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The Modeling of the Rucklidge Chaotic System with
Artificial Neural Networks
Zeynep Keles ID ∗,1, Guray Sonugur ID ∗,2 and Murat Alcın ID ∗,3

∗Mechatronics Engineering, Faculty of Technology, Afyon Kocatepe University, Afyonkarahisar, Türkiye.

ABSTRACT Chaotic systems are nonlinear systems that show sensitive dependence on initial conditions, and
an immeasurably small change in initial value causes an immeasurably large change in the future state of
the system. Besides, there is no randomness in chaotic systems and they have an order within themselves.
Researchers use chaotic systems in many areas such as mixer systems that can make more homogeneous
mixtures, encryption systems that can be used with high security, and Artificial Neural Networks (ANNs)
by taking the advantage of the order in this disorder. Differential equations in which chaotic systems are
expressed mathematically are solved by numerical solution methods such as Heun, Euler, ODE45, RK4,
RK5-Butcher and Dormand-Prince in the literature. In this research, Feed Forward Neural Network (FFNN),
Layer Recurrent Neural Network (LRNN) and Cascade Forward Backpropogation Neural Network (CFNN)
structures were used to model the Rucklidge chaotic system by making use of the MATLAB R2021A and
Neural Network (NN) Toolbox. By comparing the results of different activation functions used in the modeling,
the ANN structure that can best model the Rucklidge chaotic system has been determined. The training of the
compared ANNs was carried out with the values obtained from the Euler numerical solution method, which
can get satisfactory and fast results.

KEYWORDS

Rucklidge
chaotic sys-
tem
Euler algorithm
Artificial neural
network

INTRODUCTION

Chaotic systems were discovered in 1960 by a meteorologist
named Edward Norton Lorenz based on the meaningful results he
obtained when he changed the initial values in the system he used
to make weather forecasts by very small proportions. Lorenz’s
work proves that chaotic systems change unpredictably within
certain limits, and one can only know within which probabilities
they may act. After Lorenz’s studies, many chaotic systems have
been presented to the literature and improvements have been made
on the systems by working on chaotic systems (Alcin et al. 2019;
Avaroğlu et al. 2015; Liu et al. 2020; Prakash et al. 2020; Rajagopal
et al. 2019; Ramakrishnan et al. 2022; Vaidyanathan et al. 2018).

Chaotic systems have been widely used in the design of chaotic
oscillators (Tuna et al. 2019a), True Random Number Generators

Manuscript received: 11 December 2022,
Revised: 10 March 2023,
Accepted: 23 March 2023.

1 zeynepkeles.aku@gmail.com
2 gsonugur@aku.edu.tr
3 muratalcin@aku.edu.tr (Corresponding Author)

(Koyuncu et al. 2020a; Tuna et al. 2019b) and Pseudo Random
Number Generators (Koyuncu et al. 2021; Tuna 2020); the modeling
using ANNs (Koyuncu et al. 2020b), Image Encryption (Boyraz
et al. 2022; Kiran et al. 2022; Ullah et al. 2022), synchronization.

Lee et al. studied the problem of continuous synchronization
of a master-slave chaotic system in a sampled data environment
by

considering both intermittent coupling and continuous cou-
pling situations. They used the Euler approximation technique to
analyze a continuous-time chaotic oscillator containing a nonlinear
function. Their experiments with neurons show that using these
neurons, ANNs can be implemented rapidly in hardware and the
design time can be significantly reduced (Lee et al. 2010).

Azzaz et al. have presented to the literature a 3 dimension
(3D) chaotic system created with automatically switched numer-
ical resolution of new multiple 3D continuous chaotic systems.
The designed chaotic system provides complex chaotic attractors
and can automatically change their behavior through a chaotic
switching rule. At the same time, some complex dynamic behav-
iors were investigated and analyzed in the study. The originality
of the proposed architecture is that it allows to solve the problem
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of finite sensitivity due to digital implementation, while providing
a good trade-off between high security, performance and hardware
resources (low power and cost) (Azzaz et al. 2013).

Çavuşoğlu et al. argue that chaotic systems are an alternative
to the standard broad spectrum communication systems in the
literature, since they can spread the spectrum of information sig-
nals to be transmitted over a wide area, simultaneously encode
notification signals and perform these operations with simple and
inexpensive chaotic circuit mechanisms. They carried out the sig-
nal masking application by considering the Lorenz chaotic system
(Cavusoglu 2014).

According to the work of Koyuncu et al. in 2017, the digital
implementation of the hardware and the experimental results of
the Field Programmable Gate Array (FPGA) circuit show that a
promising technique can be applied in efficient embedded crypto-
graphic communication systems. ANN-based Rössler system was
created to demonstrate the effectiveness of using neurons in fast
realization of ANNs in embedded systems (Koyuncu et al. 2017).

