

vk
n+1−2vk

n+vk
n−1

h2 +gk
n,

θn = nh, ηk = kτ,1≤ k ≤ N−1, 1≤ n≤M−1,

v0
n = θ −θ 2,

v1
n−v0

n
τ

=−(θ −θ 2), 0≤ n≤M,

vk
0 = vk

M = 0, 0≤ k ≤ N.

(4.2)

Next, we consider the following matrix equation

A vn+1 +Bvn +C vn−1 = Iϕn

where vn = [v1
n,v

2
n, ...,v

N−1
n ], ϕn = [ϕ1

n ,ϕ
2
n , ...,ϕ

N−1
n ]T . We have (N +1)× (N +1) system of equation with the coefficient matrices A , B

and C . Following the same approach as in [23], we compute the maximum difference between the approximate and exact solution by

ε = max
1≤k≤N−1
1≤n≤M−1

|v(η ,θ)− v(ηk,θn)|.

Calculated results are presented in Table 1 for (4.2).

τ = 1
N , h = 1

M ε

N = 25, M = 5 0.1600
N = 100, M = 10 0.0900
N = 225, M = 15 0.0622
N = 400, M = 20 0.0475
N = 625, M = 25 0.0384
N = 900, M = 30 0.0322
N = 1600, M = 40 0.0244
N = 2500, M = 50 0.0196

Table 1: Error Analysis

From Table 1, one can observe that maximum norm errors tend to decrease as we increase the grid points. This shows the established
scheme’s precision. Moreover numerical results in Table 1 are calculated by taking τ = h2. To show the precision of the numerical results,



96 Journal of Mathematical Sciences and Modelling

we calculate the error of the difference scheme (4.2) by taking τ = h. For example, for N = M = 20 maximum norm error is 0.0811 which is
greater than for N = 400, M = 20. Also this maximum norm error is increasing as N and M are increasing.

Figures 4.1 and 4.2 show how the solutions to the example (4.1) look very similar. In addition, in Figure 4.3, 2d-line plot is given to see how
the solutions fit together.

Figure 4.1: For N = 400 and M = 20, graph of the exact solution of the problem (4.1).

Figure 4.2: For N = 400 and M = 20, the graph with maximum error 0.0475.

Figure 4.3: For N = 2500 and M = 50, comparison of the approximate and exact solutions.
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5. Conclusion

In this paper, the pseudo-hyperbolic telegraph equation was addressed and its stability estimates were calculated. In the literature, finite
difference technic has not been applied for the numerical solution of this equation. Although the Modified Double Laplace Decomposition
method gave the exact solution of this problem, we also constructed the first order finite difference scheme. Besides, stability estimates of the
scheme were obtained. Then, we performed the difference scheme technique on the considered numerical example to confirm the correctness.
Error calculations showed that the established scheme has good results and is effective for this equation. Also, some simulations were plotted
to see it clearly and assist with the results. MATLAB programming was used to calculate the numerical solutions for the test example.
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Abstract

In this article, we have worked on the perturbed Boussinesq equation. We have applied the
generalized Kudryashov method (GKM) and sine-Gordon expansion method (SGEM) to
the perturbed Boussinesq equation. So, we have obtained some new soliton solutions of the
perturbed Boussinesq equation. Furthermore, we have drawn some 2D and 3D graphics of
these results by using Wolfram Mathematica 12.

1. Introduction

Perturbed Boussinesq equation (BE) is a category of nonlinear evolution equations (NLEEs). NLEEs have very important applications in
areas such as plasma physics, mathematical physics, optical fibers, mathematical chemistry, hydrodynamics, fluid dynamics, geochemistry,
control theory, meteorology, optics, mechanics, chemical kinematics, biophysics, biogenetics, and so on. NLEE’s important work is carried
out by scientists in many disciplines, especially mathematics and physics [1]-[12].
Perturbed BE is given as:

utt − k2uxx + p(u2n)xx + ruxxxx = βuxx +ρuxxxx, (1.1)

where ρ is the higher-order stabilization term and β shows the coefficient of dissipation [13, 14]. The perturbed BE is defined for areas such
as plasma waves, quantum mechanics, acoustic waves, nonlinear optics, the elasticity of longitudinal waves in bars. Recently perturbed BE
has been studied by some researchers.
Ebadi et al. have worked exponential function method and G′/G method [13]. Akbar et al. have applied the modified auxiliary equation
technique for the perturbed BE [14]. Daripa and Dash have used the Pseudospectral method [15]. Dash and Daripa have established weakly
nonlocal solitary wave solutions of the regularized sixth-order BE [16]. Jiao have used approximate symmetry method for (2+1)-dimensional
perturbed BE [17].
Our aim in this study is to detect soliton solutions of perturbed BE through GKM [18]-[21] and SGEM [22]-[25]. In part 2, GKM and
SGEM’s structures are given. In part 3, some soliton solutions of perturbed BE is obtained by applying GKM and SGEM.

2. Methods

2.1. Structure of GKM

We take notice of a general nonlinear partial differential equation (NLPDE) in the following form:

P(u,ut ,ux,uxx,uxt , ...) = 0. (2.1)

Email addresses and ORCID numbers: seymatuluce@gmail.com, 0000-0002-8027-7290 (Ş. Tülüce Demiray), ubayrakci42@gmail.com, 0000-
0002-1765-2318 (U. Bayrakcı)
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Step 1. Firstly, we regard the travelling wave transform like as in the below form;

u(x, t) = u(ξ ),ξ = x− vt, (2.2)

by inserting Eq. (2.2) into Eq. (2.1). We reduce the Eq. (2.1) to the ordinary differential equation form:

R(u,u
′
,u
′′
,u
′′′
, · · ·) = 0. (2.3)

Step 2. Solutions of the obtained ordinary differential equation are taken as follows;

u(ξ ) =
∑

T
i=0 piZi(ξ )

∑
K
j=0 r jZ j(ξ )

=
A[Z(ξ )]
B[Z(ξ )]

, (2.4)

where Z is 1
1±eξ

. Z is a solution to the Zξ = Z2−Z equation,
Step 3. We use the homogeneous balance principle to find the values of K and T in Eq. (2.4). For this purpose, we balance between the
highest order derivative and highest order nonlinear term in Eq. (2.3).
Step 4. We put Eq. (2.4) into Eq. (2.3). So we get a polynomial R(Z) of Z. By equating all coefficients of R(Z) to zero, we get a system of
algebraic equations. By solving obtained system, we find c and the variable coefficients of p0, p1, p2, . . . , pT ,r0,r1,r2, . . . ,rK . Finally we
can get the solutions of Eq. (2.1).

2.2. Structure of SGEM

We will give the general basic of SGEM. For this, we first handle the sine-Gordon equation

uxx−utt = m2 sin(u), (2.5)

where m is a real constant and u = u(x, t) is a function.
Performing wave transformation u(x, t) = u(ξ ),ξ = µ(x− kt) to Eq. (2.5),

u′′ =
m2

µ2
(
1− k2

) sin(u) (2.6)

is obtained. Integrating Eq. (2.6) and setting the integration constant to zero, we have,[(u
2

)′]2
=

m2

µ2
(
1− k2

) sin2
(u

2

)
. (2.7)

Subsituting w(ξ ) = u
2 and b2 = m2

µ2(1−k2)
in Eq. (2.7), we get,

w′ = bsin(w). (2.8)

If we receive b = 1 in Eq. (2.8), we have,

w′ = sin(w). (2.9)

From the Eq. (2.9), we get,

sin(w) = sin(w(ξ )) =
2deξ

d2e2ξ +1

∣∣∣∣
d=1

= sech(ξ ), (2.10)

cos(w) = cos(w(ξ )) =
d2e2ξ −1
d2e2ξ +1

∣∣∣∣
d=1

= tanh(ξ ), (2.11)

To find the solution of the following nonlinear partial differential equation;

F(u,ux,ut ,uxx,utt ,uxt , ...) = 0, (2.12)

we handle the equation given below,

u(ξ ) =
n

∑
i=1

tanhi−1(ξ ) [Bi sech(ξ )+Ai tanh(ξ )]+A0. (2.13)

Considering the Eqs. (2.10) and (2.11), we can write the Eq. (2.13) as follows:

u(w) =
n

∑
i=1

cosi−1(w) [Bi sin(w)+Ai cos(w)]+A0. (2.14)

Here we specify the value of n in Eq. (2.14) by means of balance principle, replace Eq. (2.14) into Eq. (2.12), and comparison the terms, we
get a system of equations. By solving obtained system of equations, we acquire travelling wave solutions of the Eq. (2.12).
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3. Application of Methods

3.1. GKM

To get the exact solutions of Eq. (1.1) we take account of the following transformation:

u(x, t) = u(ξ ),ξ = x− vt. (3.1)

Replacing Eq. (3.1) into Eq. (1.1) and integrating by taking the integration constant as zero, we get the following equation,

(v2− k2−β )u+ p(u2n)+(r−ρ)u
′′
= 0. (3.2)

In Eq. (3.2), u = q
2

2n−1 transformation is applied. Thus, Eq. (3.2) is converted into the following form.

