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Abstract

This paper presents a cryptanalysis attack on the RSA variant with modulus N = prq

for r ≥ 2 with three public and private exponents (e1,d1), (e2,d2), (e3,d3) sharing the

same modulus N where p and q are consider to be primes having the same bit size. Our

attack shows that we get the private exponent σ1σ2σ3 <
(

r−1
r+1

)4
, which makes the modulus

vulnerable to Coppersmith’s attacks and can lead to the factorization of N efficiently where

d1 < Nσ1 , d2 < Nσ2 , and d3 < Nσ3 . The asymptotic bound of our attack is greater than the

bounds for May [1], Zheng and Hu [2], and Lu et al. [3] for 2 ≤ r ≤ 10 and greater than

Sarkar’s [4] and [5] bounds for 5 ≤ r ≤ 10.

1. Introduction

The importance of keeping information secret cannot be overemphasized, especially in this digital era where intruders can easily eavesdrop on

someone’s information and get access to his private belongings. The Construction of strong encryption scheme(s) using complex mathematics

provides confidentiality and privacy to our daily transactions and communication as they pass through insecure communication channels.

The most acceptable and widely used public key cryptosystem is the RSA cryptosystem which was invented in 1976 by Rivest, Shamir,

and Adleman [6]. The security of RSA modulus N = pq relies on the integer factorization problem and was first exploited using a private

exponent attack by Wiener (1990) as reported in [7]. Other cryptanalysis attacks that led to the polynomial time factorization of the RSA

modulus N = pq can be found in [8, 9].

In order to improve the security of standard RSA modulus N = pq, various researchers proposed many variants. Prime power modulus

N = prq for r ≥ 2 was among the RSA variants developed by Takagi using the Chinese remainder theorem showing that the decryption

process is faster than the standard RSA [10]. Also, Boneh et al. presented a partial exposure attack where they proved that prime power

modulus N = prq can be efficiently factored if someone knows 1
r+1 fraction of the most significant bits (MSBs) of the prime factors p [11].

The decryption exponent bound of [10] was improved from d < N
1

2(r+1) to d < N
r

(r+1)2 or d < N( r−1
r+1

)2

by May [1] using the lattice-based

technique. Sarkar [4] presented a small secret exponent attack on prime power modulus N = prq for r ≥ 2 where he improved the

work of [1] for r ≤ 5. Similarly, Sarkar improved his work [4] when 2 ≤ r ≤ 8 as reported in [5] with a decryption exponent bound of

d < N
1

r+1
+ 3r−2

√
3r+3+3

3(r+1) . Lu et al. [3] proved that prime power modulus N = prq when r ≥ 2 can be factored efficiently when the decryption

exponent bound d < N
r(r−1)

(r+1)2 . Moreover, Zheng and Hu [2] proposed a cryptanalysis lattice-based construction attack on prime power RSA

modulus N = prq for r ≥ 2 with two decryption exponents where they have shown that N is insecure when δ1δ2 < N( r−1
r+1

)3

where d1 < Nδ1

and d2 < Nδ2 . By assuming δ1 = δ2 = δ , [2] made comparisons with previous results of [1, 4] when r ≥ 4.

In this paper, we employ a similar approach to [2] using lattice-based approach except that we utilize three pairs of public and private

exponents (e1,d1), (e2,d2), and (e3,d3) of RSA variant N = prq for r ≥ 2 with three decryption exponents sharing common modulus N, and

prove that the security of prime power moduli N can be broken and prime factors p and q can be factored in polynomial-time. We assume

d1 = Nσ1 , d2 = Nσ2 and d3 = Nσ3 to be the decryption exponents where d1 = d2 = d3 = d = σ for 0 < σ < 1 and utilize generalized key
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equation eidi = 1+ kiφ(N), where ki ∈ Z and φ(N) = pr−1(p−1)(q−1) for the construction of three equations of the form

e1d1 = 1+ k1 pr−1(p−1)(q−1), (1.1)

e2d2 = 1+ k2 pr−1(p−1)(q−1), (1.2)

e3d3 = 1+ k3 pr−1(p−1)(q−1), (1.3)

for some positive integers k1,k2,k3. Let e′1,e
′
2,e

′
3 be the inverses of e1,e2,e3 mod N respectively. Then we get:

e1e′1 = z1N +1, (1.4)

e2e′2 = z2N +1, (1.5)

e3e′3 = z3N +1, (1.6)

for some positive integers z1,z2,z3. In order to easily get the prime factors of N, we assume that inverses e′1, e′2, or e′3 does not exist, we can

then get the result through finding the gcd(e1,N), gcd(e2,N) and gcd(e3,N). Multiplying equations (1.1) by e′1 and (1.4) by d1 respectively

and equating them give

d1 − e′1 = [e′1k1(p−1)(q−1)−d1z1 pq]pr−1
. (1.7)

Similarly, for equations (1.2) and (1.5) we get the following equation

d2 − e′2 = [e′2k2(p−1)(q−1)−d2z2 pq]pr−1 (1.8)

Also, for equations (1.3) and (1.6), we get the following equation

d3 − e′3 = [e′3k3(p−1)(q−1)−d3z3 pq]pr−1
. (1.9)

Equations (1.7), (1.8) and (1.9) reduce to the following equations respectively

d1 − e′1 = 0 mod pr−1
, (1.10)

d2 − e′2 = 0 mod pr−1
, (1.11)

d3 − e′3 = 0 mod pr−1
. (1.12)

Applying method of [12] for solving multivariate linear equations modulo unknown divisor, we can estimate the unknown divisor of our

attacks. Since the modulus is N = prq for r ≥ 2 and q < p < 2q. Multiplying by pr gives N < pr+1 < 2N. Since q ≈ p ≈ N
1

r+1 , we have

pr−1 ≈ N
r−1
r+1 .

Moreover, the Coppersmith technique will be deployed in finding small roots of the constructed modular equations which can later be

transformed into finding them over integers. This can be achieved through constructing a set of polynomials sharing common root modulo R

to produce some integer linear combinations of the constructed polynomials’ coefficient vectors whose norm is expected to be sufficiently

small using the LLL algorithm. This enables us to get an asymptotic bound σ <
(

r−1
r+1

)

4
3 , where d1 < Nσ1 , d2 < Nσ2 , d3 < Nσ3 . Also, we

assume σ1 = σ2 = σ3 = σ in order to compare our results with the theoretical results of [1], [2], [3], [4] and [5], our work show that for

5 ≤ r ≤ 10 we obtain better bounds.

The rest of the paper is organised as follows. In section 2, we give definitions of lattice and determinant, some important theorems and

a lemma to be used in this research. Section 3 presents the major contributions of this paper where results are thoroughly discussed and

comparisons of theoretical bounds with earlier reported bounds are presented. Finally, in Section 4 we conclude the paper.

2. Preliminaries

In this section, we define some basic terms that are found to be useful in this research work.

Definition 2.1 ( Lattice). A lattice L is a discrete additive subgroup of Rm. Let b1, · · · ,bn ∈ R
m be n ≤ m linearly independent vectors.

The lattice generated by {b1, · · · ,bn} is the set

L =
n

∑
i=1

Zbi =

{

n

∑
i=1

xibi|xi ∈ Z

}

.

The set B = 〈b1, · · · ,bn〉 is called a lattice basis for L . The lattice dimension is dim(L ) = n. If n = m then L is said to be a full rank

lattice.

A lattice L can be represented by a basis matrix. Given a basis B, a basis matrix M for the lattice generated by B is the n×m matrix defined

by the rows of the set b1...,bn

M =







b1

...

bn






.

It is often useful to represent the matrix M by B. A very important notion for the lattice L is the determinant [13].

Definition 2.2 (Determinant [13]). Let L be a lattice generated by the basis B = 〈b1, ...,bn〉. The determinant of L is defined as

det(L ) =
√

det(BBT ).

If n = m, we have

det(L ) =
√

det(BBT ) = |det(B)| .
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Theorem 2.3 ([2], [14]). Let L be a lattice spanned by a basis (b1,b2, · · · ,bm). The Lenstra-Lenstra-Lovasz (LLL) algorithm outputs a

reduced basis (v1,v2, · · · ,vm) of L in polynomial time that satisfies

||V1||, ||V2||, · · · , ||Vm|| ≤ 2
m(m−1)

4(m+1−i) det(L)
1

(m+1−i)

for 1 ≤ i ≤ m.

For i = 3, the above LLL equation becomes

||V1||||V2||||Vm|| ≤ 2
m(m−1)
4(m−2) det(L)

1
(m−2) .

Lemma 2.4 ([15]). Let g(x1,x2, · · · ,xn) ∈ Z[x1,x2, · · · ,xn] be an integer polynomial that is a sum of at most m monomials. Suppose that

1. g(x
(0)
1 ,x

(0)
2 , · · · ,x(0)n )≡ 0( mod R), where |x(0)1 |X1, · · · , |x(0)n |< Xn,

2. ||g(x1X1,x2X2, · · · ,xnXn)||< R√
m

.

This can also be true over the integers (x
(0)
1 ,x

(0)
2 , · · · ,x(0)n ) = 0.

Thus we can solve the polynomials derived from the LLL algorithm. Consider the three basis vectors by the LLL algorithm, the condition for

finding common root over the integers is as follows

2
m(m−1)
4(m−2) det(L)

1
(m−2) <

R√
m
,

2
m(m−1)
4(m−2) det(L)< Rm−2M− m−2

2 ,

det(L)< Rm−2M− m−2
2 2

− m(m−1)
4(m−2) .

Since we usually have m < R, an error term ε is used on behalf of the small terms except Rm, then the above equation reduces to

det(L)< Rm−ε .

We obtain a lower triangular basis matrix in our method all the time. The determinant can be calculated as det(L) = NsNX
s1

1 X
s2

2 X
s3

3 where si

denotes the sum of the total exponents of Xi or N that appears on the diagonal. Hence we give the following condition

NsNX
s1

1 X
s2

2 X
s3

3 < Rm
. (2.1)

3. Results

This section presents the major findings of this paper. The discussion is as follows:

To solve equations (1.10-1.12), we apply shift polynomials technique for a positive integer u as define below:

p j1, p j2, p j3(x1,x2,x3) = (x1 − e′1)
j1(x2 − e′2)

j2(x3 − e′3)
j3 Nmax(u− j1− j2− j3,0)

where |x1|< X1, |x2|< X2, |x3|< X3.

So all the polynomials p j1, p j2, p j3(x1,x2,x3) share common root (d1,d2,d3) mod pu(r−1). The optimal condition for choosing the shift

polynomials is given in [12], thus applying it in our case with three unknown private keys we have

0 ≤ σ1 j1 +σ2 j2 +σ3 j3 ≤
r−1

r+1
u.

When we consider a general case where σ1 = σ2 = σ3 = σ , we get a more concise condition as

0 ≤ j1 + j2 + j3 ≤
(

r−1

r+1

)

u

σ
.

Taking u = r = 3, we can search for integer linear combinations of all

p j1, p j2, p j3(x1X1,x2X2,x3X3)

by the LLL algorithm and ensure that its norm is sufficiently small to satisfy the conditions of Lemma 2.4. Thus, we have

p j1, p j2, p j3(x1,x2,x3) = (x1 − e′1)
j1(x2 − e′2)

j2(x3 − e′3)
j3 Nmax(u− j1− j2− j3,0).

Using the above equation, we derive the following monomials:
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Taking u as a given parameter, the dimension m of the full-rank lattice can be calculated which can further allow us to compute det(L).
This can be computed by enumerating the exponential numbers of X1, X2, X3 and N respectively from the lower triangular square matrix s

depicted above. Thus we get

m =
1

∑
σ1 j1+···+σn jn

1 =
un

n!

β n

σ1 · · ·σn
+o(un), β =

r−1

r+1
.

So, in our case m = n = 3, we have

m =

r−1
r+1

u

∑
σ1 j1+σ2 j2+σ3 j3

1 =
13

6

(

r−1
r+1 u

)3

σ1σ2σ3
=

1

6σ1σ2σ3

(

r−1

r+1
u

)3

+o(u3).

Also, to compute uN we can use similar method as outlined in [2] and [12]. Thus, we have

uN =
s

∑
i1+i2+···+ jn=0

(
n

∑
i= j

ji +n−1)(u−
n

∑
i=1

ji) =
un+1

(n+1)!
+o(un+1),

uN =
1

4!
u4 +o(u4) =

1

24
u4 +o(u4),

un = ∑
σ1+σ2+···σ jn=0

jn =
un+1

(n+1)!

