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TÜRKİYE

Sidney Allen Morris
Federation University,

AUSTRALIA

Serkan Aracı
Hasan Kalyoncu University,
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i



Contents

1 On the Almost η-Ricci Solitons on Pseudosymmetric Lorentz Generalized Sasakian Space
Forms
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Abstract

In this paper, we consider Lorentz generalized Sasakian space forms admitting almost
η−Ricci solitons in some curvature tensors. Ricci pseudosymmetry concepts of Lorentz
generalized Sasakian space forms admitting η−Ricci soliton have introduced according
to the choice of some special curvature tensors such as Riemann, concircular, projective,
M−projective, W1 and W2. Then, again according to the choice of the curvature tensor,
necessary conditions are given for Lorentz generalized Sasakian space form admitting
η−Ricci soliton to be Ricci semisymmetric. Then some characterizations are obtained and
some classifications have made.

1. Introduction

The notion of Ricci flow was introduced by Hamilton in 1982. With the help of this concept, Hamilton found the canonical metric on a
smooth manifold. Then Ricci flow has become a powerful tool for the study of Riemannian manifolds, especially for those manifolds with
positive curvature. Perelman used Ricci flow and it surgery to prove Poincare conjecture in [1, 2]. The Ricci flow is a flow is an evolution
equation for metrics on a Riemannian manifold defined as follows:

∂

∂ t
g(t) =−2S (g(t)) .

A Ricci soliton emerges as the limit of the solitons of the Ricci flow. A solution to the Ricci flow is called Ricci soliton if it moves only by a
one parameter group of diffeomorphism and scaling.
During the last two decades, the geometry of Ricci solitons has been the focus of attention of many mathematicians. In particular, it has
become more important after Perelman applied Ricci solitons to solve the long standing Poincare conjecture posed in 1904. In [3], Sharma
studied the Ricci solitons in contact geometry. Thereafter Ricci solitons in contact metric manifolds have been studied by various authors
such as Ashoka et al. in [4, 5], Bagewadi et al. in [6], Ingalahalli in [7], Bejan and Crasmareanu in [8], Blaga in [9], Chandra et al. in [10],
Chen and Deshmukh in [11], Deshmukh et al. in [12], He and Zhu [13], Atçeken et al. in [14], Nagaraja and Premalatta in [15], Tripathi
in [16] and many others.
φ−sectional curvature plays the important role for Sasakian manifold. If the φ−sectional curvature of a Sasakian manifold is constant, then
the manifold is a Sasakian-space-form [17]. P. Alegre and D. Blair described generalized Sasakian space forms [18]. P. Alegre and D. Blair
obtained important properties of generalized Sasakian space forms in their studies and gave some examples. P. Alegre and A. Carriazo later
discussed generalized indefinite Sasakian space forms [19]. Generalized indefinite Sasakian space forms are also called Lorentz-Sasakian
space forms, and Lorentz manifolds are of great importance for Einstein’s theory of Relativity.
In this paper, we consider Lorentz generalized Sasakian space forms admitting almost η−Ricci solitons in some curvature tensors. Ricci
pseudosymmetry concepts of Lorentz generalized Sasakian space forms admitting η−Ricci soliton have introduced according to the choice
of some special curvature tensors such as Riemann, concircular, projective, M−projective, W1 and W2. Then, again according to the choice
of the curvature tensor, necessary conditions are given for Lorentz generalized Sasakian space form admitting η−Ricci soliton to be Ricci
semisymmetric. Then some characterizations are obtained and some classifications have made.
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2. Preliminaries

Let M̃ be a (2n+1)−dimensional semi-Riemannian manifold. If the M̃ semi-Riemannian manifold with (φ ,ξ ,η ,g) structure tensors satisfies
the following conditions, this manifold is called ε− almost contact metric manifold and (φ ,ξ ,η) triple is called almost contact structure.

φξ = 0, η ◦φ = 0, η (ξ ) = 1, φ
2 =−Id +η⊗ξ ,

g(Y1,Y2) = g(φY1,φY2)+ εη (Y1)η (Y2) , η (Y1) = εg(Y1,ξ )

where

ε = g(ξ ,ξ ) =±1.

If dη and g provide the relation

dη (Y1,Y2) = g(Y1,φY2)

then M̃ is called a contact pseudometric manifold and the (φ ,ξ ,η) triple is called a contact structure.

Let be define a
(

h
(

d
dY1

)
,Y2

)
vector field on R×M̃, where Y1 is a coordinate on R and h is a C∞ function on R×M̃. The structure defined as

J
(

h
d

dY1
,Y2

)
=

(
η (Y2)

d
dY1

,φY2−hξ

)
on R×M̃ is called a almost complex structure and J2 =−id. If J is integrable, the almost contact structure (φ ,ξ ,η) is said to be normal.
If Y1 is perpendicular to ξ , the plane spanned by Y1 and φY1, is called the φ−section. The curvature of the φ -section is called the φ -sectional
curvature. The curvature of the indefinite Sasakian manifold defined in this way is precisely determined by the φ−section curvature. If the
φ−section curvature of the indefinite Sasakian manifold is equal to a constant c, the curvature tensor of this manifold is defined as

R̃(Y1,Y2)Y3 =

(
c+3ε

4

)
{g(Y2,Y3)Y1−g(Y1,Y3)Y2}+

(
c− ε

4

)
{g(Y1,φY3)φY2−g(Y2,φY3)φY1 +2g(Y1,φY2)φY3}

+

(
c− ε

4

)
{η (Y1)η (Y3)Y2−η (Y2)η (Y3)Y1 +εg(Y1,Y3)η (Y2)ξ − εg(Y2,Y3)η (Y1)ξ} .

For an ε−almost contact metric manifold M̃, if there are z1,z2,z3 ∈C∞
(
M̃
)

functions such that

R̃(Y1,Y2)Y3 =z1 {g(Y2,Y3)Y1−g(Y1,Y3)Y2}+z2 {g(Y1,φY3)φY2−g(Y2,φY3)φY1 +2g(Y1,φY2)φY3}
+z3 {η (Y1)η (Y3)Y2−η (Y2)η (Y3)Y1 +εg(Y1,Y3)η (Y2)ξ − εg(Y2,Y3)η (Y1)ξ}

then manifold M̃ is called a generalized indefinite Sasakian space form.
In this article, only the Lorentzian case, which corresponds to the ε = −1, where the index of the metric is 1, will be discussed. Such
manifolds are called Lorentz generalized Sasakian space forms and are denoted by M2n+1 (z1,z2,z3) . Thus, the curvature tensor of a
(2n+1)−dimensional Lorentz generalized Sasakian space form is defined as

R̃(Y1,Y2)Y3 =z1 {g(Y2,Y3)Y1−g(Y1,Y3)Y2}+z2 {g(Y1,φY3)φY2−g(Y2,φY3)φY1 +2g(Y1,φY2)φY3}
+z3 {η (Y1)η (Y3)Y2−η (Y2)η (Y3)Y1 −g(Y1,Y3)η (Y2)ξ +g(Y2,Y3)η (Y1)ξ} .

(2.1)

Lemma 2.1. Let M2n+1 (z1,z2,z3) be the (2n+1)−dimensional Lorentz generalized Sasakian space form. The following relations are
provided for M2n+1 (z1,z2,z3).

5̃Y1
ξ = (z1 +z3)φY1, (2.2)

R̃(Y1,ξ )Y3 =−(z1 +z3) [g(Y1,Y3)ξ +η (Y3)Y1] , (2.3)

R̃(ξ ,Y2)Y3 = (z1 +z3) [g(Y2,Y3)ξ +η (Y3)Y2] , (2.4)

R̃(Y1,Y2)ξ = (z1 +z3) [η (Y1)Y2−η (Y2)Y1] , (2.5)

η
(
R̃(Y1,Y2)Y3

)
= (z1 +z3)g(η (Y2)Y1−η (Y1)Y2,Y3) , (2.6)

S (Y1,Y2) = (2nz1 +3z2 +z3)g(Y1,Y2)+(3z2− (2n−1)z3)η (Y1)η (Y2) , (2.7)

S (Y1,ξ ) =−2n(z1 +z3)η (Y1) , (2.8)

QY1 = (2nz1 +3z2 +z3)Y1 +((2n−1)z3−3z2) , (2.9)

Qξ = 2n(z1 +z3)ξ , (2.10)

where R̃,S and Q are the Riemann curvature tensor, Ricci curvature tensor and Ricci operator of M2n+1 (z1,z2,z3), respectively.

Let M be a Riemannian manifold, T is (0,k)−type tensor field and A is (0,2)−type tensor field. In this case, Tachibana tensor field Q(A,T )
is defined as

Q(A,T )(X1, ...,XK ;Y1,Y2) =−T ((Y1∧A Y2)X1, ...,Xk)− ...−T (X1, ...,Xk−1,(Y1∧A Y2)Xk) , (2.11)

where

(Y1∧A Y2)Y3 = A(Y2,Y3)Y1−A(Y1,Y3)Y2, (2.12)
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k ≥ 1, X1,X2, ...,Xk,Y1,Y2 ∈ Γ(T M).
Precisely, a Ricci soliton on a Riemannian manifold

(
M̃,g

)
is defined as a triple (g,ξ ,λ ) on M̃ satisfying

Lξ g+2S+2λg = 0 (2.13)

where Lξ is the Lie derivative operator along the vector field ξ and λ is a real constant. We note that if ξ is a Killing vector field, then the
Ricci soliton reduces to an Einstein metric (g,λ ) . Futhermore, in [20], generalization is the notion of η−Ricci soliton defined by J.T. Cho
and M. Kimura as a quadruple (g,ξ ,λ ,µ) satisfying

Lξ g+2S+2λg+2µη⊕η = 0 (2.14)

where λ and µ are real constants and η is the dual of ξ and S denotes the Ricci tensor of M̃. Furthermore if λ and µ are smooth functions on
M̃, then it called almost η−Ricci soliton on M̃ [20].
Suppose the quartet (g,ξ ,λ ,µ) is almost η−Ricci soliton on manifold M̃. Then,

• If λ < 0, then M̃ is shriking.
• If λ = 0, then M̃ is steady.
• If λ > 0, then M̃ is expanding.

3. Almost η−Ricci Solitons on Ricci Pseudosymmetric and Ricci Semisymmetric Lorentz Gener-
alized Sasakian Space Forms

Now let (g,ξ ,λ ,µ) be almost η−Ricci soliton on Lorentz generalized Sasakian space form. Then we have(
Lξ g

)
(Y1,Y2) =Lξ g(Y1,Y2)−g

(
LξY1,Y2

)
−g
(

Y1,LξY2

)
=ξ g(Y1,Y2)−g([ξ ,Y1] ,Y2)−g(Y1, [ξ ,Y2])

=g
(

∇ξY1,Y2

)
+g
(

Y1,∇ξY2

)
−g
(

∇ξY1,Y2

)
+g(∇Y1 ξ ,Y2)−g

(
∇ξY2,Y1

)
+g(Y1,∇Y2 ξ ) ,

for all Y1,Y2 ∈ Γ(T M) . By using φ is anti-symmetric, we have(
Lξ g

)
(Y1,Y2) = 0. (3.1)

Thus, in a Lorentz generalized Sasakian space form, from (2.14) and (3.1), we have

S (Y1,Y2)+λg(Y1,Y2)+µη (Y1)η (Y2) = 0. (3.2)

It is clear from (16) that the (2n+1)−dimensional Lorentz generalized Sasakian admitting almost η−Ricci soliton
(
M2n+1,g,ξ ,λ ,µ

)
is an

η−Einstein manifold.
For Y2 = ξ in (3.2), this implies that

S (ξ ,Y1) = (λ −µ)η (Y1) . (3.3)

Taking into account of (3.3), we conclude that

µ−λ = 2n(z1 +z3) .

Definition 3.1. Let M2n+1 be an (2n+1)−dimensional Lorentz generalized Sasakian space form. If R̃ ·S and Q(g,S) are linearly dependent,
then the M2n+1 is said to be Ricci pseudosymmetric.

In this case, there exists a function L1 on M2n+1 such that

R̃ ·S = L1Q(g,S) .

In particular, if L1 = 0, the manifold M2n+1 is said to be Ricci semisymmetric.
Let us now investigate the Ricci pseudosymmetric case of the (2n+1)−dimensional Lorentz generalized Sasakian space forms.

Theorem 3.2. Let M2n+1 be Lorentz generalized Sasakian space forms and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is a
Ricci pseudosymmetric, then

L1 =
(z1 +z3) [λ −2n(z1 +z3)]

µ

provided µ 6= 0.

Proof. Let be assume that Lorentz generalized Sasakian space form M2n+1 be Ricci pseudosymmetric and (g,ξ ,λ ,µ) be almost η−Ricci
soliton on Lorentz generalized Sasakian space forms M2n+1. That is mean(

R̃(Y1,Y2) ·S
)
(Y4,Y5) = L1Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(
T M2n+1) . From the last equation, we can easily write

S
(
R̃(Y1,Y2)Y4,Y5

)
+S
(
Y4, R̃(Y1,Y2)Y5

)
= L1

{
S
((

Y1∧g Y2
)

Y4,Y5
)
+S
(
Y4,
(
Y1∧g Y2

)
Y5
)}

. (3.4)
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If we choose Y5 = ξ in (3.4), we get

S
(
R̃(Y1,Y2)Y4,ξ

)
+S
(
Y4, R̃(Y1,Y2)ξ

)
= L1 {S (g(Y2,Y4)Y1−g(Y1,Y4)Y2,ξ ) +S (Y4,η (Y1)Y2−η (Y2)Y1)} . (3.5)

If we make use of (2.5) and (2.8) in (3.5), we have

S (Y4,(z1 +z3) [η (Y2)Y1−η (Y1)Y2])−2n(z1 +z3)η
(
R̃(Y1,Y2)Y4

)
= L1 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (Y4,η (Y1)Y2−η (Y2)Y1)} .

(3.6)

If we use (2.6) in the (3.6), we get

−2n(z1 +z3)
2 g(η (Y2)Y1−η (Y1)Y2,Y4)+(z1 +z3)S (η (Y1)Y2−η (Y2)Y1,Y4)

= L1 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (Y4,η (Y1)Y2−η (Y2)Y1)} .

If we use (3.2) in (3.5), we can write

[(z1 +z3) [2n(z1 +z3)−λ ]+ [λ +2n(z1 +z3)]L1]×g(η (Y1)Y2−η (Y2)Y1,Y4) = 0. (3.7)

It is clear from (3.7)

L1 =
(z1 +z3) [λ −2n(z1 +z3)]

λ +2n(z1 +z3)
.

This completes the proof.

We can give the results obtained from this theorem as follows.

Corollary 3.3. Let M2n+1 be a Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a Ricci semisymmetric, then λ = 2n(z1 +z3) and µ = 4n(z1 +z3) .

Corollary 3.4. Let M2n+1 be a Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a Ricci semisymmetric, then M2n+1 is an η−Einstein manifold.

Corollary 3.5. Let M2n+1 be a Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a Ricci semisymmetric, then we observe that:

(i) M2n+1 is expanding, if z1 +z3 > 0.
(ii) M2n+1 is shriking, if z1 +z3 < 0.

For a (2n+1)−dimensional semi-Riemann manifold M, the concircular curvature tensor is defined as

C (Y1,Y2)Y3 = R(Y1,Y2)Y3−
r

2n(2n+1)
[g(Y2,Y3)Y1−g(Y1,Y3)Y2] . (3.8)

For a (2n+1)−dimensional Lorentz generalized Sasakian space form, if we choose Y3 = ξ in (3.8), we can write

C (Y1,Y2)ξ =

[
(z1 +z3)−

r
2n(2n+1)

]
[η (Y1)Y2−η (Y2)Y1] , (3.9)

and similarly if we take the inner product of both sides of (24) by ξ , we get

η (C (Y1,Y2)Y3) =

[
(z1 +z3)−

r
2n(2n+1)

]
g(η (Y2)Y1−η (Y1)Y2,Y3) . (3.10)

Definition 3.6. Let M2n+1 be a (2n+1)−dimensional Lorentz generalized Sasakian space form. If C ·S and Q(g,S) are linearly dependent,
then the manifold is said to be concircular Ricci pseudosymmetric.

In this case, there exists a function L2 on M2n+1 such that

C ·S = L2Q(g,S) .

In particular, if L2 = 0, the manifold M2n+1 is said to be concircular Ricci semisymmetric.
Let us now investigate the concircular Ricci pseudosymmetric case of the Lorentz generalized Sasakian space form.