(v2− k2−β )q2 + pq4 +(r−ρ)
2(3−2n)
(2n−1)2

(
q
′
)2

+(r−ρ)
2

(2n−1)
qq
′′
= 0. (3.3)

By using balance principle in Eq. (3.3), we get T = K +1. Takes the value T = 2 for K = 1, so we get

u(ξ ) =
a0 +a1Z +a2Z2

b0 +b1Z
, (3.4)

u
′
(ξ ) =

(
Z2−Z

)[ (a1 +2a2Z)(b0 +b1Z)−b1
(
a0 +a1Z +a2Z2)

(b0 +b1Z)2

]
, (3.5)

u
′′
(ξ ) =

(Z2−Z)(2Z−1)
(b0 +b1Z)

[
(a1 +2a2Z)(b0 +b1Z)−b1

(
a0 +a1Z +a2Z2

)]
+

(Z2−Z)2

(b0 +b1Z)3

[
2a2(b0 +b1Z)2−2b1(a1 +2a2Z)(b0 +b1Z)+2b2

1

(
a0 +a1Z +a2Z2

)]
. (3.6)

We find the solution cases as follows;
Case 1:

a0 = 0, a2 =−a1, b0 =
i(−1+2n)

√
pa1

2
√

2
√

(1+2n)(r−ρ)
, b1 =−

i(−1+2n)
√

pa1√
2r+4nr−2ρ−4nρ

,

v =−
√

k2(1−2n)2−4r+β +4(−1+n)nβ +4ρ

(1−2n)
.

(3.7)

Soliton solutions of Eq. (1.1) are found by writing values in (3.7) into Eq. (3.4).

u1(x, t) =

(√
2
√

(1+2n)(r−ρ)csc[ivt− ix]
(1−2n)

√
p

) 2
2n−1

. (3.8)

Figure 3.1: The 3D graph of the solution (3.8) for n = 2, r = 2, ρ = 1.5, v =−1, p = 3,−15≤ x≤ 15, −4≤ t ≤ 4 and 2D graph for this values and t = 1.
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Case 2:

a0 = 0, a1 =−a2, b0 =−
b1

2
, β =

−k2(1−2n)2 +4r+(1−2n)2v2−4ρ

(1−2n)2 , p =
2(1+2n)(−r+ρ)b2

1
(1−2n)2a2

2
. (3.9)

Soliton solutions of Eq. (1.1) are found by writing values in (3.9) into Eq. (3.4).

u2(x, t) =
(

csch[x− vt]a2

b1

) 2
2n−1

. (3.10)

Figure 3.2: The 3D graph of the solution (3.10) for n = 2.5, v = 1,a2 = 1, b1 = 5, −25≤ x≤ 25, −5≤ t ≤ 5 and 2D graph for this values and t = 3.

3.2. SGEM

By using balance principle in Eq. (3.3), we find N = 1. Using the value of N = 1 in Eq. (2.14), we get:

u(w) = B1 sin(w)+A1 cos(w)+A0, (3.11)

u′(w) = B1 cos(w)sin(w)−A1 sin2(w), (3.12)

u′′(w) = B1 cos2(w)sin(w)−B1 sin3(w)−2A1 sin2(w)cos(w). (3.13)

Placing Eq. (3.11), (3.12) and (3.13) into Eq. (3.3), we are generating trigonometric equations. We obtain an equation system by performing
some mathematical operations in these trigonometric equations. Solving the obtained system of equations, we can result:

A0 = 0, A1 = 0, B1 =−
√

2(1+2n)(r−ρ)√
(1−2n)2 p

, k =−
√

4r+(1−2n)2(v2−β )−4ρ√
(1−2n)2

. (3.14)

For values (3.14) we get the following result:

u3(x, t) =

(
−
√

2(1+2n)(r−ρ)sech[x− vt]√
(1−2n)2 p

) 2
2n−1

. (3.15)
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Figure 3.3: The 3D graph of the solution (3.15) for n = 3,r = 2,ρ = 3,v = 0.2, p =−1,−20≤ x≤ 20,−5≤ t ≤ 5 and 2D graph for this values and t = 1.5.

4. Results and Discussion

In this study, the perturbed BE is discussed. GKM and SGEM have been applied to this equation and thus the solutions of the equation have
been sought. As a result, bright soliton solutions of the equation have been acquired. As far as we researched, these obtained bright soliton
solutions are new and have not been demonstrated before compared to previous studies. Both 2D and 3D graphical representations have been
made for the physical representation of these obtained solutions.

5. Conclusion

In this study, the perturbed BE was studied. First, it is reduced to an ordinary differential equation by applying the traveling wave transform
to the equation. Afterward, some n-dimensional soliton solutions of the equation were found by applying GKM and SGEM to this ordinary
differential equation. 2D and 3D graphics were drawn thanks to Wolfram Mathematica 12 by giving certain values to the acquired solutions.
According to our study, GKM and SGEM appear to be effective and reliable methods for finding NLEEs solutions. Thus, it is seen that GKM
and SGEM are methods that facilitate the solution of NLEEs emerging in mathematical physics, applied mathematics and engineering.
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Abstract

The objective of this paper is to present results on the existence of solutions for a class of
fractional integral equations in Fréchet spaces of Banach space-valued functions on the
unbounded interval. Our main tool is the technique of measures of noncompactness and
fixed points theorems.

1. Introduction

One of the most widely used techniques of proving that certain operator equation has a solution is to reformulate the problem as a fixed
point problem and see if the latter can be solved via a fixed point argument. Measures of noncompactness play an important role in fixed point
theory and have many applications in various branches of nonlinear analysis, including differential equations, integral and integro-differential
equations, optimization, etc. Roughly speaking, a measure of noncompactness is a function defined on the family of all nonempty and
bounded subsets of a certain metric space such that it is equal to zero on the whole family of relatively compact sets. This significant concept
in mathematical science was defined by many authors in different manners [1, 2]. In the last years there appeared many papers devoted to
the applications of the measure noncompactness for establish some existence and stability results for various types of nonlinear integral
equations [3, 4]. In some recent works on this subject, authors utilize a new method of a family of measures of noncompactness and fixed
point theorems for condensing operators in Fréchet spaces see [5, 6]. The additional advantage of this works is the possibility of extension of
the study for several problems to an unbounded domains.

Let us mention that Fréchet spaces have played an important role in functional analysis from its very beginning: Many vector spaces of
holomorphic, differentiable or continuous functions which arise in connection with various problems in analysis and its applications are
defined by (at most) countably many conditions, whence they carry a natural Fréchet topology (if they are, in addition, complete) [7, 8].

This paper is devoted to the study of the following integral equation

u(x) = ϕ(x)+
1

Γ(r)

∫ x

1

(
ln

x
t

)r−1 f (t,u(t))
t

dg(t); x ∈ J, (1.1)

where J = [1,+∞), r > 0, ϕ : J→ E is continuous function, f : J×E→ E, g : J→ R are given functions, (E,‖ · ‖) is a Banach space and
Γ(·) is the Euler gamma function. We investigate the existence of solutions of Eq. (1.1) with an application of the fixed point theorems and
the technique of measure of noncompactness under some sufficient conditions.

As we know, fractional calculus have been the focus of many researchers in recent years due to their wide application in various fields of
engineering, modeling of natural phenomena, optimal control, and biological mathematics [9–12]. Given the wide application of this branch
of mathematics in human life, it makes sense for researchers to spend more time identifying equations that can interpret many physical
phenomena and come up with newer and more powerful solutions to them. For this reason, in the last decade, many articles have been
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published in the field of ordinary and partial differential equations (see, for example, [13–15]). Let us mention that integral equations of
fractional order create an interesting and important branch of the theory of integral equations. The theory of such integral equations is
developed intensively in recent years together with the theory of differential equations of fractional order. On the other hand, during the
last decades there has been developed the theory of functional integral equations of Stieltjes type. Nevertheless, it turns out that a lot of
interesting and important problems which can be formulated inside the theory of Volterra–Stieltjes integral equations are not satisfactory
solved by the results obtained up to now [16]. In the theory in question, several types of integral operators, both of linear and nonlinear types
are investigated in numerous papers and monographs, we refer [17–19].

2. Preliminaries

This section is devoted to collect some definitions and auxiliary results which will be needed in further considerations.

Definition 2.1 ( [20]). A function f : J = [a,b]→ R is called of bounded variation if
∨
J

f < ∞, where
∨
J

f = sup
k
∑

i=0
| f (ti+1)− f (ti)|, and the

supremum is taken over all finite subdivision of J of the forme a = t0 < t1 < t2 · · ·< tk = b.

Proposition 2.2 ( [20]). • A function f is of bounded variation on J if and only if f is the difference between two monotone increasing
real-valued functions on J.

• If f is of bounded variation on J, then f has countable discontinuities in J.

The Stieltjes integral exists under several conditions, One of the most frequently used requires that f is continuous and g is of bounded
variation on J, and the following inequality holds ∣∣∣∣∫J

f (t)dg(t)
∣∣∣∣≤ ∫J

| f (t)|
∨
J

g.

Theorem 2.3 ( [20]). Suppose that g is a monotonically increasing function such that g′ is Riemann integrable on J and f is continuous on
J. Then ∫ b

a
f (t)dg(t) =

∫ b

a
f (t)g′(t)dt.

In what follows, we consider the Hadamard-Stieltjes integral of order q > 0 for a function u of the form(
HSIq

1 u
)
(x) =

1
Γ(q)

∫ x

1

(
ln

x
t

)q−1 u(t)
t

dg(t).

