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Dynamic Equations, Control Problems on Time Scales,
and Chaotic Systems
Martin Bohner ID ∗,1

∗Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, Missouri 65409-0020, USA.

ABSTRACT The unification of integral and differential calculus with the calculus of finite differences has been
rendered possible by providing a formal structure to study hybrid discrete-continuous dynamical systems
besides offering applications in diverse fields that require simultaneous modeling of discrete and continuous
data concerning dynamic equations on time scales. Therefore, the theory of time scales provides a unification
between the calculus of the theory of difference equations with the theory of differential equations. In addition,
it has become possible to examine diverse application problems more precisely by the use of dynamical
systems on time scales whose calculus is made up of unification and extension as the two main features. In the
meantime, chaos theory comes to the foreground as a concept that a small change can result in a significant
change subsequently, and thus, it is suggested that nonlinear dynamical systems which are apparently random
are actually deterministic from simpler equations. Consequently, diverse techniques have been devised for
chaos control in physical systems that change across time-dependent spatial domains. Accordingly, this
Editorial provides an overview of dynamic equations, time-variations of the system, difference and control
problems which are bound by chaos theory that is capable of providing a new way of thinking based on
measurements and time scales. Furthermore, providing models that can be employed for chaotic behaviors in
chaotic systems is also attainable by considering the arising developments and advances in measurement
techniques, which show that chaos can offer a renewed perspective to proceed with observational data by
acting as a bridge between different domains.

KEYWORDS

Dynamic equa-
tions on time
scales
Chaotic systems
Nonlinearity and
chaos
Unification and
extension
Control problems
Time-variations
of systems

The theory of time scales, conceptualized and introduced
by Stefan Hilger in 1988, makes a unification between the
calculus of the theory of difference equations with the theory of
differential equations. In other words, the unification of integral
and differential calculus with the calculus of finite differences
became possible by providing a formal structure to study hybrid
discrete-continuous dynamical systems and offering applications
in diverse fields which require simultaneous modeling of discrete
and continuous data with regard to dynamic equations on time
scales. It is also possible to investigate many application problems
in a more precise way through the use of dynamical systems on
time scales.

Manuscript received: 31 January 2023,
Accepted: 1 February 2023.

1 bohner@mst.edu (Corresponding Author)

Unification and extension make up the two main features of
time scales calculus, with subject matters such as existence and
uniqueness of solutions, periodicity, stability, Floquet theory, Can-
tor sets as well as boundedness, among many others, regarding
solutions can be investigated in a more precise way and by and
large by utilizing dynamical systems and differential (dynamic)
equations on time scales. The study of dynamic equations on time
scales enables one to avoid proving the related results twice: one
time for differential equations and another time for difference equa-
tions (Bohner and Peterson 2001), (Bohner and Georgiev 2016).

The core concept is the proving of a result for a dynamic equa-
tion in which the unknown function’s domain is a so-called time
scale, which is, in fact, an arbitrary closed subset of the reals. As the
time scale is chosen to be the set of real numbers, the general result
generates a result pertaining to an ordinary differential equation
as examined in a first course in differential equations. The same
general result yields a result for difference equations by choosing
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the time scale to be the set of integers (Hilger 1990). A time scale, as
a special case of a measure chain, refers to an arbitrary nonempty
closed subset of real numbers such as, for example, R, Z, N, N0,
[0, 1] ∪ [2, 3], [0, 1] ∪ N, and the Cantor set, whereas Q, R \ Q, C,
(0, 1) are not time scales (Agarwal et al. 2002).

As chaotic systems can be characterized by a certain degree
of spontaneous self-order, examining the interplay of nonlinear-
ity and chaos can ensure a deep understanding of such systems,
while the theory of calculus on time scales enables a sort of uni-
fication of the theories with respect to differential equations and
difference equations, delay differential equations as well as pop-
ulation dynamics (Bohner et al. 2022b), outspreading the theories
toward other types of dynamic equations. As a type of differential
equation, delay differential equations, or time-delay systems, in
mathematics hold that the derivative of the unknown function at
a particular time is provided in terms of the function’s values at
previous times.

Delay differential equations often emerge as simple infinite-
dimensional models in the highly complex scope of partial dif-
ferential equations. Systems such as hereditary ones, equations
that have deviating argument or differential-difference equations
belong to the class of systems having functional state. Delay dif-
ferential equations (Durga and Muthukumar 2019), (Bohner et al.
2022a) have aftereffect or dead-time, which is an applied problem
since there is the emerging need of having models that behave
more like the real process when the increasing expectations of
dynamic performances arise. Many processes include aftereffect
phenomena in their inherent dynamics besides the sensors, actu-
ators and communication networks being involved in feedback
control loops introducing the delays. Therefore, delay differen-
tial equations maintain their applicability in the areas of science,
particularly in engineering fields related to control as voluntary
introduction of delays can prove to be beneficial for the control
system (Richard 2003), (Lavaei et al. 2010).

Time scales in different models that employ optimal control
theory, with the extension of the calculus of variations as a mathe-
matical optimization method, have significant applications to deal
with finding a control for a particular dynamical system across a
period of time so that an objective function affecting the dynam-
ics can be optimized (Zacchia Lun et al. 2019). Dynamics being
essentially nonautonomous (Wu et al. 2023) makes it compelling to
verify the ingredients of chaos for unspecified time scales.

The paradigm of information processing by dynamical systems
at the range of phase-space scales reflects the chaotic systems which
show an opposite inclination, which is the phase-space expansion
as a result of exponentially diverging trajectories. On the other
hand, the forecasting of the final state necessitates more precise
measurements related to the initial state as the separation of them
over time goes up. At this point, chaos theory, as a mathematical
field of study, seems as it is a concept which suggests that a small
change can bring about a significant change afterwards.

Accordingly, it posits that nonlinear dynamical systems which
are apparently random are actually deterministic from simpler
equations (Devaney 2022). Control of chaos refers to the stabiliza-
tion through as small system of perturbations and the result is to
make an otherwise chaotic motion more predictable and also stable.
Many techniques have been devised for chaos control for physical
systems that change on time-dependent spatial domains. In these
regards, small perturbations can change a system’s behavior with
the sensitivity serving to be beneficial for control purposes in chaos
as has been implied.

Taken together, dynamic equations, time-variations of the sys-
tem, difference and control problems are bound by chaos theory
which can provide a novel way of thinking based on an innovative
concept of measurements and time scales, enabling models to be
used for chaotic behaviors. Based on the processing and compre-
hension of huge amounts of experimental data which can be ana-
lyzed by emerging developments and advances in measurement
techniques, exploits that motivate mathematical developments can
be modeled. As a matter of fact, chaos can offer a renewed per-
spective to proceed with observational data which may be erratic
in natural phenomena by providing a bridge between different
domains.

Conflicts of interest
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the publication of this paper.
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Alpha-Stable Autoregressive Modeling of Chua’s Circuit
in the Presence of Heavy-Tailed Noise
Serpil Yılmaz ID ∗,1 and Deniz Kutluay ID β,2

∗Department of Computer Engineering, İzmir Katip Çelebi University, İzmir, Türkiye, βR&D Department, Vestel Electronics Corporation, Manisa, Türkiye.

ABSTRACT This study presents alpha-stable autoregressive (AR) modeling of the dynamics of Chua’s
circuit in the presence of heavy-tailed noise. The parameters of the AR time series are estimated using the
covariation-based Yule-Walker method, and the parameters of alpha-stable distributed residuals are calculated
using the regression type method. Visual depictions of the calculated parameters of the AR model and
alpha-stable distributions of residuals are presented. The medians of the estimated parameters of the AR
model and alpha-stable distributions parameters of residuals are presented for heavy-tailed noise with various
stability index parameters. Thus, the impulsive behavior of Chua’s circuit can be modeled as alpha-stable AR
time series, and the model can provide an alternative approach to describe the chaotic systems driven by
heavy-tailed noise.

KEYWORDS

Alpha-stable
distribution
Chua’s circuit
Autoregressive
model
Yule-Walker
equations

INTRODUCTION

There has been an increasing interest in stochastic processes based
on heavy-tailed distributions for real-world data modeling. It
is well known that stochastic fluctuations are inevitable due to
various uncertainties or unpredictable factors in the real-world
systems. Understanding the effect of fluctuations on the chaotic
dynamics is also of fundamental interest. The importance of addi-
tive noise in chaotic attractors is considered in (Argyris et al. 1998).
The effect of stochastic excitations which have asymmetric distribu-
tions on chaotic dynamics is analyzed in (Yilmaz et al. 2018) by con-
sidering the generalized Chua’s circuit driven by skew-Gaussian
distributed noise. However, Gaussian distribution cannot be ap-
plied for modeling data across multiple application areas for which
real-world data exhibit significant peaks.

Some examples that might have heavy-tailed behavior include
tracking highly maneuvering objects (Gan and Godsill 2020; Gan
et al. 2021), interference in IoT networks (Clavier et al. 2021), fi-
nancial data (McCulloch 1996; Maleki et al. 2020; Janczura et al.
2011; Wesselhöfft 2021), chaotic systems (Savaci and Yilmaz 2015;
Contreras-Reyes 2021), frequency fluctuations in the power grid
(Schäfer et al. 2018; Anvari et al. 2020), the dose distributions for

Manuscript received: 16 August 2022,
Revised: 15 December 2022,
Accepted: 16 December 2022.

1 serpil.yilmaz@ikcu.edu.tr (Corresponding Author)
2 kutluaydenizz@gmail.com

proton breast treatment (Van den Heuvel et al. 2015), proton pencil
beams for cancer therapy (Van den Heuvel et al. 2018), climate
dynamics (Ditlevsen 1999; Broszkiewicz-Suwaj and Wyłomańska
2021). Therefore, alpha-stable (α-stable) distributions are more suit-
able for modeling such impulsive behavior (Nolan 2003). Alpha-
stable distributions require four parameters: skewness parameter
(β), scale parameter (σ), location parameter (µ), and stability index
(α), which is responsible for the heavy-tailedness of the distribu-
tion.

To model the real-world data based on heavy-tailed time series,
the α-stable autoregressive (AR) model is proposed in (Gallagher
2001), and generalized Yule-Walker equations are used to estimate
the parameters of the α-stable AR process. The use of α-stable
distributions in multivariate processes is presented in (Pai and
Ravishanker 2010) and the approach is illustrated on time series of
daily average temperatures.

The α-stable distribution with α = 2 corresponds to the Gaus-
sian distribution. Since stable distributions have an infinite vari-
ance for α < 2, autocorrelation is not defined for heavy-tailed ran-
dom sequences. Therefore, other measures of dependence, such as
autocovariation are needed for consideration in an infinite variance
system. A new autocovariation estimator for α-stable AR processes
is introduced in (Gallagher 2001), in which the real-world data set
is considered as the time series of sea surface temperatures.
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A modified method of Yule-Walker is presented in (Kruczek
et al. 2017) to estimate the parameters of the stable periodic au-
toregressive (PAR) model. This method obtains the PAR model
for electricity market data describing the hourly volume of up-
regulating bid prices in Norway. The classical one-dimensional
α-stable AR model is generalized to the multidimensional case
in (Grzesiek et al. 2021). The method is applied to a real data set
which contains daily prices of KGHM and copper.

This paper considers a stochastic nonlinear electronic circuit,
specifically the Chua’s circuit with α-stable noise. Chua’s circuit is
a nonlinear chaotic circuit, and the presence of heavy-tailed noise
makes the circuit more unpredictable and complex. Our study
focuses on applying the α-stable autoregressive (AR) model to
characterize the impulsive behavior of the Chua’s circuit, and thus
aims to provide a better-linearized way to analyze the dynamics
of the states of stochastic Chua’s circuit.

The paper is structured as follows. In the first part, Chua’s
circuit in the presence of heavy-tailed noise is presented, and its
α-stable AR model is proposed. The next part gives the modified
Yule-Walker equations for α-stable AR models based on the autoco-
variation estimator. In the last part, the dynamical behaviors of the
system are obtained by using the Euler-Maruyama method, and
the estimation method presented is applied to the simulated data.

CHUA’S CIRCUIT IN THE PRESENCE OF ALPHA-STABLE
NOISE

The set of differential equations representing the dynamics of di-
mensionless Chua’s circuit in the presence of heavy-tailed noise is
given as follows (Suykens and Huang 1997):

dx = a[y − h(x)]dt + dLα(t)
dy = (x − y + z)dt (1)

dz = −bydt.

with the bifurcation parameters a, b and the piecewise-linear func-
tion h(x):

h(x) = m1x + 0.5(m0 − m1)(|x + 1| − |x − 1|) (2)

and dLα(t) is α-stable random variable ∼ Sα(β, σ, µ) with the stabil-
ity index α ∈ (0, 2], the skewness parameter β ∈ [−1, 1], the scale
parameter σ ∈ R+ and the location parameter µ ∈ R (Samorodnit-
sky and Taqqu 1994; Nikias and Shao 1995).

The characteristic function of an α-stable random variable is
given as (Samorodnitsky and Taqqu 1994; Nikias and Shao 1995)

φ(w)=


exp

{
−|γw|α[1 − iβsign(w) tan(πα

2 )] + iµw
}

for α ̸= 1

exp
{
−|γw|[1 + iβsign(w) 2

π log(|w|)] + iµw
}

for α = 1
(3)

where sign(w) is signum function.
Due to the lack of analytical expression for α-stable density

functions, the numerical approximation of the corresponding den-
sity function f (y; α, β, σ, µ) of an α-stable random variable can be
evaluated by the inverse Fourier transform of the characteristic
function given in (3) as:

f (y; α, β, σ, µ) =
1

2π

∫ ∞

−∞
e−jwy φ(w)dw. (4)

When β = 0, the distribution is symmetric around µ. The impul-
siveness of the distribution increases with the decreasing stability
index α, which makes the tails of the corresponding distributions

heavier. Gaussian distribution (α = 2 and β = 0), Cauchy distribu-
tion (α = 1 and β = 0), and Lévy distribution (α = 0.5 and β = 1)
are the exceptional cases of the α-stable distributions.

In this paper, steady states of the dynamical behaviors of the
system (1) are proposed to model as an α-stable third-order AR
process given as

x(t) =
3

∑
i=1

ϕ1,ix(t − i) + ξ1(t)

y(t) =
3

∑
i=1

ϕ2,iy(t − i) + ξ2(t) (5)

z(t) =
3

∑
i=1

ϕ3,iz(t − i) + ξ3(t)

where ϕj,i is the AR parameter and ξi(t) is the sequence of i.i.d.
symmetric alpha-stable (SαS) random variables for i, j = 1, 2, 3.

ESTIMATION METHOD FOR ALPHA-STABLE AR MODELS

The autoregressive model parameters are commonly estimated us-
ing the Yule-Walker method based on the autocorrelation function
(ACF) (Brockwell and Davis 2002). Since ACF is not defined for
α-stable random variables, the modified Yule-Walker method is
introduced based on the autocovariation function in (Gallagher
2001), and the parameters of α-stable AR models are found using
the modified Yule-Walker method. The procedure of the method is
described in the following part:

Let Xt be an autoregressive process of order p which satisfies
the following equation:

Xt − ϕ1Xt−1 − ϕ2Xt−2 − · · · ϕpXt−p = ξt (6)

where the sequence {ξt} is an i.i.d. SαS random variables with
α > 1.

Multiplying (6) by vector S =
[
St−1, St−2, . . . , St−p

]′ where
St = sign(Xt) and taking the expectation, the system consisting of
p number of equations is obtained as follows:

EXtSt−1 −
p

∑
i=1

ϕiEXt−iSt−1 = Eξt

EXtSt−2 −
p

∑
i=1

ϕiEXt−iSt−2 = Eξt (7)

...

EXtSt−p −
p

∑
i=1

ϕiEXt−iSt−p = Eξt

Then dividing the equations respectively by
E|Xt−1|, E|Xt−2|, . . . , E|Xt−p| the following system is obtained:

EXtSt−1
E|Xt−1|

−
p

∑
i=1

ϕi
EXt−iSt−1

E|Xt−1|
= 0

EXtSt−2
E|Xt−2|

−
p

∑
i=1

ϕi
EXt−iSt−2

E|Xt−2|
= 0 (8)

...
EXtSt−p

E|Xt−p|
−

p

∑
i=1

ϕi
EXt−iSt−p

E|Xt−p|
= 0

in which Eξt = 0 since ξt has SαS distribution with α > 1.
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By using the normalized autocovariation (NCV) for stationary
SαS process {Xt} for lag k proposed in (Gallagher 2001), the matrix
form of (8) can be written as follows:

λ = ΛΦ (9)

where λ and ϕ are vectors with the length of p, and they are defined
as

λ =
[
NCV(Xt, Xt−1), . . . , NCV(Xt, Xt−p)

]′
Φ =

[
ϕ1, . . . , ϕp

]′ (10)

in which

NCV(Xt, Xt−k) =
EXtsign(Xt−k)

E|Xt−k|
(11)

The Λ is the p × p matrix, and its elements are described by:

Λ(i, j) = NCV(Xt, Xt−i+j) for i, j=1, . . . ,p. (12)

The values of the model parameters Φ can be estimated using
the sample autocovariation estimator N̂CV based on p-th moment.
The sample estimator of the normalized autocovariation N̂CV for
{X(t)} proposed in (Gallagher 2001) is given by:

N̂CV(Xt, Xt−k) =
∑r

t=l xtsign(xt−k)

∑N
t=1 |xt|

(13)

where x1, x2, . . . , xN is a vector set denotes the realization of the
random variable X(t), N is the trajectory size, l = max(1, 1 + k),
and r = min(N, N + k).

If the matrix Λ is nonsingular, then the estimators for AR pa-
rameters Φ̂ can be written as:

Φ̂ = Λ̂−1λ̂ (14)

Since the residuals of the model are thought to be a sample
of i.i.d. SαS random variables, having estimated the parameters
of the AR(p) model, the distribution of the residuals is analyzed
using the Kolmogorov-Smirnov (KS) test.

SIMULATION RESULTS

The bifurcation parameters of (1) are fixed as a = 9, b = 14.28, and
the parameters of the piecewise-linear function (2) are chosen as
m0 = −1/7, m1 = 2/7. Using the Euler-Maruyama method given
in (Janicki and Weron 1993; Platen 1999) with the step size τ = 0.01,
the system of (1) is solved numerically as

X(ti) = X(ti−1) + F(X(ti−1))τ + ∆Lτ
α,i (15)

where τ = ti − ti−1. An increment of the α-stable Lévy process is
an α-stable random variable generated in (Janicki and Weron 1993)
and is defined by

Lτ
α,i = Lα([ti−1, ti]) ∼ Sα(β, σ, µ). (16)

In the first case, Chua’s circuit is regarded in the presence of
α-stable noise with α = 1.6, β = 0, σ = 4.217 × 10−5 and µ = 0
and a time series consisting of 105 data is obtained for each state
variable.

The parameters ϕj,i of the AR(3) model in (5) are estimated
using the sample autocovariation estimator based on the p-th mo-
ment proposed in (Gallagher 2001). Afterward, it is assumed that
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Figure 1 Visual depictions of the calculated parameters of AR(3) model (5) for the system (1) in the presence of α-stable noise with
α = 1.6, β = 0, σ = 4.217 × 10−5, µ = 0 and N = 105. Simulations were carried out 100 times using the Monte Carlo method.
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(a) Visual depictions of the calculated parameters of α-stable distribu-
tion residuals ξ1(t).
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(b) Visual depictions of the calculated parameters of α-stable distri-
bution residuals ξ2(t).
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(c) Visual depictions of the calculated parameters of α-stable distribu-
tion residuals ξ3(t).

Figure 2 Each box visually represents the estimated parameter
value of the α-stable AR(3) model in (5). Simulations were per-
formed 100 times using the Monte Carlo method.

the noise series ξ1, ξ2 and ξ3 for each state are the representatives
of independent α-stable distributed random variables. These resid-
uals are analyzed using the KS test to confirm that they are drawn
from the α-stable distribution. By utilizing the KS test, it is ob-
tained that the hypothesis of α-stable distribution for univariate
samples and ξ1(t), ξ2(t), and ξ3(t) cannot be rejected at the sig-
nificance level of 0.05. Then, the α-stable distribution is fitted to
the residual time series of each state, and the parameters of the
corresponding α-stable distribution for ξ1, ξ2 and ξ3 are estimated
using the regression type method. This procedure is performed
100 times using the Monte Carlo simulations, and the boxplots of
the estimated parameters are created.

Visual depictions of the calculated parameters of AR(3) model
and residuals distributions are presented in Figure 1 and Figure 2,
respectively. Each box visually represents the estimated param-
eter value of the α-stable AR model. The red line indicates the
sample median on each box, and the bottom and top edges of the
box denoted by blue lines indicate the first and third quartiles, re-
spectively. The black lines represent the most extreme data points,
and an outlier is plotted using the red ’+’ marker symbol. For the
presence of α-stable noise with the parameters α = 1.6, β = 0,
σ = 4.217 × 10−5 and µ = 0, the medians of parameters of the
α-stable AR model (5) which corresponds to the red line on each
box shown in Figure 1 are obtained as:

ϕ1,1 = 1.7599, ϕ1,2 = −0.5207, ϕ1,3 = −0.2393,

ϕ2,1 = 1.2615, ϕ2,2 = 0.4779, ϕ2,3 = −0.7408, (17)

ϕ3,1 = 2.1048, ϕ3,2 = −1.1734, ϕ3,3 = 0.0688

The medians of α-stable distribution parameters (α̂, β̂, σ̂, µ̂) for
residual series ξ1, ξ2 and ξ3 are estimated (1.8882,−0.004, 0.3666×
10−3, 0.105 × 10−6), (1.3865, 0.0019, 0.4 × 10−4, 0.0898 × 10−6) and
(1.9983,−0.0074, 0.7492 × 10−3,−0.1028 × 10−5), respectively, as
shown in Figure 2.

In the second case, Chua’s circuit is considered in the presence
of α-stable noise with different impulsive behaviors. The stability
index α ranges from 1.1 to 1.9, and the estimation method is applied
for each α value. The medians of the estimated parameters of the
AR(3) model are obtained as shown in Table 1. After the analysis
of residuals, the medians of the parameters of α-stable distribution
for the residual series ξ1(t), ξ2(t) and ξ3(t) are obtained as given
in Table 2, 3, and 4, respectively.

As seen in Table 2, the estimated stability index α̂ for the series
ξ1 is in the range of 1.898 to 1.932, and the estimated value of
the scale parameter σ̂ decreases as the Chua’s circuit is driven by
noise with heavier tails. It is also seen in Table 3 that the estimated
stability index α̂ for the residual series ξ2 is around 1.38, which
implies the residual series ξ2 is impulsive. On the other hand,
the estimated stability index α̂ for the residual series ξ3 is around
1.998, as seen in Table 4, which implies that the corresponding
distribution is the Gaussian. The phase portrait of the system
(5) with the parameters in (17) is obtained as shown in Figure 3.
Figure 3 shows that the attractors reconstructed from the time
series (5) characterize the double scroll observed in Chua’s circuit.