Theorem 3.7. Let M2n+1 be a Lorentz generalized Sasakian space forms and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a concircular Ricci pseudosymmetric, then

L2 =
[λ −2n(z1 +z3)] [2n(2n+1)(z1 +z3)− r]

2n(2n+1)µ
,

provided µ 6= 0.
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Proof. Let be assume that Lorentz generalized Sasakian space form M2n+1 be concircular Ricci pseudosymmetric and (g,ξ ,λ ,µ) be almost
η−Ricci soliton on Lorentz generalized Sasakian space form M2n+1. That is mean

(C (Y1,Y2) ·S)(Y4,Y5) = L2Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(
T M2n+1) . From the last equation, we can easily write

S (C (Y1,Y2)Y4,Y5)+S (Y4,C (Y1,Y2)Y5) = L2
{

S
((

Y1∧g Y2
)

Y4,Y5
)
+S
(
Y4,
(
Y1∧g Y2

)
Y5
)}

. (3.11)

If we choose Y5 = ξ in (3.11), we get

S (C (Y1,Y2)Y4,ξ )+S (Y4,C (Y1,Y2)ξ ) = L2 {S (g(Y2,Y4)Y1−g(Y1,Y4)Y2,ξ ) +S (Y4,η (Y1)Y2−η (Y2)Y1)} . (3.12)

By using of (2.8) and (3.9) in (3.12), we have

S (Y4,A [η (Y1)Y2−η (Y2)Y1])−2n(z1 +z3)η (C (Y1,Y2)Y4)

= L2 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (Y4,η (Y1)Y2−η (Y2)Y1)} ,
(3.13)

where A = (z1 +z3)− r
2n(2n+1) . Substituting (3.10) into (3.13), we have

−2n(z1 +z3)Ag(η (Y2)Y1−η (Y1)Y2,Y4)+AS (η (Y1)Y2−η (Y2)Y1,Y4)

= L2 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (η (Y1)Y2−η (Y2)Y1,Y4)} .
(3.14)

If we use (3.2) in the (3.14), we can write

{A [2n(z1 +z3)−λ ]+ [λ +2n(z1 +z3)]L2}×g(η (Y1)Y2−η (Y2)Y1,Y4) = 0. (3.15)

It is clear from (3.15),

L2 =
[λ −2n(z1 +z3)] [2n(2n+1)(z1 +z3)− r]

2n(2n+1)µ
.

This completes the proof.

We can give the results obtained from this theorem as follows.

Corollary 3.8. Let M2n+1 be Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is a
concircular Ricci semisymmetric, then M2n+1 is either manifold with scalar curvature r = 2n(2n+1)(z1 +z3) or λ = 2n(z1 +z3) .

Corollary 3.9. Let M2n+1 be Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is a
concircular Ricci semisymmetric, then we observe that:

(i) The soliton M2n+1 is expanding, if (z1 +z3)> 0.
(ii) The soliton M2n+1 is shriking, if (z1 +z3)< 0.

For a (2n+1)−dimensional semi-Riemann manifold M, the projective curvature tensor is defined as

P(Y1,Y2)Y3 = R(Y1,Y2)Y3−
1

2n
[S (Y2,Y3)Y1−S (Y1,Y3)Y2] . (3.16)

For a (2n+1)−dimensional Lorentz generalized Sasakian space form, if we choose Y3 = ξ in (3.16) we can write

P(Y1,Y2)ξ = 0, (3.17)

and similarly if we take the inner product of both sides of (3.16) by ξ , we get

η (P(Y1,Y2)Y3) = 0. (3.18)

Definition 3.10. Let M2n+1 be an (2n+1)−dimensional Lorentz generalized Sasakian space form. If P · S and Q(g,S) are linearly
dependent, then the manifold is said to be projective Ricci pseudosymmetric.

In this case, there exists a function L3 on M2n+1 such that

P ·S = L3Q(g,S) .

In particular, if L3 = 0, the manifold M2n+1 is said to be projective Ricci semisymmetric.
Let us now investigate the projective Ricci pseudosymmetry case of the Lorentz generalized Sasakian space form.

Theorem 3.11. Let M2n+1 be Lorentz Sasakian space forms and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is a projective
Ricci pseudosymmetric, then M2n+1 is either projective Ricci semisymmetric or almost η−Ricci soliton (g,ξ ,λ ,µ) reduces almost Ricci
soliton (g,ξ ,λ ) .
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Proof. Let be assume that Lorentz generalized Sasakian space form M2n+1 be projective Ricci pseudosymmetric and (g,ξ ,λ ,µ) be almost
η−Ricci soliton on Lorentz generalized Sasakian space form M2n+1. Then we have

(P(Y1,Y2) ·S)(Y4,Y5) = L3Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(
T M2n+1) . From the last equation, we can easily write

S (P(Y1,Y2)Y4,Y5)+S (Y4,P(Y1,Y2)Y5) = L3
{

S
((

Y1∧g Y2
)

Y4,Y5
)
+S
(
Y4,
(
Y1∧g Y2

)
Y5
)}

. (3.19)

If we choose Y5 = ξ in (3.19), we get

S (P(Y1,Y2)Y4,ξ )+S (Y4,P(Y1,Y2)ξ ) = L3 {S (g(Y2,Y4)Y1−g(Y1,Y4)Y2,ξ ) +S (Y4,η (Y1)Y2−η (Y2)Y1)} . (3.20)

If we make use of (2.8) and (3.17) in (3.20) we have

−2n(z1 +z3)η (P(Y1,Y2)Y4) = L3 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (Y4,η (Y1)Y2−η (Y2)Y1)} . (3.21)

If we use (3.18) in the (3.21), we get

L3 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (η (Y1)Y2−η (Y2)Y1,Y4)}= 0. (3.22)

If we use (3.2) in the (3.22), we can write

L3 [λ +2n(z1 +z3)]g(η (Y1)Y2−η (Y2)Y1,Y4) = 0. (3.23)

It is clear from (3.23),

µL3 = 0.

This completes the proof.

We can give the results obtained from this theorem as follows.

Corollary 3.12. Let M2n+1 be Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a projective Ricci pseudosymmetric, then M2n+1 is either projective Ricci semisymmetric or we observe that:

(i) The soliton M2n+1 is expanding, if z1 +z3 < 0.
(ii) The soliton M2n+1 is shriking, if z1 +z3 > 0.

For a (2n+1)−dimensional semi-Riemann manifold M, the M−projective curvature tensor is defined as

M (Y1,Y2)Y3 = R(Y1,Y2)Y3− 1
2n [S (Y2,Y3)Y1−S (Y1,Y3)Y2 +g(Y2,Y3)QY1−g(Y1,Y3)QY2] (3.24)

For a (2n+1)−dimensional Lorentz generalized Sasakian space form, if we choose Y3 = ξ in (3.24), we obtain

M (Y1,Y2)ξ =
1

2n
[η (Y2)QY1−η (Y1)QY2] , (3.25)

and similarly if we take the inner product of both of sides of (3.24) by ξ , we get

η (M (Y1,Y2)Y3) =
1
2n

S (η (Y1)Y2−η (Y2)Y1,Y3) . (3.26)

Definition 3.13. Let M2n+1 be an (2n+1)−dimensional Lorentz generalized Sasakian space form. If M · S and Q(g,S) are linearly
dependent, then the manifold is said to be M−projective Ricci pseudosymmetric.

In this case, there exists a function L4 on M2n+1 such that

M ·S = L4Q(g,S) .

In particular, if L4 = 0, the manifold M2n+1 is said to be M−projective Ricci semisymmetric.
Let us now investigate the M−projective Ricci pseudosymmetric case of the Lorentz generalized Sasakian space form.

Theorem 3.14. Let M2n+1 be Lorentz generalized Sasakian space forms and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a M−projective Ricci pseudosymmetric, then

L4 =
λ 2−2n(z1 +z3)λ

2nµ
,

provided µ 6= 0.
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Proof. Let be assume that Lorentz generalized Sasakian space form M2n+1 be projective M−projective Ricci pseudosymmetric and
(g,ξ ,λ ,µ) be almost η−Ricci soliton on Lorentz generalized Sasakian space form M2n+1. That is mean

(M (Y1,Y2) ·S)(Y4,Y5) = L4Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(
T M2n+1) . From the last equation, we can easily write

S (M (Y1,Y2)Y4,Y5)+S (Y4,M (Y1,Y2)Y5) = L4
{

S
((

Y1∧g Y2
)

Y4,Y5
)
+S
(
Y4,
(
Y1∧g Y2

)
Y5
)}

. (3.27)

If we choose Y5 = ξ in (3.27) we get

S (M (Y1,Y2)Y4,ξ )+S (Y4,M (Y1,Y2)ξ ) = L4 {S (g(Y2,Y4)Y1−g(Y1,Y4)Y2,ξ ) +S (Y4,η (Y1)Y2−η (Y2)Y1)} . (3.28)

If we make use of (2.8) and (3.25) in (3.28), we have

−2n(z1 +z3)η (M (Y1,Y2)Y4)+S
(

Y4,
1
2n

[η (Y2)QY1−η (Y1)QY2]

)
= L4 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (Y4,η (Y1)Y2−η (Y2)Y1)} .

(3.29)

By using (3.26) in the (3.29), we get

− (z1 +z3)S (η (Y1)Y2−η (Y2)Y1,Y4)+
1
2n

S (η (Y2)QY1−η (Y1)QY2,Y4)

= L4 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (η (Y1)Y2−η (Y2)Y1,Y4)} .
(3.30)

If we put (3.2) in (3.30), we can write

λ (z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4)−
λ

2n
S (η (Y2)Y1−η (Y1)Y2,Y4)

= L4 [λ +2n(z1 +z3)]g(η (Y1)Y2−η (Y2)Y1,Y4)

(3.31)

Again, if we use (3.2) in the (3.31), we obtain{
λ 2

2n − (z1 +z3)λ −L4 [λ +2n(z1 +z3)]
}
×g(η (Y2)Y1−η (Y1)Y2,Y4) = 0. (3.32)

It is clear from (3.32),

L4 =
λ 2−2n(z1 +z3)λ

2n [2n(z1 +z3)+λ ]
.

This completes the proof.

We can give the following corollaries.

Corollary 3.15. Let M2n+1 be Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a M−projective Ricci semisymmetric, then M2n+1 is either steady or η−Einstein manifold.

Corollary 3.16. Let M2n+1 be Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a M−projective Ricci semisymmetric, then M2n+1 is either steady or we observe that:

(i) The soliton M2n+1 is shriking if λ is between 0 and 2n(z1 +z3).
(ii) The soliton M2n+1 is steady if λ = 0.

(iii) The soliton M2n+1 is expanding for other cases of λ .

For a (2n+1)−dimensional semi-Riemann manifold M, the W1−curvature tensor is defined as

W1 (Y1,Y2)Y3 = R(Y1,Y2)Y3 +
1

2n
[S (Y2,Y3)Y1−S (Y1,Y3)Y2] . (3.33)

For a (2n+1)−dimensional Lorentz generalized Sasakian space form, if we choose Y3 = ξ in (3.33), we can write

W1 (Y1,Y2)ξ = 2(z1 +z3) [η (Y1)Y2−η (Y2)Y1] , (3.34)

and similarly if we take the inner product of both of sides of (3.33) by ξ , we get

η (W1 (Y1,Y2)Y3) = 2(z1 +z3)g(η (Y2)Y1−η (Y1)Y2,Y3) . (3.35)

Definition 3.17. Let M2n+1 be a (2n+1)−dimensional Lorentz generalized Sasakian space form. If W1 · S and Q(g,S) are linearly
dependent, then the manifold is said to be W1−Ricci pseudosymmetric.

In this case, there exists a function L5 on M2n+1 such that

W1 ·S = L5Q(g,S) .

In particular, if L5 = 0, the manifold M2n+1 is said to be W1−Ricci semisymmetric.
Let us now investigate the W1−Ricci pseudosymmetric case of the Lorentz generalized Sasakian space form.
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Theorem 3.18. Let M2n+1 be Lorentz generalized Sasakian space forms and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a W1−Ricci pseudosymmetric, then

L5 =
2(z1 +z3) [λ −2n(z1 +z3)]

µ

provided µ 6= 0.

Proof. Let be assume that Lorentz Sasakian space form M2n+1 be W1−Ricci pseudosymmetric and (g,ξ ,λ ,µ) be almost η−Ricci soliton
on Lorentz generalized Sasakian space form M2n+1. That is mean

(W1 (Y1,Y2) ·S)(Y4,Y5) = L5Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(
T M2n+1) . From the last equation, we can easily write

S (W1 (Y1,Y2)Y4,Y5)+S (Y4,W1 (Y1,Y2)Y5) = L5
{

S
((

Y1∧g Y2
)

Y4,Y5
)
+S
(
Y4,
(
Y1∧g Y2

)
Y5
)}

. (3.36)

If we choose Y5 = ξ in (3.36), we get

S (W1 (Y1,Y2)Y4,ξ )+S (Y4,W1 (Y1,Y2)ξ ) = L5 {S (g(Y2,Y4)Y1−g(Y1,Y4)Y2,ξ ) +S (Y4,η (Y1)Y2−η (Y2)Y1)} . (3.37)

If we make use of (2.8) and (3.34) in (3.37) we have

2(z1 +z3)S (Y4,η (Y1)Y2−η (Y2)Y1)−2n(z1 +z3)η (W1 (Y1,Y2)Y4)

= L5 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (Y4,η (Y1)Y2−η (Y2)Y1)} .
(3.38)

If we use (3.35) in the (3.38), we get

−4n(z1 +z3)
2 g(η (Y2)Y1−η (Y1)Y2,Y4)+2(z1 +z3)S (η (Y1)Y2−η (Y2)Y1,Y4)

= L5 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (η (Y1)Y2−η (Y2)Y1,Y4)} .
(3.39)

If we use (3.2) in the (3.39), we can write

{2(z1 +z3) [2n(z1 +z3−λ )]+L5 [λ +2n(z1 +z3)]}×g(η (Y1)Y2−η (Y2)Y1,Y4) = 0 (3.40)

It is clear from (3.40),

L5 =
2(z1 +z3) [λ −2n(z1 +z3)]

λ +2n(z1 +z3)
.

This completes the proof.

We can give the results obtained from this theorem as follows.

Corollary 3.19. Let M2n+1 be Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a W1−Ricci semisymmetric, then λ = 2n(z1 +z3) provided µ 6= 0.

Corollary 3.20. Let M2n+1 be Lorentz generalized Sasakian space form and (g,ξ ,λ ,µ) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a W1−Ricci semisymmetric, then we observe that:

(i) The soliton M2n+1 is expanding, if (z1 +z3)> 0.
(ii) The soliton M2n+1 is shriking, if (z1 +z3)< 0.

For a (2n+1)−dimensional semi-Riemann manifold M, the W2−curvature tensor is defined as

W2 (Y1,Y2)Y3 = R(Y1,Y2)Y3−
1

2n
[g(Y2,Y3)QY1−g(Y1,Y3)QY2] . (3.41)

For a (2n+1)−dimensional Lorentz generalized Sasakian space form, if we choose Y3 = ξ in (3.41), we can write

W2 (Y1,Y2)ξ = (z1 +z3) [η (Y1)Y2−η (Y2)Y1]− 1
2n [η (Y1)QY2−η (Y2)QY1] , (3.42)

and similarly if we take the inner product of both sides of (3.41) by ξ , we get

η (W2 (Y1,Y2)Y3) = (z1 +z3)g(η (Y2)Y1−η (Y1)Y2,Y3)+
1

2n S (η (Y1)Y2−η (Y2)Y1,Y3) . (3.43)

Definition 3.21. Let M2n+1 be an (2n+1)−dimensional Lorentz generalized Sasakian space form. If W2 · S and Q(g,S) are linearly
dependent, then the manifold is said to be W2−Ricci pseudosymmetric.

In this case, there exists a function L6 on M2n+1 such that

W2 ·S = L6Q(g,S) .

In particular, if L6 = 0, the manifold M2n+1 is said to be W2−Ricci semisymmetric.
Let us now investigate the W2−Ricci pseudosymmetric case of the Lorentz generalized Sasakian space form.
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Theorem 3.22. Let M2n+1 be Lorentz generalized Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on M2n+1. If M2n+1 is
a W2−Ricci pseudosymmetric, then

L6 =−
λ 2 +4n2 (z1 +z3)

2

2nµ

provided µ 6= 0.

Proof. Let be assume that Lorentz generalized Sasakian space form be W2−Ricci pseudosymmetric and (g,ξ ,λ ,µ) be almost η−Ricci
soliton on Lorentz generalized Sasakian space form. That is mean

(W2 (Y1,Y2) ·S)(Y4,Y5) = L6Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(
T M2n+1) . From the last equation, we can easily write

S (W2 (Y1,Y2)Y4,Y5)+S (Y4,W2 (Y1,Y2)Y5) = L6
{

S
((

Y1∧g Y2
)

Y4,Y5
)
+S
(
Y4,
(
Y1∧g Y2

)
Y5
)}

. (3.44)

If we choose Y5 = ξ in (3.44), we get

S (W2 (Y1,Y2)Y4,ξ )+S (Y4,W2 (Y1,Y2)ξ ) = L6 {S (g(Y2,Y4)Y1−g(Y1,Y4)Y2,ξ ) +S (Y4,η (Y2)Y1−η (Y1)Y2)} . (3.45)

If we make use of (2.8) and (3.42) in (3.45), we have

−2n(z1 +z3)η (W2 (Y1,Y2)Y4)+S
(

Y4,(z1 +z3) [η (Y1)Y2−η (Y2)Y1]−
1

2n
[η (Y1)QY2−η (Y2)QY1]

)
= L6 {−2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4) +S (Y4,η (Y1)Y2−η (Y2)Y1)} .