Lemma 2.4 ( [21]). Assume that the functions Φ,φ1,φ2 : R+→ R+ are continuous functions such that Φ satisfies the following inequality:

Φ(t)≤ φ1(t)+
∫ t

0
φ2(τ)Φ(τ)dτ; t ≥ 0,

then

Φ(t)≤ φ1(t)+
∫ t

0
φ1(τ)φ2(τ)exp

(∫ t

τ

φ2(s)ds
)

dτ; t ≥ 0.

We present now some basic facts concerning measures of noncompactness. If A is a subset of a Fréchet space X then the symbols A, ConvA
stand for the closure and convex hull of A, respectively. Moreover, for any fixed function h : R+→ (0,∞) let us denote

MX = {x ∈ X ; ‖x(t)‖E ≤ h(t), t ∈ J},

the family of all nonempty and bounded subsets of X and by NX its subfamily consisting of all relatively compact sets.
For the Fréchet space we accept the following definition of the family of measures of noncompactness.

Definition 2.5 ( [6]). A family of mappings µn : MX → R+ is said to be a family of measures of noncompactness in the Fréchet space X if it
satisfies the following conditions

1. The family ker{µn}= {A ∈ MX ; µn(A) = 0 for n ∈ N} is nonempty and ker{µn} ⊂ NX .
2. µn(A)≤ µn(B) for A⊂ B, n ∈ N.
3. µn(ConvA) = µn(A) for n ∈ N.
4. If (Ai) is a sequence of closed sets from MX such that Ai+1 ⊂ Ai (i = 1,2, · · ·) and if limi→∞ µn(Ai = 0 for each n ∈ N, then the

intersection set A∞ =
⋂

∞
i=1 Ai is nonempty.

5. µn(λA) = |λ |µn(A) for λ ∈ R, n = 1,2, · · ·
6. µn(A+B)≤ µn(A)+µn(B) for n = 1,2, · · ·
7. µn(A∪B) = max{µn(A),µn(B)} for n = 1,2, · · ·

We call the family {µn}n∈N to be homogeneous, subadditive, sublinear, has the maximum property if 5., 6., (5.6.), 7. hold respectively.

Definition 2.6. The family of measures of noncompactness {µn}n∈N is said to be regular if it is full (ker{µn} = NF ), sublinear and has
maximum property.

Remark 2.7. In Fréchet space X we can also consider families of measures {µT }T≥0 indexed by nonnegative numbers instead of families
{µn}n∈N indexed by natural numbers.
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Theorem 2.8 ( [6, 22]). Let Ω be a nonempty, bounded, closed and convex subset of a Fréchet space X and let L : Ω→Ω be a continuous
mapping. If L is a contraction with respect to a family of measures of noncompactness {µn}n∈N i.e for each n ∈ N and a nonempty A⊂Ω

there exist a constants kn ∈ [0,1) such that
µn(L(A))≤ knµn(A),

then L has at least one fixed point in the set Ω.

The above Theorem is a generalization of the classical Darbo fixed point Theorem for the Fréchet space.

Theorem 2.9 ( [23]). Let Ω be a nonempty, bounded, closed and convex subset of a Hausdorff locally convex space X such that 0 ∈Ω, and
let L be a continuous mapping of Ω into itself. If the implication

(V = conv L(V ) or V = L(V )∪{0})⇒V is relatively compact,

holds for every subset V of Ω, then L has a fixed point.

In the sequel we will work in the space
C(J,E) = {u : J→ E; u is continuous},

equipped with the family of seminorms
‖u‖n = sup{‖u(t)‖; t ∈ [1,n]}, n = 1,2, · · ·

C(J,E) became a Fréchet space.

Proposition 2.10 ( [24]). 1. A nonempty subset Q⊂C(J,E) is said to be bounded if sup{‖x‖n; x ∈ Q}< ∞, n = 1,2, · · ·
2. A sequence (un) is convergent to u in C(J,E) if and only if (un) is uniformly convergent to u on compact subsets of J.
3. A family Q ⊂C(J,E) is relatively compact if and only if for each T > 1, the restriction to [1,T ] of all functions from Q form an

equicontinuous set and Q(t) is relatively compact in E for each t ∈ J.

In order to define a measure of noncompactness in the space C(J,E), let us fix a nonempty bounded subset Q of the space C(J,E) . For
u ∈ Q, ε > 0, t,s ∈ [1,n] such that |t− s| ≤ ε , we denote by ωn

0 (u,ε) the modulus of continuity of the function u on the interval [1,n] i.e

ω
n
0 (u,ε) = sup{‖u(t)−u(s)‖; t,s ∈ [1,n], |t− s| ≤ ε},

so

ω
n
0 (Q,ε) = sup{ωn

0 (u,ε); u ∈ Q}
ω

n
0 (Q) = lim

ε→0
ω

n
0 (Q,ε)

Finally, consider the family {µn}n≥1 in C(J,E) defined by the formula

µn(Q) = ω
n
0 (Q)+ψn(Q); Q ∈ MC(J,E), n = 1,2, · · · , (2.1)

where ψn(Q) = sup
t∈[1,n]

ψ(Q(t)) and ψ is a regular measure of noncompactness in the Banach space E.

It can be shown that the family of maps {µn}n≥1 is a family of measures of noncompactness in the space C(J,E). The kernel (ker µn)
consists of nonempty and bounded sets Q such that functions from Q are equicontinuous on compact subsets of J and Q(t) is relatively
compact in E for each t ∈ J.

Lemma 2.11 ( [24]). Assume Q⊂C(J,E) is equicontinuous on compact intervals of J and Q(t) is bounded for all t ∈ J. Then

• The function t 7→ ψ(Q(t)) is continuous on J.
• For each t ∈ J

ψ

(∫ t

1
Q(τ)dτ

)
≤
∫ t

1
ψ(Q(τ))dτ.

3. Main results

The equation (1.1) will be considered under the following assumptions :

(H1) The function f is continuous and there exist two continuous functions p,q : J −→ R+ such that

‖ f (x,u)‖ ≤ p(x)‖u‖+q(x); x ∈ J; u ∈ E.

(H2) The function g is continuous and of bounded variation on J.
(H3) For each A ∈ ME and for each x ∈ J, we have

ψ( f (x,A))≤ p(x)ψ(A).

(H4) For each T > 1, there exists a constant θT > 0 such that∣∣∣∣∣
∫ T

1

(
ln

T
t

)r−1
dg(t)

∣∣∣∣∣≤ θT .

With

kT =
θT p∗

Γ(r)
< 1,

where p∗ = sup{p(x); x ∈ [1,T ]}.
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Theorem 3.1. Under the assumptions (H1)− (H4) the integral equation (1.1) has at least one solution u = u(x) in the space C(J,E).

Proof. Consider the operator L on the space C(J,E) defined by

(Lu)(x) = ϕ(x)+
1

Γ(r)

∫ x

1

(
ln

x
t

)r−1 f (t,u(t))
t

dg(t); x ∈ J,

observe that in view of our assumptions, for any function u ∈C(J,E) the function Lu is continuous on J. For an arbitrary function u ∈C(J,E)
and a fixed x ∈ J we have

‖Lu(x)‖ =

∥∥∥∥ϕ(x)+
1

Γ(r)

∫ x

1

(
ln

x
t

)r−1 f (t,u(t))
t

dg(t)
∥∥∥∥

≤ ‖ϕ(x)‖+ 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1
‖ f (t,u(t))‖dg(t)

≤ ‖ϕ(x)‖+ 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1
[p(t)‖u(t)‖+q(t)]dg(t)

≤ m(x)+
1

Γ(r)

∫ x

1

(
ln

x
t

)r−1
p(t)‖u(t)‖dg(t),

where

m(x) = ‖ϕ(x)‖+ 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1
q(t)dg(t).

Next, consider the following integral inequality

ω(x)≤ m(x)+
1

Γ(r)

∫ x

1

(
ln

x
t

)r−1
p(t)ω(x)dg(t).

In view of Lemma 2.4, we get

ω(x)≤ m(x)+
1

Γ(r)

∫ x

1

(
ln

x
t

)r−1
p(t)m(t)exp

(∫ x

t

(
ln

x
s

)r−1
p(s)ds

)
dg(t).

The function

Φ(x) = m(x)+
1

Γ(r)

∫ x

1

(
ln

x
t

)r−1
p(t)m(t)exp

(∫ x

t

(
ln

x
s

)r−1
p(s)ds

)
dg(t),

is continuous and nonnegative. Observe that the following implication is true :

‖u(x)‖ ≤Φ(x)⇒‖Lu(x)‖ ≤Φ(x); for x ∈ J.

We take the set

Q =

{
u ∈C(J,E); ‖u(x)‖ ≤Φ(x); x ∈ J

}
.