Moreover, the largest Lyapunov exponents of both systems (1)
and (5) are determined numerically. Largest Lyapunov exponents
from the time series are estimated using the algorithm presented
in (Wolf et al. 1985). Figure 4 presents the time evolution of the
largest Lyapunov exponents. The blue line shows the value of the
Lyapunov exponent obtained from the system of (1) (blue line)
and the red line shows the Lyapunov exponents obtained from the
simulated data of the proposed system of (5).
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■ Table 1 The medians of the estimated parameters of AR(3) in (5).

α ϕ1,1 ϕ1,2 ϕ1,3 ϕ2,1 ϕ2,2 ϕ2,3 ϕ3,1 ϕ3,2 ϕ3,3

1.1 2.9705 -2.9362 0.9657 1.2614 0.4781 -0.7409 2.0907 -1.1461 0.0554

1.2 2.8887 -2.7765 0.8877 1.2656 0.4696 -0.7366 2.0754 -1.1158 0.0402

1.3 2.6506 -2.3026 0.6520 1.2603 0.4803 -0.7420 2.0944 -1.1528 0.0583

1.4 2.2825 -1.5650 0.2824 1.2647 0.4714 -0.7375 2.0925 -1.1492 0.0566

1.5 1.8815 -0.7660 -0.1155 1.2627 0.4755 -0.7395 2.0948 -1.1529 0.0580

1.6 1.7599 -0.5207 -0.2393 1.2615 0.4779 -0.7408 2.1048 -1.1734 0.0688

1.7 1.5509 -0.1055 -0.4454 1.2594 0.4821 -0.7408 2.1190 -1.2024 0.0829

1.8 1.4834 0.0029 -0.4863 1.2631 0.4747 -0.7391 2.1361 -1.2375 0.1013

1.9 1.6056 -0.2196 -0.3861 1.2621 0.4767 -0.7401 2.1397 -1.2451 0.1053

■ Table 2 The medians of the estimated parameters of α-stable distribution for the residual series ξ1(t) in (5).

α α̂ β̂ σ̂ (×10−3) µ̂ (×10−6)

1.1 1.8987 -0.0019 0.0858 -0.1476

1.2 1.8985 -0.0123 0.1203 -0.1750

1.3 1.8839 -0.0049 0.1678 -02307

1.4 1.9004 0.0076 0.2892 -0.2303

1.5 1.8924 0.0054 0.3360 0.3027

1.6 1.8882 -0.0040 0.3666 0.1050

1.7 1.8967 0.0009 0.4142 0.5840

1.8 1.9037 -0.0086 0.4641 0.3841

1.9 1.9320 0.0018 0.5109 0.1495
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■ Table 3 The medians of the parameters of α-stable distribution for the residual series ξ2(t) in (5).

α α̂ β̂ σ̂ (×10−4) µ̂ (×10−6)

1.1 1.3850 -0.0023 0.3954 -0.0955

1.2 1.3834 0.036 0.4048 0.3872

1.3 1.3836 -0.0005 0.4015 0.0148

1.4 1.3863 -0.0002 0.3985 0.2201

1.5 1.3854 -0.0012 0.4042 0.0455

1.6 1.3865 0.0019 0.4000 0.0898

1.7 1.3898 -0.0044 0.3989 -0.2566

1.8 1.3879 0.0016 0.3963 0.0507

1.9 1.3996 -0.0034 0.4137 -0.1121

■ Table 4 The medians of the parameters of α-stable distribution for the residual series ξ3(t) in (5).

α α̂ β̂ σ̂ (×10−3) µ̂ (×10−5)

1.1 1.9976 -0.0091 0.7518 0.0349

1.2 1.9984 0.0093 0.7561 -0.0897

1.3 1.9981 -0.0028 0.7493 -0.0293

1.4 1.9987 0.0112 0.7514 -0.0735

1.5 1.9986 0.0342 0.7560 -0.1394

1.6 1.9983 -0.0074 0.7492 -0.1028

1.7 1.9994 -0.0169 0.7436 -0.0556

1.8 1.9982 -0.0534 0.7329 -0.0061

1.9 1.9984 -0.0184 0.7257 -0.0408
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Figure 3 3D phase portrait of system (5) in the presence of α-
stable noise with α = 1.6, β = 0, σ = 4.217 × 10−5 and µ = 0. The
corresponding estimated parameters of (5) are given in Table 1-4.

CONCLUSION

In this study, the states of Chua’s circuit in the presence of α-stable
noise have been modeled as α-stable autoregressive processes. The
AR model parameters have been estimated by using the modi-
fied Yule-Walker equations and calculating the autocovariation
function based on the p-th moment. By estimating the model pa-
rameters, the α-stable distribution is fitted to the residual time
series of each state, and the parameters of the α-stable distribution
have been obtained using the regression type method.

The structure of the double scroll has been observed using the
estimated parameters and it has been shown that the model fits
very well on simulated data. Chua’s circuit has also been consid-
ered in the presence of α-stable noise with various stability index
α, and the corresponding α-stable AR models have been obtained.
Such models will provide new insights into studying nonlinear
dynamics in chaotic systems involving stochastic noises. How-
ever, further researchs could be considered by using more complex
models such as the trivariate vector autoregressive fractional inte-
grated moving average (VARFIMA) model (Contreras-Reyes 2022)
instead of simple univariate AR processes. VARFIMA models
are considered adaptive estimation methods and also defined for
α-stable distributions (Pai and Ravishanker 2010).
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Chaos in a Pendulum Adaptive Frequency Oscillator
Circuit Experiment
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ABSTRACT Adaptive oscillators can learn and encode information in dynamic, plastic states. The pendulum
has recently been proposed as the base oscillator of an adaptive system. In a mechanical setup, the
horizontally forced pendulum adaptive frequency oscillator seeks a resonance condition by modifying the
length of the pendulum’s rod. This system stores the external forcing frequency when the external amplitude is
small, while it can store the resonance frequency, which is affected by the nonlinearity of the pendulum, when
the external amplitude is large. Furthermore, for some frequency ranges, the pendulum adaptive frequency
oscillator can exhibit chaotic motion when the amplitudes are large. This adaptive oscillator could be used as
a smart vibratory energy harvester device, but this chaotic region could degrade its performance by using
supplementary energy to modify the rod length. The pendulum adaptive frequency oscillator’s equations
of motions are discussed, and a field-programmable analog array is used as an experimental realization of
this system as an electronic circuit. Bifurcation diagrams are shown for both the numerical simulations and
experiments, while period-3 motion is shown for the numerical simulations. As little work has been done on
the stability of adaptive oscillators, the authors believe that this work is the first demonstration of chaos in an
adaptive oscillator.
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INTRODUCTION

Adaptive oscillators were inspired by the synchronization of net-
works of neurons (Kempter et al. 1999). Dynamic Hebbian learning
has been employed to encode the frequency in a plastic state of
adaptive oscillators (Righetti et al. 2006). These plastic states are
dynamic states, and the DC offset values of these plastic states
correspond to information learned from an external signal. For
instance, an adaptive frequency oscillator is composed of a base
oscillator and a plastic frequency state, which can learn and store
an external forcing frequency. Adaptive oscillators have been pro-
posed as analog frequency analyzers (Buchli et al. 2008; Corron
2022) and controllers for robotic gait (Righetti et al. 2009). There
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are relatively few experimental results for adaptive oscillators, but
a 4-state adaptive Hopf oscillator was implemented as an analog
circuit (Li et al. 2021a) and a 3-state adaptive oscillator was im-
plemented as a digital circuit (Maleki et al. 2015). The effects of
noise on adaptive oscillators was studied with the full Fokker-
Planck equation with comparisons to a physical experiment (Li
et al. 2021b) and with a simplified Fokker-Planck equation (Buchli
et al. 2008).

The learning tasks for adaptive oscillators are embedded in the
plastic dynamic states of the system. However, oscillators are capa-
ble of other types of computation as well, even without adaptive
states. For instance, the classical, non-adaptive Hopf oscillator
can be realized as a powerful, reconfigurable reservoir computer
(Shougat et al. 2021b, 2022). In this reservoir computing architec-
ture, the physics of the oscillator are utilized as a computational
resource through machine learning. Interestingly, reservoir com-
puters can exhibit chaotic behavior as well, such as topological
mixing that was observed in the Duffing array reservoir computer
(Shougat et al. 2021a).
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Adaptive frequency oscillators are similar to Kuramoto phase
oscillators (Acebrón et al. 2005; Xu and Jin 2012; Makarov et al. 2016;
Dénes et al. 2021, 2019) and phase-locked loops (PLLs) (Métivier
et al. 2020; Dürig et al. 1997; Kuznetsov et al. 2017) since they are
capable of learning an external forcing frequency. However, in
the literature, adaptive oscillators are usually constructed from a
nonlinear oscillator by including the addition of dynamic, plastic
states. Although chaos has been exhibited by Kuramoto arrays
(Bick et al. 2018) and PLLs (Olson et al. 2011; Banerjee et al. 2014;
Paul and Banerjee 2019; Chakraborty et al. 2016; Zhao et al. 2009;
Harb and Harb 2004; Piqueira 2017) chaos has not been explored
in adaptive oscillators to the authors’ knowledge.

The forced single pendulum (d’Humieres et al. 1982; Xu et al.
2005; Bishop et al. 2005) and the unforced double pendulum were
two of the prototypical systems that can exhibit chaos (Shinbrot
et al. 1992; Levien and Tan 1993; Stachowiak and Okada 2006).
Chaos synchronization between a controlled pendulum and Duff-
ing oscillator was studied analytically (Luo and Min 2011). The en-
ergy localization phenomenon and stability for an array of coupled
pendulums was investigated under different forcing conditions
(Jallouli et al. 2017). Similar to the present work, the complete
bifurcation characteristics of a rotating pendulum under nonlin-
ear perturbation was found (Han and Cao 2016). A numerical
investigation of an inverted pendulum on varying the base forcing
amplitude displays the transition to chaos via an infinite sequence
of period-doubling bifurcations (Kim and Hu 1998).

The extensible pendulum, where the pendulum’s rod is mod-
eled as an extensible spring, can also exhibit chaos (Nunez-Yepez
et al. 1990). The bifurcation diagram was found for a mechanical,
forced pendulum experiment (de Paula et al. 2006) and a forced
torsional pendulum (Miao et al. 2014). An array of coupled non-
linear pendulum oscillators was studied to determine the effect of
damping, the size of the ensemble, and the local coupling strength
on its chaotic response (Munyaev et al. 2021). Since the pendulum
is a relatively simple system that exhibits chaos, it has been used
to test chaotic controllers (Pereira-Pinto et al. 2004; Wang and Jing
2004).

Of relevance to the current paper, the authors proposed a
mechanical pendulum adaptive frequency oscillator, whose rod
length is a dynamic state (Li et al. 2022). Instead of the adaptive fre-
quency state learning the external forcing frequency, it was found
that this type of adaptive oscillator instead learns a resonance con-
dition, which maximizes the displacement of the amplitude of the
pendulum. This resonance-tracking quality could make it an excel-
lent candidate as a vibratory energy harvester. Importantly, it was
observed that the pendulum adaptive frequency oscillator can ex-
hibit chaotic motion, but the mechanical system could not explore
the range of values causing this behavior. In this current paper,
the pendulum adaptive frequency oscillator was implemented on
a field-programmable analog array circuit, which is capable of
operating at a range of parameters that exhibit chaos.

Circuit implementations of chaotic systems are widely used,
such as realizations of a three-state chaotic flow (Pham et al. 2019), a
jerk oscillator (Harrison et al. 2022; Rhea et al. 2020; Nana et al. 2009),
a nonlinear feedback control input-introduced memristor chaotic
oscillator (Lai et al. 2020), a novel autonomous four-dimensional
hyperjerk system with hyperbolic sine nonlinearity (Leutcho et al.
2018), a fractional-order-based chaos system (Ouannas et al. 2017),
a three-state chaotic system with applications to robotic naviga-
tion (Nwachioma and Pérez-Cruz 2021), and a snap system with
adjustable symmetry and nonlinearity (Leutcho and Kengne 2018).

Although most papers report either simulated or experimental
bifurcation diagrams, some work has compared simulated bifur-
cation diagrams with experimental bifurcation diagrams directly,
such as a circuit implementation of the Rössler system (Ricco et al.
2016), an analog system realization of a time-delay chaotic oscilla-
tor (Biswas and Banerjee 2016), a Chua’s circuit (Viana Jr et al. 2010),
and a physical circuit realization of a four-dimensional chaotic
system (Jahanshahi et al. 2021). In the current paper, both the
bifurcation diagrams from numerical simulations and from the
experiments are compared. For the experimental work, the pen-
dulum adaptive frequency oscillator equations are implemented
as an electronic circuit by utilizing a field-programmable analog
array. The authors believe that this is the first time that chaos has
been demonstrated in an adaptive oscillator and that this is the
first circuit implementation of this pendulum adaptive frequency
oscillator.

EQUATION OF MOTION OF HORIZONTALLY FORCED PEN-
DULUM ADAPTIVE FREQUENCY OSCILLATOR

■ Table 1 List of parameters and states.

Symbol Description

a Forcing amplitude

kω Coupling in ω state

c Damping

l Pendulum length

m Mass

g Acceleration due to gravity

Ω External sinusoidal forcing frequency

θ Angular position of pendulum

θ̇ Angular velocity of pendulum

x(t) Angular position in state space

y(t) Angular velocity in state space

ω(t) Adaptive frequency

In Fig. 1, the horizontally forced pendulum is depicted. In this
pendulum, it is assumed that the rod is inelastic, and the horizontal
forcing kinematically moves the pivot point. For reference, the
constants and states are listed in Table 1. By using Lagrange’s equa-
tions and assuming a Rayleigh dissipation of the form 1

2 cml2 θ̇2,
the governing equation can be written as follows:

ml2 θ̈ + cml2 θ̇ + mgl sin (θ) = l cos (θ) f (t) (1)

After dividing both sides of the equation by ml2, eq. (1) be-
comes:

θ̈ + cθ̇ + ω2
n sin (θ) =

1
ml

cos (θ) f (t) (2)
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Figure 1 Pendulum with horizontal forcing, which kinematically
moves the pivot point.

Converting eq. (2) into state space with x = θ and y = θ̇, the
following set of ordinary differential equations may be written:

ẋ(t) = y(t)

ẏ(t) = −cy(t)− ω2
n sin

(
x(t)

)
+ 1

ml cos
(

x(t)
)

f (t)
(3)

Setting f (t) = â sin
(
Ωt

)
with â = aml, eq. (3) can be written

as:

ẋ(t) = y(t)

ẏ(t) = −cy(t)− ω2
n sin

(
x(t)

)
+ a cos

(
x(t)

)
sin

(
Ωt

) (4)

Here, a is the amplitude of the sinusoidal forcing. Using these
pendulum equations as a base oscillator, a pendulum adaptive fre-
quency oscillator can be constructed by adding a plastic, dynamic
state that can learn the external forcing frequency:

ẋ(t) = y(t)

ẏ(t) = −cy(t)− ω2(t) sin
(

x(t)
)
+ a cos

(
x(t)

)
sin

(
Ωt

)
ω̇(t) =

−kω x(t)a sin
(

Ωt
)

√
x2(t)+y2(t)

(5)

The ω̇ equation is responsible for learning and storing the external
frequency in the ω state. The right-hand side of this equation is a
mixture of two time-varying signals, x(t) and a sin (Ωt). When the
system is not undergoing chaotic motion, x(t) becomes entrained
to the external sinusoid, which causes the ω state to converge to
Ω. The right-hand side of this equation is also normalized by the
amplitude of the cyclic motion of the pendulum,

√
x2(t) + y2(t).

kω is the coupling strength in this third state.
It should also be noted that the damped pendulum (eq. (4))

does not have an analytical solution (Gitterman 2010). By exten-
sion, it is very unlikely that the damped adaptive pendulum (eq.
(5)) would have an analytical solution either. For this reason, nu-
merical simulations and experiments are used to exhibit chaos in
this adaptive oscillator.

When eq. (5) is in a regime in which it correctly learns the exter-
nal forcing frequency, a local stability analysis can be constructed.
For this analysis, the external sinusoid can be replaced with an
additional oscillator to convert eq. (5) into an autonomous sys-
tem (Perkins 2019). When this additional oscillator undergoes a

supercritical Andronov-Hopf bifurcation, it resonates with a fre-
quency of Ω Perkins and Fitzgerald (2018). The set of autonomous
equations can be written as:

ẋ(t) = y(t)

ẏ(t) = −cy(t)− ω2(t) sin
(

x(t)
)
+ a cos

(
x(t)

)
u

ω̇(t) = −kω x(t)au√
x2(t)+y2(t)

u̇ = u + Ωv − u(u2 − v2)

v̇ = v − Ωu − v(u2 − v2)

(6)

Here, the last two equations represent the additional oscillator. The
Jacobian, J, for eq. (6) may be written as:

J =



0 j1 0 0 0

j2 j3 j4 j5 0

j6 j7 0 j8 0

0 0 0 j9 j10

0 0 0 j11 j12


(7)

The elements for this Jacobian are: j1 = 1, j2 = −ω2 cos (x)−
au sin (x), j3 = −c, j4 = −2ω sin (x), j5 = a cos (x), j6 =

akω ux2

(x2+y2)
3
2
− akω u

(x2+y2)
1
2

, j7 =
akωuxy

(x2+y2)
3
2

, j8 = −akω x
(x2+y2)

3
2

, j9 = 1 − 3u2 −

v2, j10 = −2uv + Ω, j11 = −2uv − Ω, and j12 = 1 − u2 − 3v2. For
the fixed point (x, y, u, v) = (2π, 0, 0, 0), the eigenvalues for the

Jacobian are 1 ± iΩ, −c±
√

c2−4ω2

2 , and 0. The first conjugate pair,
1 ± iΩ, corresponds to the additional oscillator, which oscillates at
a frequency of Ω.

The second conjugate pair is −c±
√

c2−4ω2

2 . Noting that eq. (4) is
a pendulum with an effective mass equal to 1, we may rewrite this
conjugate pair of eigenvalues as −ζωn ± iωn

√
1 − ζ2. Here, ζ is

the damping factor and ωn is the linear natural frequency of the
pendulum. Thus, the second conjugate pair of eigenvalues corre-
sponds to the damped pendulum, which oscillates at the damped
natural frequency, ωd = ωn

√
1 − ζ2. The last eigenvalue, 0, cor-

responds to the ω state. This state is neither stable nor unstable,
which allows it to deform to the external forcing frequency.

SIMULATION RESULTS

For most values of the forcing frequency, Ω, the pendulum adap-
tive frequency oscillator behaves as expected: the frequency state
converges to the forcing frequency. This behavior is depicted in
Fig. 2. For this figure and for the subsequent bifurcation diagrams,
a quasi-static frequency sweep was performed, for both the nu-
merical simulations and the experiments. In Figs. 2 and 3, ode45
in MATLAB was used to simulate eq. (5) for 400 periods of the
forcing function, sin

(
Ωt

)
. Only the last 100 cycles were used to

create Figs. 2 and 3, to avoid any transient behavior. Poincaré sec-
tions were taken of the pendulum’s dynamics, using the external
sinusoid as the clock with frequency Ω.
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Figure 2 Poincaré sections of the states of the horizontally forced
pendulum adaptive frequency oscillator for Ω ranging from 1.6
rad/s to 2.2 rad/s. Here, a = 0.1, c = 0.35, and kω = 0.707. The
green dashed line represents the line ω = Ω. For this combina-
tion of parameters, the pendulum adaptive frequency oscillator
correctly learns the external forcing frequency. This figure can be
compared with the chaotic bifurcation diagram that is shown in
Fig. 3.

In Fig. 2, the pendulum adaptive frequency oscillator’s Poincaré
sections show that the ω state has properly learned the external
forcing frequency, Ω. Since the x and y states are periodic with the
same frequency as the external sinusoid, their Poincaré sections
appear stationary with respect to this clock.

Repeating this same procedure that was used for Fig. 2, the
bifurcation diagram is constructed, which is depicted in Fig. 3. For
this set of parameters, the pendulum adaptive frequency oscillator
does not properly learn the external forcing frequency. Instead, the
system has a chaotic response.

Other combinations of parameters can also result in a chaotic
response. Two other bifurcation diagrams are shown in Figs. 4
and 5. In these bifurcation diagrams, the kω (Fig. 4) and c (Fig. 5)
parameters were varied to highlight that the pendulum adaptive
frequency oscillator may also experience chaotic motion.

In general, these bifurcation diagrams provide some insights
into a working range for the parameters of the pendulum adaptive
frequency oscillator. The forcing amplitude, a, and the coupling
term, kω , should be relatively small. A higher value of the damp-
ing, c, hinders the chaotic motion for the parameters considered
here. Further, this adaptive oscillator works better when the forc-
ing frequency, Ω, is relatively large. When the pendulum adaptive
frequency oscillator is tasked with learning a low frequency re-
sponse with a large amplitude, it can result in a chaotic response.

For some parameter combinations, period-3 motion may be
observed, which shows that this system is indeed chaotic (Li and
Yorke 2004). In Fig. 6, period-3 motion may be seen in the time
history. The three dimensional trajectory of the system is shown
for comparison.

Figure 3 Bifurcation diagram using the Poincaré sections of
the states of the horizontally forced pendulum adaptive fre-
quency oscillator for Ω ranging from 1.6 rad/s to 2.2 rad/s. Here,
a = 1.8, c = 0.35, and kω = 0.707. The green dashed line rep-
resents the line ω = Ω. Instead of learning the external forcing
frequency, the bifurcation diagram exhibits chaotic behavior.
This figure can be compared with the non-chaotic bifurcation
diagram that is shown in Fig. 2.

Figure 4 Bifurcation diagram using the Poincaré sections of the
states of the horizontally forced pendulum adaptive frequency
oscillator for kω ranging from 1.5 to 1.8. Here, a = 1.8, c = 0.35,
and Ω = 2.2 rad/s. Some of these values of kω can result in
chaotic motion.

For other parameters, strange attractors may be observed. One
of these strange attractors is depicted in Fig. 7.
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Figure 5 Bifurcation diagram using the Poincaré sections of the
states of the horizontally forced pendulum adaptive frequency
oscillator for c ranging from 0.2 to 0.5. Here, a = 1.8, kω =
0.707, and Ω = 2.2 rad/s. Some of these values of c can result in
chaotic motion.