(3.46)

If we use (3.43) in the (3.46), we get

−2n(z1 +z3)
2 g(η (Y2)Y1−η (Y1)Y2,Y4)−

1
2n

S (Y4,η (Y1)QY2−η (Y2)QY1)

= L6 {S (Y4,η (Y1)Y2−η (Y2)Y1) −2n(z1 +z3)g(η (Y1)Y2−η (Y2)Y1,Y4)} .
(3.47)

If we use (3.2) in the (3.47), we have

−2n(z1 +z3)
2 g(η (Y2)Y1−η (Y1)Y2,Y4)−

λ

2n
S (η (Y1)Y2−η (Y2)Y1,Y4)

=−L6 [λ +2n(z1 +z3)]g(η (Y1)Y2−η (Y2)Y1,Y4)

(3.48)

Again, if we use (3.2) in (3.48), we obtain{
λ 2

2n +2n(z1 +z3)
2 +L6 [λ +2n(z1 +z3)]

}
×g(η (Y1)Y2−η (Y2)Y1,Y4) = 0. (3.49)

It is clear from (3.49),

L6 =−
λ 2 +4n2 (z1 +z3)

2

2n [λ +2n(z1 +z3)]
.

This completes the proof.

4. Conclusion

In this paper, we consider Lorentz generalized Sasakian space forms admitting almost η−Ricci solitons in some curvature tensors. Ricci
pseudosymmetry concepts of Lorentz generalized Sasakian space forms admitting η−Ricci soliton have introduced according to the choice
of some special curvature tensors such as Riemann, concircular, projective, M−projective, W1 and W2. Then, again according to the choice
of the curvature tensor, necessary conditions are given for Lorentz generalized Sasakian space form admitting η−Ricci soliton to be Ricci
semisymmetric. Then some characterizations are obtained and some classifications have made.
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Abstract

In this paper, the Lakshmanan-Porsezian-Daniel (LPD) equation is studied. New analytical
rational solitons to the LPD equation are presented by an ansatz method. Wave solutions of
three types, such as parabolic, trigonometric and hyperbolic function solutions have been
retrieved. All solutions are plotted in 3D to enhance the understanding of their physical
characteristics. These simulations, which represent the behavior of the resulting hyperbolic,
parabolic and trigonometric solitons, are provided by choosing different appropriate values
of the parameters.

1. Introduction

Many researchers in fields such as mathematics, physics, engineering and more are very interested in nonlinear partial equations, since most
physical systems are not linear in nature. The Lakshmanan-Porsezian-Daniel (LPD) equation is a widely known nonlinear partial differential
equation. It is a generalization of the nonlinear Schrödinger equation that includes higher order nonlinear and dispersed terms. In recent
years, it has attracted great attention from mathematicians and physicists. The LPD equation has also been generalized and extended in many
ways, including the addition of external forcing, the inclusion of damping effects, and the consideration of higher-dimensional versions of the
equation. The LPD equation and its variants have been used to model a variety of physical systems in many areas of physics and engineering,
including plasma physics, fluid dynamics, and nonlinear optics, and has been studied extensively from different perspectives such as
integrability, symmetry analysis, solution methods and applications: Ricatti equation [1], tan(ψ(η)

2 )-expansion technique [2], collective
variable [3], modified simple equation method [4], method of undetermined coefficients [5], Darboux transformations [6, 7], Rogue wave
equation [8], the modified auxiliary equation method [9] etc.

This paper investigates the Lakshmanan–Porsezian–Daniel equation [10, 11], a well known partial differential equation that describes the
pulse propagation in an optical fiber which is in the form

iqt +aqxx +bqxt +ζ |q2|q = σqxxxx +β |qx|2q+ γ|q|2qxx +δ |q|4q (1.1)

where the complex valued function q(x, t) depends on space x and time t. The term iqt denotes the temporal evolution of pulse. The group
velocity dispersion and spatio-temporal dispersion are given by a and b, respectively. The fourth-order dispersion and two-photon absorption
are represented by constants σ and δ , respectively. The parameters β and γ indicate the non-linear forms of dispersion.

In this paper, our aim is finding solutions in the form of parabolic, trigonometric and hyperbolic solitons of the LPD equation. First we start
by using traveling wave variables to find a solution for Eq. (1.1). After analyzing the resulting system of equations to find the condition of
its compatibility, it turned out that the structure for the system of equations. At the second stage, a special logarithmic transformation is
applied. At the last stage, three different methods are applied to retrieved equation. The solutions obtained by appropriate selection of some
parameters affecting the shape and velocity of the solitons are observed with three-dimensional plots.
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2. System of Differential Equations Corresponding to Eq. (1.1)

In order to find soliton solutions of Eq. (1.1), we use the traveling wave reduction in the form

q(x, t) = y(z)eiθ , z = x− ct, θ = kx−wt (2.1)

where y(z) is a complex-valued function that represents the structure of the pulse, k, w, c, θ are parameters of solution. The phase component
of the soliton is θ , k is represents the frequency of the soliton, c is the velocity of the soliton, while w is the wave number.
Substituting solution (2.1) into Eq. (1.1) and equating the real and imaginary parts of expression to zero, respectively the following equations
are obtained

σyzzzz +(−a+bc−6σk2)yzz + γy2yzz +βyyz
2 +(βk2− γk2−ζ )y3 +δy5 +(σk4−w+ak2−bwk)y = 0 (2.2)

and

4σkyzzz +
(
−4σk3 + c−2ak+b(ck+w)

)
yz +2γky2yz = 0. (2.3)

The y(z) function must satify both of the above third and fourth order differential equations obtained, respectively (2.2) and (2.3).
For the purpose of evaluating the solution of the Eq. (1.1), we implement the following logaritmic transformation from [12] on y,

y = 2(ln f )z. (2.4)

If transformation (2.4) is substituted into in (2.2) and (2.3), then the resulting expressions obtained as:
−4ζ f 2 f 3

z −60σ f fzz f 3
z −12γ f fzz f 3

z −8β f fzz f 3
z +4γ f 2 f 2

z fzzz +20σ f 2 f 2
z fzzz +30σ f 2 f 2

zzz fz +4β f 2 f 2
zz fz

−10σ f 3 fzz fzzz +3a f 3 fzz fz +bc f 4 fzzz−5σ f 3 fz fzzzz−6σk2 f 4 fzzz +8γ f 5
z +4β f 5

z +16δ f 5
z +24σ f 5

z −w f 4 fz
−2a f 2 f 3

z −bkw f 4 fz + k4σ f 4 fz +ak2 f 4 fz−4γk2 f 2 f 3
z +4βk2 f 2 f 3

z −12σk2 f 2 f 3
z +2bc f 2 f 3

z
−a f 4 fzzz +σ fzzzzz f 4−3bc f 3 fzz fz +18σk2 f 3 fzz fz

= 0,

(2.5)(
−4σk3 f 3 fzz +4σk3 f 2 f 2

z +bck f 3 fzz−bxk f 2 f 2
z −2ak f 3 fzz +bw f 3 fzz +2ak f 2 f 2

z −bw f 2 f 2
z +8γk f f 2

z fzz
−8γk f 4

z +4σ fzzz f 3 + c f 3 fzz−16σ f 2 fzzz fz− c f 2 f 2
z −12σ f 2 f 2

zz +48σ f f 2
z fzz−24σ f 4

z

)
= 0.

Now, we use this form to evaluate various rational solitons.

3. Hyperbolic Solitons of Differential Equations Corresponding to Eq. (1.1)

To get hyperbolic solitons of (2.5), we use the following transformation:

f = b0 coshz+b1 sinhz (3.1)

where b0, b1 are any constants to be determined. Substituting (3.1) into (2.5) and equating the coefficient terms that are containing
independent combinations of cosh and sinh functions to zero, we obtain a system of algebraic equations:

−b1(5b4
0 +10b2

0b2
1 +b4

1)(−k4
σ −ak2 +bkw−4βk2 +4γk2 +4ζ −16δ +w) = 0,

−b0(b4
0 +10b2

0b2
1 +5b4

1)(−k4
σ −ak2 +bkw−4βk2 +4γk2 +4ζ −16δ +w) = 0,

2b1

 (
−2k4σ −2ak2 +2bkw−14βk2 +14γk2 +18k2σ −3bc+14ζ +3a−80δ −12γ−12σ +2w

)
b4

0
+
(
−7k4σ −7ak2 +7bkw−24βk2 +24γk2−12k2σ +2bc+24ζ −2a−80δ +8γ +8σ +7w

)
b2

1b2
0

+
(
−k4σ −ak2 +bkw−2βk2 +2γk2−6k2σ +bc+2ζ −a+4γ +4σ +w

)
b4

1

= 0,

2b0

 (
−2βk2 +2γk2 +6k2σ −bc+2ζ +a−16δ −4γ−4σ

)
b4

0
+
(
−3k4σ −3ak2 +3bkw−16βk2 +16γk2 +12k2σ −2bc+16ζ +2a−80δ −8γ−8σ +3w

)
b2

0b2
1

+
(
−3k4σ −3ak2 +3bkw−6βk2 +6γk2−18k2σ +3bc+6ζ −3a+12γ +12σ +3w

)
b4

1

= 0,

−b1

 (
−8βk2 +8γk2 +24k2σ −4bc+8ζ +4a−4β −80δ −24γ−40σ

)
b4

0
+
(
−4k4σ −4ak2 +4bkw−12βk2 +12γk2−12k2σ +2bc+12ζ −2a+8β +24γ +56σ +4w

)
b2

0b2
1

+
(
−k4σ −ak2 +bkw−12k2σ +2bc−2a−4β −16σ +w

)
b4

1

= 0,

b0

 (8γ +4β +16δ +24σ)b4
0

+
(
4βk2−4γk2−12k2σ +2bc−4ζ −2a−8β −8γ−40σ

)
b2

0b2
1

+
(
k4σ +ak2−bkw+12k2σ −2bc+2a+4β +16σ −w

)
b4

1

= 0, (3.2)

(b0−b1)(b0 +b1)(b2
0 +b2

1)(−4k3
σ +bck−2ak+bw+8γk+ c+16σ) = 0,

2b0b1(b0−b1)(b0 +b1)(−4k3
σ +bck−2ak+bw+8γk+ c+16σ) = 0,

−(b0−b1)(b0 +b1)(−4b2
1k3

σ +bb2
1ck−2ab2

1k+bb2
1w+8b2

0γk+24b2
0σ +b2

1c−8b2
1σ) = 0.
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After solving the system (3.2) with the help of Maple software, three cases of parametric values are obtained as follows:

Case 1:

b1 = b0, σ =
−ak2 +bkw−4βk2 +4γk2 +4ζ −16δ +w

k4 . (3.3)

Via the parametric values in (3.3), we have

f = b0(coshz+ sinhz). (3.4)

By using y = 2(ln f )z, we have

y = 2. (3.5)

By using Eq. (3.5) into Eq. (2.1), we obtain a first type of rational hyperbolic solution of Eq. (1.1):

q(x, t) = 2ei(kx−wt). (3.6)

(See Figure 3.1)

(a) (b) (c)

Figure 3.1: 3D plots of the rational solution (3.6) in Case 1 with the values of k = 2, w = 1, c = 1, (a) Real, (b) Imaginary and (c) Complex.

Case 2:

ζ =

−

 bck8 +2ak8−3bk7w+2bck6 + ck7−20ak6 +18bk5w−4k6w+8ak5 +12bck4

−8bk4w+10ck5−16ak4−28bck3 +4bk3w+8k4w+24ak3 +8bck2 +4bk2w+4ck3

−8k3w−16ak2−8bck+8bkw−12ck2 +32ak−24bw+8ck+16kw−24c


16k(k3 +2)

,

δ =

(bc+2a)k6 +(−3bw+ c)k5 +4(bc−4a−w)k4 +4(3bw+2a+3c)k3

+8(−(c+w)b+2a)k2 +8((c−w)b−4a− c−w)k+24(bw+ c)
64k(k3 +2)

,

(3.7)

γ =
−3((bc−2a)k+bw+ c)

4k(k3 +2)
,

β =

−(bc+2a)k5 +(3bw− c)k4 +4(−bc+4a+w)k3−4(3bw+2a+3c)k2

+8((−2c+w)b+4a)k+8(2(c−w)b−2(a+ c)+w)
16k3 +32

,

σ =
(bc−2a)k+bw+ c

4k3 +8
.

By using values in (3.7) into (3.1), we have

f = b0 coshz+b1 sinhz. (3.8)
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By using y = 2(ln f )z, we have

y =
2(b0 sinh(z)+b1 cosh(z))

b0 cosh(z)+b1 sinh(z)
. (3.9)

By using Eq. (3.9) into Eq. (2.1), we obtain a second type of rational hyperbolic solution of Eq. (1.1):

q(x, t) =
2(b0 sinh(z)+b1 cosh(z))ei(kx−wt)

b0 cosh(z)+b1 sinh(z)
. (3.10)

(See Figure 3.2)

(a) (b) (c)

Figure 3.2: 3D plots of the rational solution (3.10) in Case 2 with the values of k = 2, w = 1, c = 0.1, b0 =−5, b1 = 0.1, (a) Real, (b) Imaginary and (c)
Complex.

4. Parabolic Solutions of Differential Equations Corresponding to Eq. (1.1)

To get parabolic solution of (2.5), we choose f as following:

f = b2z2 +b1z+b0 (4.1)

where b0, b1 and b2 represent any constant parameters. By substituting (4.1) into (2.5) and equating the various coefficient terms of z, we
then solve the following system of algebraic equations to find the values of the parameters:

2b4
2(4k3

σ −bck+2ak−bw− c) = 0

6b1b3
2(4k3

σ −bck+2ak−bw− c) = 0,

b2
2

(
(8k3

σ −2bck+4ak−2bw−2c)b2b0+(28k3
σ −7bck+14ak−7bw−7c)b2

1 +(−64γk−48σ)b2
2

)
= 0,

4b1b2

(
(4k3

σ −bck+2ak−bw− c)b2b0+(4k3
σ −bck+2ak−bw− c)b2

1 +(−32γk−24σ)b2
2

)
= 0,

[ (
(16k3σ −4bck+8ak−4bw−4c)b2b2

1 +(64γk+288σ)b3
2
)

b0,
+(−8k3σ +2bck−4ak+2bw+2c)b2

2b02 +(4k3σ −bck+2ak−bw− c)b4
1 +(−112γk−144σ)b2

2b2
1

]
= 0,

−2b1

(
(4k3

σ −bck+2ak−bw− c)b2b02 +((−4k3
σ +bck−2ak+bw+ c)b2

1 +(−32γk−144σ)b2
2)b0+(24γk+48σ)b2b2

1

)
= 0,

[
(4k3σ −bck+2ak−bw− c)b2

1−48b2
2σ

(−8k3σ +2bck−4ak+2bw+2c)b2b3
0 +(16γk+96σ)b2b2

1b0+(−8γk−24σ)b4
1

]
= 0, (4.2)
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2b5
2(k

4
σ +ak2−bkw−w) = 0,

9b1b4
2(k

4
σ +ak2−bkw−w) = 0,

−4b3
2

(
(−2k4

σ −2ak2 +2bkw+2w)b2b0 +(−4k4
σ −4ak2 +4bkw+4w)b2

1 +(−8βk2 +8γk2 +6k2
σ −bc+8ζ +a)b2

2

)
= 0,

−14b1b2
2

(
(−2k4

σ −2ak2 +2bkw+2w)b2b0 +(−k4
σ −ak2 +bkw+w)b2

1 +(−8βk2 +8γk2 +6k2
σ −bc+8ζ +a)b2

2

)
= 0,

−2b2

 (−18k4σ −18ak2 +18bkw+18w)b2b2
1 +(−32βk2 +32γk2−12k2σ +2bc+32ζ −2a)b3

2
(−6k4σ −6ak2 +6bkw+6w)b2

2b2
0 +(−3k4σ −3ak2 +3bkw+3w)b4

1
+(−76βk2 +76γk2 +66k2σ −11bc+76ζ +11a)b2

2b2
1 +(−16β −256δ −32γ−24σ)b4

2

= 0,

−b1

 ((−20k4σ −20ak2 +20bkw+20w)b2b2
1 +(−160βk2 +160γk2−60k2σ +10bc+160ζ −10a)b3

2)b0
+(−30k4σ −30ak2 +30bkw+30w)b2

2b2
0 +(−k4σ −ak2 +bkw+w)b4

1
(−100βk2 +100γk2 +120k2σ −20bc+100ζ +20a)b2

2b2
1 +(−80β −1280δ −160γ−120σ)b4

2

= 0,


((24k4σ +24ak2−24bkw−24w)b2b2

1 +(32βk2−32γk2 +120k2σ −20bc−32ζ +20a)b3
2)b

2
0

+(8k4σ +8ak2−8bkw−8w)b2
2b3

0 +(32βk2−32γk2−60k2σ +10bc−32ζ −10a)b2b4
1

+(96β +1280δ +208γ +240σ)b3
2b2

1
+((4k4σ +4ak2−4bkw−4w)b4

1 +(144βk2−144γk2−144ζ )b2
2b2

1 +(−64β −192γ−480σ)b4
2)b0

= 0,

−2b1


((−3k4σ −3ak2 +3bkw+3w)b2

1 +(−24βk2 +24γk2−90k2σ +15bc+24ζ −15a)b2
2)b

2
0

+(−6k4σ −6ak2 +6bkw+6w)b2b3
0 +(−2βk2 +2γk2 +6k2σ −bc+2ζ +a)b4

1
+(−32β −320δ −76g−120σ)b2

2b2
1

+((−28βk2 +28γk2 +30k2σ −5bc+28ζ +5a)b2b2
1 +(48β +144γ +360σ)b3

2)b0

= 0,

 (2k4σ +2ak2−2bkw−2w)b2b4
0 +((4k4σ +4ak2−4bkw−4w)b2

1 +(72k2σ −12bc+12a)b2
2)b

3
0

+((24βk2−24γk2 +36k2σ −6bc−24ζ +6a)b2b2
1 +(32β +240σ)b3

2)b
2
0

+((8βk2−8γk2−24k2σ +4bc−8ζ −4a)b4
1 +(−64β −144γ−480σ)b2

2b2
1)b0 +(24β +160δ +56γ +120σ)b2b4

1

= 0,

−b1

[
(−k4σ −ak2 +bkw+w)b4

0 +(−36k2σ +6bc−6a)b2b3
0 +(−4β −16δ −8γ−24σ)b4

1
+((−4βk2 +4γk2 +12k2σ −2bc+4ζ +2a)b2

1 +(−16β −120σ)b2
2)b

2
0 +(16β +24γ +120σ)b2b2

1b0

]
= 0.