We see that Q is nonempty, bounded, closed and convex subset of C(J,E). Moreover, the operator L transforms the set Q into itself.
Further, let T > 1, x1,x2 ∈ [1,T ] with x1 < x2 and x2− x1 < ε . For a given u ∈ Q, we have

‖Lu(x2)−Lu(x1)‖ =

∥∥∥∥ϕ(x2)+
1

Γ(r)

∫ x2

1

(
ln

x2

t

)r−1 f (t,u(t))
t

dg(t)−ϕ(x1)−
1

Γ(r)

∫ x1

1

(
ln

x1

t

)r−1 f (t,u(t))
t

dg(t)
∥∥∥∥

≤ ‖ϕ(x2)−ϕ(x1)‖+
1

Γ(r)

∥∥∥∥∫ x2

1

(
ln

x2

t

)r−1
f (t,u(t))dg(t)−

∫ x2

1

(
ln

x1

t

)r−1
f (t,u(t))dtg(x2, t)

+
∫ x2

1

(
ln

x1

t

)r−1
f (t,u(t))dg(t)−

∫ x1

1

(
ln

x1

t

)r−1
f (t,u(t))dg(t)

∥∥∥∥
≤ ‖ϕ(x2)−ϕ(x1)‖+

1
Γ(r)

∫ x1

1
[(lnx2)

r− (lnx1)
r]‖ f (t,u(t))‖dg(t)+

∫ x2

x1

(
ln

x1

t

)r−1
‖ f (t,u(t))‖dg(t)

≤ ‖ϕ(x2)−ϕ(x1)‖+
p∗Φ∗+q∗

Γ(r)

[∫ x1

1
[(lnx2)

r− (lnx1)
r]dg(t)+

∫ x2

x1

(
ln

x1

t

)r−1
dg(t)

]
= W (T,ε),

since ϕ and the logarithm function are locally uniformly continuous, so, W (T,ε)→ 0 when ε → 0.

Remark 3.2. In this case, the set Q is the family consisting of functions equicontinuous on compact intervals of J.

Next, we will show that L : Q→ Q is continuous. Let us fix T > 1, δ > 0 and take u0 ∈ Q. Then, for x ∈ [1,T ] and any function u ∈ Q such
that ‖u(x)−u0(x)‖< δ , we get

‖Lu(x)−Lu0(x)‖ =

∥∥∥∥ 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1 f (t,u(t))
t

dg(t)− 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1 f (t,u0(t))
t

dg(t)
∥∥∥∥

≤ 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1
‖ f (t,u(t))− f (t,u0(t))‖dg(t).
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Since f is continuous on [1,T ]×E, we have supx∈[1,T ] ‖ f (x,u(x))− f (x,u0(x))‖< ε(δ ) with ε(δ )→ 0 as δ → 0. This implies

sup
x∈[1,T ]

‖Lu(x)−Lu0(x)‖ ≤
θT

Γ(r)
ε(δ ),

hence, the operator L is continuous on the set Q.
Further, fix arbitrarily T > 1 and take a nonempty Ω⊂ Q. In view of the assumption (H3), Remark 3.2 and by Lemma 2.11, we obtain

ψ(LΩ(x)) = ψ

(
ϕ(x)+

1
Γ(r)

∫ x
1
(
ln x

t
)r−1 f (t,Ω(t))

t
dg(t)

)
≤ 1

Γ(r)
∫ x

1
(
ln x

t
)r−1 p(t)ψ(Ω(t))dg(t)≤ p∗θT

Γ(r)
ψ(Ω(t)).

Thus

ψn(LΩ)≤ kT ψn(Ω). (3.1)

Observe, that linking (3.1) and the definition of the family of measure of noncompactness µn given by the formula (2.1), we obtain

µn(LΩ)≤ kT µn(Ω). (3.2)

Finally, in view of the Theorem 2.8 we deduce that L has at least one fixed point in Q which is a solution of Eq. (1.1).

In this section, we will give an other result using Mönch’s fixed point Theorem.

The Eq. (1.1) will be considered under the following assumptions :

(C1) The function f is continuous and there exists a continuous function p : J −→ R+ such that

‖ f (x,u)‖ ≤ p(x); x ∈ J; u ∈ E.

(C2) The function g is continuous and of bounded variation on J.
(C3) There exists a continuous function b : J −→ R+ such that for each A ∈ ME and for each x ∈ J, we have

ψ( f (x,A))≤ b(x)ψ(A). (3.3)

(C4) For each T > 1, there exists a constant θT > 0 such that∣∣∣∣∣
∫ T

1

(
ln

T
t

)r−1
dg(t)

∣∣∣∣∣≤ θT .

With

kT =
θT b∗

Γ(r)
< 1,

where b∗ = sup{b(x); x ∈ [1,T ]}.

Theorem 3.3. Suppose the hypotheses (C1)− (C4) are satisfied. Then Eq. (1.1) has at least one solution u = u(x) in the space C(J,E).

Proof. Consider the operator L on the space C(J,E) defined by

(Lu)(x) = ϕ(x)+
1

Γ(r)

∫ x

1

(
ln

x
t

)r−1 f (t,u(t))
t

dg(t); x ∈ J,

observe that in view of our assumptions, for any function u ∈C(J,E) the function Lu is continuous on J. For an arbitrary function u ∈C(J,E)
and a fixed x ∈ J we have

‖Lu(x)‖ =

∥∥∥∥ϕ(x)+
1

Γ(r)

∫ x

1

(
ln

x
t

)r−1 f (t,u(t))
t

dg(t)
∥∥∥∥

≤ ‖ϕ(x)‖+ 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1
‖ f (t,u(t))‖dg(t)

≤ ‖ϕ(x)‖+ 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1
p(x)dg(t),

hence, for x ∈ [1,n] we infer that

‖Lu‖n = ‖ϕ‖n +
θn p∗

Γ(r)
.
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Further, let T > 1, x1,x2 ∈ [1,T ] with x1 < x2 and x2− x1 < ε . For a given u ∈C(J,E), we have

‖Lu(x2)−Lu(x1)‖ =

∥∥∥∥ϕ(x2)+
1

Γ(r)

∫ x2

1

(
ln

x2

t

)r−1 f (t,u(t))
t

dg(t)−ϕ(x1)−
1

Γ(r)

∫ x1

1

(
ln

x1

t

)r−1 f (t,u(t))
t

dg(t)
∥∥∥∥

≤ ‖ϕ(x2)−ϕ(x1)‖+
1

Γ(r)

∥∥∥∥∫ x2

1

(
ln

x2

t

)r−1
f (t,u(t))dg(t)−

∫ x2

1

(
ln

x1

t

)r−1
f (t,u(t))dg(t)

+
∫ x2

1

(
ln

x1

t

)r−1
f (t,u(t))dg(t)−

∫ x1

1

(
ln

x1

t

)r−1
f (t,u(t))dg(t)

∥∥∥∥
≤ ‖ϕ(x2)−ϕ(x1)‖+

1
Γ(r)

∫ x1

1
[(lnx2)

r− (lnx1)
r] p(t)dg(t)+

∫ x2

x1

(
ln

x1

t

)r−1
p(t)dg(t)

≤ ‖ϕ(x2)−ϕ(x1)‖+
p∗

Γ(r)

[∫ x1

1
[(lnx2)

r− (lnx1)
r]dg(t)+

∫ x2

x1

(
ln

x1

t

)r−1
dg(t)

]
≤ W (T,ε),

We take the set

D =

{
u ∈C(J,E); ‖u‖n ≤ ln = ‖ϕ‖n +

θn p∗

Γ(r)
; and ω

n
0 (u,ε)≤W (T,ε); n≤ T

}
.

Obviously D is nonempty, bounded, closed and convex subset of C(J,E) and the operator L transforms the set D into itself. Moreover, the
set D is the family consisting of functions equicontinuous on compact intervals of J.
Now, we show that L is continuous on the set D. Let (un)n ⊂ D be a sequence converging to u in D i.e

lim
n→∞

sup
1≤t≤T

‖un(t)−u(t)‖= 0; T > 1.

Then we get

sup
1≤t≤T

‖(Lun)(x)− (Lu)(x)‖ ≤ 1
Γ(r)

sup
1≤x≤T

∫ x

1

(
ln

x
t

)r−1
‖ f (t,un(t))− f (t,u(t))‖×dg(t)

≤ θT

Γ(r)
sup

1≤t≤T
‖ f (t,un(t))− f (t,u(t))‖,

so

lim
n→∞

sup
1≤t≤T

‖(Lun)(x)− (Lu)(x)‖ ≤ θT

Γ(r)
lim
n→∞

sup
1≤t≤T

‖ f (t,un(t))− f (t,u(t))‖.

Since f is continuous on [1,T ]×E, we obtain

lim
n→∞

sup
1≤t≤T

‖(Lun)(x)− (Lu)(x)‖= 0,

hence the operator L is continuous on the set D.

Further, let V ⊂ D such that V = L(V )∪{0}, fix x ∈ [1,T ] and using our assumptions we arrive at the following estimates

ψ(LV (x)) = ψ

(
ϕ(x)+

1
Γ(r)

∫ x

1

(
ln

x
t

)r−1 f (t,V (t))
t

dg(t)
)

≤ 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1
ψ( f (t,V (t)))dg(t)

≤ 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1
b(t)ψ(V (t))dg(t)

≤ b∗θT

Γ(r)
sup

x∈[1,T ]
ψ(V (x)),

thus

sup
x∈[1,T ]

ψ(V (x))≤ kT sup
x∈[1,T ]

ψ(V (x)).

Since for each T > 1 we have kT < 1, we deduce that

sup
x∈[1,T ]

ψ(V (x)) = 0.

Hence, V (x) is relatively compact in E for each x ∈ [1,T ], and from the choice of the set D, we conclude that V is relatively compact in
C(J,E) (in view of proposition 2.10). Combining with Theorem 2.9 we complete the proof.
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4. Example

Let E = l∞ be the space of all bounded sequences (wp)p∈N of real numbers endowed with the norm

‖w‖∞ = max
p∈N
|wp|; w ∈ E.