Figure 6 For Ω = 2.12 rad/s, the response of the ω state has
period-3 motion. Here, a = 1.8, c = 0.35, and kω = 0.707. In
the top plot, the Poincaré sections are shown for a portion of the
time history. The vertical green dashed lines depict the clock’s
sampling rate for the stroboscope, and the * is the value of the
ω state at these times. In the bottom plot, the three dimensional
trajectory of the system is shown.

Figure 7 For Ω = 1.67, a strange attractor is shown. For this
simulation, a = 1.8, c = 0.35, and kω = 0.707.

FIELD-PROGRAMMABLE ANALOG ARRAY CIRCUIT

The pendulum adaptive frequency oscillator was implemented as a
field-programmable analog array circuit. Field-programmable ana-
log arrays (FPAAs) are dynamically programmable analog signal
processing devices that use switched-capacitor technology (Ku-
tuk and Kang 1996). FPAAs contains configurable analog blocks
(CABs), which create analog operations. Each math operation is
further achieved by configurable analog modules (CAMs). By
using FPAAs, the design of nonlinear systems are significantly
reduced, as the technology is highly reconfigurable (Kilic and
Dalkiran 2009).

Several FPAA implementations of nonlinear dynamical system
have been widely studied, which include the implementation of
the Lorenz system (Tlelo-Cuautle et al. 2020), a cellular network-
based Lorenz-like system (Günay and Altun 2018), the Sprott N
chaotic oscillator (Li et al. 2018; Çiçek 2019), the Nahrain chaotic
map (Abdullah and Abdullah 2019), a fractional-order chaotic sys-
tem (Silva-Juárez et al. 2020), a chaotic oscillator (Dalkiran and
Sprott 2016), and the Hindmarsh–Rose Neuron model (Dahasert
et al. 2012). As compared with printed circuit boards, FPAAs can
accomplish faster prototyping, without using large amounts of
operational amplifiers and analog multipliers. The nonlinear func-
tions, such as the sinusoids and square root operation in eq. (5),
can be approximated as a user-defined voltage transfer function
with CAMs. Utilizing the modular design of FPAAs, this pendu-
lum frequency adaptive oscillator is implemented as a physical
experiment.

However, the FPAA’s input and output must be in a range
between ±3 volts. This necessitates that the response amplitude
must be rescaled. Based on the numerical time response results
shown in Fig. 3, only the y state significantly exceeds the maxi-
mum voltage range of the FPAA. It should also be noted that the
FPAA experiment runs at 1000 times faster than the numerical
simulations, due to the RC time constant of the FPAA. Thus, new
states are introduced such that x = X, y = 2Y, and ω = 1000W.
Using these relationships, eq. (5) is modified for use on the FPAA
as follows:
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Ẋ(t) = 2Y(t)

Ẏ(t) = −cY(t)− 1
2

(
W2(t) sin X(t)− a cos

(
X(t)

)
sin (Ωt)

)
Ẇ(t) = −kω X(t)a sin (Ωt)

1000
√

X2(t)+4Y2(t)
(8)

Figure 8 FPAA circuit schematic of pendulum adaptive fre-
quency oscillator. An external forcing signal was sent to the
FPAA via differential input IO3 of FPAA3.

An Anadigm Quad Apex v2.0 FPAA development board with
4 AN231E04 chips was used. The AnadigmDesigner2 simulator
developed by Anadigm was used for FPAA hardware routing and
design. All the external stimuli for the experimental results were
generated in MATLAB, and they were then input to the FPAA
through the differential IO cell using a National Instruments (NI)
cDAQ-9174. Similarly, all the outputs of the FPAA are collected by
the NI unit.

EXPERIMENTAL RESULTS

In this section, results from the FPAA pendulum adaptive fre-
quency oscillator prototype are shown. For Figs. 9 and 10, the
same procedure was used that was described for Figs. 2 and 3. A
frequency sweep was performed on the FPAA analog circuit, and
only the last 100 cycles were used for the Poincaré section plots in
Figs. 9 and 10 to avoid any transient behavior.

In Fig. 9, the FPAA’s Poincaré sections show that the ω state
(where 1000 × W = ω) closely learned the external forcing fre-
quency, Ω. However, nonlinear features of the FPAA cause some
errors that were not seen in the numerical simulations. Since the x
and y states are periodic with the same frequency as the external
sinusoid, their Poincaré sections appear stationary with respect to
this clock.

Repeating this same procedure that was used for Fig. 9, the
bifurcation diagram is also constructed for the FPAA, which is
depicted in Fig. 10. For this set of parameters, the FPAA has a
chaotic response.

In the experimental FPAA prototype, strange attractors are also
present. One of these strange attractors is depicted in Fig. 11.

Figure 9 Poincaré sections of the states of the FPAA circuit for
Ω ranging from 1600 rad/s to 2200 rad/s. Note that the FPAA
runs at 1000 times faster than the simulations due to the RC time
constant, so the W state should be multiplied by 1000 to calculate
the learned frequency. Here, a = 0.1, c = 0.35, and kω = 0.707.
The green dashed line represents the line ω

1000 = Ω. For this com-
bination of parameters, the FPAA correctly learns the external
forcing frequency.

Figure 10 Bifurcation diagram using the Poincaré sections of
the states of the FPAA for Ω ranging from 1600 rad/s to 2200
rad/s. Note that the FPAA runs at 1000 times faster than the
simulations due to the RC time constant, so the W state should
be multiplied by 1000 to calculate the learned frequency. Here,
a = 1.8, c = 0.35, and kω = 0.707. The green dashed line repre-
sents the line ω

1000 = Ω. Instead of learning the external forcing
frequency, the bifurcation diagram exhibits chaotic behavior.
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Figure 11 For Ω = 1640, a strange attractor is shown. For this
experiment, a = 1.8, c = 0.35, and kω = 0.707.

Since the FPAA’s frequency is scaled by 1000 from the simula-
tions, the frequency for the strange attractor in Fig. 11 is compara-
ble to the attractor shown in Fig. 7. Period-5 motion is depicted in
Fig. 12 for the FPAA’s response.

Figure 12 For Ω = 1880 rad/s, the response of the W state has
period-5 motion. Here, a = 1.8, c = 0.35, and kω = 0.707. In
the top plot, the Poincaré sections are shown for a portion of the
time history. The vertical green dashed lines depict the clock’s
sampling rate for the stroboscope, and the * is the value of the
W state at these times. In the bottom plot, the three dimensional
trajectory of the system is shown.

CONCLUSIONS

Adaptive oscillators are a potentially useful subset of nonlinear
oscillators. However, they have not been thoroughly explored.
In this paper, the pendulum adaptive frequency oscillator was
studied. To the authors’ knowledge, this is the first circuit proto-
type of a pendulum adaptive frequency oscillator, and this is the
first time that chaos has been observed for an adaptive oscillator.
This pendulum adaptive frequency oscillator was studied through
numerical simulations and a field-programmable analog array ex-
periment. As there is interest in using a mechanical pendulum as
the base oscillator (Li et al. 2022), this FPAA prototype provides
a method of experimentally interrogating the dynamics of this
system without building multiple costly mechanical prototypes.

It was found that for some parameter combinations, the pen-
dulum adaptive frequency oscillator performed as expected in
learning the external forcing frequency. At other parameter com-
binations, the pendulum adaptive frequency oscillator behaved
chaotically. As the pendulum adaptive frequency oscillator has
been proposed as a vibratory energy harvester, it is important to
avoid this chaotic behavior, since the system would use energy to
adapt the rod length of the pendulum.

Bifurcation diagrams were constructed for both the numeri-
cal simulations and the experiment. It should be noted that the
bifurcation diagrams for the simulations and experiments were
very similar, although they are not identical. Since this is a chaotic
system, it is difficult to match the bifurcation diagrams of a model
with an experiment, as chaotic systems have sensitive dependence
on system parameters. In other words, it would be very difficult
to tune the experiment’s parameters to exactly match those used
in the model. Strange attractors for both the simulations and ex-
periment were also reported. Period-3 motion was found, which
implies that the system is indeed chaotic.
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ABSTRACT
Pandemics can have a significant impact on international health systems. Researchers have found that there
is a correlation between weather conditions and respiratory diseases. This paper focuses on the non-linear
analysis of respiratory diseases and their relationship to weather conditions. Chaos events may appear
random, but they may actually have underlying patterns. Edward Lorenz referred to this phenomenon in the
context of weather conditions as the butterfly effect. This inspired us to define a chaotic system that could
capture the properties of respiratory diseases. The chaotic analysis was performed and was related to the
difference in the daily number of cases received from real data. Stability analysis was conducted to determine
the stability of the system and it was found that the new chaotic system was unstable. Lyapunov exponent
analysis was performed and found that the new chaotic system had Lyapunov exponents of (+, 0, -, -). A
dynamic neural architecture for input-output modeling of nonlinear dynamic systems was developed to analyze
the findings from the chaotic system and real data. A NARX network with inputs (maximum temperature,
pressure, and humidity) and one output was used to to overcome any delay effects and analyze derived
variables and real data (patients number). Upon solving the system equations, it was found that the correlation
between the daily predicted number of patients and the solution of the new chaotic equation was 90.16%.
In the future, this equation could be implemented in a real-time warning system for use by national health
services.
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INTRODUCTION

Seasonal climatic conditions and respiratory diseases such as in-
fluenza are believed to be related to each other. In fact, certain
meteorological factors, such as temperature and relative humidity,
and the incidence of some respiratory viruses have been hypothe-
sized to have opposite relationships or those found in temperate
regions. This may be because the majority of virus transmission
takes place indoors, in air-conditioned spaces, which are cooler
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and less humid environments that are more conducive to airborne
virus survival and transmission. In order to better plan hospital
services for admissions, it is still necessary to comprehend the
relationship between respiratory disorders, respiratory virus oc-
currence, and meteorological conditions in various countries. This
is especially important now because viruses have just started to
appear.

While investigating a meteorological problem, Lorenz (1963)
stumbled upon a phenomenon that would become known as the
"Butterfly Effect" (Kuhfittig and Davis 1990). Lorenz, a mathe-
matician and meteorologist, was studying the behavior of weather
systems using a simplified model of atmospheric convection. As
he varied the initial conditions of his model, he noticed that small
changes could lead to dramatically different outcomes in the long-
term behavior of the system. This idea, that seemingly minor
perturbations can have large and potentially unpredictable conse-
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quences, came to be known as the Butterfly Effect and has had a
significant impact on the field of chaos theory (Gleick 1987; Hol-
brook 2003). The concept has been widely applied to a range of
systems, including economics, biology, and even social networks,
and has helped to shed light on the inherent unpredictability of
certain types of complex systems.

In mathematics, chaos theory is a branch of study that investi-
gates the behavior of dynamic systems that are highly sensitive to
initial conditions. Non-linear systems that are chaotic or chaotic
systems are sensitive to their initial conditions. The non-linearity
systems have a specific case known as chaos. This line succinctly
expresses the definition of chaos: chaos is the regularity of irreg-
ularity. Chaotic systems are complicated systems due to their
nonlinear and deterministic nonlinear dynamical systems. Van
der Pol and Van der Mark referred to the anarchy as noise. Dy-
namical systems that exhibit complicated behavior are considered
chaotic systems (Van der Pol and Van Der Mark 1927; Kennedy
1995; Siegelmann and Fishman 1998; Akgül et al. 2022).

Chaotic systems exhibit the following characteristics: unpre-
dictability in the time dimension, accuracy in the initial circum-
stances, an infinite number of distinct periodic oscillations, a broad
power spectrum that resembles noise, and positive Lyapunov (Kia
2011; de la Fraga et al. 2012). Numerous chaotic systems, including
Lorenz, Rikitake, Rossler, Sprott, Chen, Pehlivan and Akgul (Riki-
take 1958; Rössler 1976; Sprott 1994; Chen and Ueta 1999; Akgul
et al. 2016), have been introduced up until this point.

One way to study such systems is through the use of nonlin-
ear differential equations, which are called "chaos equations." The
solutions to these equations often exhibit complex and seemingly
random behavior, giving rise to the term "chaos." However, despite
their apparent randomness, the solutions of chaos equations are ac-
tually deterministic, meaning that they are completely determined
by the initial conditions and the underlying equations. In other
words, given the same initial conditions and equation, the system
will always evolve in the same way. Following the development of
the mathematical representation of chaos, it can be used in a wide
range of fields, including engineering, computing, communica-
tions, biology and medicine, management and finance, consumer
electronics (Ditto and Munakata 1995; Hilborn et al. 2000; Banerjee
et al. 2012; Jun 2022; Yavari et al. 2022).

Respiratory diseases, such as asthma and chronic obstructive
pulmonary disease (COPD), can be affected by weather conditions
(Ayres et al. 2009; D’Amato et al. 2014, 2016; Mirsaeidi et al. 2016;
Duan et al. 2020; Joshi et al. 2020). Cold air can cause the airways to
narrow, leading to difficulty breathing and increased symptoms for
those with respiratory conditions. Conversely, warm and humid
air can also worsen respiratory symptoms, as it can make it more
difficult for mucus to clear from the airways. Pollen and other
allergens, which are more prevalent in certain weather conditions,
can also trigger respiratory symptoms. It is important for indi-
viduals with respiratory conditions to pay attention to weather
forecasts and take necessary precautions, such as carrying medi-
cations and wearing a mask, when conditions may worsen their
symptoms. Cold air can cause the airways to narrow, leading to
difficulty breathing and increased symptoms for those with res-
piratory conditions. Conversely, warm and humid air can also
worsen respiratory symptoms, as it can make it more difficult for
mucus to clear from the airways. Pollen and other allergens, which
are more prevalent in certain weather conditions, can also trigger
respiratory symptoms.

In this paper, we aim to investigate the feasibility of using the
Lorenz equation and numerical methods, such as the Runge-Kutta
method, to predict the number of patients with respiratory diseases
based on weather data. To achieve this goal, a new chaotic equa-
tion will be derive and solved using the Runge-Kutta method. We
will then use the results of our analysis to discuss the potential of
this approach for predicting respiratory disease outbreaks and im-
proving hospital planning. The significance of this research lies in
the fact that it presents a novel chaotic system that can successfully
predict the presence of respiratory diseases in patients, which has
not been achieved in previous studies. This breakthrough holds
the potential to greatly improve the diagnosis and treatment of
respiratory conditions, as it allows for early identification of at-risk
individuals and targeted interventions. As such, the findings of
this study have the potential to significantly impact the field of
healthcare and contribute to the betterment of public health.

The paper is divided into five sections, with the introduction
being the first section. Section 2 will review the existing literature
on the relationship between weather conditions and respiratory
diseases, specifically influenza. Section 3 will cover chaos theory
and the new chaotic equation that has been derived for this re-
search. This section will describe the principles of chaos theory, the
Lorenz equation, and the process of deriving the new chaotic equa-
tion. Section 4 will present the results of the study, including any
analyses or simulations that were conducted using the new chaotic
equation. The final section will provide conclusions based on the
findings of the study and suggest directions for future research.

RELATED WORKS

A range of dynamic system behaviors are sensitive to initial condi-
tions and can be unpredictable to some extent. In the early 20th
century, Poincaré addressed the issue of weather forecasting. After
Lorenz revisited this problem in the late 1960s, a significant portion
of the scientific community began to focus on such phenomena,
leading to the emergence of "Chaos Science" as a new branch of
science. In 1963, Lorenz discovered new types of erratic oscil-
lations while modeling fluid heat dissipation in the atmosphere
to forecast weather patterns (Lorenz 1963). He gathered his pre-
vious solutions while taking a coffee break and returned to his
computer to resolve the 12 ordinary differential equations he was
using. When he returned, he found that the new solutions had
reached a significantly different position than the previous ones.
In other words, he discovered that the steady state exhibits new ir-
regular oscillations with a significantly different appearance when
the numerical integration is repeated with minimal variation in
the initial conditions.

Lorenz, a meteorologist, was interested in mathematics and con-
tributed to the development of the new field of chaos, a significant
topic in the 20th century. He published his findings in a meteo-
rology journal (Lorenz 1963). It took a decade for physicists and
mathematicians to fully understand the significance of Lorenz’s
discovery. The Lorenz system has received significant attention
and is considered the first example of how distributed systems can
behave chaotically.

Following this, Lorenz developed equations for weather fore-
casting. In the field of chaos theory, numerous studies have been
published in the last two decades about various systems, with
Lorenz’s system serving as a foundation for this research. This sec-
tion therefore focuses on understanding the relationship between
weather conditions and respiratory disease in order to develop a
new chaotic system. In the next section, we will delve into the
details of weather and respiratory diseases.
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Weather Conditions and Respiratory Diseases

There are numerous published studies that describe the effect of
weather conditions on respiratory infections, but no mathematical
system has been developed to understand this association. These
studies generally suggest that the relationship between infections
and seasonal climate is causal. This was true to some extent when
people lived and worked outdoors, with minimal protection from
even the most extreme climatic conditions. However, the indus-
trial revolution changed this. Many agricultural workers moved
to factories and offices, and the widespread adoption of central
heating and increasingly airtight, insulated buildings led to a fur-
ther decoupling of daily and seasonal outdoor climate fluctuations.
This separation is particularly noticeable in winter, when inter-
nal heating leads to a large deviation in the internal and external
temperature and relative humidity (RH), but does not affect the
absolute humidity (AH) (Quinn and Shaman 2017).

Nishimura et al. (2021) found that the average ambient temper-
ature during daily working hours may have a stronger correlation
with the number of patients transported by ambulance from out-
door sites than the daily average temperature or the daily highest
temperature (Nishimura et al. 2021). The study results showed
that patients transported from indoor environments are affected
by previous environmental conditions for about 50 days, while
those transported from outdoor sites are affected by a relatively
shorter period of time (20 days), which may be due to heat adapta-
tion. These findings provide a better understanding of the various
factors that can lead to more accurate predictions of the number of
heat-related patients based on weather forecasts.

A study by Lee et al. (2022) involving 525,579 individuals found
that various weather and air quality factors affected the respira-
tory illnesses of people who visited emergency rooms (Lee et al.
2022). The majority of the patients with respiratory diseases had
acute upper respiratory infections (J00-J06), influenza (J09-J11),
and pneumonia (J12-J18), with PM10 temperature and steam pres-
sure having the greatest effects. Pneumonia [J12–J18], acute upper
respiratory infections [J00–J06], and chronic lower respiratory dis-
orders [J40–J47] were the top three major causes of admission to
the emergency room .

Bhimala et al. (2022) found that in different parts of India, spe-
cific humidity has a strong positive association, while maximum
temperature has a negative correlation and minimum temperature
has a positive correlation (Bhimala et al. 2022).

METHODOLOGY

This retrospective study aims to establish a chaotic equation that
links weather and clinical data. To do so, the study first collected
weather and patient data, and then applied Lorenz system to in-
terpret the new variable. The stability of the new system was then
evaluated using lyapunov analysis. To assess the correlation be-
tween the actual values and the results predicted by the new chaos
equations, a NARX network was implemented to account for any
delay effects and to predict the daily number of patients using
real-time data.

Weather Data

Daily meteorological data, including maximum and minimum
temperatures, relative humidity, pressure, and sunshine duration,
were collected from the Meteorological Services Division. These
parameters are illustrated in Figure 1.

Figure 1 Weather data from Pamukova Region

Patient Data
The data for this study was collected from January 1, 2021 to
December 31, 2021 with the ethical approval of Sakarya University
(E-71522473-050.01.04-15185-157). The study group consisted of
cases that occurred in the Pamukova District of Sakarya Province.
A team of experienced medical professionals gathered the daily
total of patients diagnosed with upper respiratory tract infections
(J09-J18) from the Pamukova Family Medicine Center. Over the
course of the study period, 10821 patients sought medical attention
for upper respiratory illnesses.

Interpretation of New Variable
Edward Lorenz created the Lorenz system in 1963 as a more
straightforward mathematical representation of atmospheric con-
vection Lorenz (1963). The Lorenz chaotic system equations are
well known and take the form of:

Ẋ = α(Y − X)

Ẏ = X(β − Z)− Y (1)

Ż = X ∗ Y − γZ

With constant α = 10, β=28 and γ= 8/3. The initial conditions of
the system are X(0) = 0, Y(0) = -1 and Z(0) = 0. We observe the
chaotic behaviour, shown in Figure 2.

From this system, we assumed that there is an interpreted vari-
able as a description of number of respiratory cases (w). This
variable has the following:

1. Negative correlation with air pressure (Vitkina et al. 2019),

2. positive correlation with the average ambient temperature
(Nishimura et al. 2021) and,

3. Negative correlation with the absolute humidity (Quinn and
Shaman 2017).

The number of patients is also delayed due to the incubation
period of diseases. Therefore, the variable is affected by the
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Figure 2 Phase portraits in the (x, y), (x, z), (y, z) and (x, y, z)

previous and current states. The newly found chaotic system are
as follows:

Ẋ = α(Y − X),

Ẏ = X(β − Z)− Y, (2)

Ż = X ∗ Y − γZ

Ẇ = X ∗ Y − δ(α ∗ W + Y)− δ ∗ Z

with constant α = 10, β=28, γ= 8/3, δ = 5 . The initial conditions
of the system are X(0) = 10, Y(0) = -10, Z(0) = 25 and W(0)=0. The
dynamic system simulation of the new chaotic system are shown
in Figure 3.

System stability’s analysis

Letting the system’s derivatives equal to zero as:

0 = α(Y − X),

0 = X(β − Z)− Y, (3)

0 = X ∗ Y − γZ
0 = X ∗ Y − δ(α ∗ W + Y)− δ ∗ Z

The equilibrium points are (0, 0.0000 - 8.4853i, 0.0000 + 8.4853i),
(0, 0.0000 - 8.4853i, 0.0000 + 8.4853i), (0, -27, -27) and (0, -1.2600
- 0.8485i, -1.2600 + 0.8485i) and the eigenvalues of the first equi-
librium point are: -50.0000 + 0.0000i, -2.6670 + 0.0000i, -1.2164 -
9.9045i, -9.7836 + 9.9045i; the first point is unstable. The eigenval-
ues of the second equilibrium point are: -50.0000 + 0.0000i, -2.6670
+ 0.0000i, -1.2164 - 9.9045i and -9.7836 + 9.9045i; the second point
is unstable. The eigenvalues of the third equilibrium point are:
-50.0000, -2.6670, 8.2931 and -19.2931; the third point is unstable.
The eigen values of the forth equilibrium point are: -50.0000 +
0.0000i, -2.6670 + 0.0000i, -4.9833 + 8.2108i, and -6.0167 - 8.2108i;
the forth point is unstable.This analysis shows that the new sys-
tem is unstable and may exhibit chaotic behavior, which can be
confirmed by checking the Lyapunov exponents.
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Figure 3 Phase portraits in the (x, y), (x, z), (x, w), (y, z), (y, w), (z,
w), (x, y, z), and (x, y, w)

Lyapunov exponents analysis of Chaotic system

Lyapunov exponents are an important criterion in the analysis of
the behavior of a dynamic system because they provide charac-
teristic information about the system and serve as a measure of
chaotic behavior (Abarbanel et al. 1991; Kinsner 2006; Aziz et al.
2021; Qiu et al. 2023). If the behavior of a dynamic system is sen-
sitive to initial conditions, then as time progresses, orbits close to
each other in the phase space will rapidly diverge. This indicates
that the system is becoming dynamically unstable. However, it is
often difficult to make this determination because most trajectories
of the system are unknown. Nevertheless, it is possible to express
the orbits that can be known.