Resolution of the system (4.2) with the help of Maple gives five cases of parametric values as follows:

Case 1:

a =
4γk5 +3bkw+3w

3k2 , b0 = b1 = 0, β =−12bγk6−24bγk5 +20γk5−24ζ bk3−24γk4−24ζ k2−3w
24k4(bk+1)

,

(4.3)

c =−8γk5−3bkw−6w
3k(bk+1)

, δ =
60bγk6−72bγk5 +68γk5−24ζ bk3−72γk4−24ζ k2−3w

384k4(bk+1)
, σ =−4γk

3
.

By using values in (4.3) into (4.1), we have

f = b2z2. (4.4)

By using y = 2(ln f )z, we have

y =
4
z
. (4.5)

By replacing Eq. (2.1) with Eq. (4.5), we obtain the first type of rational parabolic solution of Eq. (1.1):

q(x, t) =
4ei(kx−wt)

−ct + x
. (4.6)

(See Figure 4.1)
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(a) (b) (c)

Figure 4.1: 3D plots of the rational solution (4.6) in Case 1 with the values of k = 2, w = 1, b = 128, γ = −3, b1 = 0.1, (a) Real, (b) Imaginary and (c)
Complex.

Case 2:

a =
4γk3

3
, b =−1

k
, b0 = b1 = 0, β =

−20γk4 +24γk3 +24ζ k+3c
24k3 ,

(4.7)

δ =−−68γk4 +72γk3 +24ζ k+3c
384k3 , σ =−4γk

3
, w =

8γk5

3
.

By using values in (4.7) into (4.1), we have

f = b2z2. (4.8)

By using y = 2(ln f )z, we have

y =
4
z
. (4.9)

By using Eq. (4.9) into Eq. (2.1), we obtain a second type of rational parabolic solution of Eq. (1.1):

q(x, t) =
4ei(− 8

3 γk5t+kx)

−ct + x
. (4.10)

(See Figure 4.2)

(a) (b) (c)

Figure 4.2: 3D plots of the rational solution (4.10) in Case 2 with the values of k = 2, c = 1, γ = 3, (a) Real, (b) Imaginary and (c) Complex.

Case 3:

a =
γk5 +3bkw+3w

3k2 , b2 = 0, β =
−3bγk6 +6bγk5−5γk5 +6ζ bk3 +6γk4 +6ζ k2 +3w

6k4(bk+1)
,

(4.11)

c =
−2γk5 +3bkw+6w

3k(bk+1)
, δ =−−15bγk6 +18bγk5−17γk5 +6ζ bk3 +18γk4 +6ζ k2 +3w

24k4(bk+1)
, σ =− γk

3
.
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By using values in (4.11) into (4.1), we have

f = b1z+b0. (4.12)

By using y = 2(ln f )z, we have

y =
2b1

b1z+b0
. (4.13)

By replacing Eq. (2.1) with Eq. (4.13) , we obtain a third type of rational parabolic solution of Eq. (1.1):

q(x, t) =
2b1ei(kx−wt)

b1

(
− (−2γk5 +3bkw+6w)t

3k(bk+1)
+ x
)
+b0

. (4.14)

(See Figure 4.3)

(a) (b) (c)

Figure 4.3: 3D plots of the rational solution (4.14) in Case 3 with the values of b1 = 1, b0 = 1, k = 2, w = 1, b = −5
12 , γ = 1

64 , (a) Real, (b) Imaginary and (c)
Complex.

Case 4:

a =
k3γ

3
, b =−1

k
, b2 = 0, β =

−5γk4 +6γk3 +6ζ k+3c
6k3 ,

(4.15)

δ =−−17γk4 +18γk3 +6ζ k+3c
24k3 , σ =−kγ

3
, w =

2k5γ

3
.

By using values in (4.15) into (4.1), we have

f = b1z+b0. (4.16)

By using y = 2(ln f )z, we have

y =
2b1

b1z+b0
. (4.17)

By using Eq. (4.17) into Eq. (2.1), we obtain a fourth type of rational parabolic solution of Eq. (1.1):

q(x, t) =
2b1ei( −2

3 γk5t+kx)

b1(−ct + x)+b0
. (4.18)

(See Figure 4.4)

Case 5:

a =
4γk5 +3bkw+3w

3k2 , b2 =
b2

1
4b0

, β =
−12bγk6 +24bγk5−20γk5 +24ζ bk3 +24γk4 +24ζ k2 +3w

24k4(bk+1)
,

(4.19)

c =
−8γk5 +3bkw+6w

3k(bk+1)
, δ =−−60bγk6 +72bγk5−68γk5 +24ζ bk3 +72γk4 +24ζ k2 +3w

384k4(bk+1)
, σ =−4γk

3
.
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(a) (b) (c)

Figure 4.4: 3D plots of the rational solution (4.18) in Case 4 with the values of b1 = 1, b0 = 1, k = 2, w = 1, b = −5
12 , γ = 1

64 , c = 1, (a) Real, (b) Imaginary
and (c) Complex.

By using values in (4.19) into (4.1), we have

f =
b2

1
4b0

z2 +b1z+b0. (4.20)

By using y = 2(ln f )z, we have

y =
4b1

b1z+2b0
. (4.21)

By using Eq. (4.21) into Eq. (2.1), we obtain a fifth type of rational parabolic solution of Eq. (1.1):

q(x, t) =
4b1ei(kx−wt)

b1

(
− (−8γk5 +3bkw+6w)t

3k(bk+1)
+ x
)
+2b0

. (4.22)

(See Figure 4.5)

(a) (b) (c)

Figure 4.5: 3D plots of the rational solution (4.22) in Case 5 with the values of b1 = 2, b0 =−1, k = 2, w = 1, b = −1
3 , γ = 0.1, (a) Real, (b) Imaginary and

(c) Complex.

Case 6:

a =
4k3γ

3
, b =

−1
k

, b2 =
b2

1
4b0

, β =
−20γk4 +24γk3 +24ζ k+3c

24k3 ,

(4.23)

δ =−−68γk4 +72γk3 +24ζ k+3c
384k3 , σ =−4γk

3
, w =

8k5γ

3
.

By using values in (4.23) into (4.1), we have

f =
b2

1
4b0

z2 +b1z+b0. (4.24)
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By using y = 2(ln f )z, we have

y =
4b1

b1z+2b0
. (4.25)

By using Eq. (4.25) into Eq. (2.1), we obtain a sixth type of rational parabolic solution of Eq. (1.1):

q(x, t) =
4b1e

i

kx−
8k5γ

3
t


b1 (x− ct)+2b0

. (4.26)

(See Figure 4.6)

(a) (b) (c)

Figure 4.6: 3D plots of the rational solution (4.26) in Case 5 with the values of b1 = 2, b0 =−1, k = 2, c = 1, γ = 3, (a) Real, (b) Imaginary and (c) Complex.

5. Trigonometric Solutions of Differential Equations Corresponding to Eq. (1.1)

To get trigonometric solution, we suppose a solution of (2.5) in the following form:

f = b0 cosz+b1 sinz (5.1)

where b0, b1 are all constants. Inserting (5.1) into (2.5) and setting the coefficient terms that are containing independent combinations of cos
and sin functions to zero, we get a system of algebraic equations:

4b4
1(4k3

σ −bck+2ak−bw+8γk− c+16σ) = 0,

2b4
1(4k3

σ −bck+2ak−bw−8γk− c−32σ) = 0,

4b5
1(k

4
σ +ak2−bkw−4βk2 +4γk2 +4ζ +16δ −w) = 0,

8b5
1(k

4
σ +ak2−bkw−2βk2 +2γk2−6k2

σ +bc+2ζ −a−4γ−4σ −w) = 0, (5.2)

−8b5
1(−2βk2 +2γk2 +6k2

σ −bc+2ζ +a+16δ +4γ +4σ) = 0,

−b5
1(3k4

σ +3ak2−3bkw−4βk2 +4γk2−24k2
σ +4bc+4ζ −4a−16β −80δ −48γ−112σ −3w) = 0,

b5
1(−k4

σ −ak2 +bkw−4βk2 +4γk2 +24k2
σ −4bc+4ζ +4a−16β −16δ −16γ−80σ +w) = 0.

After solving the system (5.2) with the help of Maple, we obtain three cases of parametric values as follows:
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Case 1:

a =

 3bγk7 +3b2ck4 +18bγk5 +4γk6−8bγk4 +12b2ck2

+6bck3−4bγk3 +8γk4−4bγk2−8γk3 +6b2c
+12bck+8bγk+3ck2 +12ζ b−24bγ−16γk+6c


3(bk4 +4bk2 +2k3 +2b+4k)

,

β =−

 3bγk5−6bγk4−20bγk3 +8γk4−6ζ bk2

+8bγk2−12γk3−24bγk−40γk2−12ζ b
−12ζ k+24bγ +32γk−3c


6(bk4 +4bk2 +2k3 +2b+4k)

,

(5.3)

δ =

 15bγk5−18bγk4 +28bγk3 +32γk4

−6ζ bk2−40γk2−36γk3 +8bγk2

−12ζ b−12ζ k−16γk−3c


24(bk4 +4bk2 +2k3 +2b+4k)

,

w =

 2γk8 +3bck5 +20γk6−8γk5 +12bck3

+3ck4−16γk4 +24γk3 +6bck+16γk2

+24ζ k−32γk−6c


3(bk4 +4bk2 +2k3 +2b+4k)

,

σ =−1
3

γk.

By utilizing values in (5.3) into (5.1), we have

f = b1 cosz+b1 sinz. (5.4)

Inserting Eq. (5.4) into (2.4) yields

y =−2(sin(z)− cos(z))
sin(z)+ cos(z)

. (5.5)

By using Eq. (5.5) into Eq. (2.1), we obtain a first type of trigonometric solution of Eq. (1.1):

q(x, t) =−2(sin(x− ct)− cos(x− ct))ei(kx−wt)

sin(x− ct)+ cos(x− ct)
. (5.6)

(See Figure 5.1)

(a) (b) (c)

Figure 5.1: 3D plots of the rational solution (5.6) in Case 1 with the values of k = 2, c = 1, γ = 3, b = 1, ζ =−1 (a) Real, (b) Imaginary and (c) Complex.

Case 2:

a =−b2w+2ζ −4γ−w, β = ζ −2γ− 1
4

w, c =−bw, δ =−1
4

ζ +
1

16
w, k = 0, σ = 0, (5.7)

Using the obtained values in (5.1) gives

f = b1 cosz+b1 sinz. (5.8)

Inserting Eq. (5.8) into (2.4) yields

y =−2(sin(z)− cos(z))
sin(z)+ cos(z)

. (5.9)



Universal Journal of Mathematics and Applications 63

By using Eq. (5.9) into Eq. (2.1), we obtain a second type of trigonometric solution of Eq. (1.1):

q(x, t) =−2(sin(x− ct)− cos(x− ct))ei(kx−wt)

sin(x− ct)+ cos(x− ct)
. (5.10)

(See Figure 5.2)

(a) (b) (c)

Figure 5.2: 3D plots of the rational solution (5.10) in Case 2 with the values of b = 10, w = 1 (a) Real, (b) Imaginary and (c) Complex.

Case 3:

a =−

(
−γk11−6γk9−50γk7 +44γk6 +3k6w−44γk5 +12ζ k4 +72γk4

+18k4w+8γk3 +40γk2 +30k2w−16γk+48γ +12w−24ζ

)
3(k4 +4k2 +2)2 ,

β =

(
−γk9 +6γk8 +28γk7 +8γk6 +6k6ζ +82γk5−20γk4−3k4w+36k4ζ

+152γk3−144γk2−12k2w+84k2ζ +48γk−48γ−6w+24ζ

)
6(k4 +4k2 +2)2 ,

(5.11)

δ =−

(
−13γk9 +18γk8−68γk7 +104γk6 +6k6ζ −158γk5 +220γk4

−3k4w+36k4ζ −40γk3 +48γk2−12k2w+84k2ζ +24ζ −6w

)
24(k4 +4k2 +2)2 ,

c =
2k
(
γk7 +10γk5−4γk4−8γk3 +12γk2 +8γk−16γ +12ζ

)
3(k4 +4k2 +2)

, b =− 2(k2 +2)k
k4 +4k2 +2

, σ =−1
3

γk.

By utilizing values in (5.11) into (5.1), we have

f = b1 cosz+b1 sinz. (5.12)

Inserting Eq. (5.12) into (2.4) yields

y =−2(sin(z)− cos(z))
sin(z)+ cos(z)

. (5.13)

By using Eq. (5.13) into Eq. (2.1), we obtain a first type of trigonometric solution of Eq. (1.1):

q(x, t) =−2(sin(x− ct)− cos(x− ct))ei(kx−wt)

sin(x− ct)+ cos(x− ct)
. (5.14)

(See Figure 5.3)
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(a) (b) (c)

Figure 5.3: 3D plots of the rational solution (5.14) in Case 3 with the values of k = 5, b = 10, γ = 0.5, w = 1, ζ =−1 (a) Real, (b) Imaginary and
(c) Complex.

6. Conclusion

New soliton solutions of the LPD equation were obtained with three different current, systematic and powerful methods. In order to
understand how the obtained solutions change under different conditions, the solutions obtained by appropriate selection of some parameters
affecting the shape and velocity of the solitons are observed. In this context, to understand the mechanism of the original equation (1.1) real,
imaginary and complex three-dimensional plots have been drawn for each case of solitons. This paper presents novel solutions of LPD
equation that have not been reported in the literature before. Also, comparing with the existing literature, our result is complete and our
method is simple and direct. By providing novel solutions, this study contributes to the knowledge of the dynamical aspects of various
physical phenomena that are modeled by the LPD equation.
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Abstract

The Schamel-Korteweg-de Vries (S-KdV) equation including a square root nonlinearity is
very important pattern for the research of ion-acoustic waves in plasma and dusty plasma. As
known, it is significant to discover the traveling wave solutions of such equations. Therefore,
in this paper, some new traveling wave solutions of the S-KdV equation, which arises in
plasma physics in the study of ion acoustic solitons when electron trapping is present and
also it governs the electrostatic potential for a certain electron distribution in velocity space,
are constructed. For this purpose, the Bernoulli Sub-ODE and modified auxiliary equation
methods are used. It has been shown that the suggested methods are effective and give
different types of function solutions as: hyperbolic, trigonometric, power, exponential, and
rational functions. The applied computational strategies are direct, efficient, concise and can
be implemented in more complex phenomena with the assistant of symbolic computations.
The results found in the paper are of great interest and may also be used to discover the
wave sorts and specialities in several plasma systems.

1. Introduction

Nonlinear partial differential equations (NPDEs) are used to describe complex problems with numerous phenomena in different fields,
including engineering, chemical kinematics, biology, wave theory, optics, physics, fluid mechanics, biomedical science, and others [1]- [4].
S-KdV equation, based upon both usual KdV equation (when α = 0) [5]- [10],

ut +βuux +δuxxx = 0,

and Schamel equation (when β = 0)

ut +αu1/2ux +δuxxx = 0,

which was derived a German scientist Hans Schamel in 1973 has the form [11]- [13]

ut +(αu1/2 +βu)x +δuxxx = 0, αβ 6= 0 (1.1)

where α , β and δ are constants which they are refer to the activation trapping, the convection and the dispersion coefficients, respectively.
The advantage of implementing the nonlinear S-KdV equation to analyze dynamics of modulated waves in dispersive media lies in the
diversity of its solutions [14]- [17]. Here we should point out that the S-KdV equation has a stronger nonlinearity than the usual KdV
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equation in that the single soliton solution possesses a smaller width and higher velocity [18]. This equation is contained in many physical
phenomena involving electromagnetic theory, physical chemistry, geophysics and other fields are examples [19, 20]. The square root in the
nonlinear term then translates to lowest order some of the kinetic effects, associated with electron trapping [21]. Schamel [22] stated that
when uux is replaced by (| u |3/2)x, compared to the classical KdV equation, the Schamel equation possesses a stronger nonlinearity, which
reveals that the wave has a smaller width and higher velocity and exact traveling wave solutions for the regularized Schamel equation [23].To
create different exact solutions and to notice their properties, various significant methods have been developed [19]- [21], [24]- [29].
The implementations of the Sub-ODE and modified auxiliary equation methods in this paper highlight our main motivation and indicates its
capacity to handle nonlinear equations, permitting it to be utilized to solve many types of nonlinearity models. The body of our paper is
structured as follows: Methodologies of the Sub-ODE and modified auxiliary equation methods and their detailed structures are given in
Section 2. In Section 3, we apply the different methods, introduced in Section 2, to the Schamel-KdV equation to find the exact solutions.
Different forms of the exact solutions are derived from these methods. Section 4 is devoted to graphical illustrations of the methods. A
discussion section is presented in Section 5. Finally, Section 6 provides conclusions stemming from the results of our work.