β n+1

σ1 · · ·σi−1σ2
j σi +σn

+o(un+1),

u1 =

r−1
r+1

u

∑
σ1 j1+σ2 j2+σ3 j3=0

j1 =
14

24

(

r−1
r+1 u

)4

σ2
1 σ2σ3

=
1

24σ2
1 σ2σ3

(

r−1

r+1
u

)4

+o(u4),

s2 =

r−1
r+1

u

∑
σ1 j1+σ2 j2+σ3 j3=0

j2 =
14

24

(

r−1
r+1 u

)4

σ1σ2
2 σ3

=
1

24σ1σ2
2 σ3

(

r−1

r+1
u

)4

+o(u4),

s3 =

r−1
r+1

u

∑
σ1u1+σ2u2+σ3u3=0

j3 =
14

24

(

r−1
r+1 u

)4

σ1σ2σ2
3

=
1

24σ1σ2σ2
3

(

r−1

r+1
u

)4

+o(u4).

Since, we have det(L) = NunX
u1

1 X
u2

2 X
u3

3 for X1 = Nσ1 , X2 = Nσ2 , X3 = Nσ3 as mentioned above.The norms of the first three vectors can

be sufficiently small only if the condition for finding the common root is fulfilled as derived from LLL-reduced basis. This can further be

transformed using Lemma 2.4 into the corresponding polynomials with same root and lastly solve for the integers (d1,d2,d3) We can now

estimate σ1, σ2, σ3. Using equation 2.1, we have

N
1
24

s4+o(u4)N
σ1

1

24σ2
1

σ2σ3
( r−1

r+1
u)

4
+o(u4)

N
σ2

1

24σ1σ2
2

σ3
( r−1

r+1
u)

4
+o(u4)

N
σ3

1

24σ1σ2σ2
3
( r−1

r+1
u)

4
+o(u4)

< N
r−1
r+1

u 1
6σ1σ2σ3

( r−1
r+1

u)
3
+o(u3)

.

Taking u → ∞ and omitting the lower term o(u3) gives the following result

1

24
+

1

24σ1σ2σ3

(

r−1

r+1

)4

+
1

24σ1σ2
2 σ3

(

r−1

r+1

)4

+
1

24σ1σ2σ2
3

(

r−1

r+1

)4

<
1

6σ1σ2σ3

(

r−1

r+1

)4

σ1σ2σ3 <

(

r−1

r+1

)4

In order to make comparison with other bounds, we assume σ1 = σ2 = σ3 = σ as shown in Table 3.2. It gives asymptotic bound of

σ <
(

r−1
r+1

)

4
3 .

r
(

r−1
r+1

)

4
3 [1] [2] [3] [4] [5]

2 0.231 0.222 0.192 0.222 0.395 0.395

3 0.396 0.250 0.353 0.375 0.461 0.410

4 0.506 0.360 0.464 0.480 0.508 0.437

5 0.582 0.444 0.544 0.550 0.545 0.464

6 0.638 0.510 0.603 0.610 0.574 0.489

7 0.681 0.562 0.649 0.65 0.598 0.512

8 0.715 0.605 0.685 0.690 0.619 0.532

9 0.742 0.640 0.715 0.720 0.637 0.549

10 0.868 0.669 0.740 0.743 0.653 0.565

Table 3.2: Comparison of Bounds

From Table 3.2, one can observe that, our bound is better than [2], [4] and [5] for r ≥ 2 and also better than all the compared bounds for

5 ≤ r ≤ 10.
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4. Conclusion

This paper shows that prime power RSA modulus N = prq for r ≥ 2 with three decryption exponents can be attacked using lattice-based

attack through combinations of Coppersmith’s and [12] lattice-base construction methods. We also showed that the modulus N is insecure if

d1 < Nσ1 , d2 < Nσ2 and d3 < Nσ3 which yielded asymptotic bound σ <
(

r−1
r+1

)

4
3 . Our results is an improvement on the work of [1], [2], [3],

[4] and [5].
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Abstract

A mathematical model of ordinary differential equations is considered to analyze the

pharmacokinetics of multi-chemotherapeutic drugs and their pharmacodynamic effects on

homogeneous tumors. Set-valued analysis is used to design protocols of drug administration

and applied to decrease tumor density under their carrying capacity of Gompertz growth

and converge to zero.

1. Introduction

Several works were carried out on cancer control by the combination of multi-chemotherapeutic agents to have more effects on tumor

cells, and their density [1]. Uses multi-objective optimization method to minimize the area under the curve of tumors as well as the side

effects on the patient during chemotherapy [2]. Introduces an adaptive neural networks control approach, based on feedback linearization,

in order to optimize chemotherapy regimens [3]. Develops optimal therapeutic strategies, subject to reducing tumor size and toxicity

throughout treatment [4]. Employs swarm intelligence for optimization of cancer chemotherapy [5]. Uses evolutionary algorithms to

minimize tumor and maximize patient survival time [6]. Applies genetic algorithms to eradicate tumor [7]. Computes the optimal doses

of CAF (Cyclophosphamide, Adriamycin, and Fluorouracil) regimen for each patient suffering with breast cancer stage IIB in adjuvant

chemotherapy [8]. Develops a mixed-integer program for combination chemotherapy optimization to reduce the number of cancer cells in

the body [9]. Deals with the optimisation of multi-drug chemotherapy in order to better cope with the occurrence of drug-resistant cancer

cells [10]. Subjects a multi-drug chemotherapy schedule optimisation problem to local optima network.

In this work, we adapt the set-valued analysis methods developed in the previous works [11–18], to approach a model of combined

chemotherapy control in cancer, and make the solution viable on decreasing subset, with converging tumor density towards zero [11].

Investigates a general class of immunotherapy ODE models and gives some numerical examples [12]. Evokes viability and set-valued theories

to provide chemotherapy protocol laws [13]. Illustrates the approach by two applications on anti-angiogrnic therapy and tumor-immune with

chemotherapy [14]. Generalizes the method to anti-angiogenic therapy with chemotherapy [15]. Treats the problem of cancer control by

chemotherapy through a general model in ordinary differential equation form of tumor dynamics [16]. Analysis a tuberculosis (TB) infection

model with the treatment of four ordinary differential equations, namely, susceptible, latent, infected, and treated individuals [17]. Proposes

an extension of the classical SEIR-type models to describe and control the spread of COVID-19 in Morocco [18]. Controls general class of

ordinary differential equations that model the temporal evolution of diseases spread and applies the approach to a SIRS model for several

diseases such that influenza and malaria.

The rest of this paper is organized as follows: Section 2 lunches the general model and states the associated viability problem. Section 3

approaches the problem with some tools of the set-valued analysis. Section 4 figures some numerical calculus of analytical results on a

model example. Section 5 concludes the paper.

2. General Model and Problem Formulation

Pharmacokinetiks of chemotherapeutic drugs

u ∈U =
n

∏
i=1

[

umin
i ,umax

i

]

,
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and their pharmacodynamics on tumor density

τ ∈ R+ = [0,∞),

are modeled by the coupled ordinary differential equations

τ̇ = ψ(τ)−G(u)τ, with τ(0) = τ0 ∈ R
∗
+, (2.1a)

u̇ = f (u,v), with u(0) = u0 ∈U, (2.1b)

with the explicit expressions of the functions ψ and G in (2.1a)

ψ(τ) = −ξ τ ln
( τ

θ

)

, (2.1c)

G(u) = ∑
1≤i≤n

κiui + ∑
1≤i< j≤n

κi juiu j, (2.1d)

where in (2.1c) ξ and θ are the parameters of the Gompertz growth function, and in (2.1d) κi is the effectiveness coefficient of the i-th drug,

while κi j is the coefficient of the potentialization in drug cytotoxicity induced by the presence of i-th and j-th drugs.

And with the explicit expression of the vector function f in (2.1b)

f (u,v) =

(

− f1u1 +
v1

V1
, · · · ,− fnun +

vn

Vn

)′

, (2.1e)

where the parameters Vi are the volumes of distribution, and the parameters fi are the elimination rates, and the input functions vi(t) are the

protocol administration, associated to the compartments ui.

We have to find input control function v, expressing the protocol administration, and satisfying the constraint

∀t ∈ [0,∞), v(t) ∈V =
n

∏
i=1

[

fiViu
min
i , fiViu

max
i

]

, (2.2a)

by which the tumor density τ is as follows

lim
t→∞

τ(t) = 0. (2.2b)

We will formulate the control problem (2.2) in the framework of the viability theory [19].

To each real number α > 0, we define the function

ψα (τ,u) = ψ(τ)−G(u)τ +ατ, (2.3a)

where the functions ψ and G still given by (2.1c) and (2.1d) respectively, and we associate the subset

Dα = {(τ,u) ∈ R+×U | ψα (τ,u)≤ 0}. (2.3b)

Proposition 2.1. Let be α such that (τ0,u0) ∈ Dα .

If the system (2.1) is globally viable in the subset Dα by a control v : [0,∞)→V , then v is a protocol in the sense of the problem (2.2).

Proof. Let t ≥ 0.

By (2.1a) and (2.3) we have the differential inequality

˙̄τ(t) = ψ(τ̄(t))−G(ū(t))τ̄(t)≤−ατ̄(t),

and by applying Gronwall’s Lemma we get the exponential estimate

0 ≤ τ̄(t)≤ τ0 exp(−αt),

then

lim
t→∞

τ̄(t) = 0.
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3. Set-Valued Approach

We associate with the system (2.1), the regulation map Fα defined on the subset Dα (2.3b) in the following way

Fα (τ,u) = {v ∈V | (ψ(τ)−G(u)τ, f (u,v))′ ∈ TDα
(τ,u)}, (3.1a)

where

TDα
(τ,u) =

{

(τ̂, û) ∈ R×R
n | liminf

h↓0

dDα
(τ +hτ̂,u+hû)

h

}

, (3.1b)

stands for the tangent cone to the subset Dα at point (τ,u).

Lemma 3.1. Let be α such that (τ0,u0) ∈ Dα .

The system (2.1) is locally viable in the subset Dα , if and only if for all (τ,u) ∈ Dα there exists vα ∈V such that

(ψ(τ)−G(u)τ, f (u,vα ))
′ ∈ TDα

(τ,u). (3.2)

i.e., if and only if the regulation map Fα is strict.

Corollary 3.2. Let be α such that (τ0,u0) ∈ Dα .

If the regulation map Fα admits a single-valued selection vα , then the system (2.1) is globally viable in the subset Dα by the protocol vα .

Proof. Let be α such that (τ0,u0) ∈ Dα , and vα : Dα →V a single-valued selection of the regulation map Fα .

According to the Lemma 3.1, the system (2.1) under the depending state control v = vα (τ,u), admits to a local viable solution (τ̄, ū) in the

subset Dα , over a maximal time interval [0, t̄).
We have to prove that t̄ → ∞:

As τ̄ is a non-negative decreasing function, then τ̄(t) has a limit denoted by τ̄(t̄) when t → t̄−.

By (2.1b), (2.1e), and (2.2a) we have

‖ ˙̄u(t)‖ ≤ ‖ f‖‖ū(t)‖+‖ f‖‖umax‖,

then by applying Gronwall’s Lemma we get the exponential estimate

‖ū(t)‖ ≤ (‖u0‖+‖umax‖)exp(‖ f‖t),

then ū(t) has a limit denoted by ū(t̄) when t → t̄−.

Therefore

(τ̄(t), ū(t))→ (τ̄(t̄), ū(t̄)) when t → t̄−,

and (τ̄(t̄), ū(t̄)) belongs to Dα because it is a closed subset.

Now, by considering (τ̄(t̄), ū(t̄)) as an initial state to the system (2.1), it follows that (τ̄, ū) may be prolonged to a viable solution (τ̄, ū) in

Dα , starting at (τ̄(t̄), ū(t̄)) on some interval [t̄, tmax) where tmax > t̄, which is in contradiction with the maximality of t̄, then the solution

(τ̄, ū) becomes globally viable in Dα .

Finally the Proposition 2.1 confirms that vα is a protocol.

Now to give an explicit expression to the tangent cone TDα
(3.1b), we appeal the following Lemma

Lemma 3.3. If the function ψα (2.3a) is continuously differentiable on Dα , and admits a partial derivative ∂ψα strictly negative on Dα .

Then for each (τ,u) ∈ Dα the tangent directions (τ̂, û) of TDα
(τ,u) are characterized by

ûi ≥ 0 if u = umin
i , for i = 1, · · · ,n, (3.3a)

ûi ≤ 0 if u = umax
i , for i = 1, · · · ,n, (3.3b)

ψ̇α (τ,u)(τ̂, û)≤ 0, if ψα (τ,u) = 0. (3.3c)

Corollary 3.4. For each (τ,u) ∈ Dα the tangent directions (τ̂, û) of TDα
(τ,u) are characterized by the inequality

ψ̇α (τ,u)(τ̂, û)≤ 0, if ψα (τ,u) = 0. (3.4)

Proof. Thanks to the expression (2.1e)

• If ui = umin
i , then

− fiu+
vi

Vi
= − fiu

min
i +

vi

Vi

≥ − fiu
min
i + fiu

min
i

≥ 0.