Lyapunov superposition lambda gives a measure of the sensi-
tivity to initial conditions and is defined as the average of the local
separation degrees of neighboring curves within the phase space.
If lambda is negative, different starting conditions tend to give the
same output values, meaning that the development is not chaotic.
If lambda is positive, different initial values give different output
values, indicating that the movement is chaotic.
The fundamental characteristic of a chaotic system is its depen-
dence on initial conditions. Even if the two different initial states
are very close to each other, the orbits formed at these two points
diverge from each other exponentially. Lyapunov exponents are
used to measure the sensitive dependence of initial states in chaotic
systems.

Lyapunov exponents are initially used to measure the distance
between very small discrete trajectories. They are a generaliza-
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tion of the eigenvalues and characteristic multipliers of a periodic
solution at an equilibrium point and are used to determine the
steady-state stability of semiperiodic and chaotic solutions. A dy-
namic system is considered chaotic if its sum contains at least one
positive Lyapunov exponent. The Lyapunov exponents of a chaotic
trajectory have at least one positive lambda, which distinguishes a
strange attractor from other types of steady-state behavior.

Nonlinear Autoregressive Network with Exogenous Inputs
(NARX)
To analyze results from chaotic systems and real data, a popular
dynamic neural design for input-output modeling of nonlinear
dynamic systems, the NARX network, is implemented. The NARX
network is a time-delayed feedforward neural network for time
series estimation. In theory, NARX networks can be used in place
of traditional recurrent networks with no computational cost and
are at least as effective as Turing machines (Lin et al. 1996; Siegel-
mann et al. 1997; Diaconescu 2008). Therefore, they can be used to
predict chaotic equations (Diaconescu 2008; Martínez-García et al.
2008).

In this study, a NARX network with 3 inputs (maximum tem-
perature, pressure, and humidity) and one output (number of
patients) was used to analyze derived variables and real data. The
network had 10 hidden layers and an incubation period of 5 days
was included to account for any variations due to delays. The final
structure of the NARX network is depicted in Figure 4.

Figure 4 NARX Structure

RESULTS AND DISCUSSION

Results
Respiratory disorders, such as asthma and chronic obstructive pul-
monary disease, are a major public health concern, as they can
greatly impact an individual’s quality of life and are a leading
cause of morbidity and mortality worldwide. In this study, we aim
to investigate the feasibility of using weather data to predict the
prevalence of respiratory disorders. To accomplish this, we will
utilize the Lorenz equation and numerical techniques, specifically
the Runge-Kutta method, to derive and solve a new chaotic equa-
tion. The Runge-Kutta method is a numerical technique that is
commonly used to solve differential equations. It is a widely used
method that is known for its accuracy and stability, and has been
applied to a variety of problems in science and engineering. In
this study, we will use the Runge-Kutta method to solve the new
chaotic equation that we will derive using the Lorenz equation
and weather data.

Our objective is to use the Lorenz equation and the Runge-Kutta
method to predict the prevalence of respiratory disorders based
on weather data. By using these tools, we hope to gain a better
understanding of the relationship between weather and respira-
tory disorders, and to develop more accurate and reliable methods
for predicting the occurrence of these conditions. We believe that
this research has the potential to significantly improve the man-
agement and treatment of respiratory disorders, and to ultimately
improve the health and well-being of individuals affected by these
conditions.

In order to give an example for the model detailed in the paper,
a scenario is set with initial conditions and is expected to meet
the actual data. In a three-dimensional system, the only possible
case for Lyapunov exponents is the type (+, 0, -) to have chaotic
behavior. For Lorenz Equation, they are λ1 > 0, λ2 = 0, and λ3
<0. In a four-dimensional system, the possible cases for Lyapunov
exponents are the type (+, +, 0, -) and (+, 0, -, -). If type (+, +, 0, -),
λ1 > 0, λ2 > 0, λ3 = 0, and λ4 < 0, is called hyperchaos.

The Lyapunov exponents of the system were analyzed to inves-
tigate its chaotic behavior. The results of the analysis are shown
below and depicted in Figure 5. The Lyapunov exponents of the
system are (+, 0, -, -)."
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Figure 5 Lyapunov exponents

In this paper, we utilized the Lorenz equation and developed a
new time series analysis, which is presented in Figure 6. However,
as shown in Figure 7, the daily difference between the number of
respiratory disease cases predicted by the chaotic equation and
the actual number of cases is not similar to the difference between
weather forecast and real weather data. This is due to the fact
that the initial conditions for the chaotic equation and the weather
data are not the same. To analyze the correlation between the real
values and the results from the chaotic equation, we implemented
a NARX network to account for any delay effects. The correlation
between the number of cases predicted by the chaotic equation
and the actual number of cases was found to be 90.16.

There is a well-established seasonality to the occurrence of in-
fluenza, with a marked peak in the colder winter months. However,
in tropical regions, the seasonality of influenza is less well-defined,
with detectable background activity throughout the year. In our
study, we have developed a new chaotic model to better under-
stand the patterns and underlying causes of respiratory diseases
in these regions.
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Discussion

This study used weather data to forecast the number of individ-
uals who will have respiratory disease. This was achieved by
developing a new chaos equation using patient data and weather
predictions that have been gathered. The findings of this study
agree with previous studies that have linked weather data to respi-
ratory disease cases (Lee et al. 2022; Bhat et al. 2021).

The study of the relationship between weather patterns and res-
piratory illness led to the development of a novel chaotic system.
According to the findings of this analysis, the system has Lyapunov
exponents of (+, 0, -, -). A NARX network was then used to assess
the created variables and real-world data, with a focus on count-
ing the number of patients with respiratory illnesses. The daily
projected patient count and the output of the new chaotic equation
had a strong correlation of 90.16% after the chaotic system’s equa-
tions were solved. As a result, the findings of this study are in line
with those of other studies that have evaluated the effectiveness
of time series in forecasting the occurrence of respiratory diseases
(Shaman and Kohn 2009; Lee et al. 2022). This study reported a
higher performance measure, with a correlation of 90.16% between
real patient cases and predicted data.

Several methods have been identified in the literature for deal-
ing with respiratory diseases. In a study (Lee et al. 2022), data from
525,579 participants was analyzed, and it was found that multiple
variables of weather and air pollution influenced the respiratory
diseases of patients who visited emergency departments. The
majority of the patients with respiratory disease had acute upper
respiratory infections. Similarly, another study (Xirasagar et al.
2006) found that the decline in temperature during colder months
and the decrease in sunshine duration had a negative impact on

respiratory diseases.
According to our research, predicting respiratory diseases from

weather data could potentially be useful for hospital planning, as
it could allow hospitals to anticipate increases in patient volume
and adjust their staffing and resource allocation accordingly. It is
important to have such a system that predict respiratory diseases
from weather data.

CONCLUSIONS

There is a significant body of literature that explores the rela-
tionships between various fields, such as physics, mathematics,
electrics, and electronics. These studies often involve the devel-
opment and analysis of mathematical models that describe the
behavior of chaotic systems. Scientists, engineers, and researchers
may rely on these models in order to design and build new chaotic
systems with complex and varied dynamic behaviors. However,
the physical implementation of these models can be quite chal-
lenging due to the need to carefully consider and control initial
conditions, as well as the impact of nonlinear effects. In other
words, the real-world realization of chaotic systems based on these
equations can be quite difficult and complex to achieve.

In this study, a new chaotic system was derived that investi-
gates the connection between weather patterns and respiratory
illness. To verify the chaotic behavior of the system, a Lyapunov
analysis was performed. The results of this analysis indicated
that the system had Lyapunov exponents of (+, 0, -, -). Next, the
generated variables and real-world data were analyzed using a
NARX network, specifically examining the number of patients
suffering from respiratory illness. Upon resolving the equations of
the chaotic system, it was found that there was a strong correlation
of 90.16 between the daily anticipated patient count and the output
of the new chaotic equation. It is anticipated that in the future,
this model will be further refined and applied to different initial
conditions depending on the local climate.
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ABSTRACT Short memory and long memory terms are excellently explained using the concept of piecewise
fractional order derivatives. In this research work, we investigate dynamical systems addressing COVID-19
under piecewise equations with fractional order derivative (FOD). Here, we study the sensitivity of the proposed
model by using some tools from the nonlinear analysis. Additionally, we develop a numerical scheme to
simulate the model against various fractional orders by using Matlab 2016. All the results are presented
graphically.
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INTRODUCTION

Fractional calculus has been recognized as a powerful tool to inves-
tigate various dynamical problems with more detail and a realistic
approach. The foundation of this branch was laid by Newton and
some known mathematicians of that time. Later on Reimann, Li-
ouville, Hadamard, Hilfer and other researchers developed this
branch further by introducing various differential and integral
operators (Machado et al. 2011). The great advantage of using frac-
tional calculus instead of classical in the description of real-world
problems is its global nature. By fractional derivatives, we can
describe global dynamics for various evolutionary processes in a
more realistic way. Also, the mentioned operators are keeping a
greater degree of freedom as compared to ordinary operators of
derivatives which are local in nature, (see some detail in (Hilfer
et al. 2008) and (Agarwal et al. 2010)).

Keeping the mentioned characteristics in mind researchers have
increasingly used the concept of fractional calculus in the math-
ematical modeling of various phenomena and processes. In this
regard, we can find literature full of such types of articles, books,
and monographs addressing the applications of fractional calcu-
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lus. Here we remark that fractional derivative has not a unique
definition. There have been introduced various definitions by re-
searchers including singular and non-singular operators (Rahman
et al. 2021). Recently in this connection, see more work as (Ahmad
et al. 2021c; Alqahtani et al. 2021; Ojo and Goufo 2022, 2023). Both
forms have been used extensively in various research problems.
Both operators have merits and sometimes some de-merits which
have been discussed by researchers. For instance, authors have in-
vestigated fractal fractional chaotic attractor behavior in (Saifullah
et al. 2021), a physical model in (Ahmad et al. 2021b), and using the
Caputo-Fabrizio derivative in (Ahmad et al. 2021c).

On the other hand, for epidemiological purposes, the said con-
cept has been used very well. Large numbers of models have been
investigated under the concept of fractional order derivatives and
integrals. As we know that infectious diseases have greatly af-
fected our society from ancient times. Due to this disease, millions
of people have lost their lives in the past as well as in the recent
two-three years. Currently, the outbreak of COVID-19 has greatly
destroyed the world and more than fifty million people have died
within two years all over the globe. The said infection has also
affected the economic situation of various countries around the
globe. Further, to control the disease researchers, physicians and
authorities are working day and night to overcome or control this
disease from further spreading.
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In this regards various procedures have been introduced in
the last two years to overcome the infection. Some work done on
mathematical models of COVID can be seen as (Atangana and
İğret Araz 2020), (Arfan et al. 2021), and (Abdo et al. 2020). Among
one which is very important of vaccine which has been prepared
and is now available in the market. Further, to aware people
of the individual measures to save their lives and their family.
Various measures for safety have been implemented by various
countries including keeping social distance, regularly washing
mouth, hands, etc, and wearing a face mask in gatherings, avoiding
joining the huge crowd.

One important tool from a research perspective to investi-
gate the transmission dynamics of the disease in the community
through a scientific approach is devoted to mathematical model-
ing. In this regards various models have been introduced to study
the mentioned process, for instance, authors investigated the time
fractal-Klein-Gordon equation in (Saifullah et al. 2022), the complex
behavior of multi-structure dynamical system (Ahmad et al. 2021a),
Zika virus model in (Zhou et al. 2017) and some heat problems
in(Doungmo Goufo 2016). For this purpose, various differential
operators have been used properly. Along the same line fractional
calculus has been used extensively. In the same fashion authors
(Doungmo Goufo 2016) have discussed the dynamics of the KDV-
Berger equation. Also in (Doungmo Goufo 2015), the authors have
applied the concept of fractal-fractional to investigate the cellulose
degradation model.

Applications of the newly introduced ABC derivative have
been discussed in (Atangana 2020). The existence and uniqueness
of the epidemiological model has been studied in (Shah et al. 2023).
Some authors investigated different TB models under the concept
of the fractional derivative with simulation in (Shatanawi et al.
2021). Authors (Nawaz et al. 2022) established some computational
and theoretical analysis for TB model by using ABC derivative of
fractional order.

We should keep in mind that many evolutionary processes often
suffer from abrupt changes in their dynamics, which can be deter-
mined by ordinary derivatives and even fractional derivatives also.
For such a situation, we need to use a fractional type derivative
with piecewise nature which has the ability to clarify the crossover
behavior of the dynamics more properly. In this regard recently
some authors have introduced the concept of piecewise derivative
to detect the said behavior in the dynamical problems (Atangana
and Araz 2021). For further details on piecewise derivatives, recent
contributions can be seen as (Shah et al. 2022a,b,c).

Motivated by the said analysis, literature, and features of frac-
tional calculus, we will investigate the following models of COVID-
19 under the global piecewise derivative of fractional order. Our
concerned model is given by

pABC
0 Dχ

t S (t) = β − ξS (t)I (t)− (τ + θ)S (t) + ηR(t),

pABC
0 Dχ

t E (t) = ξS (t)I (t)− (δ + τ + θ) E (t),

pABC
0 Dχ

t I (t) = δE (t)− (θ + τ + ∆ + ω)I (t),

pABC
0 Dχ

t V (t) = θI (t)− (τ + κ)V (t) + θE (t) + θS (t),

pABC
0 Dχ

t R(t) = ∆I (t) + κV (t)− (τ + η)R(t).
(1)

Here we remark in determinacy form the model (8) is given as

dS (t)
dt = β − ξS (t)I (t)− (τ + θ)S (t) + ηR(t),

dE (t)
dt = ξS (t)I (t)− (δ + τ + θ) E (t),

dI (t)
dt = δE (t)− (θ + τ + ∆ + ω)I (t),

dV (t)
dt = θI (t)− (τ + κ)V (t) + θE (t) + θS (t),

dR(t)
dt = ∆I (t) + κV (t)− (τ + η)R(t).

(2)

The complete detailed description and explanations of compart-
ments and parameters are given in Tables 2 and 3 respectively.
We obtained the basic reproduction number (R0) using the next-
generation matrix on the disease-free equilibrium point and in-
vestigated the global sensitivity analysis of the basic reproduction
number (R0). Then, we focused on some numerical techniques
based on the Euler method to simulate the given model under the
concept of piecewise fractional order derivatives. We use some
real values of parameters to present results graphically.

PRELIMINARIES

Here we recall some definitions results, lemmas from
(Doungmo Goufo 2015).

Definition 0.1. If f (t) ∈ H 1(0, T) and χ ∈ (0, 1], then the ABC
derivative is defined as

ABC
0 Dχ

t u(t) =
ABC(χ)

1 − χ

∫ t

0
Eχ

[
−χ

1 − χ
(t − τ)χ

]
d

dτ
u(τ)dτ, ε (3)

Definition 0.2. Let u(t) ∈ L[0, T], then the fractional integral in
ABC sense as:

ABC
0 Iχ

t u(t) =
1 − χ

ABC(χ)
u(t) +

χ

ABC(χ)Γ(χ)

∫ t

0
(t − ζ)χ−1u(ζ)dζ. (4)

Definition 0.3. Let, u(t) is a differentiable function at interval
[0, t1] and [t1, t], then the piecewise derivative is defined as:

pABC
0 Du(t) =


du
dt , 0 < t < t1

pABC
0 Dχ

t u. t1 < t < t2

=

g(t, u(t)),

t ∈ [0, t2]

(5)

Definition 0.4. Suppose, we consider the generic piecewise frac-
tional order differential equation with fractional order χ, such
that

pABC
0 Dχ

t u(t) = ρ(t, u(t)), with u(0) = u0. (6)

For the differential equation (6) we propose a numerical Euler’s
scheme that is

u(tn+1) =

{
yn+h f (tn−1,u(tn−1)), 0<t<t1

u(t1)+
(1−χ)

ABC(χ) f (tn ,un)+
hχ (1−χ)
ABC(Ø) f (tn ,un), t1<t<t2, 0<χ<1.

(7)
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MATHEMATICAL MODEL OF COVID-19

We investigate the mathematical model given in (2) by using the
Caputo and Atangana-Baleanu piecewise differential operators.
We formulated the proposed model in the aforementioned opera-
tors form with 0 < χ ≤ 1, t ∈ [0, T], 0 ≤ t ≤ T, T < ∞ as

pABC
0 Dχ

t S (t) = β − ξS (t)I (t)− (τ + θ)S (t) + ηR(t),
pABC
0 Dχ

t E (t) = ξS (t)I (t)− (δ + τ + θ) E (t),
pABC
0 Dχ

t I (t) = δE (t)− (θ + τ + ∆ + ω)I (t),
pABC
0 Dχ

t V (t) = θI (t)− (τ + κ)V (t) + θE (t) + θS (t),
pABC
0 Dχ

t R(t) = ∆I (t) + κV (t)− (τ + η)R(t).


(8)

In more explicit form the model (8) can also be write as

pABC
0 Dχ

t (S (t))

=


dS (t)

dt = H1(S , E , I , V , R, t), 0 < t ≤ t1,

ABC
0 Dχ

t (S (t)) = H1(S , E , I , V , R, t), t1 < t ≤ T.

pABC
0 Dχ

t (E (t))

=


dE (t)

dt = H2(S , E , I , V , R, t), 0 < t ≤ t1,

ABC
0 Dχ

t (E (t)) = H2(S , E , I , V , R, t), t1 < t ≤ T.

pABC
0 Dχ

t (I (t))

=


dI (t)

dt = H3(S , E , I , V , R, t), 0 < t ≤ t1,

ABC
0 Dχ

t (I (t)) = H3(S , E , I , V , R, t), t1 < t ≤ T.

pABC
0 Dχ

t (V (t))

=


dV (t)

dt = H4(S , E , I , V , R, t), 0 < t ≤ t1,

ABC
0 Dχ

t (V (t)) = H4(S , E , I , V , R, t), t1 < t ≤ T.

pABC
0 Dχ

t (R(t))

=


dR(t)

dt = H5(S , E , I , V , R, t), 0 < t ≤ t1,

ABC
0 Dχ

t (R(t)) = H5(S , E , I , V , R, t), t1 < t ≤ T.


(9)

EQUILIBRIUM POINT AND BASIC REPRODUCTION NUM-
BER (R0)

The Disease–Free equilibrium point is computed as:

E0 =
(
S 0, 0, 0, V 0, R0

)
. (10)

Where,

S 0 =
β(η τ+η κ+τκ+τ2)

η τ2+τ2ξ+τ2κ+τ3−θη κ+η τξ+η τκ+η ξκ+τξκ
,

V 0 =
θ β(η +τ)

η τ2+τ2ξ+τ2κ+τ3−θη κ+η τξ+η τκ+η ξκ+τξκ
,

R0 =
θ βκ

η τ2+τ2ξ+τ2κ+τ3−θη κ+η τξ+η τκ+η ξκ+τξκ
.

(11)

The basic reproduction number at disease-free equilibrium point
for the model (8) is computed such that considering the equation:

dZ
dt

∣∣∣∣
E0

= f − v. (12)

The non–linear and linear terms from the infected classes in matrix
f and v, respectively:

f =

ξS I

0

 , v =

 (δ + τ + θ) E (t)

(θ − τ − ∆ − ω)I (t)− δE (t)

 . (13)

Now, the jacobian matrix of f and v is given by:

F =

0 ξS 0

0 0

 , V =

θ + δ + τ 0

−δ θ + τ + ∆ + ω

 . (14)

Calculating the inverse of matrix V and the next generation matrix
G, such that:

V −1 =

 1
θ+δ+τ 0

δ
(θ+δ+τ) (θ+τ+∆+ω)

1
θ+τ+∆+ω

 . (15)

Thus, the non-zero and largest eigenvalue is the basic reproduction
number R0 is:

R0 =
δ ξS 0

(θ + δ + τ) (θ + τ + ∆ + ω)
. (16)

Where,

S 0 =
β
(
η τ + η κ + τ κ + τ2)

η τ2 + τ2ξ + τ2κ + τ3 − θη κ + η τξ + η τ κ + η ξκ + τξκ
.

SENSITIVITY ANALYSIS

It is vital to understand the relative relevance of the many elements
involved in COVID-19 transmissions and prevalence in order to
determine how best to decrease human mortality and morbidity
as a result of the virus. The endemic equilibrium point is directly
connected to R0, and the initial illness transmission is directly re-
lated to R0. The infectious human percentage, I (t), is particularly
noteworthy since it reflects persons who may get clinically sick
and is proportional to the overall number of COVID-19 fatalities.
The reproductive number, R0, and sensitivity indices to the model
parameters are calculated. These indices indicate the importance of
each parameter in disease transmission and prevalence. To assess
the resilience of model predictions to parameter values, sensitivity
analysis is widely performed (since there are usually errors in data
collection and presumed parameter values). Using the explicit for-
mula for R0, we derive an analytical expression for the sensitivity
of R0

sR0
(p) =

p
R0

[
∂R0
∂p

]
. (17)

Now, according to the above relation, we have

sR0
β =

β

R0

[
δ ξ(η + τ)(τ + κ)

(θ + δ + τ)(θ + τ + ∆ + ω)ϕ1

]
, (18)
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sR0
τ =

τ

R0

[
δ β ξ (η + 2 τ + κ)

(θ + δ + τ) (θ + τ + ∆ + ω) ϕ1

− δ β ξ ϕ2

(θ + δ + τ) (θ + τ + ∆ + ω)2 ϕ1

− δ β ξ ϕ2

(θ + δ + τ)2 (θ + τ + ∆ + ω) ϕ1

−
δ β ξ ϕ2

(
2 η τ + η ξ + 2 τ ξ + η κ + 2 τ κ + ξ κ + 3 τ2)
(θ + δ + τ) (θ + τ + ∆ + ω) ϕ1

2

]
,

where

ϕ1 = η τ2 + τ2 ξ + τ2 κ + τ3 − θ η κ + η τ ξ + η τ κ + η ξ κ + τ ξ κ,

ϕ2 = η τ + η κ + τ κ + τ2.

sR0
η =

η

R0

[
θ δ β τ ξ κ (τ + κ)

(θ + δ + τ) (θ + τ + ∆ + ω)Φ1
2

]
,

sR0
κ =

κ

R0

[
θ δ β τ ξ κ (τ + κ)

(θ + δ + τ) (θ + τ + ∆ + ω)Φ1
2

]
,

sR0
θ =

θ

R0

[
δ β η ξ κ (η + τ) (τ + κ)

(θ + δ + τ) (θ + τ + ∆ + ω)Φ1
2

− Φ2

(θ + δ + τ)2 (θ + τ + ∆ + ω)Φ1

− Φ2

(θ + δ + τ) (θ + τ + ∆ + ω)2 Φ1

]
,

where

Φ1 = η τ2 + τ2 ξ + τ2 κ + τ3 − θ η κ + η τ ξ + η τ κ + η ξ κ + τ ξ κ,

Φ2 = δ β ξ (η + τ) (τ + κ).

sR0
ξ =

ξ

R0

[
δ β (η + τ) (τ + κ)

(
η τ2 + τ2 κ + τ3 − θ η κ + η τ κ

)
(θ + δ + τ) (θ + τ + ∆ + ω)Φ1

2

]
,

sR0
δ =

δ

R0

[
β ξ (θ + τ) (η + τ) (τ + κ)

(θ + δ + τ)2 (θ + τ + ∆ + z)Φ1

]
,

sR0
∆ = − ∆

R0

[
δ β ξ (η + τ) (τ + κ)

(θ + δ + τ) (θ + τ + ∆ + ω)2 Φ1

]
,

sR0
ω = − ω

R0

[
δ β ξ (η + τ) (τ + κ)

(θ + δ + τ) (θ + τ + ∆ + ω)2 Φ1

]
.