2. The Bernoulli Sub-ODE Method [30]- [33]

Herein, we introduce the steps of the Bernoulli Sub-ODE method. Suppose, nonlinear partial differential equation is given by

F(v,vt ,vx,vxx,vxxx, ...) = 0, (2.1)

where v = v(x, t) is wave function to be calculated.

Step 1: Apply the traveling wave transformation,

v(x, t) = v(η), η = kx− ct (2.2)

where k is constant and c is speed of the traveling wave. Substituting (2.2) into (2.1), then (2.1) converted to an ordinary differential
equation:

F(v′,v′′,v′′′, ...) = 0 (2.3)

where F is a polynomial in v(η) and its derivatives.
Step 2: Presume solutions of (2.3) presented by a series in G:

v(η) =
N

∑
i=0

bi(G(η))i (2.4)

where bi(0≤ i≤ N) are constants to be calculated, bN 6= 0, and G(η) satisfies the next ODE,

G′(η)+λG(η) = µG(η)2 (2.5)

which has the following solution:

G(η) =
1

µ

λ
+deλη

where λ ,µ 6= 0 are arbitrary constants.
Step 3: The positive integer N determined by balancing the highest order derivative term with the highest power nonlinear term in (2.3).
Step 4: Replacing (2.4) into (2.3), we acquire a polynomial in G(η). Gathering all terms with the same power and equating each one to zero.

We get a system of equations which can be solved by using Mathematica program.

2.1. The modified auxiliary equation method (MAE) [34]- [37]

Main steps of the modified auxiliary equation method are explained as follows:

Step 1: Solution of (2.3) is given by:

v(η) =
N

∑
i=0

(biai f (η) (2.6)

where f (η) satisfies the following ODE:

f ′ =
1

lna

(
µa− f (η)+σ +λa f (η)

)
(2.7)

where bi (i = 0,1,2, . . . ,N), bN 6= 0, λ ,σ and µ , are constants to be calculated.
Step 2: In (2.3), N is a positive integer determined via the homogeneous balance principle as illustrated before.
Step 3: Substituting (2.6) and (2.7) in (2.3), and gathering the terms which had like powers of (a f (η)) and putting their coffecients equal to

zero, we obtain a set of algebraic equations, which can be solved by the aid of Mathematica program.
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Step 4: There is various sets of solutions of (2.7):
Set 1: σ2−4λ µ < 0 and λ 6= 0,

a f (η) =
−σ

2λ
+

√
4µλ −σ2

2λ
tan

(√
4µλ −σ2η

2

)
,

or

a f (η) =
−σ

2λ
+

√
4µλ −σ2

2λ
cot

(√
4µλ −σ2η

2

)
.

Set 2: σ2−4λ µ > 0 and λ 6= 0,

a f (η) =
−σ

2λ
−
√

σ2−4µλ

2λ
tanh

(√
σ2−4µλη

2

)
,

or

a f (η) =
−σ

2λ
−
√

σ2−4µλ

2λ
coth

(√
σ2−4µλη

2

)
.

Set 3: σ2 +4µ2 < 0,λ 6= 0andλ =−µ,

a f (η) =
σ

2µ
−
√
−σ2−4µ2

2µ
tan

(√
−σ2−4µ2η

2

)
,

or

a f (η) =
σ

2µ
−
√
−σ2−4µ2

2µ
cot

(√
−σ2−4µ2η

2

)
.

Set 4: σ2 +4µ2 > 0,λ 6= 0 and λ =−µ,

a f (η) =
σ

2µ
+

√
σ2 +4µ2

2µ
tanh

(√
σ2 +4µ2η

2

)
,

or

a f (η) =
σ

2µ
+

√
σ2 +4µ2

2µ
coth

(√
σ2 +4µ2η

2

)
.

Set 5:σ2−4µ2 < 0 and λ = µ,

a f (η) =
−σ

2µ
+

√
−σ2 +4µ2

2µ
tan

(√
−σ2 +4µ2η

2

)
,

or

a f (η) =
−σ

2µ
+

√
−σ2 +4µ2

2µ
cot

(√
−σ2 +4µ2η

2

)
.

Set 6: σ2−4µ2 > 0 and λ = µ,

a f (η) =
−σ

2µ
−
√

σ2−4µ2

2µ
tanh

(√
σ2−4µ2η

2

)
,

or

a f (η) =
−σ

2µ
−
√

σ2−4µ2

2µ
coth

(√
σ2−4µ2η

2

)
.

Set 7: σ2 = 4λ µ and λ = µ,

a f (η) =−2+ση

2λη
.
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Set 8: λ µ < 0,σ = 0 and λ 6= 0,

a f (η) =−
√
−µ

λ
tanh

(√
−µλη

)
,

or

a f (η) =−
√
−µ

λ
coth

(√
−µλη

)
.

Set 9:σ = 0 and µ =−λ ,

a f (η) =
1+ e−2λη

−1+ e−2λη
.

Set 10: µ = λ = 0,

a f (η) = cosh(ση)+ sinh(ση).

Set 11: µ = σ =h and λ = 0,

a f (η) = ehη −1.

Set 12: λ = σ =h and µ = 0,

a f (η) =
ehη

1− ehη
.

Set 13: σ = λ +µ,

a f (η) =−1−µe(µ−λ )η

1−λe(µ−λ )η
.

Set 14: σ =−(λ +µ),

a f (η) =
µ− e(µ−λ )η

λ − e(µ−λ )η
.

Set 15: µ = 0,

a f (η) =
σeση

1−λeση
.

Set 16: λ = µ = σ 6= 0,

a f (η) =
√

3tan

(√
3

2
µη

)
−1.

Set 17: λ = σ = 0,

a f (η) = µη .

Set 18: µ = σ = 0,

a f (η) =
−1
λη

.

Set 19: λ = µ and σ = 0,

a f (η) = tan(µη).

Set 20: λ = 0,

a f (η) = eση − µ

σ
.
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3. Applications of the Methods

Begin with the following transformation:

v(x, t) = u(x, t)2,

with wave transformation (2.2) into (1.1), we obtain following ordinary differential equation:

2kβu3u′+6k3
δu′u′′+2u((−c+ kαu)u′+ k3

δu′′′) = 0.

Integrating once with respect to η , we get

−cu2 +
2
3

kαu3 +
1
2

kβu4 +2k3
δ (u′)2 +2k3

δuu′′ = 0. (3.1)

Balancing uu′′ with u4 in (3.1), we get 4N = 2N +2, then N = 1.

3.1. The Bernoulli sub-ODE method

Using (2.4), solution of (3.1) is given by

u(η) = b0 +b1G(η). (3.2)

Substituting (3.2) in (3.1), then collecting terms of the same powers and putting their coefficients equal to zero, next system of equations are
acquired :

− cb2
0 +

2
3

kαb3
0 +

1
2

kβb4
0 = 0,

−2cb0b1 +2k3
δλ

2b0b1 +2kαb2
0b1 +2kβb3

0b1 = 0,

−6k3
δλ µb0b1− cb2

1 +4k3
δλ

2b2
1 +2kαb0b2

1 +3kβb2
0b2

1 = 0,

4k3
δ µ

2b0b1−10k3
δλ µb2

1 +
2
3

kαb3
1 +2kβb0b3

1 = 0,

6k3
δ µ

2b2
1 +

1
2

kβb4
1 = 0.

In what follows, we present the two sets of solution:
Set 1:

δ =− 4α2

75k2βλ 2 , b0 =−
4α

5β
, b1 =

4αµ

5βλ
, c =−16kα2

75β
, v(x, t) =

−4α

5β
+

4αµ

5βλ

 1

µ

λ
+de

λ

(
kx+

(
16kα2

75β

)
t
)



2

.

(3.3)

Set 2:

δ =− 4α2

75k2βλ 2 , b0 = 0, b1 =−
4αµ

5βλ
, c =−16kα2

75β
, v(x, t) =

−4αµ

5βλ

 1

µ

λ
+de

λ

(
kx+

(
16kα2

75β

)
t
)



2

. (3.4)

3.2. The modified auxiliary equation method (MAE)

(2.6) presents the solution in the form:

u(η) = b0 +b1a f (η). (3.5)

Substituting (3.5)in (3.1), then summing terms of like powers and setting their coefficients equal to zero, the next system of equations are
obtained:

− cb2
0 +

2
3

kαb3
0 +

1
2

kβb4
0 +2k3

δ µσb0b1 +2k3
δ µ

2b2
1 = 0,

−2cb0b1 +4k3
δλ µb0b1 +2k3

δσ
2b0b1 +2kαb2

0b1 +2kβb3
0b1 +6k3

δ µσb2
1 = 0,

6k3
δλσb0b1− cb2

1 +8k3
δλ µb2

1 +4k3
δσ

2b2
1 +2kαb0b2

1 +3kβb2
0b2

1 = 0,

4k3
δλ

2b0b1 +10k3
δλσb2

1 +
2
3

kαb3
1 +2kβb0b3

1 = 0,

6k3
δλ

2b2
1 +

1
2

kβb4
1 = 0.
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Solving the previous system yields two sets of solutions:

c = 4k3
δ (−4λ µ +σ

2), α =±
15k2δλ

√
(−4λ µ +σ2)b2

1

b2
1

, β =−12k2δλ 2

b2
1

, b0 =
σb1±

√
(−4λ µ +σ2)b2

1

2λ
.

Therefore, using the above sets gives the solitary wave solutions to (2.5) in the following formulas:

(kx− (4k3
δ (−4λ µ +σ

2))t)

Set 1: σ2−4λ µ < 0 and λ 6= 0,

v1,2(x, t) =

σb1±
√(
−4λ µ +σ2

)
b2

1

2λ
+b1

(
−σ

2λ
+

√
4µλ −σ2

2λ
tan

(√
4µλ −σ2

(
kx−

(
4k3δ

(
−4λ µ +σ2)) t

)
2

))2

,

or

v3,4(x, t) =

σb1±
√(
−4λ µ +σ2

)
b2

1

2λ
+b1

(
−σ

2λ
+

√
4µλ −σ2

2λ
cot

(√
4µλ −σ2

(
kx−

(
4k3δ

(
−4λ µ +σ2)) t

)
2

))2

.

Set 2: σ2−4λ µ > 0 and λ 6= 0,

v5,6(x, t) =

σb1±
√(
−4λ µ +σ2

)
b2

1

2λ
+b1

(
−σ

2λ
−
√

σ2−4µλ

2λ
tanh

(√
σ2−4µλ

(
kx−

(
4k3δ

(
−4λ µ +σ2)) t

)
2

))2

,

or

v7,8(x, t) =

 σb1±
√(
−4λ µ +σ2

)
b2

1

2λ
+b1

(
−σ

2λ
−
√

σ2−4µλ

2λ
coth

(√
σ2−4µλ

(
kx−

(
4k3δ

(
−4λ µ +σ2)) t

)
2

)) 2

.

(3.6)

Set 3: σ2 +4µ2 < 0,λ 6= 0 and λ =−µ,

v9,10(x, t) =

−σb1±
√(

4µ2 +σ2
)

b2
1

2µ
+b1

(
σ

2µ
−
√
−σ2−4µ2

2µ
tan

(√
−σ2−4µ2

(
kx−

(
4k3δ

(
4µ2 +σ2)) t

)
2

))2

,

or

v11,12(x, t) =

−σb1±
√(

4µ2 +σ2
)

b2
1

2µ
+b1

(
σ

2µ
−
√
−σ2−4µ2

2µ
cot

(√
−σ2−4µ2

(
kx−

(
4k3δ

(
4µ2 +σ2)) t

)
2

))2

.

Set 4: σ2 +4µ2 > 0, λ 6= 0 and λ =−µ,

v13,14(x, t) =

−σb1±
√(

4µ2 +σ2
)

b2
1

2µ
+b1

(
σ

2µ
+

√
σ2 +4µ2

2µ
tanh

(√
σ2 +4µ2

(
kx−

(
4k3δ

(
4µ2 +σ2)) t

)
2

))2

,

or

v15,16(x, t) =

−σb1±
√(

4µ2 +σ2
)

b2
1

2µ
+b1

(
σ

2µ
+

√
σ2 +4µ2

2µ
coth

(√
σ2 +4µ2

(
kx−

(
4k3δ

(
4µ2 +σ2)) t

)
2

))2

.

Set 5: σ2−4µ2 < 0 and λ = µ,

v17,18(x, t) =

σb1±
√(
−4µ2 +σ2

)
b2

1

2µ
+b1

(
− σ

2µ
+

√
−σ2 +4µ2

2µ
tan

(√
−σ2 +4µ2

(
kx−

(
4k3δ

(
−4µ2 +σ2)) t

)
2

))2

,

or

v19,20(x, t) =

σb1±
√(
−4µ2 +σ2

)
b2

1

2µ
+b1

(
− σ

2µ
+

√
−σ2 +4µ2

2µ
cot

(√
−σ2 +4µ2

(
kx−

(
4k3δ

(
−4µ2 +σ2)) t

)
2

))2

.

(3.7)
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Set 6: σ2−4µ2 > 0 and λ = µ,

v21,22(x, t) =

σb1±
√(
−4µ2 +σ2

)
b2

1

2µ
+b1

(
− σ

2µ
−
√

σ2−4µ2

2µ
tanh

(√
σ2−4µ2

(
kx−

(
4k3δ

(
−4µ2 +σ2)) t

)
2

))2

,

or

v23,24(x, t) =

σb1±
√(
−4µ2 +σ2

)
b2

1

2µ
+b1

(
− σ

2µ
−
√

σ2−4µ2

2µ
coth

(√
σ2−4µ2

(
kx−

(
4k3δ

(
−4µ2 +σ2)) t

)
2

))2

.

Set 7: σ2 = 4λ µ and λ = µ,

v25,26(x, t) =

√λ µb1

λ
−

(
2+2kx

√
λ µ

)
b1

2kxλ

2

.

Set 8: λ µ < 0, σ = 0 and λ 6= 0,

v27,28(x, t) =

±
√
−λ µb2

1

λ
−
√
−µ

λ
b1 tanh

(√
−λ µ

(
kx+16k3tδλ µ

))2

,

or

v29,30(x, t) =

±
√
−λ µb2

1

λ
−
√
−µ

λ
b1 coth

(√
−λ µ

(
kx+16k3tδλ µ

))2

.

(3.8)

Set 9: σ = 0 and µ =−λ ,

v31,32(x, t) =

±
√

λ 2b2
1

λ
+b1

(
1+ e−2λ(kx−16k3δλ 2t)

−1+ e−2λ (kx−16k3δλ 2t)

)2

.

Set 10: λ = σ =h and µ = 0,

v33,34(x, t) =

hb1±
√

h2b2
1

2h
+b1

(
eh(kx−4h2k3δ t)

1− eh(kx−4h2k3δ t)

)2

.

Set 11: σ = λ +µ,

v35,36(x, t) =

(
b1 (λ +µ)±b1 (λ −µ)

2λ
−b1

(
1−µe(µ−λ )(kx−4k3δ (λ−µ)2t)

1−λe(µ−λ )(kx−4k3δ (λ−µ)2t)

))2

.

Set 12: σ =−(λ +µ),

v37,38(x, t) =

(
b1 (−λ −µ)±b1 (λ −µ)

2λ
+b1

(
µ− e(µ−λ )(kx−4k3δ (λ−µ)2t)

λ − e(µ−λ )(kx−4k3δ (λ−µ)2t)

))2

Set 13: µ = 0,

v39,40(x, t) =

(
σb1±σb1

2λ
+b1

(
σeσ(kx−4k3δσ 2t)

1−λeσ(kx−4k3δσ 2t)

))2

.

Set 14: λ = µ = σ 6= 0,

v41,42(x, t) =

b1±
√
−3b2

1

2
+

1
2

b1

(
−1+

√
3tan

(√
3

2
σ

(
kx+12k3δ

σ
2t
)))2

.
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Set 15: µ = σ = 0,

v43,44(x, t) =
b2

1
k2λ 2x2 .

Set 16: λ = µ and σ = 0,

v45,46(x, t) =
(
±
√
−b2

1 +b1 tan
(

µ

(
kx+16k3

δ µ
2t
)))2

.