• If ui = umax
i , then

− fiu+
vi

Vi
= − fiu

max
i +

vi

Vi

≤ − fiu
max
i + fiu

max
i

≤ 0.
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To give a useful expression of the regulation map Fα (3.1a), we set the functions hα and ℓα by the expressions

hα (τ,u) =

(

∂u1
ψα (τ,u)

V1
, · · · ,

∂un
ψα (τ,u)

Vn

)′

, (3.5a)

ℓα (τ,u) = (ψ(τ)−G(u)τ)∂τ ψα (τ,u)− ∑
1≤i≤n

fiui∂ui
ψα (τ,u). (3.5b)

Corollary 3.5. The regulation map Fα is expressed explicitly on the subset Dα as

Fα (τ,u) =

{

V if ψα (τ,u)< 0,

Vα (τ,u) if ψα (τ,u) = 0,
(3.6a)

with

Vα (τ,u) = {v ∈V | 〈hα (τ,u),v〉+ ℓα (τ,u)≤ 0}. (3.6b)

Proof. For all (τ,u) ∈ Dα we have

ψ̇α (τ,u)(ψ(τ)−G(u)τ, f (u,v)) = 〈∇ψα (τ,u),(ψ(τ)−G(u)τ, f (u,v))′〉

= (ψ(τ)−G(u)τ)∂τ ψα (τ,u)− ∑
1≤i≤n

fiui∂ui
ψα (τ,u)+ ∑

1≤i≤n

vi
∂ui

ψα (τ,u)

Vi
,

then by (3.5)

ψ̇α (τ,u)(ψ(τ)−G(u)τ, f (u,v)) = 〈hα (τ,u),v〉+ ℓα (τ,u). (3.7)

Proposition 3.6. A single-valued selection of the regulation map Fα may be given on the subset Dα by the expression

vα (τ,u) = πVα (τ,u)(0), (3.8)

where π denotes the operator of best approximation.

Remark 3.7. As Lemma 3.1, the viability of the solution (τ̄, ū) demands the necessary following condition, between initial tumor density

τ̄(0) and initial control ū(0)

ψ(τ̄(0))

τ̄(0)
< G(ū(0)). (3.9)

To deal with this situation, we introduce the set-valued map

Wβ (τ,u) = {v ∈V | 〈h(τ,u),v〉+ ℓ(τ,u)≤−β}, (3.10a)

where β is a non-negative real number, and the functions h and ℓ are given by the expressions

h(τ,u) =

(

∂u1
Φ(τ,u)

V1
, · · · ,

∂un
Φ(τ,u)

Vn

)′

, (3.10b)

ℓ(τ,u) = (ψ(τ)−G(u)τ)∂τ Φ(τ,u)− ∑
1≤i≤n

fiui∂ui
Φ(τ,u), (3.10c)

and the function Φ is given by the expression

Φ(τ,u) = ψ(τ)−G(u)τ, (3.10d)

where the functions ψ and G still given by (2.1c) and (2.1d) respectively.

Theorem 3.8. Let be (τ0,u0) an initial state such that
ψ(τ0)

τ0
≥ G(u0).

The minimal selection wβ of the set-valued map Wβ

wβ (τ,u) = πWβ (τ,u)(0), (3.11)

controls the system (2.1) to a final state (τ̄(t̄), ū(t̄)) such that
ψ(τ̄(t̄))

τ̄(t̄)
< G(ū(t̄)) (3.9), on the interval [0, t̄] where t̄ >

Φ(τ0,u0)

β
.

Proof. By dynamic equations (2.1a) and (2.1b) we have

Φ(τ̄(t̄), ū(t̄)) = Φ(τ̄(0), ū(0))+
∫ t̄

0
Φ̇(τ̄(s), ū(s))(ψ(τ̄(s))−G(ū(s))τ̄(s), f (ū(s),wβ (s)))ds,

then by the formula (3.7) we get

Φ(τ̄(t̄), ū(t̄)) = Φ(τ0,u0)+
∫ t̄

0
[〈h(τ̄(s), ū(s)),wβ (τ̄(s), ū(s))〉+ ℓ(τ̄(s), ū(s))]ds,

since wβ is a single-valued selection of the set-valued map Wβ then we have

Φ(τ̄(t̄), ū(t̄))≤ Φ(τ0,u0)−β t̄,

as β t̄ > Φ(τ0,u0) it follows that Φ(τ̄(t̄), ū(t̄))< 0.
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4. Particular Model and Numerical Simulation

To give numerical simulations for the analytical results of the previous section, we consider the following model from the paper [20],

which describes the phamacokinetiks of Etoposide drug u1 ∈ U1 = [umin
1 ,umax

1 ] and Cisplatin drug u2 ∈ U2 = [umin
2 ,umax

2 ], and their

pharmacodynamics on tumor the density τ ∈ R+ = [0,∞)

τ̇ = ψ(τ)−G(ũ1, ũ2)τ, (4.1a)

u̇1 = f1(u1,v1), (4.1b)

u̇2 = f2(u2,v2), (4.1c)

where the explicit expressions of the functions ψ are G are given as follows

ψ(τ) = −ξ τ ln
( τ

θ

)

, (4.1d)

G(ũ1, ũ2) = κ1ũ1 +κ2ũ2 +κ12ũ1ũ2, (4.1e)

with

ũi = [ui −umin
i ]H[ui −umin

i ], for i = 1,2, (4.1f)

where H(·) is the Heaviside’s step function

H[ui −umin
i ] =

{

1, ui ≥ umin
i ,

0, ui < umin
i ,

(4.1g)

and f1, and f2 are given as follows

f1(u1,v1) = − f1u1 +
v1

V1
, (4.1h)

f2(u2,v2) = − f2u2 +
v2

V2
. (4.1i)

The numerical values of the model parameters are grouped in the Table 1.

For the non-advanced stage of tumor Φ(τ0,u0)< 0, we initiate the model (4.1) at the four states (2,0,0), (2,0.1,0), (2,0,0.01), (2,0.1,0.01),
to compare between single and coupled effects of chemo-therapies on the tumor density in Figure 4.1, so by the protocols of Figure 4.3,

while Figure 4.2 illustrates their corresponding pharmacokinetics, concerning the viability parameter α of (2.3b) we take 20 (without unit) as

numerical value. In the following scheme we combine the numerical methods of Euler by step h̄ > 0 and Uzawa of parameter λ ∈ R
5
+ to

discretize and solve the model



















τ̇ = ψ(τ)−G(ũ)τ,

u̇ = f (u,v),

v = vα (τ,v) ∈ Fα (τ,u),

t0 ∈ R+,(τ0,u0) ∈ Dα .

(4.2)

1. Initialization

(a) t0 ∈ R+,

(b) (τ0,u0) ∈ Dα ,

(c) λ 0 ∈ R
5
+,

2. Iteration

(a) tn+1 = tn + h̄,

(b)



























τn+1 = τn + h̄
(

−ξ τn ln
( τn

θ

))

,

un+1
1 = un

1 + h̄

(

− f1un
1 +

vn
1

V1

)

,

un+1
2 = un

2 + h̄

(

− f2un
2 +

vn
2

V2

)

,

(c)

{

vn
1 =−λ n

5 h1
α (τn,un)+λ n

3 −λ n
1 ,

vn
2 =−λ n

5 h2
α (τn,un)+λ n

4 −λ n
2 ,

(d)































λ n+1
1 = max(λ n

1 +σ(vn
1 − vmax

1 ),0),

λ n+1
2 = max(λ n

2 +σ(vn
2 − vmax

2 ),0),

λ n+1
3 = max(λ n

3 −σvn
1,0),

λ n+1
4 = max(λ n

4 −σvn
2,0),

λ n+1
5 = max(λ n

5 +σ(h1
α (τn,un)v

n
1 +h2

α (τn,un)v
n
2 + ℓα (τn,un),0), with 0 < σ <

2

‖hα (τ,u)‖
.
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For the advanced stage of tumor Φ(τ0,u0) ≥ 0, we choose (0.5,0,0) as initial state to the model (4.1), and parameter β = 0.1 (3.10a)

(without unit). Tumor density in Figure 4.5 needs the minimal time t̄ = 6 (by days) of Figure 4.8, before reaching the non-advanced stage

Φ(τ(t̄),u(t̄))< 0, so by the controls of Figure 4.7. We follow the preceding algorithm to approach the minimal selection (3.11) and analyze

the model































τ̇ = ψ(τ)−G(ũ)τ,

u̇ = f (u,v),

v = wβ (τ,v) ∈Wβ (τ,u),

t ∈ [t0, t̄],

t0 ∈ R+,Φ(τ0,u0)≥ 0,

(4.3)

with the both modifications on the initialization 1. (b) and the iteration 2. (d) to

1. (b) Φ(τ0,u0)≥ 0, and

2. (d) λ n+1
5 = max(λ n

5 +σ(h1(τn,un)v
n
1 +h2(τn,un)v

n
2 + ℓ(τn,un)+β ,0), where 0 < σ <

2

‖h(τ,u)‖
.

Parameter Value Unit Description Reference

ξ 0.006 d−1 Gompertz growth parameter [20]

θ 1 kg Carrying capacity [20]

k1 10 d−1g−1.ℓ Coffecient of u1 effectiveness [20]

k2 5 d−1g−1.ℓ Coffecient of u2 effectiveness [20]

k12 2×104 d−1.g−2.ℓ−2 Coefficient of the cytotoxicity by u1 and u2 [20]

f1 2 d−1 Elimination rate of u1 [20]

f2 0.1 d−1 Elimination rate of u2 [20]

V1 25 ℓ Volume of distribution for u1 [20]

V2 40 ℓ Volume of distribution for u2 [20]

umax
1 5 mg.ℓ−1 Upper bound of u1 [20]

umax
2 10 mg.ℓ−1 Upper bound of u2 [20]

umin
1 10−4 g.ℓ−1 Lower bound of u1 [20]

umin
2 10−4 g.ℓ−1 Lower bound of u2 [20]

Table 1: Parameter Values with Units and Descriptions

Figure 4.1: Tumors densities τ , τ1, τ2, and τ12, under null-control v = 0, single protocols v1
α , v2

α , and coupled protocol (v1
α ,v

2
α ) respectively.
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Figure 4.2: Pharmacokinetics u1 of Etoposide and u2 of Cisplatin

Figure 4.3: Etoposide v1
α and Cisplatin v2

α Protocols

Figure 4.4: Tumor τ in Advanced Stage
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Figure 4.5: Tumor τ in Transition from Advanced Stage to Non-Advanced One

Figure 4.6: Pharmacokinetics u1 of Etoposide and u2 of Cisplatin for the Stages Transition

Figure 4.7: Etoposide w1
β and Cisplatin w2

β Controls of Stages Transition.
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Figure 4.8: Sign of the Indicator Function Φ of the Tumor Stages and the Minimal Time t̄

5. Conclusion

The control problem of the tumor density (2.2) is successfully approached by the set-valued analysis, the single-valued selection vα (3.8) of

the regulation map Fα (3.1a) controls the general model (2.1) to be globally viable in the subset Dα (2.3b), and strictly decreases the tumor

density τ̄ under the carrying capacity θ = 1kg (2.1c) towards zero τ̄(∞) = 0kg (2.2b), under the exponential estimate τ̄(t)≤ τ0 exp(−αt),
for all t ∈ [0,∞). The protocols of the numerical model (4.2) given in Figure 4.3 are in feedback forms vi

α = vi
α (τ,u) for i = 1,2, and

their combination provides a considerable reduction of the tumor density in Figure 4.1, where τ̄12(t) ≪ τ̄2(t) < τ̄1(t) ≪ τ(t) for all

t ∈ [0,∞), yet τ(∞) = θ 6= 0 when there is no therapy, while τ̄12(∞) = τ̄2(∞) = τ̄1(∞) = 0, under mono-chemo-therapies v1
α , and v2

α , and

multi-chemo-therapies (v1
α ,v

2
α ) respectively. Nonetheless if the tumor density τ is in advanced stage Φ(τ0,u0)≥ 0, the minimal selection

wβ (3.11) of the set-valued map Wβ (3.10a) controls the general model (2.1) to the non-advanced stage Φ(τ̄(t̄), ū(t̄))< 0 on [0, t̄], where the

staging function Φ of cancer is given by (3.10d), which is in complete conformity with the numerical simulations of the specific model (4.3)

figured by 4.4, 4.5, 4.6, 4.7, and 4.8.
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Abstract

Image segmentation has been a well-addressed problem in pattern recognition for the

last few decades. As a sub-problem of image segmentation, the background separation

in biomedical images generated by magnetic resonance imaging (MRI) has also been of

interest in the applied mathematics literature. Level set evolution of active contours idea can

successfully be applied to MRI images to extract the region of interest (ROI) as a crucial

preprocessing step for medical image analysis. In this study, we use the classical level set

solution to create binary masks of various brain MRI images in which black color implies

background and white color implies the ROI. We further used the MRI image and mask

image pairs to train a deep neural network (DNN) architecture called U-Net, which has

been proven to be a successful model for biomedical image segmentation. Our experiments

have shown that a properly trained U-Net can achieve a matching performance of the level

set method. Hence we were able to train a U-Net by using automatically generated input

and label data successfully. The trained network can detect ROI in MRI images faster than

the level-set method and can be used as a preprocessing tool for more enhanced medical

image analysis studies.