We consider an infinite system of fractional integral equations

up(z) =
z+ p

z2 +2p
+

1
Γ(r)

∫ z

1

(
ln

z
t

)r−1

√
e−2tu2

p(t)+
1
pt

t
d
(

1
t
− 1

t2

)
; p ∈ N; r > 1. (4.1)

It is clear that equation (4.1) can be written as equation (1.1), where

u : J = [1,∞) → l∞

z 7→ (up(z))p∈N,

Set
ϕ(z) = (ϕp(z))p∈N =

z+ p
z2 +2p

; g(t) =
1
t
− 1

t2 ,

f (z,u(z)) = ( fp(z,up(z)))p∈N =

√
e−2zu2

p(z)+
1
pz

.

Remark 4.1. We can see that for each u(z) ∈ l∞ and z ∈ J we have ( fp(z,up(z)))p∈N ∈ l∞, so, the function f : J× l∞→ l∞ is well defined.

Let us show that conditions (H1)− (H4) hold. The function t 7→ 1
t
− 1

t2 is continuous on J, increasing on [1,2] and decreasing on [2,∞).
Moreover, we have

lim
t→+∞

(
1
t
− 1

t2

)
= 0.

So it is of bounded variation on J. It follows that∣∣ fp(z,up(z))
∣∣ =

√
e−2zu2

p(z)+ pz

≤
√

e−2zu2
p(z)+

√
1
pz

≤ e−z|vp(z)|+

√
1
pz

,

thus

sup
p∈N

∣∣ fp(z,up(z))
∣∣≤ e−z sup

p∈N
|vp(z)|+

√
1
pz

.

Then

‖ f (z,u(z))‖∞ ≤ e−z‖u(z)‖∞ +

√
1
pz

. (4.2)

So p(z) = e−z; p∗ = 1
e ; q(z) =

√
1
pz and for a fixed T > 1 we have∣∣∣∣∣
∫ T

1

(
ln

T
t

)r−1
d
(

1
t
− 1

t2

)∣∣∣∣∣ ≤ (lnT )r
∣∣∣∣∫ T

1
d
(

1
t
− 1

t2

)∣∣∣∣
≤ (lnT )r

(
1
T
− 1

T 2

)
= θT .

Observe that

k =
θT p∗

Γ(r)
=

(lnT )r (T −1)
eT 2Γ(r)

< 1; for each T > 1.

In view of (4.2), we deduce that
ψ( f (t,A))≤ e−t

ψ(A); for each A ∈ ME .

Consequently from Theorem 3.1 the Eq. (4.1) has at least solution in C(J,E).

5. Conclusion

In this work, we have presented an existence result for a type of integral equation by application of MNCs and the fixed point theorems. The
interest of this work is the possibility of dealing with several nonlinear problems on unbounded domains, on the other hand, we have given
an illustrative example which indicates the applicability of this study to deal with an infinite system of integral equations. Some of the results
in this direction are our future plan especially the choice of MNCs which allows us to characterize the qualitative aspect of the solutions.
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Abstract

Meta-heuristic optimization algorithms are used in many application areas to solve opti-
mization problems. In recent years, meta-heuristic optimization algorithms have gained
importance over deterministic search algorithms in solving optimization problems. How-
ever, none of the techniques are equally effective in solving all optimization problems.
Therefore, researchers have focused on either improving current meta-heuristic optimization
techniques or developing new ones. Many alternative meta-heuristic algorithms inspired
by nature have been developed to solve complex optimization problems. It is important to
compare the performances of the developed algorithms through statistical analysis and deter-
mine the better algorithm. This paper compares the performances of sixteen meta-heuristic
optimization algorithms (AWDA, MAO, TSA, TSO, ESMA, DOA, LHHO, DSSA, LSMA,
AOSMA, AGWOCS, CDDO, GEO, BES, LFD, HHO) presented in the literature between
2021 and 2022. In this context, various test functions, including single-mode, multi-mode,
and fixed-size multi-mode benchmark functions, were used to evaluate the efficiency of the
algorithms used.

1. Introduction

Optimization has received more attention in recent years, and various new optimization methods have been developed [1–15].These newly
discovered techniques are applied to real-world challenges. An optimization problem is about finding the optimal answer from a collection
of possible solutions. The main goal of optimization is to find selection variables that lead to the minimization or maximization of an
objective function. These problems are classified as constrained or unconstrained, discrete or continuous, static or dynamic, and single-or
multi-objective. Most real-world problems are nonlinear, incur significant computational costs, and have many complicated solution spaces.
For this reason, several researchers have proposed optimization techniques to solve these problems, often referred to as mathematical
programming approaches or meta-heuristic methods. Therefore, solving problems with a large number of variables and constraints is very
challenging. Since most traditional optimization techniques are based on classical mathematical and probabilistic assumptions, they are not
able to provide useful answers to the increasingly complicated optimization problems of recent years. Often, basic optimization problems
can be effectively solved using traditional optimization approaches such as mathematical programming. However, solving real-world
engineering optimization problems using classical optimization methods is very difficult. Therefore, several researchers [16–24] have
proposed novel solution strategies, called meta-heuristic algorithms, to solve difficult optimization problems within reasonable time and cost.
Most conventional optimization approaches are based on classical mathematics and probabilistic assumptions that cannot provide useful
answers to emerging, complicated optimization problems. Meta-heuristics, which have gained popularity among researchers due to their
numerous advantages over conventional optimization strategies, have a number of advantages over conventional optimization strategies,
including their simplicity, non-differentiation, adaptability, and avoidance of local optima [25]. The main advantage of these techniques over
conventional optimization methods is that they are able to solve optimization problems without requiring gradient information. Moreover,
they can be adapted to a variety of working situations. The efficiency and effectiveness of meta-heuristic optimization algorithms in
addressing known constrained mathematical and engineering design problems is one of their main advantages. Evolutionary algorithms,
physics-based algorithms, swarm intelligence algorithms, and human-based algorithms are the four types of meta-heuristic algorithms [26,27].
Table 1.1 shows some of the optimization algorithms presented in the literature between 2021 and 2022 that were investigated in this study.
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Algorithms Year
Artificial Water Drop Algorithm (AWDA) [28] 2022
Mexican Axolotl Optimization (MAO) [3] 2022
Tunicate Swarm Algorithm (TSA) [2] 2022
Tuna Swarm Optimization (TSO) [1, 8] 2022
Equilibrium Slime Mould Algorithm (ESMA) [8, 26] 2021
Dingo Optimization Algorithm (DOA) [29] 2021
Leader Harris hawks optimization (LHHO) [5, 30] 2021
Differential Squirrel Search Algorithm (DSSA) [9, 10] 2021
Leader Slime Mould Algorithm (LSMA) [31] 2021
Adaptive Opposition Slime Mould Algorithm (AOSMA) [32] 2021
Hybrid Augmented Grey Wolf Optimizer & Cuckoo Search (AGWOCS) [33, 34] 2021
Child Drawing Development Optimization Algorithm (CDDO) [34] 2021
Golden Eagle Optimizer (GEO) [35] 2021
Bald eagle search Optimization algorithm (BES) [14] 2021
Lévy Flight Distribution (LFD) [6] 2021
Harris hawks optimization (HHO) [36] 2021

Table 1.1: Optimization algorithms

In this study, the performance of some meta-heuristic algorithms, listed in Table 1.1, was evaluated using a series of test functions. These are
meta-heuristic algorithms inspired by the behavior of natural organisms. Meta-optimization is the process of optimizing the performance
of an algorithm by changing its parameters. This strategy not only increases the efficiency of the algorithm, but also allows us to better
understand how the algorithm responds to different types of challenges. These techniques fall into two broad categories: offline and
online. Offline techniques specify the parameter settings of the algorithm before execution and work with a training set as an example.
Offline approaches work well when the selected examples have the same structure as the other examples in the training set. However, these
approaches may fail if the class of instances is heterogeneous. This is because finding the appropriate parameter settings for each class of
instances takes a lot of time in this case. Online approaches, on the other hand, collect feedback and try to determine the optimal parameter
values while the algorithm is solving a problem scenario. These approaches reduce computation time by trying to find the parameter settings
while the algorithm is running. Although several optimization methods have been proposed in the literature, no algorithm is able to provide
the optimal answer to all optimization questions [37]. As a result, the established optimization techniques and the field of new meta-heuristic
optimization algorithms are constantly being improved through innovations and further developments. By evaluating the success of newly
developed meta-heuristic optimization algorithms and comparing them with previously published algorithms, new studies on improving
existing optimization algorithms or developing new optimization algorithms based on successful algorithms are added to the literature on a
daily basis. In this context, Artificial Water Drop Algorithm [28], Mexican Axolotl Optimization: a novel bio-inspired heuristic [3], Tunicate
Swarm Algorithm [2], Tuna Swarm Optimization [1, 8], Equilibrium Slime Mould Algorithm [8, 26], Dingo Optimization Algorithm [29],
Leader Harris hawks optimization [5], Differential Squirrel Search Algorithm [9, 10], Leader Slime Mould Algorithm [31], Adaptive
Opposition Slime Mould Algorithm [32], CLA- New Meta-Heuristic Algorithm [38], Hybrid Augmented Grey Wolf Optimizer and Cuckoo
Search [33, 34], Child Drawing Development Optimization Algorithm [34], Golden Eagle Optimizer [35], Bald eagle search Optimization
algorithm [14], Chimp Optimization Algorithm [39], Lévy Flight Distribution [6] and Harris hawks optimization [36] are some of them.
This paper compares the performances of sixteen meta-heuristic optimization algorithms presented in the literature between 2021 and 2022.
Various test functions, including single-modal, multi-modal and fixed-size multi-modal comparison functions, have been used to evaluate the
effectiveness of the algorithms used in this context.
The rest of the article is structured as follows: Section 2 describes the methodology and mathematical framework of the benchmark functions;
Section 3 presents the experimental results. Finally, section 4 presents the conclusion.