4. Graphical Illustrations

The majority of our solutions are presented in the following graphs to illustrate solutions.
In Figure 4.1, we present graph of (3.3) using the Bernoulli Sub-ODE method at k = 2,α = 0.5,β = 0.3,µ = 0.3,λ = 0.3,d = 2. Figure
4.2 shows graph of (3.4) using the Bernoulli Sub-ODE method at k = 2,α = 0.5,β = 0.3,µ = 0.3,λ = 0.3,d = 2. Graph of (3.6) using the
modified auxiliary equation method at k = 2,b1 = 0.3,µ = 0.02,λ = 0.1,δ = 0.1,σ = 0.3 is presented in Figure 4.3. Graph of (3.7) using
the modified auxiliary equation method at k = 0.6,b1 = 0.1,µ = 0.03,δ = 1.6,σ = 0.04 is given in Figure 4.4. Lastly, Figure 4.5 presents
graph of (3.8) using the modified auxiliary equation method at k = 0.7,b1 = 0.1,µ = 0.3,δ = 0.3,σ = 0,λ =−0.5.
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Figure 4.1: Graph of Eq. (3.3) using the Bernoulli Sub-ODE method at k = 2,α = 0.5,β = 0.3,µ = 0.3,λ = 0.3,d = 2.
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Figure 4.2: Graph of Eq. (3.4) using the Bernoulli Sub-ODE method at k = 2,α = 0.5,β = 0.3,µ = 0.3,λ = 0.3,d = 2.
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Figure 4.3: Graph of Eq. (3.6) using the modified auxiliary equation method at k = 2,b1 = 0.3,µ = 0.02,λ = 0.1,δ = 0.1,σ = 0.3.
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Figure 4.4: Graph of Eq. (3.7) using the modified auxiliary equation method at k = 0.6,b1 = 0.1,µ = 0.03,δ = 1.6,σ = 0.04.
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Figure 4.5: Graph of Eq. (3.8) using the modified auxiliary equation method at k = 0.7,b1 = 0.1,µ = 0.3,δ = 0.3,σ = 0,λ =−0.5.
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5. Discussion

The graph is one of the best tools for describing and presenting solutions. In the following, we review the behavior of the wave in the
solutions presented: In Figures 4.1-4.2 the wave travels to the left with increasing timet = 0,5,10. Contrarily, in Figures 4.3-4.5 the wave
moves towards left as time passes t = 0,5,10. The flipped wave is presented in Figure 4.4 as time goes on.

6. Conclusion

In this work, a class of some new travelling wave solutions of the Schamel–Korteweg-de Vries equation are successfully found out by using
the Bernoulli Sub-ODE and modified auxiliary equation methods. The Bernoulli Sub-ODE is a simple and straightforward method and
is applicable to a wide range of problems in science and engineering, but it can be time-consuming to apply the method if the equation
involves complex functions. The modified auxiliary equation method can be used to solve a wide range of differential equations, also it can
provide closed-form solutions, but it can be difficult to determine the appropriate auxiliary equation to use for a given differential equation.
The presented exact solutions provided here may describe various new characteristics of waves and then may be useful in the theoretical
and numerical studies of the considered equation. A graphical representation of newly discovered solutions are also shown to explain the
dynamics of soliton profiles. The found new soliton solutions of the S-KdV equation are of significant importance and can be used in other
areas of physics such as plasma physics.
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Abstract

In the present paper, by estimating operator norms, we give some characterizations of infinite

matrix classes
(∣∣∣Er

µ

∣∣∣
q
,Λ

)
and

(∣∣∣Er
µ

∣∣∣
∞
,Λ
)

, where the absolute spaces
∣∣∣Er

µ

∣∣∣
q
,
∣∣∣Er

µ

∣∣∣
∞

have

been recently studied by Gökçe and Sarıgöl [1] and Λ is one of the well-known spaces
c0,c, l∞, lq(q ≥ 1). Also, we obtain necessary and sufficient conditions for each matrix
in these classes to be compact establishing their identities or estimates for the Hausdorff
measures of noncompactness.

1. Introduction

The summability theory is one of the most important field in mathematics specially analysis, applied mathematics, engineering sciences,
quantum mechanics and probability theory, therefore, it has been chosen as the subject of study by many authors. The theory of sequence
space, which is one of the main topics of the summability theory, is mainly about generalizing the concepts of convergence-divergence
for sequences and series. In this context, the primary aim is to assign a limit value for non-convergent sequences or series by using a
transformation given by the most general linear mappings of infinite matrices. So, several studies can be traced in the literature dealing with
characterization of matrix transformation between special sequence spaces. To mention few of them are [2–6]. On the one hand, from a
different perspective, using the notion of absolute summability, a lot of new spaces of series summable by the absolute summability methods

have studied and introduced by authors (see [1, 7–14]). In recent paper [1], the infinite matrix classes
(∣∣∣Er

µ

∣∣∣ , ∣∣∣Er
µ

∣∣∣
q

)
and

(∣∣∣Er
µ

∣∣∣
q
,
∣∣∣Er

µ

∣∣∣)
have been investigated. In the present paper, the matrix classes

(∣∣∣Er
µ

∣∣∣
q
,Λ

)
and

(∣∣∣Er
µ

∣∣∣
∞
,Λ
)

have been characterized with operator norms,

where 1≤ q < ∞ and Λ ∈
{

c,c0, l∞, lq
}

. Besides, establishing their identities or estimates for the Hausdorff measures of noncompactness,
the necessary and sufficient conditions for each matrix in these classes to be compact have been investigated .

A linear subspaces of ω , the set of all sequences of complex numbers, is called a sequence space. Let ∆,Γ be any subspaces of ω and
U = (unv) be any infinite matrix of complex components. The transform of a sequence δ = (δv) ∈ ω is the sequence U(δ ) deduced by the
usual matrix product and its terms are written as

Un(δ ) =
∞

∑
j=0

un jδ j,

provided that the series converges for all n ≥ 0. Then, U is called a matrix mapping from the space ∆ into the another spaces Γ, if the
sequence U(δ ) exists and U(δ ) ∈ Γ for all δ ∈ ∆. The collection, containing all such infinite matrices, is denoted by (∆,Γ).
A triangle matrix U is given as unn 6= 0 for all n and un j = 0 for n > j.
The concept of domain of an infinite matrix U in the ∆ is described by

ΛU = {δ = (δn) ∈ ω : U(δ ) ∈ ∆} (1.1)
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and also the β -dual of the sequence space Λ is given by the set

∆
β =

{
y :

∞

∑
v=0

yvδv converges for all δ ∈ ∆

}
.

If ∆ ⊂ ω is a Frechet space that is a complete locally convex linear metric space, on which all coordinate functionals rn(δ ) = δn are
continuous for all n, then it is said to be an FK space; an FK space whose metric is given by a norm is called a BK space.
BK-spaces have a significant role in summability theory. For instance, the matrix operators between BK-spaces are continuous and when ∆ is
a BK-space, the matrix domain ∆U is also a BK-space, and also its norm is given by

‖δ‖
∆U

= ‖U(δ )‖
∆
.

A BK-space Λ⊃ φ is said to have AK property if, for all sequence δ = (δv) ∈ ∆, there is a unique representation δ =
∞

∑
v=0

δve(v) where (e(v))

is the sequence whose only nonzero term is 1 in v-th place for v≥ 0 and φ is the set of all finite sequences. For example, while the space l∞
does not have AK property, the sequence space lq has AK property in respect to its natural norm where q≥ 1.

Let ∆ and Γ be two Banach spaces. The set of all continuous linear operators from ∆ into Γ is represented by B(∆,Γ) and, for U ∈B(∆,Γ),
the norm of U is stated by

‖U‖= sup
δ∈S∆

‖U(δ )‖
Γ
.

If y ∈ ω and ∆⊃ φ is a BK-space, then

‖y‖∗
∆
= sup

δ∈S∆

∣∣∣∣∣ ∞

∑
k=0

ykδk

∣∣∣∣∣ ,
and it is finite for y ∈ ∆β . Here, S′

∆
is the unit sphere in ∆.

Throughout this study, µ = (µn) is any sequence of positive real numbers, U = (un j) be an infinite matrix of complex components for all
n, j ≥ 0 and q∗ is the conjugate of q, that is 1/q+1/q∗ = 1 for q > 1, and 1/q∗ = 0 for q = 1.
Let ∑δk be an infinite series with partial sums sn, and (µn) be a sequence of positive terms. The series ∑δv is said to be summable |U,µn|q,
1≤ q < ∞, if (see [15])

∞

∑
n=0

µ
q−1
n |Un(s)−Un−1(s)|q < ∞, (1.2)

where U−1(s) = 0.
Point out that the method includes certain well known methods. For instance, for Cesàro matrix with µn = n and the weighted mean matrix,
it reduces to the absolute Cesàro summability due to Flett [7] and the absolute weighted summability given by Sulaiman [6], respectively.
For more applications, we refer readers to ( [1, 8–10, 12]).
Also, if we choose the Euler matrix Er = (er

ni) instead of U , the summability |U,µn|q is reduced to the absolute Euler summability |Er,µn|q
of order r. Here the terms of the matrix Er = (er

ni) is given by

er
ni =

{ (n
i
)
(1− r)n−iri, 0≤ i≤ n

0, i > n

for all n, i≥ 0 and 0 < r ≤ 1, [1].
The spaces of all series summable by the methods |Er,µn|q , 1≤ q < ∞, and |Er,µn|∞ have recently been introduced by Gökçe and Sarıgöl [1]
as follows:∣∣∣Er

µ

∣∣∣
q
=

{
δ = (δv) :

∞

∑
n=1
|T r

n (q)(δ )|
q < ∞

}
∣∣∣Er

µ,q

∣∣∣
∞
=

{
δ = (δv) : sup

n
|T r

n (q)(δ )|< ∞

}
where T r

0 (q)(δ ) = δ0 and

T r
n (q)(δ ) = µ

1/q∗
n

n
∑

i=1

(n−1
i−1
)
(1− r)n−iriδi. (1.3)

Also, with the notation of domain, we can state
∣∣∣Er

µ

∣∣∣
q
= (lq)T r(q) and

∣∣∣Er
µ,q

∣∣∣
∞
= (l∞)T r(q), if we define the matrix T r(q) = (tr

n j(q)) by

tr
ni(q) =

{
µ

1/q∗
n

(n−1
i−1
)
(1− r)n−iri, 1≤ i≤ n

0, i > n.

The inverse transformation of T r
n (q) can be written as

δn =
n

∑
i=1

µ
−1/q∗
i

(
n−1
i−1

)
(r−1)n−ir−nT r

i (q)(δ ), (1.4)

[1].
Now, we list some known lemmas:
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Lemma 1.1 ( [1]). Let 1≤ q < ∞. The spaces
∣∣∣Er

µ

∣∣∣
q

and
∣∣∣Er

µ,q

∣∣∣
∞

are BK-spaces with the norms ‖δ‖|Er
µ |q

= ‖T r(q)(δ )‖lq and ‖δ‖|Er
µ,q|∞

=

‖T r(q)(δ )‖
∞

. Also, these are linearly isomorphic to the space lq and l∞, respectively.

Lemma 1.2 ( [16]). The following statements hold:

1. U ∈ (l,c) iff (i) lim
n

un j exists for all j ≥ 0, (ii) sup
n, j
|un j|< ∞,

U ∈ (l, l∞) iff (ii) holds.

2. If 1 < q < ∞, then,U ∈ (lq,c)if and only if (i)holds,(iii)sup
n

∞

∑
j=0
|un j|q

∗
< ∞,

U ∈ (lq, l∞)iff (iii) holds.
3. U ∈ (l,c0) iff (iv) lim

n
un j = 0 for all j ≥ 0, (ii) hold.

4. If 1 < q < ∞, then,U ∈ (lq,c0) iff (iii) and (iv) hold.

5. U ∈ (l∞,c) iff (i) holds, (v)
∞

∑
j=0
|un j|< ∞ uniformly in n,

U ∈ (l∞, l∞) iff (vi) sup
n

∞

∑
j=0
|un j|< ∞.

6. U ∈ (l∞,c0) iff (vii) lim
n

∞

∑
j=0
|un j|= 0.

7. If 1≤ p < ∞, then U ∈ (l∞, lq) iff (viii) sup
K

∞

∑
n=0

∣∣∣∣ ∞

∑
k∈K

un j

∣∣∣∣q < ∞.

Lemma 1.3 ( [17]). Let 1≤ q < ∞. Then, U ∈ (l, lq) iff

‖U‖(l,lq) = sup
j

{
∞

∑
n=0

∣∣un j
∣∣q}1/p

< ∞.

Lemma 1.4 ( [16]). Let 1 < q < ∞. Then, U ∈ (lq, l) iff

‖U‖(lq,l) = sup
N∈T

 ∞

∑
j=0

∣∣∣∣∣ ∞

∑
n∈N

un j

∣∣∣∣∣
q∗


1/q∗

< ∞

where T stands for the collection of all finite subsets of N.

It is difficult to apply Lemma 1.4 in applications. The following lemma presents to us an equivalent applicable norm.

Lemma 1.5 ( [18]). Let 1 < q < ∞. Then, U ∈ (lq, l) iff

‖U‖
′

(lq,l) =

 ∞

∑
j=0

(
∞

∑
n=0

∣∣un j
∣∣)q∗


1/q∗

< ∞.

Since ‖U‖(lq,l) ≤ ‖U‖
′

(lq,l) ≤ 4‖U‖(lq,l) , there exists ζ ∈ [1,4] such that ‖U‖
′

(lq,l) = ζ ‖U‖(lq,l).

Using the Hausdorff measure of noncompactness χ introduced in [19], characterizations of compact operators on great number of sequence
spaces are investigated by many researchers. For instance, to characterize the class of compact operators on several spaces, the Hausdorff
measure of noncompactness method have been used by Malkowsky and Rakocevic in [20], Mursaleen and Noman in [21, 22], (see
also [1, 23–26]).
Let (∆,d) be a metric space and Q be a bounded subset of ∆. Then, χ and the number

χ (Q) = inf{ε > 0 : Q has a finite ε−net in ∆}

are called the Hausdorff measure of noncompactness and the Hausdorff measure of noncompactness of Q, respectively.
Suppose that S is a linear operator between the Banach spaces ∆ and Γ such that S : ∆→ Γ. Then, it is said that S is compact if its domain is
all of ∆ and, for every bounded sequence (δn) in ∆, the sequence (S(δn)) has a convergent subsequence in Γ.

Lemma 1.6 ( [27]). Let Q⊂ ∆ be a bounded set where ∆ is one of the normed spaces c0 or lq for 1≤ q < ∞. If Rr : ∆→ ∆ is the operator
defined by Rr(y) = (y0,y1, ...yr,0,0, ...) for all y ∈ ∆, then

χ (Q) = lim
r→∞

(
sup
δ∈Q
‖(I−Rr)(y)‖

)
.

Let χ1,χ2 be Hausdorff measures on ∆ and Γ. If S(Q) is a bounded subset of Γ and there exists M > 0 such that χ2 (S(Q))≤Mχ1 (Q) for
each bounded subset Q of ∆, then the linear operator S : ∆→ Γ is called (χ1,χ2)- bounded. If an operator S is (χ1,χ2)- bounded, then the
number

‖S‖(χ1,χ2)
= inf{M > 0 : χ2 (S(Q))≤Mχ1 (Q) for all bounded sets Q⊂ ∆}

is called the (χ1,χ2)-measure noncompactness of L. Also, in case of χ1 = χ2 = χ, it is written by ‖S‖(χ,χ) = ‖S‖χ .
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Lemma 1.7 ( [28]). L ∈B(∆,Γ) and S′
δ
= {δ ∈ ∆ : ‖δ‖ ≤ 1} be the unit ball in ∆. Then,

‖S‖χ = χ
(
S
(
S′

δ

))
and

S is compact ⇔‖S‖χ = 0.

Lemma 1.8 ( [29]). Let T = (tnv) be an infinite triangle matrix, ∆ be a normed sequence space and χT and χ stand for the Hausdorff
measures of noncompactness on M∆T and M∆, the collections of all bounded sets in ∆T and ∆, respectively. Then, χT (Q) = χ(T (Q)) for
each Q ∈M∆T .

Lemma 1.9 ( [22]). Let ∆ = l∞ or ∆⊃ φ be any BK-space with AK property. If U ∈ (∆,c), then

lim
n→∞

unk = λk exists for all k,

λ = (λk) ∈ ∆
β ,

sup
n
‖Un−λ‖∗X < ∞,

lim
n→∞

Un(δ ) =
∞

∑
k=0

λkδk for each δ = (δk) ∈ ∆.

Lemma 1.10 ( [22]). Let ∆⊃ φ be a BK-space. Then,
(a) If U ∈ (∆,c0), then

‖LU‖χ = lim
r→∞

(
sup
n>i
‖Un‖∗∆

)
.

(b) If the space ∆ has AK or ∆ = l∞ and U ∈ (∆,c), then

1
2

lim
i→∞

(
sup
n≥i
‖Un−λ‖∗

∆

)
≤ ‖SU‖χ ≤ lim

i→∞

(
sup
n≥i
‖Un−λ‖∗

∆

)

where λ = (λk) defined by λk = lim
n→∞

unk, for all n ∈ N.

(c) If U ∈ (∆, l∞), then

0≤ ‖SU‖χ ≤ lim
i→∞

(
sup
n>i
‖Un‖∗∆

)
.

2. Matrix and Compact Operators on the Spaces
∣∣Er

µ

∣∣
q

and
∣∣Er

µ,q
∣∣
∞

In this part of the study, firstly, by computing operator norms we obtain some characterizations of infinite matrix classes
(∣∣∣Er

µ

∣∣∣
q
,Λ

)
and(∣∣∣Er

µ

∣∣∣
∞
,Λ
)

, where Λ is one of the spaces c,c0, l∞, lq and 1≤ q < ∞. Moreover, we search the necessary and sufficient conditions for each
matrix in these classes to be compact establishing their estimates or identities for the Hausdorff measures of noncompactness.