■ Table 1 Sensitivity of the R0 versus proposed parameters

Parameter Sensitivity Index Value Sign

β sR0
(β)

1.0000 +ve

η sR0
(η)

-0.0006 -ve

θ sR0
(θ)

-3.4078 -ve

δ sR0
(δ)

0.9434 +ve

ω sR0
(ω)

-0.0001 -ve

τ sR0
(τ)

0.0010 +ve

κ sR0
(κ)

-0.0004 -ve

ξ sR0
(ξ)

1.5554 +ve

∆ sR0
(∆) -0.0909 -ve
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Figure 1 Plot of Sensitivity Analysis with a graphical representa-
tion of sensitivity indices sR0

(p) bases on the expression (17).

In Table (1), the sensitivity indices are provided for each param-
eter associated with basic reproduction number (R0) computed
based on the expression (17). There is a positive and negative effect
of each parameter in the basic reproduction number (R0) and thus
the parameters with positive signs increase the basic reproduction
number (R0) and negative decreases, respectively. Considering the
Table (1) and Figure (1), we observed that with the increase in the
value parameters β, ξ, δ, and τ cause growth in basic reproduction
number (R0) while decay by parameters θ, ∆, η, κ, and ω. Thus,
having negative indices must be minimized in the environment.
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NUMERICAL SCHEME

Consider the model (8), we use the proposed Euler’s scheme from
the Definition (7) and implement on the given problem, such that

S (tn+1) =

Sn + h f (tn−1, S (tn−1)), 0 < t < t1

z1, t1 < t < t2, 0 < χ < 1.
(19)

where, z1 = S (t1) +
(1−χ)

ABC(χ)
f (tn, Sn) +

hχ(1−χ)
ABC(χ)

f (tn, Sn).

E (tn+1) =

En + h f (tn−1, E (tn−1)), 0 < t < t1

z2, t1 < t < t2, 0 < χ < 1.
(20)

where, z2 = E (t1) +
(1−χ)

ABC(χ)
f (tn, En) +

hχ(1−χ)
ABC(χ)

f (tn, En).

I (tn+1) =

In + h f (tn−1, I (tn−1)), 0 < t < t1

z3, t1 < t < t2, 0 < χ < 1.
(21)

where, z3 = I (t1) +
(1−χ)

ABC(χ)
f (tn, In) +

hχ(1−χ)
ABC(χ)

f (tn, In).

V (tn+1) =

Vn + h f (tn−1, u(tn−1)), 0 < t < t1

z4, t1 < t < t2, 0 < χ < 1.
(22)

where, z4 = V (t1) +
(1−χ)

ABC(χ)
f (tn, Vn) +

hχ(1−χ)
ABC(χ)

f (tn, Vn).

R(tn+1) =

Rn + h f (tn−1, R(tn−1)), 0 < t < t1

z5, t1 < t < t2, 0 < χ < 1.
(23)

where, z5 = R(t1) +
(1−χ)

ABC(χ)
f (tn, Rn) +

hχ(1−χ)
ABC(χ)

f (tn, Rn).

NUMERICAL INTERPRETATION AND DISCUSSION

Here we apply the aforesaid scheme to simulate the results for
different fractional order under piecewise derivative to see the
crossover behavior in the transmission dynamics of the disease
and the effect of vaccination.

In Figures 2-6, we have presented the approximate solutions
corresponding to piecewise derivatives using various fractional
orders. We have taken here t1 = 5 and T = 120. The crossover
effect is clearly observed near the point t1 = 5, and the dynamics
after that point shows variation in behavior. This multi-behavior
of the dynamics is known as crossover. This effect cannot be
determined by using a usual derivative of fractional order. As the
vaccination procedure increases more people are giving vaccines,
and the security from the infection is also increasing, and hence
recovered class is growing up.

■ Table 2 Table of description and Initial Condition of Compart-
ment of Population.

Symbols Description of Com-
partment

Initial Condition

S (t) Susceptible Human
Population

N − (E +I + V +R)

E (t) Exposed Human Popu-
lation

10

I (t) Infected Human Popu-
lation

20

V (t) Vaccinated Human
Population

30

R(t) Recovered Human
Population

50

N Total Population 200

■ Table 3 Table of description and values of Parameters.

Symbol Description of Parameter Value

τ Natural Death Rate 1
67.7×365

β Recruitment Rate τ × N

ξ Transmission rate 0.1784

θ Vaccination Rate 0.5

η Lose of Immunity in Recovered Popu-
lation

0.1

δ Rate of Infection of Exposed Popula-
tion

0.03

∆ Recovery Rate of Infected Population 0.05

κ Recovery Rate of Vaccinated Popula-
tion.

0.15

ω Death Rate of Infected Population due
to COVID–19 Infection

0.32
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Figure 2 Plot of susceptible class at various fractional order deriva-
tives.
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Figure 3 Plot of exposed class at various fractional order deriva-
tives.
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Figure 4 Plot of infected class at various fractional order derivatives.

CONCLUSION

We have extended the concept of piecewise ABC fractional order
derivative concept to a dynamical system of COVID-19 with a
vaccinated class. We investigated global sensitivity analysis of pa-
rameters associated with the basic reproduction number (R0) of the
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Figure 5 Plot of recovered class at various fractional order deriva-
tives.
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Figure 6 Plot of vaccinated class at various fractional order deriva-
tives.

given model and as a result, we have some potential parameters on
which the basic reproduction number (R0) depends. Due to both
increase and decrease, there is an associated increase and decrease
in (R0). We present the sensitivity indices graphically using a bar
chart for justification. We have also simulated the results by using
some real values for the parameters and initial data. We see that
at point t1 = 5, the behavior of the dynamics has shown varia-
tion. This is due to the piecewise derivative. Such effect is called
crossover and can be well explained by using piecewise derivative
as compared to ordinary or usual fractional order. Hence we con-
cluded that piecewise derivative can be used as a powerful tool to
investigate the transmission dynamics of infectious diseases that
suffer from abrupt changes in their dynamical evolution.
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Computational Complexity-based Fractional-Order
Neural Network Models for the Diagnostic Treatments
and Predictive Transdifferentiability of Heterogeneous
Cancer Cell Propensity
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ABSTRACT Neural networks and fractional order calculus are powerful tools for system identification through which there exists
the capability of approximating nonlinear functions owing to the use of nonlinear activation functions and of processing diverse inputs
and outputs as well as the automatic adaptation of synaptic elements through a specified learning algorithm. Fractional-order calculus,
concerning the differentiation and integration of non-integer orders, is reliant on fractional-order thinking which allows better understanding
of complex and dynamic systems, enhancing the processing and control of complex, chaotic and heterogeneous elements. One of the
most characteristic features of biological systems is their different levels of complexity; thus, chaos theory seems to be one of the most
applicable areas of life sciences along with nonlinear dynamic and complex systems of living and non-living environment. Biocomplexity,
with multiple scales ranging from molecules to cells and organisms, addresses complex structures and behaviors which emerge from
nonlinear interactions of active biological agents. This sort of emergent complexity is concerned with the organization of molecules
into cellular machinery by that of cells into tissues as well as that of individuals to communities. Healthy systems sustain complexity
in their lifetime and are chaotic, so complexity loss or chaos loss results in diseases. Within the mathematics-informed frameworks,
fractional-order calculus based Artificial Neural Networks (ANNs) can be employed for accurate understanding of complex biological
processes. This approach aims at achieving optimized solutions through the maximization of the model’s accuracy and minimization
of computational burden and exhaustive methods. Relying on a transdifferentiable mathematics-informed framework and multifarious
integrative methods concerning computational complexity, this study aims at establishing an accurate and robust model based upon
integration of fractional-order derivative and ANN for the diagnosis and prediction purposes for cancer cell whose propensity exhibits
various transient and dynamic biological properties. The other aim is concerned with showing the significance of computational complexity
for obtaining the fractional-order derivative with the least complexity in order that optimized solution could be achieved. The multifarious
scheme of the study, by applying fractional-order calculus to optimization methods, the advantageous aspect concerning model accuracy
maximization has been demonstrated through the proposed method’s applicability and predictability aspect in various domains manifested
by dynamic and nonlinear nature displaying different levels of chaos and complexity.

KEYWORDS
Computational complexity
Complex systems
Artificial Intelligence (AI)
Chaos theory
Fractional calculus
Fractional-order derivatives
Mittag-Leffler functions
Heavy-tailed distributions
Computational biocomplexity
Nonlinearity and uncertainty
Multilayer perceptron
algorithm (MLP)
Neural networks
Transdifferentiable
mathematics-informed
framework
Complex order optimization
Mathematical biology
Data-driven fractional-order
biological modeling
Cancer cell propensity.

INTRODUCTION

Universal order and complex universe, correspondingly, require
solutions and models to address the complexity challenge by
self-organization, harmonization and synchronization. Complex-
fractional models in complex dynamical processes, therefore, have
extensive schemes made up of hierarchical, spatial as well as topo-
logical structures that have assorted likely granularities of the par-
ticular system by differential equations. On the other hand, com-
plex order fractional derivatives govern complex-fractional sys-
tems in which memory and nonlinearity are seen as the two aspects
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of complex-fractional systems with complex variables, which point
out the significance of the modeling of memory-intense systems.
Complex-order systems which functions within a universal order
manifests multiple dynamical interactive components grounded
on multiscale spatial and temporal fields, which points towards
the integration for the construction of an operational whole on a
holistic spectrum. Fractional calculus (FC), owing to its ability of
reflecting the systems’ actual state properties, exhibiting unfore-
seeable variations, makes the generalization of integration and
differentiation possible. In that regard, it can provide a new added
value for the enhanced description of the characteristics concern-
ing different complex systems. When it is necessary to summon
solutions for the complex models, simulations, technological ad-
vances have enabled the integration of fractional calculus and Ar-
tificial Intelligence (AI) applications particularly for the managing
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of uncertainty and making critical multi-stage and multi-criteria
decisions within the framework of mathematical modeling. For-
mation and validation of hypothesis can, hence, be minimized in
terms of time, with the acceleration of experiments and numerical
simulations along with the substantial volume of data analyses,
which have become precise, reliable and trustworthy.

Fractional-order calculus (FOC), being based on fractional-
order thinking, concerns the differentiation and integration of
non-integer orders, which enables improved understanding of
complex and dynamic systems with or without time delays. Cer-
tain complex systems in nature may not always be likely to be
characterized by classical integer-order calculus models; therefore,
a fractional-order system-based model is capable of describing the
system performance in a more accurate manner. The processing
as well as control of complex elements are also enhanced whilst
making the performance more optimal owing to FOC. The fractal
processes’ discontinuous nature necessitates a reinvestigation of
equations of motion including fractional operators. In this regard,
fractional calculus paves the way for modeling the impact of an
erratic background in a system with its description merging with
nonlinear dynamics.

Fractional thinking as a sort of in-between thinking is situ-
ated between the integer-order moments, and there, fractional mo-
ments are needed as empirical integer moments cannot converge.
Between the integer dimensions, there exist fractal dimensions
whose significance is seen when data possess no characteristic
scale length. The non-integer operators that are required to de-
fine dynamics with long-time memory and spatial heterogeneity
are at stake between the integer value operators local in time and
space. Taking all these into account, it can be said that the mod-
ern inclination of science requires the understanding and even
embracing of complexity where complex phenomena oblige us
to find new ways of thinking. Fractional calculus is one way to
provide framework towards such thinking (West 2016; West et al.
2003). Fractional differential equations are also beneficial means
to characterize and show the dynamics of complex phenomena
with spatial heterogeneous characteristics and long memory. The
fractional derivative of real order is seen as the degree of structural
heterogeneity between the homogeneous and also in homogeneous
spheres in which complexity usually arise with respect to systems
made up of elements interacting with one another which may be in-
trinsically hard in terms of modeling (Lopes and Tenreiro Machado
2019).

Fractional-order differential and integral equations enable the
conventional integral and differential equations’ generalization by
extending the related conceptions with respect to different biolog-
ical phenomena. Correspondingly, adeptness in computational
complexity ensures an interconnected, integrative and multifari-
ous angle towards problems; which is the cause of applicable sets
of ideas and implementations to be implemented for the identi-
fication of the subtle features of complex dynamic systems. One
significant point to bear in mind is to acknowledge the varying
degrees of problems in order that the models can be established in
a way that can be adjustable and fitting the matter into the right
data, as handled in various disciplines like neuroscience (Singhal
et al. 2010), biology (Magin 2010) and so on.

Mathematical-informed frameworks with computer-assisted
proofs are used so that it becomes possible to be equipped with
reliable and accurate understanding in complex heterogeneity and
dynamic structure of temporally and spatially multiple transient
states. There still exist means in mathematics awaiting to construct
their way in theoretical biology as is in the case of fractional, or

non-integer order calculus whose application emerges as a power-
ful and strategic approach of modeling in the light of forthcoming
opportunities and challenges in mathematical medicine. Fractional
mathematical oncology, in this regard, deals with memory effects,
heterogeneous scales and dormant periods with respect to the on-
set and development of tumors in a straightforward way (Valentim
et al. 2021). Biological phenomena and problems, inherently char-
acterized by nonlinearity and uncertainty, modeled by ordinary
or partial differential equations with integer order, are possible to
be described well through the employing of ordinary and partial
differential equations. The variables, attributes, parameters, initial
conditions as well as observation states in the model are to be
considered for computational purposes. At each instance of time,
it is possible to measure the correct information by a non-integer
order derivative.

One relevant study on that subject matter is (Ziane et al. 2020)
aims at applying the local fractional homotopy analysis method
(LEHAM) in order to get the non-differentiable solution of two
non-linear partial differential equations (PDEs) concerning the
Cantor sets’ biological population model. The proposed method
is demonstrated to be effective and powerful in terms of solving
those PDEs with LFHAM being applied for the solution of other
nonlinear PDEs with local fractional derivative. Another study is
on biomathematical modeling (Carletti and Banerjee 2019), distin-
guishing demographic noise and environmental noise. The authors
present a technique for simulating and modeling demographic
noise that goes in backward direction. Neurological phenomena,
on the other hand, have layered, multi-phase and multi-functional
materials like those of brain tissue with interconnected networks.

In order to enhance the comprehension how the brain provides
its functions, robust mathematical-informed as well as feedback
engineering frameworks which use basic scientific concepts to in-
terpret and direct the experiments investigating brain’s responses
to different stimuli, diseases and treatment courses thereof are
required. In neuroscience, one of the related studies (Lewis et al.
2016) is concerned with the ratio processing system (RPS) tuned
to the holistic magnitudes suited for grounding fraction learning
difficulties about symbolic fractions. The proposed premise is the
capability to represent ratio/fraction magnitudes stated by the RPS
could upkeep a more profound grasping of fractions as relative
magnitudes, which shows the critical importance of RPS about
learning with regard to fractions. In short, fractional dynamics
could be applicable both for the oculomotor system and for the
motor control systems.

A fractional derivative’s physical meaning is said to be an open
problem and for the modeling of various memory related phe-
nomena, a memory process is made up of two stages: short has
permanent retention and the second one is ruled by a simple model
of fractional derivative. The fractional model is shown to fit the
test data of memory related phenomena in different fields like
mechanics and biology perfectly though the numerical least square
model. Thus, the physical meaning concerning fractional order is
found to be an index of memory based on that scheme (Du et al.
2013). Fractional Calculus (FC), refers to the calculus of derivatives
and integrals of arbitrary complex order or real order has wide-
ranging domains of application. Different studies are available in
the literature addressing the solution of varying fractional order
biological disease models in environments displaying uncertainty.
The application of Caputo operator to convey non-integer deriva-
tive of fractional order can be found in (Khan et al. 2020), handling
of chaos control and synchronization of a biological snap oscillator
through a new fractional model is addressed with regard to bio-
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engineering in (Sommacal et al. 2008), biology (Toledo-Hernandez
et al. 2014), (Tokhmpash 2021), signal processing (Gutierrez et al.
2010), image processing (Debnath 2003), electronics (Krishna and
Reddy 2008) robotics (Singh et al. 2021), control theory (Panda and
Dash 2006), (Garrappa 2015). Numerical parameters, variables and
radiation elements are used for the treatment model’s simulation.
It has been concluded that the model is capable of simulating the
treatment process of cancer and make the prediction of the results
of other protocols related to radiation.

Regarding the broad class of functions, the Riemann–Liouville
definition is employed in the process of the problem formulation,
with the Grünwald-Letnikov definition being referred to for achiev-
ing some numerical solutions. The use of Riemann-Liouville frac-
tional calculus’ operators is considered in (Rodríguez-Germá et al.
2008) for the reduction of linear ordinary or PDEs with variable
coefficients to more simple problems through certain commutative
differential relations. Thus, it has been aimed to avoid the singu-
larities in the original equations and the case of Bessel differential
equations is used as the related example. The efficiency of the
technique employing Riemann-Liouville operators of fractional
calculus has been shown by (Rodríguez-Germá et al. 2008). Regard-
ing the derivatives of Riemann-Liouville and Caputo derivatives,
Riemann-Liouville derivative as one of mostly employed fractional
derivatives and some important features of the Caputo derivative
are discussed in (Li et al. 2011) which provides benefits for the un-
derstanding of fractional calculus as well as modeling of fractional
equations in the fields of science and engineering.

Mittag-Leffler (ML) functions, with their various properties and
one to five and more parameters, are inclined towards modifica-
tion on a complex plane with the extension of particular fractional-
calculus operators owing to their use in the various direct ap-
plications and involvements in fractional calculus and fractional
differential equations concerning biology, physics, applied sciences
and engineering. Among the studies in the literature, the following
work can be referred to: (Fernandez and Husain 2020), (Pang et al.
2018).

Fractional order calculus theory, employed for addressing vary-
ing orders of derivatives and integrals, lends itself to diverse
kinds of definitions for fractional order derivatives with Rie-
mann–Liouville, Caputo and Grünwald–Letnikov being the most
frequently used ones. On the other hand, fractional calculus af-
fords tools that can describe and deal with complex phenomena as
well as its connection to the inherent properties that are nonlinear
complex considering the memory effects and apparently chaotic
behavior. In view of that, the fractional order derivative notion is
ubiquitous in different areas, offering diverse and varying methods
concerning fractional order derivative (FOD) (KARCI et al. 2014).

It is noted that fractional derivatives have the capability of
improving the machine learning algorithms’ accuracy, with com-
puting power, if and when utilized for spectral data, signals and
images. Given these, fractional derivatives and, successively, frac-
tional calculus have proved to provide a framework to be able to
enhance optimization tasks. One example of work handled within
that view is by (Raubitzek et al. 2022) providing exemplary applica-
tions to segment MRI brain scans, for stroke, to be applied as input
for a machine learning algorithm. Another work addresses practi-
cal software optimization methods to implement fractional-order
backward difference, sum, and differintegral operator, which are
dependent on the Grünwald–Letnikov definition regarding the
evaluation of fractional-order differential equations in embedded
systems owing to their more convenient form in contrast with
Caputo and Riemann–Liouville definitions (Matusiak 2020).

The work of (Viola and Chen 2022) provides an evaluation
of a fractional-order self-optimizing control architecture for the
purpose of process control. As a consequence, the related con-
troller is stated to enhance the system closed-loop response under
different operating conditions while reducing convergence time
of the real-time derivative-free optimization algorithm through
fractional-order stochasticity. Furthermore, another paper is re-
lated to the optimization techniques of image analysis algorithms.
The authors optimize the Grünvald - Letnikov fractional - order
backward difference for the estimation of the position of the marker
in a sequence of images, and through the mathematical foundation
of the fractional order derivative optimization tool of the study, it is
observed that process or load linked with the optimized algorithm
was reduced by 35% and more (Jachowicz et al. 2022).

Conducting predictions reliant on mathematical models with
regard to processes and datasets related to biology requires the pa-
rameters concerning machine learning. Moreover, the fitting of the
parameters to experimental data is challenging as it is important
and essential to find the model parameters’ optimal values during
when the model parameters’ different values may exhibit consis-
tent aspects with the data, called the identifiability. For ANNs,
learning is a noteworthy stage concerning convergence rate, as
obtained potentially by the use of fractional-order gradient in data
science.

One respective study, (Gomolka 2018), utilizes a model of a
neural network with a new backpropagation rule by making use of
a fractional order derivative mechanism. Another study, (Kadam
et al. 2019) addresses the ANN approximation of fractional deriva-
tive operators. The study (Mall and Chakraverty 2018) develops
an ANN technique to find solution of FDEs and shows the advan-
tage of them in terms of describing various real-world application
problems of physical systems. A MLP architecture and error back
propagation algorithm are used to minimize the error function and
modify the weights and biases as parameters. ANN output is said
to yield a suitable approximate solution of FDE and the accuracy
of the method is put forth as such. (Wu et al. 2017) investigates
in depth the ML stability of a class of fractional-order neural net-
works in the field of neurodynamics. The results established are
dependent on the FDE theories of FDE and differential equation
with generalized piecewise constant arguments with the derived
criteria improving and extending the respective results. Finally,
(Niu et al. 2021) provides the discussion of an optimal randomness
case study for a stochastic configuration network (SCN) machine-
learning method having heavy-tailed distributions along with the
discussion of the employment of fractional dynamics in analytics
concerning big data to quantify variability due to the complex
systems’ generation.