2. Methodology

An important aspect of testing and validating a new algorithm is comparing it to existing algorithms that use benchmark functions. This
type of bench-marking is also crucial to better understand the advantages and weaknesses of the algorithm. Typically, the new technique is
evaluated against a set of test functions that ideally have different properties such as mode shapes. However, these bench-marking methods
suffer from a crucial weakness. Although it is a comparative function, it is rarely used in practice. There are several reasons for this.
While real-world scenarios are much more complex and different than these test items, an explanation is usually well thought out and
concise. Another problem is that these test functions often use unconstrained or regular fields, whereas in the real world, non-linear, complex
constraints often apply, and the field may contain multiple isolated partitions or islands. The functions used to compare the performances of
the algorithms discussed here are detailed below.

2.1. Mathematical framework of benchmark functions

The following functions are among the most used for evaluating optimization strategies. They are categorized based on their basic physical
properties and shapes (see Table 1.1). Uni-modal, Multi-modal and Fixed-dimension multi-modal benchmark test functions were used in this
study. In Table 2.1, D indicates the size of the function, Range is the variation range of the optimization variable, and Fmin is the minimum.
Twenty-three test functions were used to evaluate the performance of the sixteen algorithms considered in this study. Figure 2.1, Figure 2.2,
and Figure 2.3 show two-dimensional (2D) views of the different functions.
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Table 2.1: A mixture of uni-modal, multi-modal, and fixed-dimension multi-modal benchmark functions.

Figure 2.1: 2-D version of uni-modal benchmark function.
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Figure 2.2: 2-D version of multi-modal benchmark function

Figure 2.3: 2-D version of fixed-dimension multi-modal benchmark function
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3. Experimental Results

In this section, we demonstrate the effectiveness of the algorithm used for 23 commonly used uni-modal, multi-modal and fixed-dimensional
multi-modal bench-marking functions using qualitative metrics such as best, worst, mean, standard deviation and median scores. Table 2.1
illustrates these functions with category representations of three mathematical functions. Figure 2.1, Figure 2.2, and Figure 2.3 also represent
two-dimensional shapes. The first group includes functions with a single solution path (F1-F7), which have a single ideal solution and are
intentionally difficult to use. The second group includes functions (F8-F13) that have many optimal solutions. While the local optimal
solutions are used in these functions to evaluate the algorithm’s exploration performance, an algorithm must be able to search the space
globally to find the global optimum and avoid being trapped in the local optimum. The third group contains multi-modal functions with fixed
dimensions (F14-F23), which are similar to multi-modal functions but have fixed dimensions. The dimensions of these functions, as well as
the constant coefficients used in this work, are accessible in [40, 41]. For each test category, 30 particles with 500 iterations were used. Each
function was run 30 times and its average values were used for a fair evaluation. Table 3.1 shows how the parameters of each algorithm are
configured.

Algorithms Parameter Value

For all algorithms Population 30
Maximum Iterations 500

AGWOCS Control Parameter (a) [2 1]

AOSMA Control Parameter (a, b)
[1 3]

[1 0]

AWDA
diffusion factor(pp) 0.1
upper limit 5
lower limit 2

BES Control parameter (a) [1.5 2]
Control parameter (r) [0 1]

CDDO
child level rate(LR) 0.01
Child skill rate(SR) 0.9
Creativity Rate (CR) 0.1

CLA

alpha 0.85
zeta 0.6
pConf 0.25
mu 0.05

DOA Hunting or Scavenger rate (p) 0.5
Group attack or persecution (Q) 0.7

DSSA

Gliding constant (Gc) 1.9;
Crossover rate (Cr) Cr=0.5;
Random gliding distance (dg) dg=0.8;
Predator presence probability(Pdp) Pdp=0.1;

ESMA adjustable param (q) 0.2
vectors of random numbers in the range (r, λ ) [0 1]

GEO Propensity to attack (pa) [0.5 2]
Propensity to cruise (pc) [1 0.5]

HHO

escaping energy (E0) [-1 1]
are random number (q) [0.5 0.5]
Harris Hawks Number 30
β 1.5
E0 variable ε [-1, 1]

LFD

Search agents 30
Threshold 2
CSV 0.5
β 1.5
α1 10
α2 0.00005
α3 0.005
∂1 0.9
∂2 0.1

LHHO
Harris Hawks Number 30
β 1.5
E0 variable ε [-1, 1]
Entropic parameter (r) 0.5

LSMA N 20
z 0.03

MAO

CrossOver Probability (cop) 0.5
damage probability(dp) 0.5
regeneration probability (rp) 0.1
tournament size (k) 3
differentiation constant (λ ) 0.5
Search agents 30

TSA Parameter Pmin 1
Parameter Pmax 4

TSO a 0.7
z 0.05

Table 3.1: Algorithm parameter settings
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The results of the performance comparison are shown in Table 3.2 for uni-modal, Table 3.3 for multi-modal and Table 3.4 for multi-modal
fixed dimensions. Due to the stochastic nature of meta-heuristic algorithms, the results of two consecutive runs often do not match. Since
we performed many independent experiments with each method, the average values of the results for each function are tabulated. The
experiments were conducted in MATLAB 2021a on an Intel Core i7, with 16 GB RAM and in a Windows 10 environment. The algorithms
of each benchmark function were run 30 times under the same conditions. The tables contain statistical data in the form of best value, worst
value, median value, mean value and corresponding standard deviation.

Algorithms F1 F2 F3 F4 F5 F6 F7

AGWOCS
Best 3.3506e-49 1.6539e-30 1.2297e-12 3.6704e-15 0.029243 0.0021407 1.7915e-06
Mean 0.25209 0.0016347 2.0228 0.0031702 130.791 0.25954 7.0832e-05
Std 1.14 0.0060045 5.5347 0.0081379 735.3995 1.1485 0.0002045

AOSMA
Best 0 0 0 0 0.0051288 3.6623e-06 2.7551e-06
Mean 5.5695 52.0231 75.962 0.045495 17156.5852 4.7483 0.013632
Std 92.779 45.0205 349.9254 0.21304 354706.9755 103.5421 0.24843

AWDA
Best 0.11767 0.00095195 1.0586 0.015044 6.0371 0.031703 7.2871e-05
Mean 1.8643 0.016292 3.8985 0.028343 1045.6344 1.9835 0.0006933
Std 2.8366 0.032433 2.1564 0.010301 2800.0147 2.8459 0.0014098

BES
Best 0 0 0 0 0.65699 3.9129e-21 2.3361e-06
Mean 1.1926e-15 6.1888e-10 2.9025e-08 2.5315e-09 0.79875 0.0076214 8.3538e-06
Std 2.6668e-14 1.3839e-08 6.4902e-07 5.6606e-08 0.087603 0.029749 2.9198e-05

CDDO
Best 2.1644e-60 1.4406e-171 0 1.7792e-173 0.9624 0.052593 2.653e-05
Mean 1.2876 0.0033599 8.7454 0.0058665 2015.8209 1.406 0.00036195
Std 9.7277 0.042286 143.1281 0.075178 44221.5524 26.4666 0.0038432

DOA
Best 1.1469e-148 4.477e-124 8.6369e-219 4.6275e-164 0.96158 0.18751 3.7285e-05
Mean 7.157 16322776.9037 21.7977 0.013491 20147.9618 5.993 0.010845
Std 114.5315 365353138.5064 347.2062 0.16287 448149.7826 96.0457 0.17488

DSSA
Best 0 2.5337e-184 2.4815e-233 1.2598e-173 0 0 3.8027e-05
Mean 12.7504 4122824.3096 29.7994 0.025507 37561.7976 16.4352 0.020802
Std 167.4216 65122224.9887 382.15 0.26481 483778.2616 180.258 0.25229

ESMA
Best 0 5.2536e-256 0 3.6113e-247 0.0081807 3.7081e-05 6.4925e-06
Mean 13.8772 228481.2873 53.2054 0.0089188 15700.6462 5.6668 0.010327
Std 176.0067 5108996.7524 486.9561 0.12994 350975.4737 102.2555 0.20037

GEO
Best 5.6973e-27 4.9817e-32 2.5913e-24 2.115e-20 3.6978e-33 1.0374e-32 1.2008e-3
Mean 0.000979 0.0002412 4.9683e-05 0.00011026 0.00020344 0.00072641 0.00031885
Std 0.0069597 0.00077319 0.00013601 0.00060643 0.0016597 0.0046885 0.0022391