Lemma 2.1. Let 1≤ q < ∞. Then,

(i) If u = (uv) ∈
{∣∣∣Er

µ

∣∣∣
q

}β

, then, ũ(q) = (ũ(q)v ) ∈ lq∗ for all δ ∈
∣∣∣Er

µ

∣∣∣
q

(ii) If u = (uv) ∈
{∣∣∣Er

µ

∣∣∣}β

, then, ũ(1) = (ũ(1)v ) ∈ l∞ for all δ ∈
∣∣∣Er

µ

∣∣∣
(iii) If u = (uv) ∈

{∣∣∣Er
µ,q

∣∣∣
∞

}β

, then, ũ(q) = (ũ(q)v ) ∈ l for all δ ∈
∣∣∣Er

µ,q

∣∣∣
∞

and the equality

∞

∑
v=0

uvδv =
∞

∑
v=0

ũ(q)v yv (2.1)

holds, where y = T r(q)(δ ) is T r(q)-transformation sequence of the sequence δ = (δv) and

ũ(q)v = µ
−1/q∗
v

∞

∑
n=v

(
n−1
v−1

)
(r−1)n−vr−nun, ũ

(q)
0 = u0.

Proof. (i) Let u = (uv) ∈
{∣∣∣Er

µ

∣∣∣
q

}β

. Considering (1.4) the equation (2.1) is obtained immediately. Also, it follows from Theorem 1.29

in [30] that ũ(q) ∈ lq∗ whenever u ∈
{∣∣∣Er

µ

∣∣∣
q

}β

.

As (ii) and (iii) can be proved with similar lines, these parts are left to reader.
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Lemma 2.2. Let 1 < q < ∞. Then, we have ‖u‖∗|Er
µ |q

=
∥∥∥ũ(q)

∥∥∥
lq∗

for all u ∈
{∣∣∣Er

µ

∣∣∣
q

}β

, ‖u‖∗|Er
µ | =

∥∥∥ũ(1)
∥∥∥

l∞
for all u ∈

{∣∣∣Er
µ

∣∣∣}β

and

‖u‖∗|Er
µ,q|∞

=
∥∥∥ũ(q)

∥∥∥
l

for all u ∈
{∣∣∣Er

µ,q

∣∣∣
∞

}β

.

Proof. Take u ∈
{∣∣∣Er

µ

∣∣∣
q

}β

. Since lβ
q = lq∗ , we get ũ(q) ∈ lq∗ . Also, it follows from Theorem 1.29 in [30] and Lemma 2.1 that

‖u‖∗|Er
µ |q

= sup
δ∈S|Er

µ |q

∣∣∣∣∣ ∞

∑
v=0

uvδv

∣∣∣∣∣= sup
y∈Slq

∣∣∣∣∣ ∞

∑
v=0

ũ(q)v yv

∣∣∣∣∣= ∥∥∥ũ(q)
∥∥∥∗

lq
=
∥∥∥ũ(q)

∥∥∥
lq∗

.

For u ∈
{∣∣∣Er

µ

∣∣∣}β

and u ∈
{∣∣∣Er

µ,q

∣∣∣
∞

}β

, the proofs are similar, so the proofs are omitted.

Theorem 2.3. Let 1≤ q < ∞. Further, let W = (wn j) be a matrix satisfying

wn j = µ
1/q∗
n

n

∑
i=1

(
n−1
i−1

)
(1− r)n−iriui j. (2.2)

Then, U ∈
(

∆,
∣∣∣Er

µ

∣∣∣
q

)
equals to W ∈

(
∆, lq

)
, and U ∈

(
∆,
∣∣∣Er

µ,q

∣∣∣
∞

)
if and only if W ∈ (∆, l∞).

Proof. Let take λ ∈ ∆. Then, considering (2.2) it can be written that

∞

∑
j=0

wn jδ j = µ
1/q∗
n

n

∑
v=1

(
n−1
v−1

)
(1− r)n−vrv

∞

∑
j=0

u jvδ j,

which implies that Wn(δ ) = T r
n (q)(U(δ )). This shows that Un(δ )∈

∣∣∣Er
µ

∣∣∣
q

when δ ∈ ∆ if and only if W (δ )∈ lq when δ ∈ ∆, which completes

the first part of the proof of the theorem.
The remaining part of the proof is omitted, as it is similar.

Theorem 2.4. Assume that 1≤ q < ∞ and ∆ is arbitrary sequence space. Then, U ∈
(∣∣∣Er

µ

∣∣∣
q
,∆

)
if and only if for all n≥ 0

V (n) ∈
(
lq,c
)

and Ũ (q) ∈
(
lq,∆

)
,

U ∈
(∣∣∣Er

µ,q

∣∣∣
∞
,∆
)

if and only if for all n≥ 0

V (n) ∈ (l∞,c) and Ũ (q) ∈ (l∞,∆) .

Here the matrices Ũ and V (n) are described as

ũ(q)nk = µ
−1/p∗

k

∞

∑
v=k

(
v−1
k−1

)
(r−1)v−kr−vunv

and

v(n)mk =


un0, k = 0

µ
−1/q∗

k

m
∑

v=k

(v−1
k−1
)
(r−1)v−kr−vunv, 1≤ k ≤ m

0, k > m.

Proof. We only demonstrate for U ∈
(∣∣∣Er

µ

∣∣∣
q
,∆

)
to avoid repetition. Assume that U ∈

(∣∣∣Er
µ

∣∣∣
q
,∆

)
. Given δ ∈

∣∣∣Er
µ

∣∣∣
q
. Since

∣∣∣Er
µ

∣∣∣
q
=(

lq
)

T (r)(q), it follows from (1.4) that, for n,m≥ 0,

m

∑
k=0

unkδk =
m

∑
k=0

v(n)mk yk. (2.3)

So, we get that, for all δ ∈
∣∣∣Er

µ

∣∣∣
q
, Uδ is well defined iff V (n) ∈ (lq,c). Also, letting m→ ∞, gives (2.3) that Uδ = Ũ (q)y. Since Uδ ∈ ∆,

Ũ (q)y is also in ∆, and so Ũ ∈ (lq,∆).

On the contrary, let V (n) ∈
(
lq,c
)

and Ũ (q) ∈
(
lq,∆

)
. Then, by (2.3), we have Un ∈

{∣∣∣Er
µ

∣∣∣
q

}β

for all n, which gives that Uδ exists. Also, by

Ũ (q) ∈
(
lq,∆

)
and (2.3), by letting m→ ∞, we get U ∈

(∣∣∣Er
µ

∣∣∣
q
,∆

)
.

We present the following tables and conditions:
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From To c c0 l∞ l lp(p > 1)∣∣∣Er
µ

∣∣∣
q

1,3,12,14 2,3,12,14 3,12,14 4,12,14 –

∣∣∣Er
µ

∣∣∣ 1,6,11,14 2,6,11,14 6,11,14 5,11,14 5,11,14

∣∣∣Er
µ,q

∣∣∣
∞

1,7,13,14 8,13,14 10,13,14 9,13,14 9,13,14

Table 1: From Absolute Euler spaces to
{

l∞,c0,c, l, lp
}

From To cs bs∣∣∣Er
µ

∣∣∣
q

1, 3,12,14 3,12,14

∣∣∣Er
µ

∣∣∣ 1,6,11,14 6,11,14

∣∣∣Er
µ,q

∣∣∣
∞

1,7,13,14 10,13,14

Table 2: From Absolute Euler spaces to {cs,bs}

1. lim
n→∞

ũ(q)n j exists for all j ∈ N

2. lim
n→∞

ũ(q)n j = 0 for all j ∈ N

3. sup
n

∞

∑
j=0

∣∣∣ũ(q)nv

∣∣∣q∗ < ∞

4. sup
N

∑
v

∣∣∣∣ ∑
n∈N

ũ(q)n j

∣∣∣∣q∗ < ∞

5. sup
j

∑
n

∣∣∣ũ(q)n j

∣∣∣p < ∞,(1≤ p < ∞)

6. sup
n, j

∣∣∣ũ(q)n j

∣∣∣< ∞

7.
∞

∑
j=0
|ũq

n j|< ∞ uniformly in n

8. lim
n

∞

∑
j=0
|ũq

n j|= 0

9. sup
K

∞

∑
n=0

∣∣∣∣ ∞

∑
k∈K

ũq
n j

∣∣∣∣p < ∞,(1≤ p < ∞)

10. sup
n

∞

∑
j=0
|ũq

n j|< ∞

11. sup
m, j

∣∣∣v(n)m j

∣∣∣< ∞

12. sup
m

∞

∑
j=0

∣∣∣v(n)m j

∣∣∣q∗ < ∞

13.
∞

∑
j=0
|v(n)m j |< ∞ uniformly in m

14. lim
m→∞

v(n)m j exists for all j,n ∈ N

We obtain following by Theorem 2.4.

Theorem 2.5. Let 1 < p,q < ∞. Then, Table 1 presents us the necessary and sufficient conditions for U ∈ (η ,Λ), where η is one of absolute
Euler spaces and Λ ∈

{
c,c0, l∞, l, lp

}
.

Take the matrices T1 = (t1
n j) and T2 = (t2

n j) as

t1
n j =

{
1, 0≤ j ≤ n
0, j > n

and

t2
n j =


1, n = j

−1, n = j+1
0, otherwise.
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Then, since bs = {l∞}T1
, cs = {c}T1

and bvq =
{

lq
}

T2
, characterization of the matrix classes (η ,Θ) can be obtained immediately as follows,

where Θ ∈
{

cs,bs,bvq
}

and η is one of the any absolute Euler spaces.

Corollary 2.6. Let’s take u(n, j) =
n
∑

i=0
ui j instead of un j in the matrices V (n) = (v(n)mv ) and Ũ (p) = (ũ(p)

nv ) for all n, j ≥ 0. Then, Table 2

presents us the necessary and sufficient conditions for U ∈ (η ,Θ), where Θ ∈ {cs,bs} and η is one of the absolute Euler spaces.

Corollary 2.7. Put bn j = un j−un+1, j instead of un j in the matrices V (n) and Ũ (q) for all n, j ≥ 0. Then,

U ∈
(∣∣∣Er

µ

∣∣∣ ,bvp

)
iff the conditions 5,11,14 hold,

U ∈
(∣∣∣Er

µ,q

∣∣∣
∞
,bvp

)
iff the conditions 9,13,14 hold.

Theorem 2.8. (i) Let 1 < q < ∞ and Λ ∈ {c0,c, l∞}. Then,

U ∈
(∣∣∣Er

µ

∣∣∣
q
,Λ

)
⇒‖SU‖= sup

n

∥∥∥Ũ (q)
n

∥∥∥
lq∗

= sup
n

(
∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣q∗)1/q∗

U ∈
(∣∣∣Er

µ

∣∣∣ ,Λ)⇒‖SU‖= sup
n

∥∥∥Ũ (1)
n

∥∥∥
l∞
= sup

n,v

∣∣∣ũ(1)nv

∣∣∣
U ∈

(∣∣∣Er
µ,

∣∣∣
∞
,Λ
)
⇒‖SU‖= sup

n

∥∥∥Ũ (q)
n

∥∥∥
l
= sup

n

∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣ .
(ii) Let 1 < q < ∞. Then, there exists ζ ∈ [1,4] such that

U ∈
(∣∣∣Er

µ

∣∣∣
q
, l
)
⇒‖SU‖=

1
ζ

∥∥∥Ũ (q)
∥∥∥′
(lq,l)

=
1
ζ

 ∞

∑
v=0

(
∞

∑
n=0

∣∣∣ũ(q)nv

∣∣∣)q∗


1/q∗

,

U ∈
(∣∣∣Er

µ

∣∣∣ , lq)⇒‖SU‖=
∥∥∥Ũ (1)

∥∥∥
(l,lq)

= sup
v

{
∞

∑
n=0

∣∣∣ũ(1)nv

∣∣∣q} 1
q

,

U ∈
(∣∣∣Er

µ

∣∣∣ , l)⇒‖SU‖=
∥∥∥Ũ (1)

n

∥∥∥
(l,l)

= sup
v

∞

∑
n=0

∣∣∣ũ(1)nv

∣∣∣ ,
U ∈

(∣∣∣Er
µ,q

∣∣∣
∞
, lq
)
⇒‖SU‖=

∥∥∥Ũ (q)
∥∥∥
(l∞,lq)

,

U ∈
(∣∣∣Er

µ,q

∣∣∣
∞
, l
)
⇒‖SU‖=

∥∥∥Ũ (q)
∥∥∥
(l,l)

.

Proof. The theorem can be easily proved by using Lemma 1.3, Lemma 1.5, Lemma 2.2 and Theorem 1.23 in [30], so it have left to
reader.

Theorem 2.9. Let 1 < q < ∞.

(a) If U ∈
(∣∣∣Er

µ

∣∣∣
q
,c0

)
, then

‖SU‖χ = lim
r→∞

sup
n>r

∥∥∥Ũ (q)
n

∥∥∥
lq∗

= lim
r→∞

sup
n>r

(
∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣q∗)1/q∗

,

and

LU is compact iff lim
r→∞

sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣q∗ = 0.

(b) If U ∈
(∣∣∣Er

µ

∣∣∣
q
,c
)

, then

1
2

lim
r→∞

sup
n>r

(
∞

∑
v=0

∣∣∣ũ(q)nv − ũv

∣∣∣q∗)1/q∗

≤ ‖SU‖χ ≤ lim
r→∞

sup
n>r

(
∞

∑
v=0

∣∣∣ũ(q)nv − ũv

∣∣∣q∗)1/q∗

and

SU is compact iff lim
r→∞

sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv − ũv

∣∣∣q∗ = 0, where ũv = lim
n→∞

ũnv, for all n ∈ N.

(c) If U ∈
(∣∣∣Er

µ

∣∣∣
q
, l∞

)
, then

0≤ ‖SU‖χ ≤ lim
r→∞

sup
n>r

(
∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣q∗)1/q∗

,

and

if lim
r→∞

sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣q∗ = 0, SU is compact.
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Proof. (a) Let U ∈
(∣∣∣Er

µ

∣∣∣
q
,c0

)
. Then, the series

∞

∑
n=0

unvλv converges for all λ ∈
∣∣∣Er

µ

∣∣∣
q
, or, equivalently Un = {unv}∞

v=0 ∈
{∣∣∣Er

µ

∣∣∣
q

}β

. So,

it follows from Lemma 2.2 that ‖Un‖∗|Er
µ |q

=
∥∥Ũn

∥∥
lq∗

. Also, by Lemma 1.10 (a), we have

‖SU‖χ = lim
r→∞

sup
n>r

∥∥Ũn
∥∥

lq∗
.

Hence, the compactness of SU is immediate by Lemma 1.7, which completes the proof of (a).
(b) Let take the unit sphere S′|Er

µ |q
in
∣∣∣Er

µ

∣∣∣
q
. From Lemma 1.7 it follows that

‖SU‖χ = χ(U(S′|Er
µ |q

)).

Further, since
∣∣∣Er

µ

∣∣∣
q
∼= lq, U ∈

(∣∣∣Er
µ

∣∣∣
q
,c
)

equals to Ũ ∈
(
lq,c
)
, and

‖SU‖χ = χ(U(S′|Er
µ |q

)) = χ(Ũ(T (S′|Er
µ |q

))) =
∥∥SŨ

∥∥
χ
.

which implies, by Lemma 1.10 (b),

1
2

lim
r→∞

(
sup
n≥r

∥∥Ũn− ũ
∥∥∗

lq

)
≤ ‖LU‖χ ≤ lim

r→∞

(
sup
n≥r

∥∥Ũn− ũ
∥∥∗

lq

)
, (2.4)

where ũk = lim
n→∞

ũnk, for all k ≥ 0.

Considering Theorem 1.29 in [30], it can be easily written that
∥∥Ũn− ũ

∥∥∗
lq
=
∥∥Ũn− ũ

∥∥
lp∗

. The last equality and (2.4) complete the first part

of the proof of (b). Also, the compactness of SU is concluded by Lemma 1.7.
(c) can be proved by similar way, so it is omitted.

By following the above lines,the proof of the following theorems also can be obtained immediately. Therefore, we just give the statement of
the theorems.

Theorem 2.10. (a) If U ∈
(∣∣∣Er

µ

∣∣∣ ,c0

)
. Then

‖SU‖χ = lim
r→∞

sup
n>r

∥∥∥Ũ (1)
n

∥∥∥
l∞
= lim

r→∞
sup
n>r

sup
v

∣∣∣ũ(1)nv

∣∣∣ ,
and
SU is compact iff lim

r→∞
sup
n>r

sup
v

∣∣∣ũ(1)nv

∣∣∣= 0.

(b) If U ∈
(∣∣∣Er

µ

∣∣∣ ,c), then

1
2

lim
r→∞

sup
n>r

sup
v

∣∣∣ũ(1)nv − ũv

∣∣∣≤ ‖SU‖χ ≤ lim
r→∞

sup
n>r

sup
v

∣∣∣ũ(1)nv − ũv

∣∣∣
and
SU is compact iff lim

r→∞
sup
n>r

sup
v

∣∣∣ũ(1)nv − ũv

∣∣∣= 0

where ũv = lim
n→∞

ũnv, for all v ∈ N.

(c) If U ∈
(∣∣∣Er

µ

∣∣∣ , l∞), then

0≤ ‖SU‖χ ≤ lim
r→∞

sup
n>r

sup
v

∣∣∣ũ(1)nv

∣∣∣ ,
and
SU is compact if lim

r→∞
sup
n>r

sup
v

∣∣∣ũ(1)nv

∣∣∣= 0.