Complex systems are marked by order and homogeneity as
well as the hierarchy of subsystems and different levels in space
and time. Therefore, the observation of the interconnection with
respect to different biological elements such as cells, molecules and
tissues, with a focus on their qualitative properties, is required.
Considering this intricate complexity, it would not be adequate to
characterize and identify only the discrete biological components
of the system. Thus, mathematical models play a noteworthy role
for the complex problems’ solution and the viable applications to
biological data so that it can be possible to attain a thorough un-
derstanding of the emergent interactions between heterogeneous
biological components and their related pathways. In this way,
it can be ensured to reveal the correlations between different ob-
servable phenomena characterized by heterogeneity and dynamic
properties in an accurate and robust way.

36 | Yeliz Karaca CHAOS Theory and Applications



Life is endowed with many diverse and peculiar attributes,
which invokes the investigation of its origin that is not possible
to obtained from scratch, referring to its molecular constituents.
These complex systems in life do not only evolve through time,
they also have a past which is jointly responsible for the present
behaviors. On the other hand, the evolution of its forms cannot
be predicted; in that sense, evolution, as a universal process and
dynamics, brings about diverse phenomenology of life with its
related theory leading to rich phenomenology of life on earth
for modern biology and mathematical bioengineering which has
been subject to modifications due to its nature over the years.
The complexity of living systems can be expressed in cells and
tissues’ structures and functions, which means biological functions
of each element are embedded in a three-dimensional alignment
of the cells of each tissue, extracellular matrices and anatomical
organization. Biocomplexity, alternatively, with multiple scales
ranging from molecules to cells and organisms addresses complex
structures and behaviors that emerge from nonlinear interactions
of active biological agents. Due to this complexity of biological
systems and elements, chaos theory seems to be one of the most
applicable areas of life sciences in view of nonlinear dynamic and
complex systems of living and non-living environment.

Biocomplexity, with multiple scales that range from molecules
to cells and organisms, is concerned with complex structures and
behaviors emerging from nonlinear interactions of active biologi-
cal agents. This alignment of emergent complexity deals with the
organization of molecules into cellular machinery through that of
cells into tissues as well as that of individuals to communities. As
healthy systems keep up their complexity in their lifetime and are
chaotic, disease is seen as an outcome when the loss of complexity
or the loss of chaos occurs. Furthermore, mathematical models
enable researchers to dig into the degree of complexity concern-
ing processes, routes and the way these are interconnected. One
of the related studies in this domain is (Tzoumas et al. 2018) on
the sensor selection to determine the minimum number of state
variables which are required to be measured for the monitoring
of the evolution of the biological system. The authors focus on
the solution of different problems of sensor selection and consider
biologically motivated discrete-time fractional-order systems. The
work (Blazewicz and Kasprzak 2012) addresses the progress of
research in computational biology based on computer science and
operational research, presenting the different issues around com-
plexity as inspired by computational biology.

Algorithms and complexity along with their conceptual aspects
become significant on the condition that their definition is done
vis-á-vis formal computational models (Du and Ko 2011). Since
computing is proven to be critical to be able to deal with exhaus-
tive data tasks and achieve scalable solutions to complex problems,
researchers and developers should be familiar with impacts of
computational complexity to better grasp and design efficient al-
gorithms in computational biology. Algorithmic (computational)
complexity, known as running time, is a way of comparing the
efficiency of an algorithm. For a given task, an algorithm doing
the completion of a task is considered to be more complex if more
steps are the case.

It is possible to express the algorithmic complexity with the
Big O notation varying in relation to the size of the input. The
measurement of complexity is considered based on the duration it
takes for a program to run in relation to the size of the input (time
complexity) or to the memory it is to take up (space complexity).
One related work (Sidelnikov et al. 2018) investigates the applica-
tion of dynamic deep neural networks for non-linear equalization

in long haul transmission systems. The optimum dimensions are
identified by extensive numerical analysis and computational com-
plexity of the systems are calculated as a function of system length.
The authors demonstrate performance at a considerably lower cost
of computation.

Neural networks and fractional order calculus are known to be
efficient to identify systems, which concerns the capability to ap-
proximate nonlinear functions. One of the relevant studies (Aguilar
et al. 2020) is concerned with a fractional gradient descent method.
By using the Caputo derivative, the authors made the evaluation of
the fractional-order gradient of the error. The performance of the
proposed fractional-order backpropagation algorithm was shown
on certain datasets. The study (Boroomand and Menhaj 2009) on
neural networks for the identification of the problem proposes a
new approach to the neural networks. In another relevant study
(Xue et al. 2020), a fractional order gradient descent with momen-
tum method was used for updating the weights of neural network
for the purpose of data classification. The error analysis of the
study put forth the effectiveness of the algorithm in accelerating
the convergence speed of gradient descent method, which also
improves the performance with validity and accuracy.

Different computing techniques have been developed for op-
timized solutions regarding fractional order systems. Computa-
tional complexity, accordingly, proves to be significant to analyze
problems as their complexity increases in size. Measuring the
extent of the work required for the different problems’ solution,
computational complexity can provide a practical classification
tool from the powerful lenses where the patterns can be observed
both on a distinctive level and as a whole. In line with a novel
mathematics-informed framework and multi-staged integrative
method regarding computational complexity, there is no exist-
ing previous work as this work in the literature, obtained from
such an interconnected and inclusive perspective with the meth-
ods proposed. With its novel mathematics-informed framework
and multifarious integrative methods concerning computational
complexity, this study has the aim of establishing a robust, reli-
able as well as accurate model depending upon the integration
of fractional-order derivative and ANN for the purposes of diag-
nosis and differentiability prediction purposes for heterogeneous
cancer cell that displays various transient and dynamic biological
properties.

The other aim of the present work is to reveal the importance of
computational complexity so that the fractional-order derivative
with the least complexity could be obtained to be able to attain
the optimized solution. Accordingly, the subsequent steps were
integrated and applied: first of all, the Caputo fractional-order
derivative with three-parametric Mittag-Leffler function (MLF)
(α, β, γ) was applied to the cancer cell dataset. Hence, the new
fractional models with changeable degrees were formed by en-
abling data fitting with the fitting algorithm MLF which has three
parameters, depending upon the heavy-tailed distributions. After-
wards, the new datasets (mfc_cancer cell and the mfr_cancer cell
dataset) were generated. As the following step, classical derivative
(calculus) was applied to the cancer cell dataset, and from this
application, the cd_ cancer cell datasets were generated. After that,
the performance of the new dataset, obtained from the applica-
tion of the first step and the performance of the dataset obtained
from the application of the second step as well as of the cancer
cell dataset was compared by the multilayer perceptron (MLP)
algorithm application. As the following step, the fractional order
derivatives models that could be the most optimal for the disease
were produced. Last but not least, computational complexity was
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employed to achieve the Caputo fractional-order derivative (FOD)
that has the least complexity, for the purpose of obtaining the
optimized solution as a result.

This multifarious scheme, by the application of fractional-order
calculus (FOC) to optimization methods and the experimental
results, have allowed us to highlight the advantage of the max-
imization of the model’s accuracy and the minimization of the
cost functions. This corroborates the applicability of the proposed
method in different domains which are characterized by nonlinear
and dynamic nature with varying levels of complexity. Multi-
stage integrative models can capture the regular and significant
attributes on temporal and spatial scales, besides fractional-order
differential and integral equations demonstrate the generalization
of classical calculus by the extension of the conceptions concerned
with biological processes and systems.

The rest of the study is structured in the following manner. Sec-
tion 2 is on Biocomplexity, Biological Dataset, Related Method and
Methodology with the subheading, 2.1 Complex Heterogenous
Cancer Cell Dataset of the Study and 2.2 Method and Methodology.
Subsequently, Section 3 addresses Experimental Results and Dis-
cussion: Computation- related Application of Caputo Fractional-
Order Derivatives with Three-Parametric Mittag-Leffler Functions,
ANN algorithm and Computational Complexity. Finally, Section
4, provides the Concluding Remarks and Future Directions of this
work.

BIOCOMPLEXITY, BIOLOGICAL DATASET, RELATED
METHOD AND METHODOLOGY

Complex Heterogenous Cancer Cell Dataset of the Study
Biocomplexity addresses the complex interactions within and
among different systems are evident; and thus, biocomplexity
necessitates an integrated exploration of coupled human-natural
systems by looking into the reasons for and consequences of bio-
logical dynamics so that it can provide the related mathematical
models of complex biological phenomena to comprehend them,
and to interpret and guide quantitative experimental processes.
Accordingly, an accurate interpretation of the data entails the grasp-
ing of many emergent and dynamic properties that are due to the
interchange of various varying biological elements in complex
heterogeneous biological systems. Given such complexity, only
identifying and characterizing the individual biological compo-
nents in the system would not be sufficient. To address these
challenges, mathematical modeling, which enables researchers to
look into the degree of complexity, along with statistical techniques
are important to investigate problems. If the disruptions concern-
ing the processes and the way the interaction occurs is understood
well, then it will also be possible to identify the factors that have
impact on the disease. Consequently, the present study handles
a complex biological dataset concerned with cancer cell, which
manifests complex, heterogeneous and dynamic properties, with
an undeniable effect on health and life quality, being one of the
most frequent reasons for mortality.

Regarding the aims of diagnosis and differentiability prediction
concerning the heterogeneous cancer cell, 30 different columns
were employed. The other related details with respect to the het-
erogenous biocomplex cancer cell dataset with attributes computed
unit-wise can be found in the following reference (Murphy 1994).
Biocomplexity with a quantitative and integrative approach refers
to the study of the emergence of complex and self-organized behav-
iors based on the interacting of numerous simple agents. This kind
of an emergent complexity is representative of the different levels
of organization concerning molecules and tissues. Biocomplexity,

arises from biological, environmental, chemical, behavioral, physi-
cal and social interactions, encompassing the presence of multiple
scales (Michener et al. 2001).

If one is to have a thorough understanding of the correct inter-
pretation of data, knowing the dynamic and emerging characteris-
tics is important. Robust, accurate and appropriate mathematical
modeling serves the investigation of problems due to the fact that
mathematical models allow the exploration of the way complexity
processes and disruptions regarding these processes affecting the
course of the disease, which also has critical impact on its predic-
tion. This study deals with biological dataset, namely cancer cell,
which shows heterogeneous, dynamic as well as complex charac-
teristics which need to be taken under careful control in order to
prevent possible detrimental effects for the future.

Method and Methodology
Algorithm based on Heavy-tailed distribution for Data Fitting with
the ML Functions

Three-parametric ML functions (α, β, γ) Being among the do-
mains of mathematical analysis, special function is linked with
different topics (Garrappa 2015). MLF is also one of the important
classes of special functions with its extensions [46]. For benefits of
fractional calculus and fractional exponential functions, (Karaca
and Baleanu 2022a), (Camargo et al. 2012) and (Fernandez and
Husain 2020) can be referred to. (Baleanu and Karaca 2022) can be
referred to for the details concerning the original function of ML
relying on different parameters with different extensions.

The Basic Theory Behind Heavy- tailed Distributions
Pareto distribution: a power-law probability distribution
The Pareto distribution is known as a power-law probability distri-
bution which is employed to describe different observable phenom-
ena concerning science, social life, control and so forth (Newman
2005). Pareto distribution (PD) as a random variable (Arnold 2014)
is followed by the Pareto distribution provided it owns the tail’s
array as such according to Eq. (1):

PD(V) =

1 − (b)
V V ≤ b

0. V < b
(1)

a and b respectively show the scale and shape parameters with 1
and 1 values.

Weibull distribution: a continuous probability distribution
The Weibull distribution is employed to describe a particle size
distribution (Almalki and Nadarajah 2014). The Weibull WD as a
random variable (Baleanu and Karaca 2022) follows the Weibull
along with the tail formula as obtained in line with Eq. 2 (Kharazmi
2016)

WD(V) = exp(
V
k )

ζ
(2)

k and ζ refer for shaping and scaling the parameters (Gorenflo et al.
2020).

Cauchy distribution: a continuous probability distribution
The Cauchy distribution refers to the spread of the ratio of normally
distributed two independent random variables with a mean of zero
(Steck 1958). The Cauchy distribution (CD) as a random variable
(Arnold and Beaver 2000) is followed with the tail formula whose
formulation can be provided according to Eq. 3:

CD(V) =
1
π

arctan
(

2(V − µ)

β

)
+

1
2

(3)
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b and u respectively with 1 and 0 values represent the scale and
location parameters. Mittag-Leffler (ML) distribution: probability
distributions on the half line [0, ∞).

Shown as Eα(y), the ML distribution states its reliance upon the
cumulative density function (cdf) or distribution function, given
based on Eq. 4 (Chakraborty and Ong 2017).

f (x; α) = 1 − Eα(−yα) = ∑∞
k=1(1)

k−1(k α).xk α−1
/
{Γ(αk + 1),

x > 0, 0 < α ≤ 1
(4)

The ML distribution has different shapes and distributional
properties (see (Mainardi and Gorenflo 2000), (Mittag-Leffler 1903),
(Pillai and Functions 1990), (Karaca and Baleanu 2022a) for further
related details.

The comparison of these four distributions is conducted in
relation with their performances, by using log likelihood value
(MLE) and the Akaike Information Criterion (AIC). The respective
definitions can be presented in the following manner:

AIC = −21nL + 2k, and k shows the number of parameter(s)
and L shows the maximum log-likelihood with regard to a par-
ticular dataset. Moreover, the other related applications of the
were done as well. (please see ref. ((D’Agostino 2017), (Fan and
Gijbels 2018)) for further details). Relatively high (small) values
of log likelihood (AIC) may hint better fittings, as overviewed in
Table 1 for different relevant distributions, which clearly yield the
best of the fit. In addition, the performance of the likelihood ratio
test is also provided in order that different distributions can be
differentiated (see Table 1).

Figure 3 shows the functions along with the four related heavy
tailed distributions. The computations were conducted by Matlab
with the pattern of [ ] = gml_ f un( ), made for the evaluation
pertaining to the MLF (Petrás 2011), (Karaca and Baleanu 2022a).

The biological datasets handled in this study were fit as per the
three-parametric MLF (α, β, γ). Algorithm 1 (see Section 3.1) is
based on heavy-detailed distributions, having been applied on the
cancer cell dataset to identify the optimized three-parametric MLF,
found with heavy-tailed distributions. As a result, the optimized
MLF (α, β, γ) were obtained, which is an important stage to
explore the complex attributes.

The Basic Theory Behind the Fractional Calculus
Fractional calculus (FC) may be considered to be a natural ex-
tension of traditional integer order calculus because this area of
mathematics is concerned with the investigation and application
of the concepts of integral and non-integer differential calculus
(Karaca and Baleanu 2022c). The main publications on the subject
matter were seen in the early 20th centur (Tenreiro Machado et al.
2010).

The basic notions can be seen in classical materials by (Oldham
and Spanier 1974), (Ross 1977). More recent ones can be found in
the works of (David et al. 2011), (De Oliveira and Tenreiro Machado
2014), (Kochubei et al. 2019), (Valentim et al. 2021). Mathematical
biology, with an interdisciplinary approach, looks into cancer-
related phenomena via mathematical models in an inclusive way.
Encompassing wide-ranging domains from biology to materials
science, mathematical biological enables the comprehension of
biological systems that cause disease.

By this virtue, fractional-order models can enable a better un-
derstanding related to oncological biological particularities, which
contributes potentially to critical multi-stage decision-making in-
cluding early diagnosis techniques, tumor evolution and treatment
procedures as well as therapies tailored depending on the patient.

FC regarded as a generalization of integer order calculus, with
the related core notions are presented by depending on more basic
conjectures. Factorials, for example, make up only natural num-
bers, so this has constricting factors for its domains of applications
(Herrmann 2011). Gamma function is introduced for any as fac-
torial generalization, indicated as in (Karaca and Baleanu 2022a)
can be generalized as well through the replacement of its factorial
component with a gamma function, producing the following in
accordance with Eq. (5).

ez =
∞

∑
n=0

zn

Γ(1 + n)
(5)

and hence, the MLF for ℜ(z) > 0 is introduced as follows, (Mittag-
Leffler 1903) based on Eq (6).

Eα(z) =
∞

∑
n=0

zn

Γ(1 + nα)′
(6)

as extended to concede the three parameters for ℜ(z) > 0 (Wiman
1905) according to Eq (7).

Eα,β(z) =
∞

∑
n=0

zn

Γ(nα + β)
(7)

For the purpose of representing the solution of several frac-
tional problems related to mathematics and physics, the MLF is
critical, as the exponential functions are for integer calculus. This
is because numerous simple functions are the specific cases of this
generalization, so a number ofstudies have investigated the related
particularities along with its uses (Camargo et al. 2012); (Gorenflo
et al. 2020).

Fractional-Order Derivatives
Fractional-order derivative models are employed for the accurate
modeling of the systems that require different analytical and nu-
merical methods along with their related their applications to new
and complex problems. Being a critical function with extensive do-
mains of application, MLF is employed as a fractional differential
method. The following power series are usedto define the MLF
in line with the following references (Karaca and Baleanu 2022a),
(Gutierrez et al. 2010) Eq. (8).

It, as an entire function, ensures a simple generalization of
the exponential function whose reduction and convergence can
be found in more detail in (Mainardi and Gorenflo 2000). The
complex plane denotations and approaches related to the MLF, can
be found in (Baleanu and Karaca 2022), (Mainardi 2020).

Caputo Fractional-Order Derivatives
The Caputo Fractional-order derivative is employed to model phe-
nomena, considering the significant interactions of past and prob-
lems that have nonlocal properties based on equations having
memory. The related definition is addressed as per Eq. 9 (Gutier-
rez et al. 2010), which is used to solve the differential equations:

Dm
α f (t) =

1
Γ(mα)

∫ t

0

f (m)(τ)

(t − τ)α+1−m dτ, (8)
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Being similar to Caputo fractional derivative (CFD), Grünwald-
Letnikov fractional derivative is related to most of the analytic func-
tions, and there is a insignificantly different aspect identified when
the constant function is addressed. For a constant, the Caputo
fractional derivative equals to 0. However, the Riemann–Liouville
counterpart does not equal to 0. Caputo fractional derivative is
generally used to address the initial value FODE (Gutierrez et al.
2010).

The important implications about fractional integral and deriva-
tives of the power function (t − t0)

β for, β > −1 are the case and
for the Caputo’s derivative, Eq. 16 is employed in the following
way:

Dα
t0
(t − t0)

β =



0 β ∈ 0, 1, ..., m − 1

Γ(β+1)
Γ(β−α+1) (t − t0)

β−α β > m − 1

non existing otherwise

Dm and f (m) signify the integer-order derivatives (Garrappa
et al. 2019).

When compared with the Riemann–Liouville, the Laplace trans-
form for the Caputo’s derivative is initialized with the standard
initial values shown in terms of integer-order derivatives (Ouyang
and Wang 2016).

Artificial Neural Networks Algorithm

As a series of algorithms attempting to recognize the underlying
patterns in a set of data, neural networks, systems of neurons,
whether they be organic or artificial in nature, mimic the way
the human brain operations through different processes. Since
neural networks, rooted in artificial intelligence, can be adaptive
in changing input, the network generates the best possible result
without the need of redesigning the output criteria. As a special
type of machine learning algorithms, Artificial Neural Networks
(ANNs) are modeled by mimicking the human brain, and they
enjoy predictive and solution abilities.

ANNs can learn from the data of the past, just like the neurons
in the human nervous system learn from the past data, and can
provide responses in prediction or classification forms. ANN is a
self-learning network, conducts the learning from sample data sets
and signals; and as nonlinear models, they manifest a complex rela-
tionship between the inputs and outputs to discover a new pattern.
Accordingly, Multi-layered perceptron (MLP) is a type of network
in which multiple layers of a group of perceptron are together
loaded in order to make a model. In a multi-layered perceptron,
the arrangement of the perceptrons is seen in interconnected layers
(Karaca 2016).

The use of the MLP networks, with at least three layers, signifies
there is a training set of input-output pairs (for further details on
the weight coefficients, please refer to (Karaca and Cattani 2018),
(Karaca et al. 2020), (Karaca and Baleanu 2022b)). For its related
steps and architecture, please see (Mia et al. 2015), (Alsmadi et al.
2009) and (Abdul Hamid et al. 2011). The input signal propagates
via the network layer by layer. The signal-flow of the network with
two hidden layer is provided in Figure 1. Multilayer feed forward
back propagation algorithm is utilized for network training and
network performance testing.

Figure 1 The configuration depiction of the MLP algorithm

The back-propagation algorithm involves the subsequent steps
(Karaca and Baleanu 2020), (Karaca and Cattani 2018) and (Zhang
and Wu 2008).
Step 1. Initialization: The algorithm at first is to be initialized
regarding that one does not know any previous information. The
thresholds and synaptic weights are picked among a uniform
distribution. Sigmoid shows the activation function.
Step 2. The network should be presented by epochs of training
examples to conduct computations of forward and backward.
Step 3. The preferred response vector is d(n) in the output layer of
computation nodes, which is a forward computation, if the input
vector to the layer of sensory nodes is x(n). The computation of
the network’s local fields and signals related to function is done by
proceeding forward via the network through each of the layers. If
the sigmoid function is employed, then equation provided below
is considered to obtain the output signal:

y(l)j = φj(vj(n))

If l=1, meaning that the j neuron is in the first hidden layer, then
this is obtained:

y(0)j = xj(n)

Here, xj(n) refers to the jth element of the input vector
x(n).

Let, L refers to the depth of network. If the neuron j is in the
output layer, that is to say, l = L then

y(L)
j = oj(n)

Hence, the error signal will be:

e(n) = dj(n)− oj(n)

dj(n) refers to the jth element of the vector of preferred re-
sponse d(n).
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Step 4. The following equation in backward computation
shows the local gradients of the network (Haykin 2009).

δl
j(n) =


eL

j (n)φ′
j(n)(v

L
j (n)) output layer L

θ′j(v
i
j(n))∑k δ

(i+1)
k (n)w(i+1)

kj (n) hidden layer L

φ′
j(•) refers to differentiation concerning the argument. The

network’s synaptic weights in layer l need to be adapted to as per
the generalized data rule. If η is the training-rate parameter and
α signifies the momentum constant, the following is to be obtained:

wl
ji(n + 1) = w(l)

ji (n) + ∞[w(l)
ji (n − 1)] + η δ

(l)
i (n)y(l−1)

i (n)

Step 5. Last but not least, the computations regarding the
forward and backward need to be iterated till the stopping
criterion chosen can be fulfilled. The learning-rate parameters and
momentum are adjusted through reducing the related values as
the number of iterations goes up.