1. Introduction

Since the deep neural networks started to perform human-level performance in the image classification tasks with ImageNet [1], many

problems in computer vision have been solved by using application-specific DNN architectures. Moreover, today, it is also possible to

find data-driven solutions to solve complex nonlinear partial differential equations using deep neural networks with a supervised learning

approach. The recent related works [2], [3] and [4] shows the effectiveness of DNN based solution methods with some classical problems in

the fields like fluid mechanics and quantum mechanics.

The most important contribution of the DNN based solution methods is to solve the related problems accurately without solving complex

PDEs. Moreover, the trained DNNs make very fast predictions against previously unseen data during inference time. Hence, DNN based

PDE solution methods are also more time-efficient than classical numerical and analytical solutions.

In this study, the MRI image segmentation problem is revisited. The aim is to propose a DNN based preprocessing framework that detects

the region of interest in an MRI image. The idea is to find the boundary surrounding the corresponding organ in the image. We used a

publicly available brain MRI image dataset [5] for the experiments.

We start with an efficient numerical solution called level-set methods. This method has been applied to various 3D computer graphics and 2D

computer vision problems [6], [7]. In computer graphics, level-set methods effectively solve problems like surface reconstruction from

unorganized noisy point clouds. In computer vision, this method has also been used for image segmentation problems in different digital

image sources, like MRIs.

In the second phase of this study, we use the segmentation results of the renowned level-set method to train a deep neural network. Our

architecture preference is the U-Net [8], a state-of-the-art DNN for image segmentation.
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2. Material and Methods

2.1. Dataset

The data samples are the images from Brain Tumor Classification (MRI) dataset. The images are of size (256,256) RGB JPEG images. The

dataset comprises four classes, three for different brain tumors called glioma, pituitary, and meningioma, and one for the normal brain. In

this study, we do not address the tumor type classification problem. We instead concentrate on a more primer problem called ROI detection

in brain MRI images.

In Figure 2.1, one sample for each class can be seen. The MRIs are taken from different segments and different orientations of the human

skull. Hence, the sample regions in the images are not uniform in size, shape, and position. Moreover, since the images are obtained from

different hardware, the images’ dynamic range, resolution, and sharpness differ. These variations make the ROI detection problem a complex

nonlinear problem that rule-based explicit programming approaches can not solve.

(a) No Tumor (b) Glioma (c) Pituitary (d) Meningioma

Figure 2.1: There are four basic classes in Brain Tumor Classification (MRI) dataset [5]. One sample selected from these classes and shown in the figure. (a)
No tumor sample (b) Glioma tumor sample (c) Pituitory tumor sample (d) Meningioma tumor sample

To increase the number of samples in the dataset, we performed data augmentation by randomly combining the images and obtaining even

more complex ROIs from plain brain MRIs. Some augmented samples can be seen in Figure 2.2. We primarily had 3172 images from the

original dataset. After data augmentation, we increased the number of data to 6172.

Figure 2.2: Augmented data samples

2.2. Implementation

The implementation procedure comprises two main parts called Level-Set and UNet-MRI, which are publicly available at the corresponding

GitHub repositories ([9], [10], respectively) for researchers and enthusiasts who want to reproduce the reported results. The U-Net repository

[10] also includes trained model parameters to be directly used for ROI segmentation in MRIs.

For the U-Net training, the input images are the dataset introduced in Section 2.1. The label images are generated by using the level-set-based

image segmentation procedure, which will be explained in Section 3 in detail.

3. Theory

3.1. Evolving boundaries

We will apply the level set method to an initial implicit boundary. The implicit functions make it possible to capture complex curves without

even explicitly defining them analytically. The function φ(−→x ) can be defined on R
n without loss of generality. The implicit representation

idea can be depicted with the one-dimensional and two-dimensional cases in Figure 3.1. For n = 3 the implicit function represents a 3D

surface. For example, the implicit function φ(−→x ) = x2 + y2 + z2− 1 represents the unit sphere boundary ∂Ω = {−→x | |−→x | = 1} with the
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exterior region Ω+ = {−→x | |−→x | > 1} and the interior region Ω− = {−→x | |−→x | < 1}, at φ(−→x ) = 0 isocontour, i.e. the zero level set of φ .

Accordingly, we will be capturing the zero level set of an evolving curve at each iteration.

We first initialize an implicit function φ(x), such that it represents a rectangular area that ensures the enclosure of ROI. We want the implicit

boundary of the box to evolve in time such that eventually, it will represent the ROI. In order to capture the surface evolution in time, we add

a temporal variable t to φ . Hence the zero level set of temporal φ becomes Equation (3.1).

(a) φ(x) = x2−1 (b) φ(x) = x2 + y2−1

Figure 3.1: Implicit representations of two functions. (a) Implicitly defined function φ(x) = x2−1 defines the regions Ω+, Ω− and the boundary ∂Ω (b)
Implicitly defined function φ(x) = x2 + y2−1 defines the regions Ω+, Ω− and the boundary ∂Ω

φ(x(t), t) = 0 (3.1)

In order to track the movement of the zero level set φ(x(t), t) = 0, we have to take its derivative with respect to t. Since the implicit function

represents the position, its average temporal change implies the velocity of each point in the computational domain. Considering the chain

rule, derivative of Equation (3.1) becomes Equation (3.2).

∂φ

∂x(t)

∂x(t)

∂ t
+

φ

∂ t
= 0 (3.2)

As a further interpretation, we know that ∂φ/∂x is the gradient of the curve, i.e., ∇φ . By following the notation convention in [11], we can

rewrite the equation as can be rewritten as Equation (3.3). This form is known as level set equation [12]. F is called the speed function,

which will be defined over the computation domain by the gradient of the MRI image.

φt +F |∇φ |= 0 (3.3)

By using finite difference method, specifically forward differencing, the partial differential equation (3.3) can be reformulated as Equation

(3.4). This final form is the evolution equation we will use through the iterations. At time t, φ ′ is the value of φ after next iteration at t +∆t.

φ ′ = φ +∆tF |∇φ | (3.4)

We want our initial surrounding box boundary to evolve so that it will eventually cover the ROI. Hence, we want the speed function F to

be high outside the ROI and ideally zero at the ROI boundary. Concretely, deriving F from the edge features of the image is a convenient

method. We can use the edge indicator function g in Equation (3.5), where ∇I is the gradient of the MRI image.

g(I) =
1

1+ ||∇I||2
(3.5)

Two samples of generated F speed function images can be seen in Figure 3.2. As a preprocessing step, we subtract the mean intensity value

of the image from each pixel. It eliminates measurement noise in the dark areas and makes it possible to obtain clear speed function images.

The method needs a stopping condition to end the iterations. We use the mean square error between consecutive images representing φ and

φ ′ and stop iterations if this value is smaller than a predetermined threshold value. The overall procedure can be followed using Algorithm 1.
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(a) Sample MRIs (b) Speed functions F

Figure 3.2: (a) Two sample MRI images from the dataset. (b) Speed function images generated from the sample MRI images in (a)

Algorithm 1 Level-set boundary evolution algorithm

1: I← an MRI from Dataset;

2: I← I - MEAN(I);

3: F← 1./(1.+ ||∇I||2);
4: φ ← Initial box surrounding ROI;

5: ∆← A large value (e.g. 1e+15);

6: ε ← A small value (e.g. 1e-15);

7: while ∆ > ε do

8: φnew← φ +F |∇φ |;
9: ∆←MSE(φnew,φ);

10: φ ← φnew;

11: end while

12: return φ ;

Figure 3.3: The re-depicted model architecture of the original U-Net model proposed in [8].

3.2. U-Net Training

The very essence of this work is to find a state-of-the-art alternative for the method described in Section 3.1. We chose the U-Net deep

neural network model architecture, which has proven to be an effective model for image segmentation problems. The re-depicted model
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architecture of the original model proposed in [8] can be seen in Figure 3.3. We used a slightly modified version of this architecture where

we kept the input and output image sizes equal to 256 by 256. It resulted in a model with around 31 Million parameters.

The model training is performed by using the augmented dataset described in Section 2.1 as input. As output images, we use the mask

images created by using the level set method, which is described in Section 3.1.

We used RMSProp [13] as an optimizer for the network training. Since the output is a binary image, we chose sparse categorical cross-entropy

loss as the cost function. Different loss functions commonly used in deep learning are listed and compared in [14].

The data is split as %80 - %20 for training and validation, respectively. U-Net training does not need very long training epochs. Hence, we

performed the training for ten epochs and achieved the best validation loss at the eighth epoch. We assured faster convergence by applying

batch normalization [15], which prevents the neural network optimization deceleration due to covariate shift.

Covariate shift happens due to the complicated nature of deep neural networks. The input of each layer changes drastically as the parameters

of the previous layers change. It lowers the adaptive learning rates, and hence the training eventually slows down. The related work [15]

proposes Algorithm 2 which has been extensively used in deep learning literature recently.

The batch normalization is defined for each mini-batch since the RMSProp runs on mini-batches. An overview and comparison of different

gradient descent procedures can be seen in [16].

Algorithm 2 Batch normalization (BN) applied to activation x over a mini-batch.

Input: Values of x over a mini-batch B where B = {x1, . . . ,xm}
Parameters to be learned: γ , β

Output: {yi = BNγ,β (xi)}

1: µB ←
1

m

m

∑
i=1

xi #mini-batch mean

2: σ2
B
←

1

m

m

∑
i=1

(xi−µB)2 #mini-batch variance, small ε prevents division by zero

3: x̂i←
xi−µB
√

σ2
B
+ ε

#normalize

4: yi← γ x̂i +β ≡ BNγ,β (xi) #scale and shift

4. Results and Discussion

By using the update equation in Equation (3.4), the evolution of the initial boundary can be iterated. At each step, the exact boundary shape

can be recovered by using the positive and negative regions,

Figure 4.1: Left column: Sample MRIs from the dataset. Middle Column: Final state of the boundary after evolution iterations. The black and white colors
represent the positive and negative regions, Ω+ and Ω−, of φ . Right Column: Shows the converged boundary (in magenta) on the original image.
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Ω+ and Ω−, of φ . Three sample animated boundary evolutions can be seen in Animation 1, Animation 2 and Animation 3. Moreover, two

selected boundary evolution results can be seen in Figure 4.1.

We applied the level-set-based image segmentation algorithm to all of the 6172 images in the dataset. Since the ROI size and complexity

differs, the amount of iterations for these images varies. It took 7 minutes 53 seconds for Algorithm 1 to detect RIO in the dataset images.

The populated mask images constitute a new dataset.

In the next step, the corresponding image pairs in the original and mask images are used to train a tailored version U-Net architecture [8]. We

kept the model parameters of the lowest validation loss and generated mask images for the validation set. In Figure 4.2, mask generation

results using both the level-set method and U-Net of two samples from the validation set can be seen. We observe that the U-Net generated

mask image closely matches the level-set result.

Figure 4.2: Left column: Sample MRIs from the dataset. Middle Column: The mask images representing the ROIs in sample images. Right Column:
Shows the mask images generated by trained U-Net model.

To obtain a comparable processing time, we fed the network with all the images in the dataset. The trained U-Net DNN processed all the

images in 1 minute 45 seconds, nearly five times faster than the level set method.

4.1. Conclusions

This study used a classical numerical solution for a specific image segmentation problem to create a training dataset for a deep neural network

model. We chose the problem of ROI detection on MRIs since the ROI masks are essential for analyzing medical image analysis to optimize

processing time [17], [18]. The ROIs on MRI slices can also be used for the 3D reconstruction of the organs [19].

We used the brain MRI dataset [5] which consists of MRI slices of tumourous and normal brains of different patients. We revisited the

level-set solution to the image segmentation problem and successfully applied it to these MRIs. This numerical solution needs some

preprocessing steps to obtain clear image gradients, which are to be used to specify the speed function F in the level set equation (3.3). By

following the listed procedures in Algorithm 1, we created a mask image of the ROI in each MRI in the dataset.