HHO
Best 3.2657e-114 1.3239e-56 9.4819e-94 2.6659e-52 0.00029177 2.1529e-05 1.4017e-05
Mean 7.1772 517294.4506 27.5972 0.015173 19452.9728 6.4293 0.01276
Std 121.1378 11567055.3729 329.9414 0.1707 386839.017 116.7763 0.20452

LFD
Best 1.0547e-08 0.00052114 2.5953e-07 2.2107e-05 1.6065 0.081866 0.00016718
Mean 25.1795 2.4779605994158 213.2922 0.041412 86637.4102 23.6023 0.071877
Std 295.4489 5.5404824897375 1880.1345 0.31196 1142071.398 252.4117 0.73438

LHHO
Best 4.0603e-161 4.1437e-80 1.0195e-112 1.6601e-80 4.0084e-06 4.8004e-08 1.0863e-06
Mean 2.4816 219.2769 5.6402 0.0065608 668.1418 0.86073 0.00065924
Std 52.2959 4903.0323 73.9713 0.094363 14709.5343 16.1954 0.012678

LSMA
Best 0 0 0 6.0899e-320 0.0056562 5.9639e-05 1.9479e-06
Mean 8.1105 74.5910 384.4104 0.018095 18847.2574 6.626 0.0067008
Std 125.5814 16.6790 1203.5107 0.17735 358882.8341 112.3465 0.12339

MAO
Best 13.7968 0.15669 31.1561 0.55386 96.4628 9.8023 0.0017507
Mean 87.4892 416.7457 154.6912 1.0213 119163.5785 72.2031 0.024319
Std 162.0843 5648.4623 306.2596 0.64014 448476.2389 157.1719 0.09077

TSA
Best 1.301e-202 1.8046e-103 1.5165e-185 1.8193e-92 0.955 0.20092 1.1951e-05
Mean 7.3101 88640985.7881 9.4265 0.018317 21884.5316 8.1195 0.013698
Std 114.2715 1982072697.8507 163.5931 0.19395 418587.6844 117.503 0.25689

TSO
Best 2.1705e-257 5.4605e-128 3.9708e-224 9.279e-118 0.03069 1.9959e-05 2.737e-05
Mean 19.8437 4187.2582 82.5075 0.018975 26214.3009 14.8457 0.014592
Std 151.2259 93628.9913 490.0847 0.18541 489293.5139 145.0812 0.19667

Table 3.2: The results of benchmark functions with uni-modality, (D= 30, Max it=500)

Table 3.2 shows the convergence of the algorithms used. In this step, the performance of the algorithms was evaluated against the benchmark
functions in which they were run. In this evaluation step, the initial population number was assumed to be 30 and the iteration number was
assumed to be 500. Figure3.1 shows convergence plots of uni-modal benchmark functions. In the evaluation algorithm, the solutions tend
to search extensively for promising regions of the search spaces and exploit the optimal point. In these uni-modal model functions, it is
observed that there is an effective balance between exploration and exploitation so that the solutions move toward the optimal point. In
the initial steps, a repetition of sudden changes can be observed, which gradually decreases as the iteration progresses. The convergence
behavior of an algorithm at a point in the search space leads to solution fitness. The convergence diagram of solution fitness is shown in
Figure 3.1. The graphs show decreasing behavior across all test functions. They show that the approximate optimum significantly improves
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the point at all iterations. Figure 3.1−Figure3.4 shows the convergence plot of 23 functions compared to different algorithms (16 algorithms).
Those that can reach the point of global optimum (0) with high performance in functions F1-F7 of the algorithms.

Figure 3.1: Convergence curves of the algorithms on F1–F7

Table 3.3 evaluates the convergence of the algorithms. The performance of the algorithms is tested at this stage using the multi-modal
(F8-F13) benchmark functions. The initial population is 30 and the number of iterations in this evaluation stage is 500. The consistency
diagrams for multi-modal benchmark functions are shown in Figure 3.2. It was found that there is an efficient balance between search and
utilization for these multi-modal model functions, which ensures that the solutions approach the optimal point. The initial phases show a
pattern of dramatic shifts that diminishes as the iteration progresses. At a certain point in the search space, the convergence behavior of an
algorithm leads to solution fitness. For all test functions, the graphs show decreasing convergence.
Table 3.4 shows the convergence performance of the fixed-dimension multi-modal algorithms (F14-F23) in this phase. In this evaluation
phase, the initial population is 30 and the number of iterations is 500. The consistency diagrams for fixed-dimension multi-modal benchmark
functions are shown in Figure3.3. The early phases show a pattern of dramatic shifts that decrease as the iteration progresses. The diagrams
show decreasing convergence for all test functions. The convergence plots for functions F14-F23 are shown in Figure 3.3.
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Multimodal benchmark functions
Algorithms F8 F9 F10 F11 F12 F13

AGWOCS
Best -7.8365 0 8.8818e-18 0 0.00010519 0.00092445
Mean -7.3794 0.041007 0.00097152 0.0027997 1.3831 220.9848
Std 0.24301 0.082966 0.0027633 0.012436 17.098 1239.4441

AOSMA
Best -418.9827 0 2.9606e-17 0 9.9386e-07 6.7812e-06
Mean -415.9582 0.075541 0.0047513 0.044797 52393.0677 55823.3721
Std 20.5681 0.95516 0.046634 0.99497 1171544.4371 1248248.3047

AWDA
Best -2.5589 0.039849 0.0060703 0.0018924 0.0041695 0.0029728
Mean -2.0609 0.076849 0.012512 0.015766 3153.6857 10144.2236
Std 0.39046 0.021872 0.0044522 0.015993 5547.4062 16607.6865

BES
Best -192.849 0 2.9606e-17 0 3.9419e-25 0.098869
Mean -159.6664 3.0316e-17 1.6406e-12 1.1145e-16 0.00047515 0.098944
Std 21.8772 6.779e-16 3.6684e-11 2.4921e-15 0.0033075 0.00019872

CDDO
Best -414.9186 4.1436 1.4803e-16 0 1.9783e-06 0.010553
Mean -409.2277 4.1992 0.0029311 0.005143 143.3606 802.3993
Std 30.587 0.43545 0.030446 0.1003 3205.583 17941.9473

DOA
Best -174.9058 0 2.9606e-17 0 0.024691 0.078147
Mean -159.6674 0.67532 0.0060553 0.10222 35187.4366 96073.2885
Std 18.7455 2.6085 0.052274 1.2424 785684.0574 2032984.8721

DSSA
Best -2.718491268946872e+68 0 2.9606e-17 0 5.2351e-34 4.4993e-34
Mean -1.90597575847278e+66 0.12554 0.0058799 0.12345 72488.5008 202488.5563
Std 1.717311818082357e+67 1.2337 0.060015 1.5571 1072057.3871 2600745.5342

ESMA
Best -418.9721 0 2.9606e-17 0 2.4456e-05 1.7282e-06
Mean -410.9383 0.10006 0.0038052 0.058521 43636.2202 69284.3225
Std 31.5805 0.99944 0.039319 0.83932 975735.3523 1549156.0305

GEO
Best 5.3515e-32 4.1497e-32 4.1512e-16 5.7436e-21 2.0543e-33 1.1894e-28
Mean 0.00039421 0.00013089 0.00047771 0.00013806 0.00015149 0.0012698
Std 0.004072 0.00049639 0.0047613 0.0023189 0.00084138 0.0046525

HHO
Best -418.9774 0 2.9606e-17 0 2.801e-06 7.0288e-07
Mean -414.5949 0.11334 0.0051101 0.054826 41053.6651 113010.0108
Std 29.3184 1.0612 0.048748 0.99619 902002.1664 2150141.3942

LFD
Best -937.7924 7.4903e-06 2.6392e-05 2.5532e-09 0.00049674 0.16477
Mean -413.8811 3.3044 0.0091952 0.28953 300136.7078 233181.9774
Std 235.8705 5.0429 0.065979 2.6183 3366941.541 3359582.3175

LHHO
Best -418.9829 0 2.9606e-17 0 1.0112e-08 4.471e-07
Mean -416.4481 0.091388 0.0023909 0.017484 673.9148 9749.6928
Std 21.7364 0.79404 0.027909 0.37956 15066.1738 216313.5404

LSMA
Best -418.9775 0 2.9606e-17 0 6.7502e-06 9.812e-05
Mean -407.2941 0.084856 0.0047234 0.052499 49885.3932 99542.8596
Std 36.8422 0.86632 0.048209 0.98755 1115471.0593 1892313.5595

MAO
Best -92.5983 0.9515 0.27227 0.22361 0.13535 12.4004
Mean -68.2304 1.9137 0.37329 1.1615 459699.3387 792254.9447
Std 17.0243 0.90728 0.10648 1.8415 1991167.4424 2327180.6163

TSA
Best -105.0841 0.06663 1.4803e-16 0 0.022997 0.075074
Mean -98.7788 0.64792 0.0067426 0.06771 43727.5153 53020.4358
Std 5.8538 2.1449 0.054204 0.99494 949251.061 1106040.1279

TSO
Best -418.9829 0 2.9606e-17 0 1.3514e-06 2.7818e-06
Mean -412.5186 0.21564 0.01235 0.097162 41742.4897 98319.3265
Std 30.9786 0.90544 0.05926 1.0356 933389.2961 1697227.7022

Table 3.3: The results of the benchmark functions with multi modality, with 30 dimensions