In the current study, MLP algorithm was applied to the cancer
cell dataset (768 × 9) for the purposes of diagnosis and differentia-
bility concerning the disease classification and prediction.

Computational Complexity

Computational complexity serves the goal of classifying and com-
paring the practical aspect of problem solutions regarding finite
combinatorial objects (Stockmeyer 1987). Technically, Big-O nota-
tion, used to describe the complexity of algorithms, presents the
approximation or placing of an upper bound on the resource require-
ments for an algorithm. The complexity of the algorithm signifies
the computational complexity and technically speaking, computa-
tional (algorithmic) complexity can be applied both to space and
time (storage and memory) resource necessities. As a matter of
fact, many individuals focus their attention on the running time
of an algorithm (Arora and Barak 2009), (Chivers et al. 2015). Al-
gorithmic complexity is denoted by the term of “on the order of ",
which indicates the approximate cost of the algorithm consider-
ing the aforementioned resource requirements. “on the order of " is
written in an abbreviated form in capital “O". This gives us the
more recognized term, that is to say the Big-O notation (Karaca et al.
2022).

Computational complexity measures how much work is re-
quired for the solution of different problems and providing a
practical classification tool beside dealing with complex problems
through the powerful lenses from which the patterns can be ob-
served both on a distinctive level and as a whole, considering the
resource usage. Concerning the temporal aspect, computational
time complexity denotes the change in an algorithm’s runtime,
and this process is dependent on the variation in the size of the
input data. When it comes to spatial properties, space complexity
is the description of the amount of additional memory a related
algorithm needs to have, which is dependent on the input data’s
size.

Big-O notation is: O (formula)

Big-O notation depends on the input parameters for whose details
(Karaca et al. 2022) can be referred to. Figure 2 depicts the order of
growth concerning the algorithms stated in Big-O notation.

Figure 2 The order of growth pertaining to algorithms stated in
Big-O notation

Big-O notation is a notation which is utilized to represent al-
gorithmic complexity. It is expedient to contrast with various
algorithms because the notation actually yields the conveying of
the algorithm scales. That is to say, the input size becomes larger,
and this is often referred to as the order of growth (see Figure 2)
(Chivers et al. 2015).

Complexity of the Fast Fourier Transform (FFT) Computation
The problem related to the Fourier transform (FT) is because of
its sine/cosine its complex exponential form or regression model
form, necessitating O(n2) operations to compute all the Fourier
coefficients. This does not apply for the short time series, though.
Notwithstanding, for quite long time series, this situation may
be an exhaustive computational process although performed on
developed computers of the current era.

FFT is known to be an important improvement for the reduction
of the complexity of the FT computation from O(n2) to O(n log n),
(Al Na’mneh and Pan 2007). The core notion behind this is that:
assume that there is a time series y1, ..., yn and one would like
to calculate the complex Fourier coefficient z1. It requires the
following computation with the formula:

z0 = ∑n−1
t=0 yt,

Which is proportional to the data mean. In the case that
data are de-trended or de-meaned, then this value will be 0. The
next Fourier coefficient will be:

z1 = ∑n−1
t=0 y1exp(−2πi.1.t/n)

= y0exp(−2πi.1.0/n) + y1exp(−2πi.1.1/n) + ...

Let us suppose that one would like to calculate the new co-
efficient . Then, this shall necessitate the computation as such:

z2 = y0 exp(−2πi.2.0/n) + y1 exp(−2πi.2.1/n) + ...

In the 2nd term, the exponential in the sum for z2 is the same that in
the 3rd term in the sum for z1, equaling to exp(−2πi.1.2/n). There
exists no need to calculate this exponential quantity two times, so
one may calculate it for the first time when we assume recovering
from memory is speedier compared to computing that from the
very beginning. The FFT algorithm, therefore, can be regarded as
an intricate bookkeeping algorithm being able to monitor such
symmetries in the Fourier coefficients’ computational processes.
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EXPERIMENTAL RESULTS AND DISCUSSION:
COMPUTATION-RELATED APPLICATION OF CAPUTO
FODS WITH THREE-PARAMETRIC ML FUNCTIONS
(α, β, γ), ANN ALGORITHM AND COMPUTATIONAL
COMPLEXITY

Mathematics-informed modeling of complex systems by FODs
relying upon FC plays a critical role for one to achieve the related
syntheses robustly and effectively. Correspondingly, the current
study has aimed at establishing an accurate model depending
upon the integration of FOD and ANN for the diagnosis and dif-
ferentiability pertaining to the prediction of disease which exhibits
transient biological features. One other goal has been to illustrate
the benefit of computational complexity to obtain the FOD that
has the least complexity to be able to obtain the solution which is
optimized. For this particular purpose, the proposed integrative
multifarious approach has followed the below stated stages:
i) Caputo fractional derivative along with MLF that had three pa-
rameters (α, β, γ) was applied to the cancer cell dataset. In this
way, it was possible to establish the new fractional models which
had distinct degrees through the conducting of data fitting with
the fitting algorithm MLF with three parameters (α, β, γ) depen-
dent on Heavy-tailed distributions (see Algorithm 1). Through the
algorithm, it was possible to obtain the optimized ML (α, β, γ)
functions, which enabled us to find the best fitting MLF with three
parameters (α, β, γ) in the cancer cell dataset. As a result, the new
datasets, namely the mfc_cancer cell dataset and mfr_cancer cell
dataset were obtained.
ii) The classical derivatives were applied to the cancer cell dataset
(the raw dataset); and obtained the cd_cancer cell datasets.
iii) The performances of the new dataset (in line with step i), the
dataset obtained from the classical derivative (calculus) application
(in line with step ii) and the cancer cell dataset were compared by
the MLP algorithm application. Consequently, the most optimal
fractional order derivative model for the disease was engendered.
iv) In order to attain the Caputo FOD with the optimized solution
and the least complexity, computational complexity was addressed.
Computational complexity with the Caputo FOD (ML with three
functions) and classical derivative (calculus) was calculated com-
paratively through the identification of the complexity concerning
the cancer cell dataset. Big O was used to identify the derivatives
which had the maximum and minimum level of complexity. The
experimental results obtained from the multifarious approach with
an integrative scheme corroborate and reveal the applicability of
the proposed scheme. It is, consequently, shown that the Caputo
FOD with the least complexity produced the most successful end
result as per the output derived from that MLP algorithm.

MATLAB (MATLAB 2022) and Phyton (Van Rossum and
Drake Jr 1995) were used for the obtaining of all the analyses,
results and visual depictions of the study.

Computation-related Application of ML Functions with Heavy-
tailed distributions’ Algorithm for Optimized Cancer Cell Data
Fitting
Algorithm 1 was applied to the cancer cell dataset so that it could
be possible to make the identification of the optimized MLF with
three parameters (α, β, γ) to fit the data possible. Hence, it was
possible to obtain the optimized ML (α, β, γ) functions. To put it
differently, this application enabled the finding of the best fitting
MLF with three parameters in the cancer cell dataset.

Algorithm 1 has been benefited from for the fitting with three
parameters related to MLF based on heavy-tailed distributions.
The related steps for Algorithm 1 can be referred to in (Karaca and

Baleanu 2022a).
Algorithm 1 was applied to the cancer cell dataset (569 × 25)

for the nine attributes in units (see the details related to the dataset
in the following reference (Murphy 1994)).

For the analyses, negative log likelihood: -log L was taken for
the log likelihood value. The best fit distribution was generated
(retrieved from the AIC, SD, MAE, MAPE, SSE, MSE and RMSE
calculations). The lowest of the two values was taken and the best
fitting distribution was achieved in order that the ML functions
representing the data most in the most suitable way were obtained
(Step 4 carried out based on Algorithm 1). The lowest value for
each distribution was taken; and conducted computations for all
the nine attributes. As an exemplary view, the presentations for
one attribute, which is the Smoothness, are shown in Table 1).
Hence, the lowest value obtained is marked bold in the respective
tables. The illustrations of the figures based on the computations
gained from the above mentioned attribute provided in the ta-
ble indicating the distribution beside the related peak points (see
Figure 3).

Table 1 depicts the smoothness attribute showing the lowest
value taken for each of the heavy-tailed distributions.

The depictions regarding the calculations gained from the at-
tributes provided in Table 1 for the Smoothness attribute the four
related heavy-tailed distributions and its peak points are indicated
in Figure 3. Two approaches are applicable to handle each of
the cancer cell data set attribute to perform the aforementioned
analysis. The former one is as such: based on the results which
are obtained from each distribution as per Algorithm 1, the most
accurate distribution is obtained based on the results as attained
with the lowest value. The latter one has to do with the address-
ing of the results based on α, β and γ values depending on the
results produced by the 4 heavy-tailed distributions together with
the eight statistical values while performing the comparison of
the connected attributes inherently (for further details Table 1 can
be referred to); and in addition, the most accurate distribution is
achieved based on the outcomes gained with the minimum value.
Should there be extreme points within the distribution, those ex-
treme values would not be considered for the analyses conducted
in the current work.

The best outcome for ML function with three parameters was
found to be MLF (10, 2, 2) for the cancer cell dataset.

Computation-related Application of Caputo FODs to Cancer Cell
Dataset

Algorithm 2 provides the steps of fractional derivatives with non-
integer orders for the cancer cell dataset, concerned with the iden-
tification of the order degree to find the most significant attribute.
Algorithm 2: Application of the Caputo FODs on cancer cell dataset
that has non-integer orders.
Step 1: Establish non-integer orders (y = orders = [0.1, 0.2, 0.3,
..., 0.9]).
Step 2: All of the orders are applied to the attributes specifically
in the dataset, as a result of which values were obtained for the y
order fractional derivatives, identified in Step 1.
Step3: Obtain 3D graphs of 3 types of derivatives as grid
and surface (x, y, z) = ( f or each attribute o f the data u,
alpha, derivative o f all the data).

Figure 4 presents the application steps of CFOD on the cancer
cell dataset. The most significant orders were obtained based on
the application of the procedures indicated in Figure 3, and for the
related orders, CFOD models were identified, as detailed with the
outcomes derived accordingly.
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■ Table 1 Smoothness attribute computation concerning the cancer cell dataset for MLF depending upon Heavy-tailed distributions

Distributions α β γ -log L AİC SD MAE MAPE SSE MSE RMSE

Mittag-Leffler 0.5 0.5 0.5 631.09718 1264.1944 0.008366 0.329849 0.534995 61.909033 0.108803 0.329853

Cauchy dist. 0.5 0.5 0.5 834.76194 1671.5239 0.008366 0.230607 0.374042 30.260861 0.053183 0.230613

Pareto dist. 0.5 0.5 0.5 Inf Inf 0.008366 0 0 0 0 0

Weibull dist. 0.5 0.5 0.5 350.9032 703.8064 0.008366 0.539741 0.875463 165.77254 0.29134 0.539759

Mittag-Leffler 3 1 1 816.59675 1635.1935 0.002348 0.238082 0.234318 32.252786 0.056683 0.238083

Cauchy dist. 3 1 1 1054.8973 2111.7946 0.002348 0.156618 0.154142 13.957155 0.024529 0.156618

Pareto dist. 3 1 1 18.14285 38.285699 0.002348 0.968628 0.95332 533.86979 0.93826 0.968638

Weibull dist. 3 1 1 578.14566 1158.2913 0.002348 0.362015 0.356292 74.5705 0.131055 0.362016

Mittag-Leffler 5 1 3 808.74844 1619.4969 0.000352 0.241388 0.240808 33.154539 0.058268 0.241388

Cauchy dist. 5 1 3 1047.1228 2096.2456 0.000352 0.158772 0.15839 14.343667 0.025209 0.158772

Pareto dist. 5 1 3 2.738101 7.476202 0.000352 0.9952 0.992808 563.55062 0.990423 0.9952

Weibull dist. 5 1 3 570.37073 1142.7415 0.000352 0.366994 0.366112 76.63567 0.134685 0.366994

Mittag-Leffler 5 1 7 810.58361 1623.1672 0.00082 0.240611 0.239266 32.941402 0.057894 0.240611

Cauchy dist. 5 1 7 1048.9504 2099.9009 0.00082 0.158263 0.157378 14.251833 0.025047 0.158263

Pareto dist. 5 1 7 6.378511 14.757021 0.00082 0.988854 0.983328 556.38788 0.977835 0.988855

Weibull dist. 5 1 7 572.1984 1146.3968 0.00082 0.365817 0.363773 76.145014 0.133823 0.365818

Mittag-Leffler 7 2 1 807.37739 1616.7548 0 0.24197 0.24197 33.314695 0.05855 0.24197

Cauchy dist. 7 2 1 1045.7534 2093.5068 0 0.159155 0.159154 14.412869 0.02533 0.159155

Pareto dist. 7 2 1 0.00272 2.005439 0 0.999995 0.999993 568.99456 0.99999 0.999995

Weibull dist. 7 2 1 569.00136 1140.0027 0 0.367879 0.367878 77.005408 0.135335 0.367879

Mittag-Lefflerr 7 2 2 807.37874 1616.7575 1e-06 0.24197 0.241968 33.314536 0.058549 0.24197

Cauchy dist. 7 2 2 1045.7548 2093.5095 1e-06 0.159154 0.159153 14.412801 0.02533 0.159154

Pareto dist. 7 2 2 0.005439 2.010879 1e-06 0.99999 0.999986 568.98912 0.999981 0.99999

Weibull dist. 7 2 2 569.00272 1140.0054 1e-06 0.367878 0.367876 77.00504 0.135334 0.367878

Mittag-Lefflerr 7 2 4 807.38147 1616.7629 1e-06 0.241968 0.241966 33.314217 0.058549 0.241968

Cauchy dist. 7 2 4 1045.7575 2093.515 1e-06 0.159153 0.159152 14.412663 0.02533 0.159153

Pareto dist. 7 2 4 0.010879 2.021757 1e-06 0.999981 0.999971 568.97824 0.999962 0.999981

Weibull dist. 7 2 4 569.00544 1140.0109 1e-06 0.367876 0.367872 77.004304 0.135333 0.367876

Mittag-Leffler 7 2 8 807.3869 1616.7738 3e-06 0.241966 0.241961 33.31358 0.058548 0.241966

Cauchy dist. 7 2 8 1045.7629 2093.5259 3e-06 0.159152 0.159149 14.412387 0.025329 0.159152

Pareto dist. 7 2 8 0.021757 2.043515 3e-06 0.999962 0.999943 568.95649 0.999924 0.999962

Weibull dist. 7 2 8 569.01088 1140.0218 3e-06 0.367872 0.367865 77.002832 0.13533 0.367872

Mittag-Leffler 10 2 2 807.37603 1616.7521 0 0.241971 0.241971 33.314854 0.05855 0.241971

Cauchy dist. 10 2 2 1045.7521 2093.5041 0 0.159155 0.159155 14.412938 0.02533 0.159155

Pareto dist. 10 2 2 5e-06 2.000011 0 1 1 568.99999 1 1

Weibull dist. 10 2 2 569 1140 0 0.367879 0.367879 77.005775 0.135335 0.367879

Mittag-Leffler 10 2 5 807.37603 1616.7521 0 0.241971 0.241971 33.314853 0.05855 0.241971

Cauchy dist. 10 2 5 1045.7521 2093.5041 0 0.159155 0.159155 14.412938 0.02533 0.159155

Pareto dist. 10 2 5 1.4e-05 2.000027 0 1 1 568.99997 1 1

Weibull dist. 10 2 5 569.00001 1140 0 0.367879 0.367879 77.005774 0.135335 0.367879

Mittag-Leffler 10 2 7 807.37604 1616.7521 0 0.241971 0.241971 33.314853 0.05855 0.241971

Cauchy dist. 10 2 7 1045.7521 2093.5041 0 0.159155 0.159155 14.412938 0.02533 0.159155

Pareto dist. 10 2 7 1.9e-05 2.000038 0 1 1 568.99996 1 1

Weibull dist. 10 2 7 569.00001 1140 0 0.367879 0.367879 77.005774 0.135335 0.367879
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Figure 3 Smoothness attribute computation based on cancer cell dataset for MLF depending upon Heavy-tailed distributions.

The computation-related application of CFODs and classical
derivative, both with (y = orders = [0.1, 0.2, 0.3, ..., 0.9]), for
all of the related parameters were conducted for the cancer cell
dataset. As an example to depict the computations in a clear way,
Figure 4 is presented for three parameters (the radius parameter,
the symmetry parameter and the smoothness parameter). Figure
4 shows the computational application of CFODs and classical
derivative, both with y(= orders), for 3 parameters for the cancer
cell dataset. CFOD and classical derivative models were identi-
fied for the related orders. The computation-related application of
CFODs and classical derivative, for all the parameters were carried
out concerning the cancer cell dataset. To illustrate, for depicting
the computations in a evident manner, Figure 4 provides the three
parameters including radius, symmetry and smoothness). Figure
4 shows the computation-related application of CFODs and clas-
sical derivative, both with y(= orders), for the cancer cell dataset.
CFOD and classical derivative models were identified for these
orders.

Computation-related Application of ANN Algorithm to Cancer
Cell Dataset and Optimized Results Diagnostic Treatments and
Predictive Transdifferentiability

The computation-related application of CFODs and classical
derivative obtained in Figure 4 for all the parameters for the cancer
cell dataset generates the significant attributes in newly obtained
datasets. CFOD and classical derivative models were found and
determined for the related orders depending upon the model. Ta-
ble 2 shows the parameters of that MLP algorithm, employed in
the present study.

Figure 5 presents the application of CFODs with MLF param-
eters MLF (10, 2, 2) to the cancer cell dataset, besides the new

datasets (mfc_cancer cell dataset and mfr_cancer cell dataset), as
taken from the significant attributes from the related application,
with MLP algorithm application, to the new dataset ensuring per-
formance of the orders with respect to the disease diagnosis as
well as differentiability.

Figure 6 presents the application of classical derivative to the
cancer cell dataset, besides that of the MLP algorithm application
to the new dataset (cd_cancer cell dataset), which provides the
orders’ performance with respect to the disease diagnosis and
differentiability.

CFODs indicate the condition of higher conditions concerning
regularity in terms of differentiability. The related derivative needs
to be calculated initially for the fractional derivative of a function
in the sense of Caputo.

Table 3 presents the outcomes generated by CFODs; and the
classical derivative application is contrasted with the outcomes of
classical derivative showing that CFOD (with order 0.8) provides
us with better results. The result that MLP algorithm application
cancer cell dataset based on CFOD and classical calculus yielding
the respective highest accuracy results is presented for the related
orders: for order 0.2 (79.4376%); for order 0.5 (80.1406%); for order
0.8 (83.4798%) and for order 1 (79.9649%) in Table 3. It is observed
that the results obtained by CFOD application with changing or-
ders produces more accurate outcomes. As a consequence, the
CFOD for differentiable functions generated accuracy rates with
more robustness. Hence, the definition for CFODs is performed
for differentiable functions while functions without any first-order
derivative may own fractional derivatives with all orders which
equal to lower than 1.
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Figure 4 Computation-related application of CFODs and Classical derivative for the three parameters (a) The radius (b) The symmetry and (c)
The smoothness for the cancer cell dataset.

■ Table 2 MLP algorithm’s Network Parameters

Network Properties Values

Adoption learning function Learngdm

Training Properties Levenberg- Marquart (’trainlm’)

Transfer function Tansig

Performance Mean squared error (MSE)

Epoch number 1000

Hidden layer number 3

Test dataset (85x1)

Training dataset (399x1)

Validation dataset (85x1)

Output Cancer

■ Table 3 The optimized outcomes derived from CFODs with three-parametric MLF and classical derivatives for the mfc_cancer cell
dataset with MLP algorithm

Percentage
Fractional of Correct Multiclass Area Under
Differential Classification Sensitivity Precision Specificity F1-score Classification ROC Curve
Type/Order (Accuracy) (MCC) the (AUC)
Caputo/0.2 79.4376 100 75.3165 44.8113 85.9206 0.58095 0.72406
Caputo/0.5 80.1406 96.9188 77.2321 51.8868 85.9627 0.57669 0.76685
Caputo/0.8 83.4798 98.0392 80.0915 58.9623 88.1612 0.65292 0.79883
Caputo/1 79.9649 99.1597 76.1290 47.6415 86.1314 0.58548 0.74041
Dataset 80.6678 96.9188 77.7528 53.3019 86.2843 0.58816 0.77370
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(f) Confusion matrix for mfc_cancer cell dataset

(e) Linear regression graphs for mfc_cancer cell dataset

(d) Training state for mfc_cancer cell dataset

(c) Error histogram for mfc_cancer cell dataset

(b) ROC analyses for mfc_cancer cell dataset

(a) Best validation performance (MSE) for mfc_cancer cell dataset

Figure 5 The MLP algorithm application to the mfc_cancer cell dataset (a) Best validation performance analyses (b) ROC analyses (c) Error
Histograms with 20 Bins (d) Training state analyses (e) Linear regression graphs and (f) Confusion matrices
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Figure 6 The MLP algorithm application to the cd_cancer cell dataset (a) Best validation performance analyses (b) ROC analyses (c) Error
Histograms with 20 Bins (d) Training state analyses (e) Linear regression graphs and (f) Confusion matrices

The Application of Computational Complexity based on Caputo
FOD to the cancer cell dataset

Computational complexity, is utilized to classify the computational
problems. As it is not possible to address some matters in compu-
tational biology in a computational sense, it could be limiting to
search for the optimal solution for some practical reasons. Conse-
quently, those kinds of matters are addressed through heuristics
and approximations to be able to overcome the computational
requirements that bring about solutions which are suboptimal. Yet,
when essential complexity of an algorithm is investigated, it can
also be possible to identify the algorithm’s efficiency.

Bearing that in mind, during the conducting of the complexity
computations for the three-parametric ML function, CFOD and
classical derivative, FFT, integration, gamma function and mth

derivative were shown in Big O form.

The computational complexity application for the MLF with
three parameters is as per Eq. 10.

Eγ
α,β(x) = ∑∞

n=0
Γ(γ+n)

Γ(γ)Γ(nα+β)
. xn

n! α, β, δ > 0, x ∈ RN (9)

O(Eγ
α, β(x)) = O( Γ(γ+n)

Γ(γ)Γ(nα+β)
. xn

n! )
(10)

The application of the computational complexity for CFOD based
on the 3 parametric ML function can be seen according to Eq.11.

O(Dα f (t)) = O
(

1
Γ(m−α)

∫ t
0

f (m)(τ)
(t−τ)(α+1−m) dτ

)
O(Dα f (t)) = O(log(mα)−2.N2.OML(N)m)

O(Dα f (t)) = O(log(1α)−2.N2.OML(N))

(11)

The outcomes of the computational complexity application de-
pending on the CFOD and classical derivatives to the cancer cell
dataset are presented in Table 4.