We showed that similar segmentation masks could also be obtained using a U-Net once trained adequately on an appropriate training dataset.

We used the dataset images and their generated ROI masks to train our U-Net model architecture till the model overfit and kept the best

parameters where we achieved the lowest validation loss at the eighth epoch. The inference results showed that U-Net could create closely

matched ROI segmentation masks for input MRI images in the validation dataset.

Using a DNN to solve the corresponding segmentation problem did have three significant advantages over the classical numerical solution

using level-sets. First, the input images can directly be processed by the U-Net without any need for image preprocessing. Second, the DNN

based solution method did not require numerical solutions to a partial differential equation like the level-set equation. Lastly, the trained

U-Net model could process images five times faster than the level-set-based method, which is the most critical aspect of the proposed method

for practical use since it can save a significant amount of time for vast datasets.
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Abstract

On L− fuzzy normed spaces, which is the generalization of fuzzy spaces, the notion of

lacunary statistical convergence for double sequences which is a generalization of statistical

convergence, are studied and developed in this paper. In addition, the definitions of lacunary

statistical Cauchy and completeness for double sequences and related theorems are given

on L− fuzzy normed spaces. Also, the relationship of lacunary statistical Cauchyness and

lacunary statistical boundedness for double sequences with respect to L− fuzzy norm is

shown.

1. Introduction

After the fuzzy set theory was introduced to the world of mathematics by Zadeh [1], this theory was developed and generalized by many

different mathematicians such as intuitionistic fuzzy sets, which was developed by Atanassov [2]. Different convergence studies of sequences

on these proposed spaces have received and continue to be of great interest in the mathematical community. The concept of statistical

convergence [3]- [9] which can be accepted as a generalization of convergence in the classical sense, is also very important in the field of

functional analysis, and together with this concept, statistical limitation, statistical Cauchy and statistical bounded sequences have been

examined.

Many studies have been carried out in the fields fuzzy metric spaces [10], [11] and intuitionistic fuzzy metric spaces [12]- [15].

L− fuzzy normed spaces [16]- [18] are natural generalizations of normed spaces, fuzzy normed spaces and intuitionistic fuzzy normed

spaces, in which important work has been done on the theory of summability in this space [19]- [21], based on some logical algebraic

structures.

To date, the types of convergence have been studied by many mathematician [22]- [29]. In particular, the characteristics of convergence types

have been introduced to the mathematical community by Dündar [30]- [36].

The goal of the present study is to examine on L− fuzzy normed spaces the lacunary statistical convergence, which was initially introduced

by Fridy, John Albert, and Cihan Orhan [37], [38]. Next, we give some results regarding lacunary statistical convergence of double

sequences and investigate the relationship between lacunary statistical convergent, lacunary statistical Cauchy and lacunary statistical

bounded sequences, which will be newly introduced on L− fuzzy normed spaces. We propose a relevant characterisation for lacunary

statistically convergent for double sequences. Furthermore, we show an example where our convergence approach outperforms more than

the traditional convergence on L− fuzzy normed spaces.

2. Preliminaries

Preliminaries on L− fuzzy normed spaces are presented in this section.

Definition 2.1 ( [39]). Assume that K : [0,1]× [0,1]→ [0,1] is a function that satisfies the following
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1. K(a,b) = K(b,a),
2. K(K(a,b),c) = K(a,K(b,c)),
3. K(a,1) = K(1,a) = x,

4. a ≤ b,c ≤ d then K(a,c)≤ K(b,d),

is known as a t− norm.

Example 2.2 ( [39]). K1,K2 and K3 are the functions that given with,

K1(a,b) = min{a,b},

K2(a,b) = ab,

K3(a,b) = max{a+b−1,0}

are the samples, which are well known of t− norms.

Definition 2.3 ( [39]). Let L = (L,�) be a complete lattice and let a set A be called the universe. An L−fuzzy set, on A is defined with a

function

X : A → L.

On a set A, the family of all L−sets is denoted by LA.

Two L− sets on A intersect

(C∩D)(x) =C(x)∧D(x)

for all x ∈ A. Similarly, union and intersection of a family {Bi : i ∈ I} of L− fuzzy sets is given by

(

⋃

i∈I

Bi

)

(x) =
∨

i∈I

Bi(x)

and
(

⋂

i∈I

Bi

)

(x) =
∧

i∈I

Bi(x).

0L and 1L are the smallest and biggest elements of the full Lattice L, respectively. On a given lattice (L,�), we also employ the symbols

�,≺, and ≻ in the obvious meanings.

Definition 2.4 ( [39]). Let L = (L,�) be a complete lattice. Therefore, t− norm is a function K : L×L → L that satisfies the following

for all a,b,c,d ∈ L:

1. K (a,b) = K (b,a),
2. K (K (a,b),c) = K (a,K (b,c)),
3. K (a,1L) = K (1L,a) = a,

4. a � b and c � d, then K (a,c)� K (b,d).

Definition 2.5 ( [39]). For sequences (an) and (bn) on L such that (an)→ a ∈ L and (bn)→ b ∈ L, if the property that K (an,bn)→K (a,b)
satisfies on L, then a k−norm K on a complete lattice L = (L,�) is called continuous.

Definition 2.6 ( [39]). The function N : L → L is defined as a negator on L = (L,�) if,

N1) N (0L) = 1L,

N2) N (1L) = 0L,

N3) a � b implies N (b)� N (a) for all a,b ∈ L.

If in addition,

N4) N (N (a)) = a for all a ∈ L.

Therefore, N is known as an involutive.

The mapping Ns : [0,1]→ [0,1], on the lattice ([0,1],≤) defined as Ns(x) = 1− x is a well known sample of an involutive negator. This

type of negator are using in the notion of stansard fuzzy sets. In addition, with the order

(µ1,ν1)� (µ2,ν2) ⇐⇒ µ1 ≤ µ2 and ν1 ≥ ν2

given the lattice ([0,1]2,�) with for all i = 1,2, (µi,νi) ∈ [0,1]2. Therefore, the function N1 : [0,1]2 → [0,1]2,

N1(µ,ν) = (ν ,µ)

in the sense of Atanassov, is known as a involutive negator. This type of negator are using in the notion of intuitionistic fuzzy sets.

Definition 2.7 ( [39]). Let L = (L,�) be a complete lattice and V be a real vector space. K be a continuous t−norm on L and µ be an

L−set on V × (0,∞) satisfying the following

(a) µ(a, t)≻ 0L for all a ∈V, t > 0,

(b) µ(a, t) = 1L for all t > 0 if and only if a = θ ,

(c) µ(αa, t) = µ(a, t
|α| ) for all a ∈V, t > 0 and α ∈ R−{0},

(d) K (µ(a, t),µ(b,s))� ν(a+b, t + s), for all a,b ∈V and t,s > 0,

(e) limt→∞ µ(a, t) = 1L and limt→0 µ(a, t) = 0L for all a ∈V −{θ},
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(f) The functions fa : (0,∞)→ L which is f (t) = µ(a, t) are continuous.

The triple (V,µ,K ) is referred to as an L− fuzzy normed space or L− normed space in this context.

Definition 2.8 ( [39]). A sequence (an) is said to be Cauchy sequence in a L− fuzzy normed space (V,µ,K ) if, there exists n0 ∈ N such

that, for all m,n > n0

µ(an −am, t)≻ N (ε),

where N is a negator on L , for each ε ∈ L−{0L} and t > 0.

Definition 2.9. A sequence a = (an) is said to be bounded with respect to fuzzy norm in a L− fuzzy normed space (V,µ,K ) , provided

that, for each r ∈ L−{0L,1L} and t > 0,

µ(an, t)≻ N (r),

for all n ∈ N.

On L− fuzzy normed spaces, we’ll look at statistical convergence. Before we continue, let’s go through basic statistical convergence terms.

If K ⊆ N, the set of natural numbers, then δ{A} is the asymptotic density of A, is

δ{A} := lim
k

1

k

∣

∣{n ≤ k : n ∈ A}
∣

∣

the limit exists the cardinality of the set A is given by |A|.
If the set K(ε) = {n ≤ k : |an − l|> ε} has the asymptotic density zero, i.e.

lim
k

1

k
| {n ≤ k : |an − l|> ε} |= 0,

then the sequence a = (an) is known as a statistically convergent to the number l. In this case, we will write st − lima = l.

Despite the fact that every convergent sequence is statistically convergent to the same limit, the opposite of this is not necessarily true.

Definition 2.10 ( [40]). A sequence a = (an) is statistically convergent to l ∈V with respect to µ fuzzy norm in a L− fuzzy normed space

(V,µ,K ) if provided that, for each ε ∈ L−{0L} and t > 0,

δ{n ∈ N : µ(an − l, t)⊁ N (ε)}= 0

or equivalently

lim
m

1

m
{ j ≤ m : µ(an − l, t)⊁ N (ε)}= 0.

In this case, we will write stL − lima = l.

Definition 2.11 ( [40]). A sequence a = (ak) is said to be statistically Cauchy with respect to fuzzy norm µ in a L− fuzzy normed space

(V,µ,K ), if provided that

δ{k ∈ N : µ(ak −am, t)⊁ N (ε)}= 0

for each ε ∈ L−{0L}, m ∈ N and t > 0.

Definition 2.12 ( [40]). A sequence a = (ak) is said to be statistically bounded with respect to fuzzy norm µ in a L− fuzzy normed space

(V,µ,K ) if provided that there exists r ∈ L−{0L,1L} and t > 0 such that

δ{k ∈ N : µ(ak, t)⊁ N (r)}= 0

for each positive integer k.

3. Lacunary Statistical Convergence for Double Sequences on L−Fuzzy Normed Space

In this section we define and study lacunary statistical convergence for double sequences on L− fuzzy normed space.

Definition 3.1. By a lacunary sequence we mean an increasing integer sequence θ = (kr) such that k0 = 0 and hr := kr − kr−1 → ∞ as

r → ∞. The intervals determined by θ will be denoted by Ir := (kr−1,kr] and the ratio kr

kr−1
will be abbreviated by qr.

For any set N ⊆ N, the number

δθ (N) = lim
r→∞

1

hr
|{k ∈ Ir : k ∈ N}|

is called the θ density of the set N, provided the limit exists.

A sequence a = (ak) is said to be lacunary statistically convergent or Sθ convergent to a number ℓ provided that for each ε > 0,

δθ{k ∈ N : |ak − ℓ| ≥ ε}|= 0.

In other words, the set K(ε) = {k ∈ N : |xk − ℓ| ≥ ε} has θ− density zero. In this case the number ℓ is called lacunary statistical limit of the

sequence x = (xk) and we write Sθ − limr→∞ xk = ℓ or xk → ℓ(Sθ ).

Definition 3.2. Let (V,µ,K ) be a L−fuzzy normed space. Then a sequence a = (ak) is lacunary statistically convergent to l ∈V with

respect to µ fuzzy norm, provided that, for each ε ∈ L−{0L} and t > 0,

δθ{k ∈ N : µ(ak − l, t)⊁ N (ε)}= 0.

In this scenario, SL
θ − limx = l.
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[41] The double sequence θ = {(kr, ls)} is called double lacunary if there exist there exist two increasing integer sequence such that

k0 = 0,hr = kr − kr−1 → ∞,as r → ∞

and

l0 = 0,ms = ls − ls−1 → ∞,as s → ∞.

The intervals are determined by θ , Ir = {(k) : kr−1 < k ≤ kr}, Is = {(l) : ls−1 < s ≤ ls}, Ir,s = {(k, l) : kr−1 < k ≤ kr, ls−1 < s ≤ ls}, qr =
kr

kr−1
,

us =
ls

ls−1
.

Note that the double θ− density will be denoted by δθ2
.

Definition 3.3. Let (V,µ,K ) be a L−fuzzy normed space. Then a double sequence a = (amn) is lacunary statistically convergent to l ∈V

with respect to ν fuzzy norm, provided that, for each ε ∈ L−{0L} and t > 0,

δθ2
{(m,n) ∈ N×N : µ(amn − l, t)⊁ N (ε)}= 0.

In this scenario, it is denoted by SL
θ2

− lima = l.

Proposition 3.4. Let (V,µ,K ) be a L−fuzzy normed space. Then, the following statements are equivalent, for every ε ∈ L−{0L} and

t > 0:

(a) SL
θ2

− lima = l,

(b) δθ2
{(m,n) ∈ N×N : µ(amn − l, t)⊁ N (ε)}= 0,

(c) δθ2
{(m,n) ∈ N×N : µ(amn − l, t)≻ N (ε)}= 1,

(d) SL
θ2

− lim µ(amn − l, t) = 1L.