Theorem 2.11. Let 1 < q < ∞.
(a) If U ∈

(∣∣∣Er
µ,q

∣∣∣
∞
,c0

)
, then

‖SU‖χ = lim
r→∞

sup
n>r

∥∥∥Ũ (q)
n

∥∥∥
l
= lim

r→∞
sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣ ,
and
SU is compact iff lim

r→∞
sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣= 0.

(b) If U ∈
(∣∣∣Er

µ,q

∣∣∣
∞
,c
)

, then

1
2

lim
r→∞

sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv − ũv

∣∣∣≤ ‖SU‖χ ≤ lim
r→∞

sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv − ũv

∣∣∣
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and

SU is compact iff lim
r→∞

sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv − ũv

∣∣∣= 0

where ũv = lim
n→∞

ũnv, for all v ∈ N.

(c) If U ∈
(∣∣∣Er

µ,q

∣∣∣
∞
, l∞
)

, then

0≤ ‖SU‖χ ≤ lim
r→∞

sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣ ,
and

SU is compact if lim
r→∞

sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣= 0.

Theorem 2.12. (a) If U ∈
(∣∣∣Er

µ

∣∣∣ , lq), 1≤ q < ∞, then

‖SU‖χ = lim
r→∞

sup
v

(
∞

∑
n=r+1

∣∣∣ũ(1)nv

∣∣∣q)1/q
 ,

and

SU is compact iff lim
r→∞

sup
v

∞

∑
n=r+1

∣∣∣ũ(1)nv

∣∣∣q = 0.

(b) If U ∈
(∣∣∣Er

µ

∣∣∣
q
, l
)

, 1 < q < ∞, then there exists ζ ∈ [1,4] such that

‖SU‖χ =
1
ζ

lim
r→∞

 ∞

∑
v=0

(
∞

∑
n=r+1

∣∣∣ũ(q)nv

∣∣∣)q∗


1/q

,

and

SU is compact iff lim
r→∞

∞

∑
v=0

(
∑

n=r+1

∣∣∣ũ(q)nv

∣∣∣)q∗

= 0.

3. Conclusion

One of the most important subjects in summability theory is the theory of sequence spaces which concerns with the generalization of the
concept of convergence for series and sequences. In this sense, the primary aim is to assign a limit value for divergent sequences or series by
using transformation which is given by the most general linear mappings of infinite special matrices. So, there has been a large literature,
concerned with characterizing completely all matrices which transform one given sequence space into another. Besides this, the literature has
been also grown up in terms of the studies of many sequence spaces defined as domain of special matrices and related matrix operators (see,

for instance, [1–4, 6–12]). For a recent paper [1], the infinite matrix classes
(∣∣∣Er

µ

∣∣∣ , ∣∣∣Er
µ

∣∣∣
q

)
and

(∣∣∣Er
µ

∣∣∣
q
,
∣∣∣Er

µ

∣∣∣) have been introduced. In

this study, estimating the operator norms, the classes
(∣∣∣Er

µ

∣∣∣
q
,Λ

)
and

(∣∣∣Er
µ

∣∣∣
∞
,Λ
)

have been characterized where 1≤ q < ∞. Also, in case

Λ is one of the spaces c0,c, l∞, lq, the necessary and sufficient conditions for each matrix in these classes to be compact have been obtained
and certain identities or estimates for the Hausdorff measures of noncompactness have been established.
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Abstract

In this paper, firstly we introduced the concepts of rough I -convergence, rough I ∗-
convergence, rough I -Cauchy sequence, and rough I ∗-Cauchy sequence of a function
defined on discrete countable amenable semigroups. Then, we investigated the relations
between them.

1. Introduction

Throughout the paper, N denotes the set of all positive integers and R the set of all real numbers. The idea of I -convergence was introduced
by Kostyrko et al. [1] as a generalization of statistical convergence which is based on the structure of the ideal I of subset of N.
Phu [2] introduced, firstly, the notion of rough convergence in finite-dimensional normed spaces. In [2], he investigated some properties of
LIMrx such as boundedness, closedness and convexity, and also he defined the notion of rough Cauchy sequence. Then, Phu [3] studied
on rough convergence and some important properties of this concept. Furthermore, recently some authors [4–8] investigated the rough
convergence types in some normed spaces.
In [9], Day studied on the concept of amenable semigroups (or briefly ASG). Then, some authors [10–12] studied the notions of summability
in ASG. Douglas [13] extended the notion of arithmetic mean to ASG and obtained a characterization for almost convergence in ASG.
In [14], Nuray and Rhoades presented the concepts of convergence and statistical convergence in ASG. Dündar et al. [15] and Dündar,
Ulusu [16] introduced rough convergence and investigated some properties of rough convergence in ASG. Dündar, Ulusu [17] studied rough
statistical convergence in ASG. Also, Dündar et al. [18] defined rough ideal convergence and some properties in ASG. Recently, some
authors studied on the new concepts in ASG (see [19–22]).
First of all, we remember the basic definitions and concepts that we will use in our study such as amenable semigroups, rough convergence,
rough ideal convergence, etc. (see [2, 3, 8–16, 18–24, 26, 27]).
Let a real number r ≥ 0 and Rn (the real n-dimensional space) with the norm ∥.∥, and a sequence x = (xk)

n
k=0 ⊂ Rn.

A sequence (xk) is said to be r-convergent to L, denoted by xk
r−→ L, provided that

∀ε > 0 ∃kε ∈ N : k ≥ kε ⇒∥xk −L∥< r+ ε.

The rough limit set of the sequence x = (xk) is showed by LIMrx = {L ∈ Rn : xk
r−→ L}.

A sequence x = (xk) is said to be r-convergent if LIMrx ̸= /0 and r is called the convergence degree of the sequence (xk). For r = 0, we get
the ordinary convergence.
Let G be a discrete countable amenable semigroups (or briefly DCASG) with identity in which both left and right cancelation laws hold, and
w(G) denotes the space of all real valued functions on G.
If G is a countable amenable group, there exists a sequence {Sn} of finite subsets of G such that
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(i) G =
⋃

∞
n=1 Sn,

(ii) Sn ⊂ Sn+1 (n = 1,2, ...),
(iii) lim

n→∞

|Sng∩Sn|
|Sn| = 1, lim

n→∞

|gSn∩Sn|
|Sn| = 1, for all g ∈ G.

If a sequence of finite subsets of G satisfy (i)-(iii), then it is called a Folner sequence (or briefly FS) of G.
Throughout the paper, we take G be a DCASG with identity in which both left and right cancelation laws hold.
For any FS {Sn} of G, a function f ∈w(G) is said to be convergent to t if for every ε > 0 there exists a k0 = k0(ε)∈N such that | f (g)−t|< ε,
for all m > k0 and g ∈ G\Sm.
Let X ̸= /0. A class I of subsets of X is said to be an ideal in X provided:

i) /0 ∈ I ,
ii) A,B ∈ I implies A∪B ∈ I ,

iii) A ∈ I , B ⊂ A implies B ∈ I .

I is called a nontrivial ideal if X ̸∈ I . A nontrivial ideal I in X is called admissible if {x} ∈ I , for each x ∈ X .
Throughout the paper, we take I as an admissible ideal in N.
Let X ̸= /0. A class /0 ̸= F of subsets of X is said to be a filter in X provided:

i) /0 ̸∈ F ,
ii) A,B ∈ F implies A∩B ∈ F ,

iii) A ∈ F , A ⊂ B implies B ∈ F .

If I is a nontrivial ideal in X , X ̸= /0, then the class

F (I ) = {M ⊂ X : (∃A ∈ I )(M = X\A)}

is a filter on X , called the filter associated with I .
An admissible ideal I ⊂ 2N satisfies the property (AP), if for every countable family of mutually disjoint sets {A1,A2, . . .} belonging to I ,
there exists a countable family of sets {B1,B2, . . .} such that A j∆B j is a finite set for j ∈ N and B =

⋃
∞
j=1 B j ∈ I (hence B j ∈ I for each

j ∈ N).
After then, we let I ⊆ 2G be an admissible ideal for amenable semigroup G.
A function f ∈ w(G) is said to be I -convergent to s for any FS {Sn} for G, if for every ε > 0{

g ∈ G : | f (g)− s| ≥ ε
}
∈ I .

In this case, we write I − lim f (g) = s.
A function f ∈ w(G) is said to be I ∗-convergent to s, for any FS {Sn} for G if there exists M ⊂ G, M ∈ F (I ) (i.e., G\M ∈ I ) and a
k0 = k0(ε) ∈ N such that for every ε > 0 | f (g)− s|< ε, for all n > k0 and all g ∈ M \Sn. In this case, we write I ∗− lim f (g) = s.
A function f ∈ w(G) is said to be I -Cauchy sequence, for any FS {Sn} for G if for every ε > 0, there exists an h = h(ε) ∈ G such that{

g ∈ G : | f (g)− f (h)| ≥ ε
}
∈ I .

A function f ∈ w(G) is said to be I ∗-Cauchy sequence, for any FS {Sn} for G if there exists M ⊂ G, M ∈ F (I ) (i.e., G\M ∈ I ) and a
k0 = k0(ε) ∈ N such that for every ε > 0 | f (g)− f (h)|< ε, for all n > k0 and g,h ∈ M \Sn.
For any FS {Sn} of G, a function f ∈ w(G) is said to be rough convergent (r-convergent) to t if

∀ε > 0 ∃kε ∈ N : m ≥ kε ⇒ | f (g)− t|< r+ ε, (1.1)

for all g ∈ G\Sm or equivalently if limsup | f (g)− t| ≤ r, for all g ∈ G\Sm. In this instance, we write r− lim f (g) = t or f (g) r→ t.
If (1.1) holds, then t is an r-limit point of the function f ∈ w(G), which is usually no longer unique (for r > 0). Hence, we have to think the
so-called rough limit set (r-limit set) of the function f ∈ w(G) defined by LIMr f := {t : f (g) r→ t}.
For any FS {Sn} for G, the function f ∈ w(G) is said to be r-convergent if LIMr f ̸= /0. In this instance, r is called the convergence degree of
the f ∈ w(G).
For any FS {Sn} of G, a function f ∈ w(G) is said to be a rough Cauchy sequence with roughness degree ℘, if ∀ε > 0 ∃kε : m ≥ kε ⇒
| f (g)− f (h)| ≤℘+ ε is hold for ℘> 0 and all g,h ∈ G\Sm. ℘ is also said to be Cauchy degree of f ∈ w(G).

2. Main Results

In this section, we introduced the concepts of rough I -convergence, rough I ∗-convergence, rough I -Cauchy sequence and rough
I ∗-Cauchy sequence of a function defined on discrete countable amenable semigroups. Then, we investigated relations between them.

Definition 2.1. For any FS {Sn} of G, a function f ∈ w(G) is said to be rough I -convergent (r-I -convergent) to s if for every ε > 0

{g ∈ G : | f (g)− s| ≥ r+ ε} ∈ I (2.1)

or equivalently if

I − limsup | f (g)− s| ≤ r

is satisfied. In this instance, we write

r−I − lim f (g) = s or f (g) r−I−→ s.

On the other hand, we say that f (g) r−I−→ s if and only if the condition

| f (g)− s| ≤ r+ ε

holds for every ε > 0 and almost g ∈ G.
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In this convergence r is named the roughness degree. For r = 0, we get the I -convergence.
If (2.1) holds, then s is an r-I -limit point of the function f ∈ w(G), which is usually no longer unique (for r > 0). Hence, we have to think
the so-called rough I -limit set of the function f ∈ w(G) defined by

I −LIMr f := {s : f (g) r−I−→ s}.

For any FS {Sn} for G, the function f ∈ w(G) is said to be r-I -convergent if

I −LIMr f ̸= /0.

If I −LIMr f ̸= /0 for a function f ∈ w(G), then we have

I −LIMr f = [I − limsup f − r, I − liminf f + r].

Remark 2.2. If I is an admissible ideal, then for a function f ∈ w(G), usual rough convergence implies rough I -convergence for any FS
{Sn} of G.

Definition 2.3. A function f ∈ w(G) is said to be rough I -Cauchy sequence, for any FS {Sn} for G if for every ε > 0, there exists an
h = h(ε) ∈ G such that{

g ∈ G : | f (g)− f (h)| ≥ r+ ε
}
∈ I .

Theorem 2.4. If f ∈ w(G) is rough I -convergent for any FS {Sn} for G, then it is rough I -Cauchy for same sequence.

Proof. For any Folner sequence {Sn} for G, let

r−I − lim f (g) = s.

Then, for every ε > 0, we have

Aε =
{

g ∈ G : | f (g)− s| ≥ r+ ε
}
∈ I .

Since I is an admissible ideal there exists an h ∈ G such that h /∈ Aε . Now, let

Bε =
{

g ∈ G : | f (g)− f (h)| ≥ 2(r+ ε)
}
.

Taking into account the inequality

| f (g)− f (h)| ≤ | f (g)− s|+ | f (h)− s|,

we observe that if g ∈ Bε , then

| f (g)− s|+ | f (h)− s| ≥ 2(r+ ε).

On the other hand, since h /∈ Aε we have

| f (h)− s|< r+ ε

and so

| f (g)− s|> r+ ε.

Hence, g ∈ Aε and so we have

Bε ⊂ Aε ∈ I .

Thus, Bε ∈ I that is, f is rough I -Cauchy sequence.

Definition 2.5. A function f ∈ w(G) is said to be rough I ∗-convergent to s, for any FS {Sn} for G if there exists M ⊂ G, M ∈ F (I ) (i.e.,
G\M ∈ I ) and a k0 = k0(ε) ∈ N such that for every ε > 0

| f (g)− s|< r+ ε, (2.2)

for all n > k0 and all g ∈ M \Sn. In this case, we write

r−I ∗− lim f (g) = s.

In this convergence r is named the roughness degree. For r = 0, we get the I ∗-convergence.
If (2.2) holds, then s is an r-I ∗-limit point of the function f ∈ w(G), which is usually no longer unique (for r > 0).
Hence, we have to think the so-called rough I ∗-limit set of the function f ∈ w(G) defined by

I ∗−LIMr f := {s : f (g) r−I ∗
−→ s}.

For any FS {Sn} for G, the function f ∈ w(G) is said to be r-I ∗-convergent if

I ∗−LIMr f ̸= /0.
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Theorem 2.6. If f ∈ w(G) is rough I ∗-convergent to s, then f is rough I -convergent to s for any FS {Sn} for G.

Proof. For any FS {Sn} for G, let

r−I ∗− lim f (g) = s.

Then, there exists M ⊂ G, M ∈ F (I ) (i.e., H = G\M ∈ I ) and a k0 = k0(ε) ∈ N such that for every ε > 0

| f (g)− s|< r+ ε,

for all n > k0 and all g ∈ M \Sn. Therefore obviously,

A(ε) =
{

g ∈ G : | f (g)− s| ≥ r+ ε
}
⊂ H ∪Sk0 .

Since I is admissible,

H ∪Sk0 ∈ I

and so

A(ε) ∈ I .

Hence,

r−I − lim f (g) = s.

Definition 2.7. A function f ∈ w(G) is said to be rough I ∗-Cauchy sequence, for any FS {Sn} for G if there exists M ⊂ G, M ∈ F (I )
(i.e., G\M ∈ I ) and a k0 = k0(ε) ∈ N such that for every ε > 0

| f (g)− f (h)|< r+ ε,

for all n > k0 and g,h ∈ M \Sn.

Theorem 2.8. If f ∈ w(G) is rough I ∗-Cauchy for any FS {Sn} for G, then it is rough I -Cauchy for same sequence.

Proof. Let f ∈ w(G) be an rough I ∗-Cauchy for any FS {Sn} for G. Then by definition, there exists M ⊂ G, M ∈ F (I ) (i.e., G\M ∈ I )
and a k0 = k0(ε) ∈ N such that for every ε > 0

| f (g)− f (h)|< r+ ε,

for all n > k0 and g,h ∈ M \Sn. Let H = G\M. It is clearly H ∈ I and

A(ε) =
{

g ∈ G : | f (g)− f (h)| ≥ r+ ε
}
⊂ H ∪Sk0 .

Since I is admissible,

H ∪Sk0 ∈ I

and so

A(ε) ∈ I .

Consequently, f is rough I -Cauchy for same sequence.

Following theorems show relationships between I -convergence and I ∗-convergence, between I -Cauchy sequence and I ∗-Cauchy
sequence. These theorems can be proved like in [19, 25], these theorems are given without the proof.

Theorem 2.9. Let I ⊂ 2G be an admissible ideal with the property (AP). If f (g) ∈ w(G) is rough I -convergent to s, then f is rough
I ∗-convergent to s for any FS {Sn} for G.

Theorem 2.10. Let I ⊂ 2G be an admissible ideal with the property (AP). If f ∈ w(G) is rough I -Cauchy for any FS {Sn} for G, then it
is rough I ∗-Cauchy for same sequence.

3. Conclusion

In this paper, we introduced the concepts of rough I -convergence, rough I ∗-convergence, rough I -Cauchy sequence and rough I ∗-
Cauchy sequence of a function defined on discrete countable amenable semigroups. Also, we investigated relations between them. Then
after, The concepts given here can also be studied for double sequences.
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