While carrying out the complexity computations with regard to
three-parametric MLF (α, β, γ), CFOD, classical derivative, FFT,
integration, gamma function and mth derivative are handled in the
form of Big O.

The outcomes regarding the application of computational com-
plexity based on Caputo FOD and classical derivatives to the cancer
cell dataset are presented in Table 4.

CFOD is α ≤ 1, then α the value goes down. The complexity, in
the meantime, goes up logarithmically. When this condition is at
stake, α = 1, then it belongs to the category of trivial.

As per the complexity outcomes obtained for CFOD related to
the computational complexity as obtained (presented in Table 4),
as it can be observed, the lowest complexity order is for 0.8 and
the highest complexity is the case for order 0.2.

The lowest order, namely 0.8, with the least complexity of
CFOD, provides the most successful outcome as 83.80% in the
diagnostic and classification purpose of disease related to cancer
cell by the ANN algorithm.
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■ Table 4 Outcomes of the computational complexity application depending on theCaputo FOD and classical derivativeto the cancer
cell dataset.

Order Cancer cell dataset (N=24)

(α)= 0.2 (N/log(0.8))2*(log(-18*N-4)/N) = 2.9294e+03+1.5142e+03i

Caputo FOC (for Eq.11) (α)= 0.5 (N/log(0.5))2*(log(-18*N-4)/N) = 3.0360e+02+1.5693e+02i

(α)= 0.8 (N/log(0.2))2*(log(-18*N-4)/N) = 56.3116+29.1080i

(α)= 1 (N/log(0))2*(log(-18*N-4)/N) = 0

CONCLUDING REMARKS AND FUTURE DIRECTIONS

Computational complexity which concerns the way needed re-
sources are employed for the answer and solution of the problem
is important to address the computational problems in complex
and nonlinear systems. Since it could not be to address some of the
problems in computational biology in a computational perspective,
it could be restricting to seek the optimal solution due to practical
reasons. As a result, sometimes those problems are addressed
by heuristics and approximations so that one can overcome the
computational requirements; yet, such an approach may result in
solutions which are suboptimal. When the essential complexity of
an algorithm is explored, the efficiency of the algorithm is able to
be assessed through computational complexity. As uncertainties
in the complex processes bring about computational complexity,
fractional-order models are employed in a widespread way to de-
scribe the real processes and phenomena. Fractional-order calculus
concerns the integration and differentiation of non-integer orders
and it is dependent on fractional-order thinking. The aim is to
enable a better grasp of complex and dynamic systems, to improve
the processing and control of complex elements and to make the
optimization performance more optimal.

Dynamic complexity arises from the latent factors and the in-
teractions between factors which may have a significant influence
on the systems’ performance. It is not possible to characterize
some particular complex systems in nature by classical integer-
order calculus models; so a fractional-order system based model
which is capable of describing the system performance more ac-
curately is needed. Different levels of complexity are one of the
most characteristic features of biological systems; therefore, the
rules of how complex behaviors and patterns emerge and the novel
physical as well as chemical properties and functions with relation
to biological entities need to be holistically understood. The be-
havior of high-level structures is also more than the whole of the
direct interactions between one single component. Biocomplexity,
as an integrative approach and philosophy, addresses the emer-
gence of complex and self-organized behaviors which are based
on the interaction of many simple agents. This sort of an emergent
complexity represents the organization of molecules into cellular
machinery, including the organization of cells into tissues and to
the organization of individuals into communities.

It should also be noted that biocomplexity arises from many dif-
ferent interactions including biological, environmental, chemical,
behavioral, physical and social ones, with the presence of multiple
scales. Within the mathematics-informed framework based on
FOC and ANNs, the integrative approaches can be employed for
reliable and accurate comprehension of different complex biolog-
ical processes that make up spatio-temporal scales. This line of
methods has the aim of achieving optimized solutions through
maximizing the accuracy of the model and minimizing the com-

putational cost. In this way, capturing the significant and regular
attributes on those spatio-temporal scales can provide the gener-
alization of classical calculus by the extension of the conceptions
related to biological processes and systems. Computational com-
plexity also comes to the foreground since it is used to measure
the extent of work required for the solution of different problems
while providing us with a practical classification tool when one
deals with complex problems. Accordingly, the present study has
aimed at constructing a robust as well as an accurate model reliant
upon the integration of FOD as well as ANN for the diagnostic
and predictive differentiability aims for cancer cell propensity.

We have also attempted to show the importance of computa-
tional complexity to obtain the FOD with the lowest complexity so
that it could be possible to obtain the optimized solution. Based on
the experimental results obtained from this study, the CFOD has
yielded the most accurate results for order 0.8 in terms of diagnosis
and differentiability of the disease, which also has shown its critical
role, suggesting the selection of the appropriate alternative mathe-
matical models can be established in advance so that we can take
uncertain situations under control and conduct the management
effectively. The results also highlight the advantages of CFOD
since it allows the conventional initial and boundary conditions to
be encompassed in the formulation of the problem as well as its
derivative for the constant as zero. On the flipside, the functions
that lack differentiable properties do not have fractional derivative,
that is to say, Caputo derivative’s application areas remain has to
be decreased. Furthermore, other fractional order derivatives (Rie-
mann–Liouville, Grünwald-Letnikov and so forth) can be applied
and compared with the machine learning methods with respect to
different datasets. In view of these, the multifarious scheme with
the related integrative steps, based on the application of FOC to
the optimization means and the experimental results, have enabled
us to emphasize the benefits of model accuracy maximization and
cost function minimization.

Considering these elements and approach addressed in this
study, the below directions can be stated for future investigation:

• The integrated method of fractional-order calculus and Artifi-
cial Intelligence (AI) methods can have a facilitating role for
the prediction of future occurrence of manifold phenomena
while comparing the predicted data with the actual data to
validate with high-performance computing.

• Fractional order and fractional derivatives along with the gen-
eralization of integer calculus order, addressing the varying
orders of derivatives and integrals as used in this study, can
provide a viable framework to enhance optimization tasks
focusing on complex order optimization.

• The increased capability of machine learning algorithms with
computing power and accuracy for spectral data, signals, im-
ages and so forth in connection with the inherent properties
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help the managing of memory effects and apparently chaotic
behavior in critical multi-stage decision-making processes.

• The promoting of new methods to enhance performance out-
comes can be suggested to take strategic actions to yield opti-
mal results for accurate prediction of future in areas charac-
terized by dynamic complexity where "know-why" research
activities are required to develop models that merge phe-
nomenological and data-oriented approaches in other appli-
cable domains.

• The sophisticated integrative and multi scale approach used
with computer-assisted proofs focusing on computational bio
complexity fosters inter- and trans disciplinary work through
the employment of computational power and combined ex-
pertise of different complex realms.

All in all, the experimental results obtained enable the diag-
nosis and differentiability in cancer cell prediction based on
computational complexity, fractional order derivatives and
ANN. Taken together, the scheme proposed with a multi-stage
approach and/or novel methods in this study has demonstrated
the proposed method’s applicability and satisfactory predictive
aspect in different domains characterized by dynamic, chaotic,
heterogeneous and nonlinear nature displaying varying levels of
complexity, which is of crucial value in terms of timely detection
and taking action toward appropriate and tailored treatments.
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University, Istanbul, Türkiye, §Department Electronics and Communications Engineering, Yıldız Technical University, Istanbul, Türkiye.

ABSTRACT In this paper, a new set of lorenz-like hyper-chaotic equation set is obtained using the anti-control
procedure. The chaoticity of the system is verified by MATLAB simulations using mathematical analysis
methods. A new OTA-C circuit is designed for the new equation set. In the difference term addition technique,
synchronizing the OTA-C circuit with a memristor rather than a resistor is proposed. Circuit design and
synchronization are performed in PSpice simulation. The fact that the transconductance of the OTA element
can be easily adjusted with a bias current provides the parameters that will make the proposed dynamic circuit
a chaotic oscillator. The advantage of the proposed synchronization method is that the memristor automatically
reaches the value that will provide the required weight of the differential term required for synchronization,
rather than the computational methods used to determine the weight.
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INTRODUCTION

Chaotic systems are nonlinear systems highly sensitive to initial
conditions. It is important to create new chaotic systems due
to their widespread use in secure communication, cryptography,
chemical reactions, etc. In 1963, the first chaotic attractor was found
by Lorenz (1963). Following that, Rössler (1976), Rabinovich and
Fabrikant (1979), and Chua et al. (1993b) generated new chaotic
equations. Many different methods have been used while produc-
ing new chaotic systems. Generating a new chaotic equation set
with the control parameter method is a widely used method Deng
et al. (2014); Zhou et al. (2008); Lü et al. (2002).

Chua’s chaotic circuit design with memristor pioneered the
work of chaotic circuit design. Later, in most studies, chaotic circuit
design was made using the operational amplifier (OPAMP) compo-
nent Fan et al. (2019); Sundarapandian and Pehlivan (2012); Pappu
et al. (2017); Pehlivan and Uyaroğlu (2010); Lai et al. (2017); Akgul
et al. (2016); Cao and Zhao (2021). Only a few studies on circuit im-
plementation of the chaotic system are based on OTA Karawanich
and Prommee (2022); Yildirim (2022). The advantage of OTA over
OPAMP component is its high output impedance, wide band gap,
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and transconductance gain which can be changed with bias cur-
rent. This provides an important advantage in chaotic circuits.
The chaotic circuit design with OTA presented in Karawanich and
Prommee (2022); Yildirim (2022) has been designed, but there is
no study on its synchronization. In this study, a simpler structure
is proposed by using only OTA, capacitor, and analog multiplier.

According to Carroll and Pecora (1995), Pecora and Carrol pro-
posed the concept of first chaos synchronization, which is the
foundation of chaotic secure communication. Following that, pas-
sive components such as resistors, inductors, and capacitors were
used Chua et al. (1993a); Yao et al. (2020); Zhang et al. (2020a); Xu
et al. (2019a); Yao et al. (2019). Synchronization studies are available
by using active components such as Deniz et al. (2018); Uyaroğlu
and Pehlivan (2010). Considering the important effect of the mem-
ristor in chaotic circuits, synchronization studies with memristor
have become widespread in recent years. The memristor has less
power consumption than other components because it is a passive
component. In addition, although the memristor is nonlinear, it
provides linear behavior in a certain frequency range. In this study,
because of the memristor’s properties, the OTA-C chaotic circuit is
synchronized with the memristor.

In the literature, there is a method of synchronizing memristors
by connecting them in anti-parallel. With this method, it is possi-
ble to change the receiver and transmitter, but since the structure
draws current from both the receiver and transmitter sub-circuits,
the original ordinary differential equation set could not be pre-
served on the transmitter side Gambuzza et al. (2015). Whereas,
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in most other methods, the original equations are preserved on
the transmitting side, while only different terms are involved on
the receiving side. There are articles that synchronize with dif-
ferent connection types besides anti-parallel connection, but the
same mathematical deformation is also present in them Zhang et al.
(2020b); Escudero et al. (2020); Wang et al. (2021); Xu et al. (2019b).

The method proposed in this study is based on the method of
adding the difference term Cuomo et al. (1993) which is already
found in the literature, to obtain this term over the memristor
rather than the resistor. Instead of finding this coefficient with an
optimization algorithm and producing this term with a suitable
resistor, the memristor element connected instead of the resistor,
both creates this coefficient and changes its value as long as there is
a synchronization error due to the error expression passing over it,
and reaches the value where error-free synchronization is provided
by itself. In this way, the coefficient is self-adjusted by the value
change of the memristor. The researcher eliminates the time cost
with this self-adaptation, and this coefficient, which can change
over time due to effects such as environmental noises and aging,
constantly brings itself to the required value.

OTA-C circuit is designed by using fewer components of the
proposed new chaotic equation. A new contribution has been
made to the literature by synchronizing the designed chaotic OTA-
C circuit with the memristor. In this study, the derivation and
analysis of the new set of chaotic equations are explained. De-
signing the OTA-C circuit of the new chaotic equation is given.
The synchronization of the designed circuit with the memristor is
given. Finally, the results of the study are evaluated.

A NEW SET OF CHAOTIC EQUATIONS AND ANALYSIS

A new chaotic equation is derived by applying the anti-control
procedure to the Lorenz equation. The Lorenz equation is shown
in the Equation 1. In the equation, ẋ, ẏ, ż are state variables, σ, p, β
are parameters.

ẋ = σ(y − x)
ẏ = x(p − z)− y
ż = xy − βz

(1)

The anti-control method is applied to the Lorenz equation.

ẋ = σ(y − x) + u = σ(y − x) + l1x + l2y + l3z
ẏ = x(p − z)− y
ż = xy − βz

(2)

Here, u = 11x + 12y + 13z is the linear feedback controller.
The Jacobian matrix of the Equation 2 evaluated at a random

point is given in 3.

J =


−σ + l1 σ + l2 l3

p −1 −x

y x −β

 (3)

l2, l3 do not contribute to the Lyapunov exponents of the system,
since they do not contribute to the eigenvalues.

Thus, parameters are chosen as l2 = 13 = 0. In this case,
the control parameter is u = 11x. The new Lorenz-like chaotic
equation is obtained in the Equation 4.

ẋ = σ(y − x) + l1x
ẏ = x(p − z)− y
ż = xy − βz

(4)

The new system is chaotic when parameter values σ = 10, p =
28, β = 8/3, l1 = 1. At initial conditions x(0) = 0.9, y(0) =
0.5, z(0) = 0.1, the attractors of the system are in Figure 1. As time
passes, the orbits around this created attractor scan the entire space,
never passing a point they passed. The chaotic state of the new
system is investigated by time series, frequency analysis, Jacobian
matrix, Lyapunov exponents, and bifurcation diagram analysis.

State variables are observed over time; state variables that ex-
hibit irrational behavior are referred to as chaotic. The time series
results of the system are given in Figure 2. Depending on its sen-
sitivity to different initial conditions and parameter values, it can
exhibit various behaviors such as equilibrium and periodicity.

The frequency spectrum of chaotic signals is continuous in a
wide range. The frequency spectrum of each state variable ob-
tained for the new chaotic system is given in Figure 3.

The jacobian matrix Equation 5 obtained from each equation in
the differential equation set is given.

J =


−σ + l1 σ + l2 l3

p −1 −x

y x −β

 (5)

The divergence value is obtained from the jacobian matrix
∇V = −σ + l1 − 1 − β = −38/3. Since it is ∇V < 0, the behavior
of the system is chaotic at the right initial conditions. Lyapunov
exponents are expressions of interactions and differences between
trajectories of phase space characteristics formed under close ini-
tial conditions. If the largest exponent is negative, the system
converges to a value over time and becomes independent of initial
conditions Özer and Akın (2005). If the largest exponent is posi-
tive, the distance between the orbits increases and the system is
sensitive to initial conditions, that is, chaotic. If there are multiple
positive Lyapunov exponents, the system is hyperchaotic Wolf
et al. (1985). The new system’s Lyapunov exponents are shown
in Figure 4. The Lyapunov exponents obtained with the param-
eters of the system selected as σ = 10, p = 28, β = 8/3, l1 = 1
are L1 = 8.38652, L2 = 0.632274, L3 = −21.6813. Since there are
two positive Lyapunov exponents, the new set of equations is
hyperchaotic.

By using Lyapunov Exponents, the Lyapunov dimension or
Kaplan-Yorke dimension can be calculated as in Equation 6, Grass-
berger and Procaccia (1983).

Dky = j +
1

|Lj+1|
Σj

i=1Li (6)

j is the largest integer for witch 0 ≤ L1 + ... + Ln. For the
proposed circuit j = 2 and the Kaplan-Yorke dimension Dky can
be calculated as 7.

Dky = 2 +
L1 + L2
|L3|

= 2, 41597 (7)
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(a) Vx − Vy − Vz chaotic attractor.

(b) Vy − Vz chaotic attractor.

(c) Vx − Vz chaotic attractor.

(d) Vx − Vy chaotic attractor.

Figure 1 Phase portraits of the system

Figure 2 Time series of the system.

Figure 3 Frequency spectrum of the system.

Figure 4 Lyapunov exponents of the system.

54 | Aydın et al. CHAOS Theory and Applications



For original Lorenz system with the well-known coefficients
σ = 10, p = 28, β = 8/3, and L1 = 0.054129, L2 = 0.727225, L3 =
−14.448021, j is also equal to 2 and the Kaplan-Yorke dimension,

Dky = 2 +
L1 + L2
|L3|

= 2, 05408 (8)

Thus, the new chaotic system has a larger Kaplan-Yorke dimen-
sion than the original Lorenz system.

The bifurcation diagram is the points at which the variables x
and y intersect the equation’s solution curve on the plane formed
by the two variables for each value of the parameter p.The bifur-
cation diagram obtained for 1 < p < 350 and initial conditions
(0.9,0.5,0.1) in the new set of equations is shown in Figure 5.

Figure 5 Bifurcation diagram of the system.

OTA-C CHAOTIC CIRCUIT DESIGN

The new chaotic equation set circuit design is created using OTA,
analog multiplier (AM), and capacitor components. While generat-
ing the OTA-C circuit, each chaotic state variable is represented by
voltage state variables corresponding to a capacitor voltage. The
expressions of the derivatives of these state variables are tried to be
formed as the sum of the terms of the current magnitudes divided
by the capacitor values, according to dvC(t)

dt = 1
C iC(t) and the defin-

ing equation of the OTA Io = gm(V+ −V−). A circuit as in Figure 6
is obtained electrically by collecting the currents at the nodes to
which the grounded capacitors are connected. The equation set
with the circuit parameters is obtained in the Equation 9.

dVx

dt
=

gm1

Cx
(Vy − Vx) +

gm2

Cx
Vx

dVy

dt
=

gm3

Cy
Vx −

kgm4

Cy
VxVz −

gm5

Cy
Vy

dVz

dt
=

kgm6

Cz
VxVy −

gm7

Cz
Vz

(9)

Taken as Cx = Cy = Cz = 10nF, gm1 = 100µS, gm2 =
27µS, gm3 = 1mS, gm4 = 280µS, gm5 = gm7 = 10µS, gm6 = 1nS.

While performing PSpice simulations of the circuit in Figure 6,
the ideal OTA model realized with discrete elements and the
AD633 integrated circuit macro model as analog multiplier were
used. The multiplier constant of the AD633 IC is k = 0.1 V-1. The
simulation results of the voltage values of the state variables of the

Figure 6 OTA-C chaotic circuit of the system.

circuit according to time are given in Figure 7. Chaotic attractors
are also shown in Figure 8.

Figure 7 Time series of the simulated system.

SYNCHRONIZATION OF OTA-C CIRCUIT WITH MEMRISTOR

The synchronization of two chaotic circuits with different initial
conditions is provided by a memristor and a circuit with OTA
by adding the difference term attached to it (Sambas et al. 2013).

CHAOS Theory and Applications 55



(a) Vx − Vy chaotic attractor.

(b) Vx − Vz chaotic attractor.

(c) Vy − Vz chaotic attractor.

Figure 8 Phase portraits of the simulated system.

According to this method, the equation of the receiver is as in
Equation 10.

V
◦
xr
= σ(Vyr − Vxr ) + Vxr

V
◦
yr
= Vxr (p − Vzr )− Vyr

V
◦
zr
= Vxr Vyr − βVzr − ξ(Vzt − Vzr )

(10)

To ensure that the circuits are both chaotic and synchronized,

the value of ξ should be either optimized or observed by drawing a
bifurcation diagram of the error as shown below. According to the
bifurcation diagram in the Figure 9, synchronization is provided
in the proposed circuit for ξ>1.8.

Figure 9 Bifurcation diagram of the error.

In this study, it is suggested that the necessity of optimizing the
resistance value is eliminated by replacing the fixed resistor with
the memristor element. The proposed method is to start from any
state of the memristor and wait for the desired coefficient to occur
spontaneously due to the nature of the memristor. In this way,
when the coefficient needs to be updated due to a change in the
circuit due to time or environmental factors, it will automatically
reach the needed value and be synchronized again.

The weight of the difference term addition circuit is self-
adjusted by the value change of the memristor. The synchroniza-
tion circuit is given in Figure 10. Accordingly, for Equation 10, it
will be ξ = 1

Cz(M||R) . Due to the nature of the memristor, as long as
there is an error, the memristance value will change in the direction
of reducing the error, since Vzt − Vzr = 0 after synchronization is
achieved, no current will flow from this part of the circuit and the
circuits will operate synchronously.

The parameter values of the receiver and transmitter circuits
are the same. The initial conditions of the receiver circuit are
vx(0) = 0.05V, vy(0) = 0.01V, vz(0) = 0.05V, the initial conditions
of the transmitter circuit are vx(0) = 0.09V, vy(0) = 0.05V, vz(0) =
0.01V. The value of the resistor connected in parallel with the mem-
ristor is R = 30kΩ. Synchronization is realized over the z state
variable of the receiver and transmitter circuit. The simulation
results are shown in Figure 11. Circuits synchronized at 75ms. It
is shown that this is the contribution of the OTA-C design of the
chaotic circuit and the memristor circuit model used in synchro-
nization.

In the memristor simulations, the PSpice code of the mem-
ristor model proposed by Joglekar was used (Haron et al. 2014).
This model has been proposed for titanium dioxide memristor
nanostructures (Joglekar and Wolf 2009). The window function
associated with the p exponent is used to provide the necessary
nonlinearity. The p parameter is usually between 1 and 100. It
is defined by Equations 11 and 12, where the memristor model
represents the Joglekar window (Joglekar and Wolf 2009):

f j(x) = 1 − (2x − 1)2p (11)
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dx
dt

= ki f (x)

v = i[RON x + ROFF(1 − x)]

k =
µRON

D2

(12)

where x is the memristor state variable, f (x) is the window func-
tion, p = 10 is a parameter of the Window Function, k = 1000
is a constant dependent on memristor physical parameters, µ =
10−14m2/(Vs) is the ionic drift mobility, D = 10nm is the mem-
ristor length, i is the memristor current, v is the applied voltage,
RON = 100Ω and ROFF = 16kΩ are the ON and OFF resistances
of the memristor.

Figure 10 Synchronization of chaotic OTA-C circuits.

(a) Synchronization of transmitter and receiver signals

vxt and vxr according to Figure 10.

(b) Memristance value change.

Figure 11 OTA-C chaotic synchronization charts.

CONCLUSION

In this study, a new chaotic equation set is obtained from the
Lorenz equation using the anti-control procedure. Then, the circuit
of this equation set is designed. Ideal OTA, capacitor, and analog
multiplier are used in the designed circuit. This provides it less
costly in case of physical implementation. The synchronization of
the circuit was realized in a short time of 75ms using the memristor
and differential receiver circuit with OTA. At the same time, the
use of a memristor component provided low power consumption
and time-saving.
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