Theorem 3.5. Let (V,µ,K ) be a L− fuzzy normed space and a = (amn) be a double sequence. If lima = l in Pringsheim sense, then

SL
θ2

− lima = l.

Proof. Let lima = l. Then, for every ε ∈ L−{0L} and t > 0, there is a number k0 ∈ N such that

µ(amn − l, t)≻ N (ε),

for all m,n ≥ k0. Therefore,

{(m,n) ∈ N×N : µ(amn − l, t)⊁ N (ε)}

has at most finitely many terms. We can see right away that any finite subset of the natural numbers has double θ− density zero. Hence,

δθ2
{(m,n) ∈ N×N : µ(amn − l, t)⊁ N (ε)}= 0.

As shown in the following case, the converse of the theorem is not true.

Example 3.6. Let V = R and L = (P(R+),⊆), the lattice of all subsets of the set of non-negative real numbers. Define the function

µ : R× (0,∞)→ P(R+) with

µ(x, t) = {r ∈ R+ :| x |<
t

r
}.

Then, (R,µ,P(R+)) is a L− fuzzy normed space. On this space, consider the sequence a = (amn) given by the rule

amn =

{

1, f or m ∈ (kr − ln(hr),kr] and n ∈ (ls − ln(ms), ls],r,s ∈ N,

0, otherwise.

Then,

lim
r→∞

δθ2
= 0

which means SL
θ2

− lima = l ∈ R, while the sequence itself is not convergent.

Theorem 3.7. Let (V,µ,K ) be a L−fuzzy normed space. If a double sequence a = (amn) is lacunary statistically convergent with respect

to the L− fuzzy norm µ , then SL
θ2
− limit is unique.

Proof. Suppose that SL
θ2

− lima = ℓ1 and SL
θ2

− lima = ℓ2, where ℓ1 6= ℓ2. For any given ε ∈ L−{0L} and t > 0, we can choose a

r ∈ L−{0L} such that

K (N (r),N (r))≻ N (ε).

Define the following sets

K1 = {(m,n) ∈ N×N : µ(amn − ℓ1, t))⊁ N (r)}

and

K2 = {(m,n) ∈ N×N : µ(amn − ℓ2, t))⊁ N (r)}

for any t > 0. Since for elements of the set K(ε, t) = K1(ε, t)∪K2(ε, t) we have

µ(ℓ1 − ℓ2, t)� K (µ(amn − ℓ1,
t

2
),µ(amn − ℓ2,

t

2
))≻ K (N (r),N (r))≻ N (ε).

it can be concluded that ℓ1 = ℓ2.
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Theorem 3.8. Let (V,µ,K ) be a L−fuzzy normed space. Then, SL
θ2

− lima = ℓ if and only if there exists a subset K ⊂ N×N such that

δθ2
(K) = 1 and L − limk,l→∞

akl = ℓ.

Proof. Suppose that SL
θ2

− lima = l. Let (εn) be a sequence in L−{0L} such that N (εn)→ 1L in L increasingly, and for any t > 0 and

j ∈ N, let

K( j) = {(k, l) ∈ N×N : µ(akl − l, t)≻ N (ε j)}.

Then, observe that, for any t > 0 and j ∈ N,

K( j+1)⊂ K( j).

Since SL
θ2

− lima = l, it is obvious that

δθ2
{K( j)}= 1,( j ∈ N and t > 0).

Now, let (p1,q1) be an arbitrary number of K(1). Then, there exist numbers (p2,q2)∈ K(2), p2 > p1,q2 > q1, such that for all l > p2,k > q2,

1

hrts
|{(k, l) ∈ Ir,s : µ(xkl − ℓ, t)≻ N (ε2)}|>

1

2
.

Further, there is a number (p3,q3) ∈ K(3), p3 > p2,q3 > q2 such that for all l > p3,k > q3,

1

hrts
|{(k, l) ∈ Ir,s : µ(xkl − ℓ, t)≻ N (ε3)}|>

2

3

and so on. So, we can construct, by induction, an increasing index sequence increasing in both coordinates (p j,qk) j,k∈N of the natural

numbers such that (q j,q j) ∈ K( j) and that the following statement holds for all l > p j,k > q j:

1

hrts
|{(k, l) ∈ Ir,s : µ(xkl − ℓ, t)≻ N (ε j)}|>

j−1

j
.

Now, we construct an index sequence increasing in both coordinates as follows:

K := {(k, l) ∈ N×N : 1 < l < p1,1 < k < q1}∪
[

⋃

j∈N

{(k, l) ∈ K( j) : p j ≤ l < p j+1,q j ≤ k < q j+1}
]

.

Hence, it follows that δθ2
(K) = 1. Now, let ε ≻ 0L and choose a positive integer j such that ε j ≺ ε . Such a number j always exists since

(εn)→ 0L. Assume that l ≥ p j,k ≥ q j and k, l ∈ K. Then, by the definiton of K, there exists a number d ≥ j such that pd ≤ l < pd+1,qd ≤
k < qd+1 and (k, l) ∈ K( j). Hence, we have, for every ε ≻ 0L

µ(akl − ℓ, t)≻ N (εk)≻ N (ε)

for all l ≥ p j,k ≥ q j and (k, l) ∈ K and this means

L − lim
k,l∈K

akl = ℓ.

Conversely, suppose that there exists an increasing index sequence K = (akl)k,l∈N of pairs of natural numbers such that δθ2
(K) = 1 and

L − lim
k,l∈K

akl = ℓ. Then, for every ε ≻ 0L there is a number n0 such that for each k, l ≥ n0 the inequality µ(akl − ℓ, t)≻ N (ε) holds. Now,

define

M(ε) := {(k, l) ∈ N×N : µ(akl − ℓ, t)⊁ N (ε)}.

Then, there exists an n0 ∈ N such that

M(ε)⊆ N×N− (K −{(ak,al) : k, l ≤ n0}).

Since δθ2
(K) = 1, we get δθ2

{(N×N)− (K −{(ak,al) : k, l ≤ n0})}= 0, which yields that δθ2
{M(ε)}= 0. In other words, SL

θ2
− lima =

l.

4. The Relationship Between Lacunary Statistical Double Cauchy and Lacunary Statistical Double

Bounded Sequences

In this section, the notion of lacunary statistically double Cauchy and lacunary statistically double bounded sequences will be defined and

relationship between them will be given.

Definition 4.1. Let (V,µ,K ) be a L− fuzzy normed space. Then, a sequence a = (amn) is said to be lacunary statistically double

Cauchy with respect to L− fuzzy norm µ , if for every ε ∈ L−{0L} and t > 0, there exist N = N(ε) and M = M(ε) such that for all

m,k ≥ N and n, l ≥ M provided that

δθ2
{(m,n) ∈ N×N : µ(amn −akl , t)⊁ N (ε)}= 0.

Theorem 4.2. Every lacunary statistically convergent double sequence is lacunary statistically double Cauchy.
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Proof. Let a = (amn) be a double sequence such that lacunary statistical convergent to ℓ with respect to L− fuzzy norm µ , in other saying

SL
θ2

− lima = l. For a given ε > 0, choose r > 0 such that,

K (N (r),N (r))≻ N (ε).

For t > 0 we can write,

A = {(m,n) ∈ N×N : µ(amn − ℓ,
t

2
)≻ N (r)}.

Take (p,q) ∈ A. Obviously, µ(apq − ℓ, t
2 )≻ N (r). Also since,

µ(ℓ−apq,
t

2
) = µ(apq − ℓ,

t
2

|−1|
) = µ(apq − ℓ,

t

2
)≻ N (ε)

we have

µ(amn − xpq, t) = µ
(

(amn − ℓ)+(ℓ−apq),
t

2
+

t

2

)

≻ K
(

µ(amn − ℓ,
t

2
),(ν(ℓ−apq,

t

2
)
)

≻ K
(

N (r),N (r)
)

≻ N (ε).

If we define a set B = {(m,n) ∈N×N : µ(amn −apq, t)≻N (ε)}, then A ⊆ B. Since δθ2
(A) = 1, δθ2

(B) = 1. Thus, the double theta density

of complement of B equals to zero,i.e. δθ2
(Bc) = 0, which means a = (amn) is lacunary statistical double Cauchy.

Definition 4.3. Let (V,µ,K ) be a L− fuzzy normed space and a = (amn) be a double sequence. Then, a = (amn) is said to be lacunary

statistically double bounded with respect to L− fuzzy norm µ , provided that there exists r ∈ L−{0L,1L} and t > 0 such that

δθ2
{(m,n) ∈ N×N : µ(amn, t)⊁ N (r)}= 0

for each positive integer m,n.

Theorem 4.4. Every double bounded sequence on a L− fuzzy normed space (V,µ,K ), is lacunary statistically double bounded.

Proof. Let (amn) be a double bounded sequence on (V,µ,K ). Then, there exist t > 0 and r ∈ L−{0L,1L} such that µ(amn, t)≻ N (r). In

that case we have,

{(m,n) ∈ N×N : µ(amn, t)⊁ N (r)}= /0

which yields

δθ2
{(m,n) ∈ N×N : µ(amn, t)⊁ N (r)}= 0.

Thus, (amn) is lacunary statistically bounded.

However the converse of this theorem does not hold in general as seen in the example below.

Example 4.5. Let V =R and L = (L,≤) where L is the set of non-negative extended real numbers, that is L = [0,∞]. Then, 0L = 0,1L = ∞.

Define a L−fuzzy norm ν on V by µ(x, t) = t
|x| for x 6= 0 and ν(0, t) = ∞ for each t ∈ (0,∞). Consider the t− norm K (a,b) = min{a,b}

on L . Given the sequence,

xmn =

{

m+n, if m+n is a prime number,
1

τ(m+n)−2
, otherwise

where, τ(m+n) denotes the number of positive divisors of m+n. Note that (xmn) is not bounded since for each t > 0 and r ∈ L−{0,∞}, for

any prime number m+n such that rt ≤ m+n we have

µ(xmn, t) = µ(m+n, t) =
t

| m+n |
=

t

m+n
≯

1

r
= N (r).

However for t = 1 and any non-prime integer m+n, r = 2 satisfies

µ(xmn,1) = µ(
1

τ(m+n)−2
,1) =

1

| 1
τ(m+n)−2

|
= |τ(m+n)−2|>

1

2
= N (r)

since τ(m+n) 6= 2 for any non-prime m+n, and since the density of prime numbers converges zero by Prime Number Theorem we have,

δθ2
{( j,k) ∈ N×N : ν(x jk,1)≯ N (2)}= 0

suggesting that (xmn) is lacunary statistically double bounded.

Theorem 4.6. Every lacunary statistically double Cauchy sequence on a L−fuzzy normed space (V,µ,K ) is lacunary statistically double

bounded.
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Proof. Let (amn) be a lacunary statistically double Cauchy on (V,µ,K ). Then, for every ε ∈ L−{0L} and t > 0, there exist N = N(ε) and

M = M(ε) such that for all m,k ≥ N and n, l ≥ M provided that

δθ2
{(m,n) ∈ N×N : µ(amn −akl , t)⊁ N (ε)}= 0.

Then,

δθ2
{(m,n) ∈ N×N : µ(amn −akl , t)≻ N (ε)}= 1.

Consider a number (m,n) ∈ N×N such that µ(amn −akl ,1)≻ N (ε). Then, for t = 2

µ(amn,2) = µ(amn −akl +akl ,2)≻ K (µ(amn −akl ,1),µ(akl ,1))≻ K (N (ε),ν(xkl ,1)).

Say r := N (K (N (ε),µ(akl ,1))). Then,

µ(amn,2)≻ K (N (ε),µ(akl ,1)) = N (r),

which implies

δθ2
{(m,n) ∈ N×N : µ(amn,2)≻ N (r)}= 1

or equivalently

δθ2
{(m,n) ∈ N×N : µ(amn,2)⊁ N (r)}= 0

giving lacunary statistically double boundedness of (amn).

5. Conclusion

In this study, the properties of Lacunary statistical convergence for double sequences, which is a generalization of statistical convergence,

are defined on L fuzzy spaces, which are a generalization of fuzzy spaces, and their properties are examined. Some characteristics of the

lacunary statistical convergence of sequences within the context of the current investigation are examined on L-fuzzy normed spaces, a

structure that provides a flexible frame- work that generalizes other structures like normed spaces, fuzzy normed spaces, and IF-normed

spaces. As a result of this research, the concept of norm was emphasized on a broader concept, the topological vector space, by combining

the lattice structure and the norm structure.
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Abstract

This paper deals with a parabolic-type Kirchhoff equation with variable exponents. Firstly,

we obtain the global existence of solutions by Faedo-Galerkin method. Later, we prove the

decay of solutions by Komornik’s inequality.