Although the comparison has a slower convergence rate at the beginning of the search for most functions, after a few iterations it shows
good convergence performance and gives a better answer for most functions, especially for fixed multi-modal functions. The frequency
diagram can be seen in Figure3.4. In this way, the performance of all algorithms in all functions is shown together. The frequency by best
case indicates the number of algorithms that can reach the optimal point in the functions. According to this scheme, the algorithm GEO has
the highest frequency, while the algorithms AWDA and LFD have the lowest frequency. To allow a fair comparison, the necessary conditions
for the algorithms have remained the same. It is worth noting that due to the meta-heuristic nature of the algorithms, the comparisons made
here are not constant and do not always give the same result.
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Figure 3.2: Convergence curves of the algorithms on F8–F13

Fixed-dimension multi-modal benchmark functions
Alg. F14 F15 F16 F17 F18 F19 F20 F21 F22 F23

AGWOCS
Best 0.0033135 3.5141e-07 -0.0011462 0.00044281 0.0033333 -0.0042913 -0.0036521 -0.0074093 -0.0079195 -0.0038682
Mean 0.0036284 1.0034e-06 -0.0011444 0.00046888 0.0035728 -0.0042828 -0.0036105 -0.0057 -0.005937 -0.0030972
Std 0.0014804 5.3683e-06 3.0457e-05 0.00047603 0.0028832 7.3445e-05 0.00015844 0.0015926 0.0019506 0.00048692

AOSMA
Best 0.033267 1.4088e-05 -0.034388 0.013263 0.1 -0.12876 -0.10658 -0.33844 -0.34676 -0.35121
Mean 0.05901 7.2452e-05 -0.034346 0.013281 0.13901 -0.12868 -0.10537 -0.32794 -0.33328 -0.34115
Std 0.16589 0.00044571 0.00053593 0.00016387 0.47073 0.00030876 0.0068892 0.049831 0.047258 0.030526

AWDA
Best 0.0033135 1.0092e-06 -0.0011463 0.0033335 0.0033335 -0.004292 -0.0036895 -0.0029809 -0.011482 -0.0030016
Mean 0.0034069 4.743e-05 -0.0011413 0.00617 0.0042119 -0.0041809 -0.0033073 -0.0025423 -0.0065387 -0.0026121
Std 0.0003169 0.00015492 1.0756e-05 0.0035232 0.0025558 0.00021722 0.00048191 0.00075494 0.0038831 0.00032105

BES
Best 0.033267 1.025e-05 -0.034388 0.013263 0.1 -0.12876 -0.11073 -0.16851 -0.34676 -0.35121
Mean 0.03489 1.6113e-05 -0.034383 0.013293 0.10002 -0.12868 -0.11038 -0.16805 -0.34264 -0.34873
Std 0.010095 0.00010823 7.938e-05 0.00020801 0.00049561 0.0013077 0.0035659 0.0059867 0.026726 0.019388

CDDO
Best 0.033267 8.2041e-05 -0.034346 0.013268 0.10234 -0.12618 -0.094687 -0.3371 -0.33279 -0.34979
Mean 0.035301 0.00013376 -0.034288 0.013495 0.34636 -0.12422 -0.094687 -0.32306 -0.28744 -0.34583
Std 0.045474 9.0075e-05 0.00083044 0.0014674 0.40121 0.00189 2.9173e-16 0.041391 0.05882 0.013276

DOA
Best 0.033267 0.00067878 -0.034388 0.013263 0.1 -0.12876 -0.11055 -0.33844 -0.34676 -0.35121
Mean 0.03453 0.00073193 -0.034305 0.013619 0.10346 -0.12807 -0.11018 -0.33236 -0.34238 -0.34561
Std 0.0080879 0.00067655 0.0012122 0.0030308 0.046907 0.0026997 0.0027794 0.036855 0.031086 0.03435

DSSA
Best 0.033267 2.0486e-05 -0.034012 0.013335 0.38346 -0.12736 -0.095157 -0.17003 -0.34676 -0.35121
Mean 0.12317 4.6844e-05 -0.033502 0.013935 0.45034 -0.12705 -0.089494 -0.16933 -0.3419 -0.3495
Std 0.84121 0.00024589 0.0016329 0.0021464 0.46138 0.00024224 0.0057824 0.0096559 0.032963 0.021966

ESMA
Best 0.033267 1.0342e-05 -0.034388 0.013263 0.1 -0.12876 -0.10677 -0.33844 -0.34676 -0.35118
Mean 0.047522 5.1199e-05 -0.034055 0.013476 0.22587 -0.12864 -0.10438 -0.33534 -0.32294 -0.34799
Std 0.14829 0.00041763 0.003931 0.002481 0.95846 0.00059844 0.0049511 0.019334 0.060308 0.027668

GEO
Best 1.5268e-30 1.915e-30 6.6766e-33 0 4.2114e-33 1.5216e-15 4.1227e-23 8.7103e-32 1.7117e-30 6.5173e-31
Mean 6.3114e-05 0.00040485 0.00068608 2.2865e-05 0.00043754 0.00011214 0.00016022 0.00067317 0.00064407 0.0001355
Std 0.0004438 0.0027602 0.0031767 8.8517e-05 0.0035416 0.0010354 0.00066701 0.005151 0.0055138 0.0009007

HHO
Best 0.033267 1.0422e-05 -0.034388 0.013263 0.1 -0.12856 -0.098654 -0.16851 -0.16946 -0.17081
Mean 0.072033 2.4821e-05 -0.034353 0.013447 0.25284 -0.12721 -0.090329 -0.16665 -0.16705 -0.16894
Std 0.57258 0.00010526 0.00032258 0.0031932 1.0818 0.0012712 0.0044844 0.01272 0.013189 0.012809

LFD
Best 0.033267 6.1611e-05 -0.034388 0.10129 0.10834 -0.12869 -0.10531 -0.33844 -0.12414 -0.17095
Mean 0.10675 0.00024484 -0.034195 0.10975 0.11857 -0.12842 -0.10396 -0.30615 -0.10692 -0.15115
Std 0.16519 0.0015185 0.0011812 0.017921 0.032809 0.0019299 0.006337 0.083296 0.030128 0.039268

LHHO
Best 0.033267 1.0269e-05 -0.034388 0.013263 0.1 -0.12876 -0.10361 -0.33833 -0.16959 -0.3512
Mean 0.036795 2.604e-05 -0.034358 0.013475 0.10315 -0.12868 -0.099576 -0.30315 -0.16949 -0.28795
Std 0.028064 0.00017386 0.00041314 0.0027182 0.069287 0.00075748 0.0020618 0.070785 0.00068774 0.088846

LSMA
Best 0.033267 1.0297e-05 -0.034388 0.013263 0.1 -0.12876 -0.11073 -0.33843 -0.34676 -0.35121
Mean 0.043432 3.426e-05 -0.034116 0.014432 0.48988 -0.12824 -0.10629 -0.32716 -0.32563 -0.30189
Std 0.033784 9.4922e-05 0.00088212 0.005674 3.3495 0.002802 0.010143 0.029421 0.065147 0.081489

MAO
Best 0.066401 0.00036673 -0.034387 0.78119 0.82362 -0.12841 -0.10869 -0.27841 -0.080423 -0.086101
Mean 1.3265 3.2519 0.13343 3.636 2.2516 -0.12241 -0.094856 -0.15349 -0.059535 -0.066526
Std 4.0638 74.4946 3.3885 7.9148 8.2122 0.016864 0.024606 0.10096 0.021443 0.01934

TSA
Best 0.45395 0.00028049 -0.034388 0.01334 0.1 -0.12843 -0.10819 -0.20731 -0.056239 -0.33368
Mean 0.47901 0.00086876 -0.032249 0.014729 0.49815 -0.12746 -0.10047 -0.17529 -0.050901 -0.23924
Std 0.56031 0.0045565 0.0072198 0.0051053 1.0072 0.0047008 0.01357 0.043324 0.0075194 0.055414

TSO
Best 0.033267 4.0772e-05 -0.034388 0.013263 0.1 -0.12876 -0.11073 -0.33844 -0.34676 -0.35121
Mean 0.038004 0.0001935 -0.034156 0.013405 0.11071 -0.12866 -0.10999 -0.3307 -0.34009 -0.33744
Std 0.017447 0.0016314 0.0016097 0.0016331 0.1609 0.00091173 0.0059657 0.042262 0.034612 0.048519

Table 3.4: The results of the benchmark functions with fixed-dimension multi modality, with 30 dimensions
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Figure 3.3: Convergence curves of the algorithms on F14–F23

Figure 3.4: Performance histogram of the algorithms depending on the benchmark functions used

4. Conclusion

This paper compares the performance of sixteen meta-heuristic algorithms inspired by natural events. In this work, uni-modal, multi-modal,
and fixed-dimension multi-modal benchmark functions were utilized to evaluate the efficiency of the optimization algorithms (AWDA, MAO,
TSA, TSO, ESMA, DOA, LHHO, DSSA, LSMA, AOSMA, AGWOCS, CDDO, GEO, BES, LFD, HHO). The functions used contain sixteen
test functions of three different types to test their performance in terms of usage, avoidance of local optimum, and convergence. The results
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are presented in the form of tables and diagrams. For future work, the use of different types of functions with a greater variety of curvatures,
slopes and intercepts in the optimization of real problems is considered.
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