1. Introduction

In this work, we study the following parabolic-type Kirchhoff equation with variable exponents










(

1+ |u|p(x)−2
)

ut +∆2u−M
(

‖∇u‖2
)

∆u = |u|q(x)−2 u, in (x, t) ∈ Ω× (0,T ) ,

u(x, t) = ∂u
∂v

(x, t) = 0, on x ∈ ∂Ω × (0,T ) ,

u(x,0) = u0 (x) , in x ∈ Ω,

(1.1)

where Ω is a bounded domain in Rn (n ≥ 1) with smooth boundary ∂Ω and

M (s) = 1+ sγ , γ ≥ 1.

The variable exponents p(.) and q(.) are given as measurable functions on Ω satisfying
{

2 ≤ p− ≤ p(x)≤ p+ ≤ p∗,
2 ≤ q− ≤ q(x)≤ q+ ≤ q∗,

where
{

p− = ess infx∈Ω p(x) , p+ = esssupx∈Ω p(x) ,
q− = ess infx∈Ω q(x) , q+ = esssupx∈Ω q(x) ,

and

p∗,q∗ =

{

∞, if n ≤ 4,
2n

n−4 if n > 4.
(1.2)

We also suppose that p(.) and q(.) satisfy the log-Hölder continuity condition:

|p(x)− p(y)| ≤ −
A

log |x− y|
,

for a.e. x,y ∈ Ω, |x− y|< δ with A > 0, 0 < δ < 1.
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• Parabolic type equation: Many phenomena in physics lead up to problems that deal with parabolic type equations, such as; mathematical

description of the reaction-diffusion or diffusion, population dynamic processes and heat transfer [1].

• Kirchhoff equation: The Kirchhoff equation is among the famous wave equation’s model which describe small vibration amplitude of

elastic strings. This equation has been introduced in 1876 by Kirchhoff [2].

• Variable exponent: The problems with variable exponents arises in many branches in sciences such as electrorheological fluids,

nonlinear elasticity theory and image processing [3]-[5].

In [6], Wu et al. established the blow up of solutions with positive initial energy for the following equation

ut −∆u = up(x).

Later, some authors get new results for the same equation to blow up result (see [7]-[10]).

In [11], Qu et al. studied the fourth order parabolic equation as follows

ut +∆2u = up(x).

The authors studied the asymptotic behavior of solutions.

When there is no fourth-order term ∆2u, (1.1) is reduced to the following equation

ut −M
(

‖∇u‖2
)

∆u+ |u|m(x)−2 ut = |u|r(x)−2 u.

Khaldi et al. [12] studied the global existence and stability of solutions.

Recently, problems with variable exponents have been handled carefully in several papers, some results relating the local existence, global

existence, blow up and stability have been found ([13]-[17]).

In this work, we considered the existence and decay of solutions of the parabolic type Kirchhoff equation with variable exponents, motivated

by above works. To our best knowledge, there is no research, related to the parabolic type Kirchhoff equation (1.1) with fourth-order term

(∆2u) and variable exponent source term (|u|q(x)−2 u), hence, our work is the generalization of the above studies.

This work consists of four parts: Firstly, in part 2, we give some needed theories about Lebesgue and Sobolev space with variable-exponents.

Then, in Section 3, we get the existence result by the Faedo-Galerkin method. Moreover, in Section 4, we obtain the decay of solutions by

the Komornik’s inequality.

2. Preliminaries

Throughout this work, we denote by ‖.‖p the Lp(Ω) norm. Also, we give some needed theories about Lebesgue space and Sobolev space

with variable-exponents (for detailed, see [4, 18, 19]).

Let p : Ω → [1,∞] be a measurable function. We introduce the Lebesgue space with variable exponent p(.)

Lp(.) (Ω) =
{

u : Ω → R measurable in Ω, ρp(.) (λu) < ∞, for some λ > 0
}

,

where

ρp(.) (u) =
∫

Ω

|u(x)|p(x) dx.

The norm, called Luxemburg’s norm, is defined by

‖u‖p(x) = inf







λ > 0 :

∫

Ω

∣

∣

∣

∣

u(x)

λ

∣

∣

∣

∣

p(x)

dx ≤ 1







,

Lp(.) (Ω) is a Banach space.

Next we define the variable-exponent Sobolev space W m,p(.) (Ω) as

W m,p(.) (Ω) =
{

u ∈ Lp(.) (Ω) such that Dα u exists and Dα u ∈ Lp(.) (Ω) , |α| ≤ m
}

.

Lemma 2.1. [4]. If

1 ≤ p1 := ess inf
x∈Ω

p(x)≤ p(x)≤ p2 := ess sup
x∈Ω

p(x)< ∞,

then we have

min
{

‖u‖
p1

p(.)
,‖u‖

p2

p(.)

}

≤ ρp(.) (u)≤ max
{

‖u‖
p1

p(.)
,‖u‖

p2

p(.)

}

,

for any u ∈ Lp(.).

Lemma 2.2. (Hölder’s inequality)[4]. Assume that p,q,s ≥ 1 are measurable functions defined on Ω such that

1

s(y)
=

1

p(y)
+

1

q(y)
for a.e. y ∈ Ω.

If u ∈ Lp(.) (Ω) and v ∈ Lq(.) (Ω) , then uv ∈ Ls(.) (Ω) with

‖uv‖s(.) ≤ c‖u‖p(.) ‖v‖q(.) .
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Lemma 2.3. [4]. If p : Ω → [1,∞) is a measurable function satisfying (1.2) then the embedding H2
0 (Ω) →֒ H1

0 (Ω) →֒ Lp(.) is continuous

and compact.

Lemma 2.4. [20]. Let ϕ : R+ → R+ is a nonincreasing function and suppose that there are two constants α > 0 and c > 0 such that

∞
∫

0

ϕα+1 (s)ds ≤ cϕα (0)ϕ (s) ∀t ∈ R+.

Then we have

ϕ (t)≤ ϕ (0)

(

c+αt

c+αc

)−1/α

∀t ≥ c.

3. Existence

In this part, we state and prove the global existence result. Now, let us introduce some functionals as follows:

E (t) =
1

2
‖∆u‖2

2 +
1

2
‖∇u‖2

2 +
1

2(γ +1)
‖∇u‖

2(γ+1)
2 −

∫

Ω

1

q(x)
|u|q(x) dx,

I (t) = ‖∆u‖2
2 +‖∇u‖2

2 +‖∇u‖
2(γ+1)
2 −

∫

Ω

|u|q(x) dx.

Lemma 3.1. Suppose that (1.2) holds. Then

E
′

(t) =−‖ut‖
2
2 −

∫

Ω

|u|p(x)−2 |ut |
2 dx ≤ 0, (3.1)

and

E (t)≤ E (0) .

Proof. We multiply the eq. (1.1) by ut and integrate over Ω, we get

d

dt





1

2
‖∆u‖2

2 +
1

2
‖∇u‖2

2 +
1

2(γ +1)
‖∇u‖2(γ+1)−

∫

Ω

1

q(x)
|u|q(x) dx





= −‖ut‖
2
2 −

∫

Ω

|u|p(x)−2 |ut |
2 dx,

thus

E ′ (t) =−‖ut‖
2
2 −

∫

Ω

|u|p(x)−2 |ut |
2 dx ≤ 0.

A simple integration of (3.1) over (0,T ) , yields

E (t)≤ E (0) .

Lemma 3.2. Let assumption (1.2) holds. Further assume that q1 > 2(γ +1) , I (0)> 0 and

β1 +β2 < 1,

where

β1 = max

{

αc
q1
∗

(

2q1

q1 −2
E (0)

)(q1−2)/2

,αc
q2
∗

(

mq1

q1 −m
E (0)

)(q2−2)/2
}

,

β2 = max











(1−α)c
q1
∗

(

2(γ+1)q1

q1−2(γ+1)
E (0)

)(q1−2(γ+1))/(2(γ+1))

(1−α)c
q2
∗

(

2(γ+1)q1

q1−2(γ+1)
E (0)

)(q2−2(γ+1))/(2(γ+1))











,

with 0 < α < 1 and c∗ is the best embedding constant of H2
0 (Ω) →֒ Lq(.) (Ω) . Then I (t)> 0 for all t ∈ [0,T ] .
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Proof. Since I (0)> 0, then by continuity there exists T∗ such that

I (t)≥ 0, ∀t ∈ [0,T∗] . (3.2)

Now, we have for all t ∈ [0,T ] that

E (t) =
1

2
‖∆u‖2

2 +
1

2
‖∇u‖2

2

+
1

2(γ +1)
‖∇u‖

2(γ+1)
2 −

∫

Ω

1

q(x)
|u|q(x) dx

≥
1

2
‖∆u‖2

2 +
1

2
‖∇u‖2

2 +
1

2(γ +1)
‖∇u‖

2(γ+1)
2

−
1

q1

(

‖∆u‖2
2 +‖∇u‖2

2 +‖∇u‖
2(γ+1)
2 − I (t)

)

≥
q1 −2

2q1

(

‖∆u‖2
2 +‖∇u‖2

2

)

+
q1 −2(γ +1)

2(γ +1)q1
‖∇u‖

2(γ+1)
2 +

1

q1
I (t) .

Using (3.2), we have

q1 −2

2q1

(

‖∆u‖2
2 +‖∇u‖2

2

)

+
q1 −2(γ +1)

2(γ +1)q1
‖∇u‖

2(γ+1)
2 ≤ E (t) .

By the definition of E, we obtain

‖∆u‖2
2 +‖∇u‖2

2 ≤
2q1

q1 −2
E (t)

≤
2q1

q1 −2
E (0) , (3.3)

and

‖∇u‖
2(γ+1)
2 ≤

2(γ +1)q1

q1 −2(γ +1)
E (t)

≤
2(γ +1)q1

q1 −2(γ +1)
E (0) . (3.4)

On the other hand, by Lemma 2.1, we get
∫

Ω

|u|q(x) dx ≤ max
{

‖u‖
q1

q(.)
,‖u‖

q2

q(.)

}

= α max
{

‖u‖
q1

q(.)
,‖u‖

q2

q(.)

}

+(1−α)max
{

‖u‖
q1

q(.)
,‖u‖

q2

q(.)

}

.

By the embedding of H2
0 (Ω) →֒ H1

0 (Ω) →֒ Lq(.) (Ω) , we have
∫

Ω

|u|q(x) dx ≤ α max
{

c
q1
∗ ‖∆u‖

q1

2 ,c
q2
∗ ‖∆u‖

q2

2

}

+(1−α)max
{

c
q1
∗ ‖∇u‖

q1

2 ,c
q2
∗ ‖∇u‖

q2

2

}

≤ α max
{

c
q1
∗ ‖∆u‖

q1−2
2 ,c

q2
∗ ‖∆u‖

q2−2
2

}

‖∆u‖2
2

+(1−α)max
{

c
q1
∗ ‖∇u‖

q1−2(γ+1)
2 ,c

q2
∗ ‖∇u‖

q2−2(γ+1)
2

}

‖∇u‖
2(γ+1)
2

≤ α max
{

c
q1
∗ ‖∆u‖

q1−2
2 ,c

q2
∗ ‖∆u‖

q2−2
2

}(

‖∆u‖2
2 +‖∇u‖2

2

)

+(1−α)max
{

c
q1
∗ ‖∇u‖

q1−2(γ+1)
2 ,c

q2
∗ ‖∇u‖

q2−2(γ+1)
2

}

‖∇u‖
2(γ+1)
2 .

By (3.3) and (3.4), we obtain
∫

Ω

|u|q(x) dx ≤ β1

(

‖∆u‖2
2 +‖∇u‖2

2

)

+β2 ‖∇u‖
2(γ+1)
2 . (3.5)

Since β1 +β2 < 1, then
∫

Ω

|u|q(x) dx < ‖∆u‖2
2 +‖∇u‖2

2 +‖∇u‖
2(γ+1)
2 . (3.6)

This implies that

I (t)> 0, ∀t ∈ [0,T∗] .

Repeating the above procedure, we can extend T∗ to T.



36 Journal of Mathematical Sciences and Modelling

Theorem 3.3. (Existence of weak solution). Suppose that (1.2) holds. Let u0 ∈ L2 (Ω) be given. Then the problem (1.1) admits a weak local

solution

u ∈ L∞
(

(0,T ) ,H2
0 (Ω)

)

, ut ∈ L2
(

(0,T ) ,L2 (Ω)
)

.

Proof. We shall use the Faedo-Galerkin method of approximation. Let {vl}
∞
l=1 be a basis of H2

0 (Ω) which forms a complete orthonormal

system in L2 (Ω) . Denote by

Vk = span{v1,v2, ...,vk} ,

the subspace generated by the first k vectors of the basis {vl}
∞
l=1 . After normalization, we get ‖vl‖ = 1 and for any given integer k, we

consider the approximate solution

uk (t) =
k

∑
l=1

ulk (t)vl ,

where uk are the solutions to the problem

(

u
′

k (t) ,vl

)

+
(

∆2uk (t) ,vl

)

−



M





∫

Ω

|∇uk (t)|
2

dx



∆uk (t) ,vl



+
(

|uk (t)|
p(x)−2

u
′

k (t) ,vl

)

=
(

|uk (t)|
q(x)−2

uk (t) ,vl

)

, l = 1,2, ...,k, (3.7)

uk (0) = u0k =
k

∑
l=1

(uk (0) ,vl)vl → u0 in L2 (Ω) . (3.8)

Note that we can solve the system (3.7) and (3.8) by Picard’s iterative method for ordinary differential equations. Therefore, there exists a

solution in [0,T∗) for some T∗ > 0 and we can extend this solution to the whole interval [0,T ] for any given T > 0 by making use of the a

priori estimates below. We multiply the equation (3.7) by u
′

lk (t) and summing over l from 1 to k, we have

d

dt





1
2 ‖∆uk (t)‖

2
2 +

1
2 ‖∇uk (t)‖

2
2 +

1
2(γ+1)

‖∇uk (t)‖
2(γ+1)

−
∫

Ω

1
q(x)

|uk (t)|
q(x)

dx





= −
∥

∥ut,k (t)
∥

∥

2

2
−
∫

Ω

|uk (t)|
p(x)−2

∣

∣ut,k (t)
∣

∣

2
dx. (3.9)

Then

E ′ (uk (t)) =−
∥

∥ut,k (t)
∥

∥

2

2
−
∫

Ω

|uk (t)|
p(x)−2

∣

∣ut,k (t)
∣

∣

2
dx ≤ 0.

Integrating (3.9) over (0,T ), we get

1

2
‖∆uk (t)‖

2
2 +

1

2
‖∇uk (t)‖

2
2 +

1

2(γ +1)
‖∇uk (t)‖

2(γ+1)−
∫

Ω

1

q(x)
|uk (t)|

q(x)
dx

+

t
∫

0

∥

∥ut,k (s)
∥

∥

2

2
ds+

t
∫

0

∫

Ω

|uk (s)|
p(x)−2

∣

∣ut,k (s)
∣

∣

2
dxds

≤ E (0) . (3.10)

Then, from (3.6), the inequality (3.10) becomes

q1 −2

2q1
sup

t∈(0,T )
‖∆uk (t)‖

2
2 +

q1 −2

2q1
sup

t∈(0,T )
‖∇uk (t)‖

2
2

+
q1 −2(γ +1)

2(γ +1)q1
sup

t∈(0,T )
‖∇uk (t)‖

2(γ+1)
2 +

t
∫

0

∥

∥ut,k (s)
∥

∥

2

2
ds

+

t
∫

0

∫

Ω

|uk (s)|
p(x)−2

∣

∣ut,k (s)
∣

∣

2
dxds

≤ E (0) . (3.11)

From (3.11), we conclude that
{

{uk} is uniformly bounded in L∞
(

[0,T ] ,H2
0 (Ω)

)

,
{

u
′

k

}

is uniformly bounded in L2
(

[0,T ] ,L2 (Ω)
)

.
(3.12)
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Furthermore, we have from Lemma 2.3 and (3.12) that







{

|uk|
q(x)−2 uk

}

is uniformly bounded in L∞
(

[0,T ] ,L2 (Ω)
)

,
{

|uk|
p(x)−2 u

′

k

}

is uniformly bounded in L∞
(

[0,T ] ,L2 (Ω)
)

.
(3.13)

By (3.12) and (3.13) we infer that there exist a subsequence of uk and a function u such that



















uk ⇀ u weakly star in L∞
(

[0,T ] ,H2
0 (Ω)

)

,

u
′

k ⇀ u
′

weakly star in L2
(

[0,T ] ,L2 (Ω)
)

,

|uk|
q(x)−2 uk ⇀ |u|q(x)−2 u weakly star in L∞

(

[0,T ] ,L2 (Ω)
)

,

|uk|
p(x)−2 u

′

k ⇀ |u|p(x)−2 u
′

weakly star in L∞
(

[0,T ] ,L2 (Ω)
)

.

(3.14)

By the Aubin-Lions compactness lemma (see [21]), we conclude from (3.14) that

uk ⇀ u strongly in C
(

[0,T ] ,H2
0 (Ω)

)

,

yields

uk ⇀ u everywhere in Ω× [0,T ] . (3.15)

It follows from (3.14) and (3.15) that

{

|uk|
q(x)−2 uk ⇀ |u|q(x)−2 u weakly in L∞

(

[0,T ] ,L2 (Ω)
)

,

|uk|
p(x)−2 u

′

k ⇀ |u|p(x)−2 u
′

weakly in L∞
(

[0,T ] ,L2 (Ω)
)

.

Letting k → ∞ and passing to the limit in (3.7) we have

(

u
′

(t) ,vl

)

+
(

∆2u(t) ,vl

)

−



M





∫

Ω

|∇u(t)|2 dx



∆u(t) ,vl





+
(

|u(t)|p(x)−2
u
′

k (t) ,vl

)

,

=
(

|u(t)|q(x)−2
u(t) ,vl

)

, l = 1,2, ...,k.

Since {vl}
∞
l=1 is a basis of H2

0 (Ω) , we deduce that u satisfies equation (1.1). From (3.14) and Lemma 3.1.7 of [22] with B = L2 (Ω) we infer

that

uk (0)⇀ u(0) weakly in L2 (Ω) . (3.16)

We get from (3.8) and (3.16) that u(0) = u0. The proof of the Theorem is now finished.

Theorem 3.4. Let the assumptions of Lemma 3.2 hold. Then the local solution of (1.1) is global.

Proof. We have

E (u(t)) =
1

2
‖∆u‖2

2 +
1

2
‖∇u‖2

2 +
1

2(γ +1)
‖∇u‖

2(γ+1)
2 −

∫

Ω

1

q(x)
|u|q(x) dx,

≥
q1 −2

2q1
‖∆u‖2

2 +
q1 −2

2q1
‖∇u‖2

2 +
q1 −2(γ +1)

2(γ +1)q1
‖∇u‖

2(γ+1)
2 ,

which implies that

‖∆u‖2
2 +‖∇u‖2

2 +‖∇u‖
2(γ+1)
2 ≤CE (t) . (3.17)

By Lemma 3.1, we get

‖∆u‖2
2 +‖∇u‖2

2 +‖∇u‖
2(γ+1)
2 ≤CE (0) .
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4. Decay

In this part, we state and prove the decay of solutions. Firstly, we give the following lemma.

Lemma 4.1. Let the assumptions of Lemma 3.2 hold. Then

∫

Ω

|u|p(x) dx ≤ cE (t) ,

where c > 0.

Proof.

∫

Ω

|u|p(x) dx = max
{

‖u‖
p1

p(.)
,‖u‖

p2

p(.)

}

,

≤ max
{

c
p1
∗ ‖∆u‖

p1

2 ,c
p2
∗ ‖∆u‖

p2

2

}

,

≤ max
{

c
p1
∗ ‖∆u‖

p1−2
2 ,c

p2
∗ ‖∆u‖

p2−2
2

}

‖∆u‖2
2 .

Using (3.3), we have

∫

Ω

|u|p(x) dx ≤ cE (t) .

Theorem 4.2. Let the assumptions of Lemma 3.2 hold. Then

E (t)≤ E (0)

(

c+ rt

c+ rc

)−1/r

, ∀t ≥ c,

where c > 0.

Proof. Multiplying the equation (1.1) by u(t)Eq (t) (q > 0) and then integrating over Ω× (S,T ) , we get

T
∫

S

∫

Ω

Eq (t)



u∆2u+uut −u



M





∫

Ω

|∇u|2 dx



∆u+uut |u|
p(x)−2







dxdt

=

T
∫

S

Eq (t)
∫

Ω

|u|q(x) dxdt.

Then

T
∫

S

∫

Ω

Eq (t)
(

|∆u|2 +uut + |∇u|2 +‖∇u‖
2γ
2 |∇u|2 +uut |u|

p(x)−2
)

dxdt

=

T
∫

S

Eq (t)
∫

Ω

|u|q(x) dxdt.

We adding and substracting the term

T
∫

S

Eq (t)
∫

Ω

(

β1

(

|∆u|2 + |∇u|2
)

+β2 ‖∇u‖
2γ
2 |∇u|2

)

dxdt,
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and use (3.5), we obtain

(1−β1)

T
∫

S

Eq (t)
∫

Ω

(

|∆u|2
)

dxdt

+(1−β1)

T
∫

S

Eq (t)
∫

Ω

|∇u|2 dxdt

+(1−β2)

T
∫

S

Eq (t)
∫

Ω

(

‖∇u‖
2γ
2 |∇u|2

)

dxdt

+

T
∫

S

Eq (t)
∫

Ω

(uut)dxdt

+

T
∫

S

Eq (t)
∫

Ω

(

uut |u|
p(x)−2

)

dxdt

= −

T
∫

S

Eq (t)
∫

Ω

(

β1 |∆u|2 +β1 |∇u|2 +β2 ‖∇u‖
2γ
2 |∇u|2 −|u|q(x)

)

dxdt

≤ 0. (4.1)

It is clear that

ξ

T
∫

S

Eq (t)
∫

Ω

(

1
2 |∆u|2 + 1

2 |∇u|2

+ 1
2(γ+1)

‖∇u‖
2γ
2 |∇u|2 −

|u(t)|q(x)

q(x)

)

dxdt

≤ (1−β1)

T
∫

S

Eq (t)
∫

Ω

|∆u|2 dxdt

+(1−β1)

T
∫

S

Eq (t)
∫

Ω

|∇u|2 dxdt

+(1−β2)

T
∫

S

Eq (t)
∫

Ω

‖∇u‖
2γ
2 |∇u|2 dxdt, (4.2)

where

ξ = min{(1−β1) ,(1−β2)} .

By (4.1), (4.2) and the definition of E (t) , we otain

ξ

T
∫

S

Eq+1 (t)dt ≤ −

T
∫

S

Eq (t)
∫

Ω

uutdxdt (4.3)

−

T
∫

S

Eq (t)
∫

Ω

uut |u|
p(x)−2 dxdt.

We estimate the terms on the right-hand side of (4.3). For the first term, we use the Young’s inequality

AB ≤
ε

η1
Aη1 +

1

η2εη2/η1
Bη2 , A,B ≥ 0, ε > 0 and

1

η1
+

1

η2
= 1,

and get

−

T
∫

S

Eq (t)
∫

Ω

uutdxdt ≤

T
∫

S

Eq (t)
∫

Ω

(

εc |u|2 + cε |ut |
2
)

dxdt. (4.4)

We use again the Young’s inequality to get

−

T
∫

S

Eq (t)
∫

Ω

uut |u|
p(x)−2 dxdt

= −

T
∫

S

Eq (t)
∫

Ω

|u|(p(x)−2)/2 ut |u|
(p(x)−2)/2 udxdt

≤

T
∫

S

Eq (t)
∫

Ω

(

εc |u|p(x)+ cε |ut |
p(x)−2 u2

t

)

dxdt. (4.5)
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By (4.4) and (4.5) the inequality (4.3) becomes

ξ

T
∫

S

Eq+1 (t)dt ≤

T
∫

S

Eq (t)
∫

Ω

(

εc |u|2 + cε |ut |
2
)

dxdt

+

T
∫

S

Eq (t)
∫

Ω

(

εc |u|p(x)+ cε |ut |
p(x)−2 u2

t

)

dxdt

≤ εc

T
∫

S

Eq (t)
∫

Ω

(

|u|2 + |u|p(x)
)

dxdt

+cε

T
∫

S

Eq (t)
∫

Ω

(

|ut |
2 + |u|p(x)−2 u2

t

)

dxdt.

We use (3.17) , Lemma 4.1 and definition of E
′
(t) to obtain

ξ

T
∫

S

Eq+1 (t)dt ≤ εc

T
∫

S

Eq+1 (t)dt + cε

T
∫

S

Eq (t)
(

−E
′

(t)
)

dt.

This implies

ξ

T
∫

S

Eq+1 (t)dt ≤ εc

T
∫

S

Eq+1 (t)dt + cε

(

Eq+1 (s)−Eq+1 (T )
)

≤ εc

T
∫

S

Eq+1 (t)dt + cε Eq (0)E (s) .

Choosing ε so small such that ξ > εc, we arrive at

T
∫

S

Eq+1 (t)dt ≤ cEq (0)E (s) .

By taking T → ∞, we obtain

∞
∫

S

Eq+1 (t)dt ≤ cEq (0)E (s) .

Thus, Komornik’s Lemma implies the desired result.
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