In 2018, Koyuncu and colleagues, who added the numerical
modeling of the new 3-D Jerk chaotic system with the fifth-order
Runge-Kutta-Butcher algorithm to their work on Matlab, trained a
multi-layered feed-forward ANN with the data set obtained from
the modeling and analyzed the results obtained from this network.
The weights and bias values taken as reference from the numerical
solution are used for the design and implementation of the ANN-
based 3-D New Jerk Chaotic oscillator on FPGA (Koyuncu et al.
2020b).

In the continuation of 2018, Koyuncu et al. argued that the most
basic structure used in chaos-based applications such as cryptology,
secure communication, industrial control, ANN, Random Number
Generators (RNGs) and image processing is a chaotic oscillator
structure that generates the chaotic signal, and they performed
an oscillator design that has not been presented in the literature
before on FPGA in 32-bit IEEE-754-1985 floating point number
standard (Koyuncu et al. 2020b).

In this study, different ANN structures of the Rucklidge
Chaotic System and different activation functions in these struc-
tures were trained by using them. Success results of each training
were compared and ANN structures that could best model the
system were presented.

In Section 2, information is given about the Euler method used
in this study, and the time series and phase portraits obtained
from the solution of the Rucklidge Chaotic System with the Euler
method are presented. In Section 3, general information about
ANN structures and activation functions is given. In Section 4, the
results of different ANN structures and the trainings performed
using different activation functions in these structures are pre-
sented. In the conclusion part, the success results of the trainings
are compared and discussed.

MATERIAL AND METHODS

Rucklidge Chaotic System
The Rucklidge system is a model of a double convection process

in which motion is limited to long thin coils that models convection
in an applied vertical magnetic field and a smoothly rotating fluid
layer (Dong et al. 2021). The second-order nonlinear Rucklidge
chaotic system is defined by the following equations.

dx/dt = −ax + by − yz (1)

dy/dt = x (2)

dz/dt = y2 − z (3)

a and b, which are in the differential equation sets of the Rucklidge
chaotic system, are the system parameters. Besides, x, y and z rep-
resent the dynamic variables of the system. The system parameters
based on this study are a = 2 and b = 6.7 and the initial conditions
are x0 = 2, y0 = 2, z0 = 2 and the system shows a chaotic behavior.
In addition, since this system is an Ordinary Differential Equation
(ODE), this equation can also be solved using MATLAB function
libraries.

Euler Method

Euler’s method is one of the methods used in the numerical
solution of differential equations. Given first-order ODE as
follows:y′ = f (x, y) and initial values y(x0) = y0 and trying to
solve this equation in the range of x-values [x0, xn], our goal is to
get a P = [x0, x1, x2, ..., xn] is to approximate the value of the y(x)
solution at each of the x values. Given y(x), the first value we
have to guess is y(x1). The symbol y′ represents the derivative
of the function f, where x is the independent variable and y the
dependent variable. When expressed by Taylor’s theorem:

y(x1) = y(x0) + y′(x0)(x1 − x0) +
y′(c)

2
(x1 − x0)

2 (4)

Since c ∈ (x0, x1), y′(x0) = f (x0, y(x0))

y(x1) = y(x0) + f (x0, y(x0))(x1 − x0)
y′(c)

2
(x1 − x0)

2 (5)

Here, y′(c)
2 (x1 − x0)

2 is a small error value and may not be taken
into account. Then, the Equation 6 is obtained.

y(x1) ≈ y(x0) + f (x0, y(x0))(x1 − x0) (6)

Similarly, for k = 1, 2, . . . , n − 1, y(xk + 1) can be calculated ap-
proximately.

y(xk+1) ≈ y(xk) + f (xk, y(xk))(xk+1 − xk) (7)

Here y(xk) will be known from previous calculations. As with
numerical integration methods, it is practical to take the division
to consist of sub-intervals of equal width. If we express it in this
way, our equation will be as it is expressed in Equation 8.

(xk+1 − xk) = ∆x =
(xn − x0)

n
(8)

In the study of numerical methods for differential equations, this
quantity is usually denoted by h. Here is our general relationship

y(xk+1) ≈ y(xk) + f (xk, y(xk))∆x (9)

If we show our approximations for y, y0, y1, . . . , yn values,
x0, x1, . . . , xn, (y0 = y(x0), y1 ≈ y(x1), etc.), then approximately
y(x) can be calculated iteratively in the P part.

yk+1 = yk + f (xk, yk)∆x (10)

The reason why the Euler method is preferred in this study is to
obtain good results in a short time by reducing the processing
load in modeled ANNs. The time series and the phase portraits
obtained from the solution of the Rucklidge chaotic system by
Euler’s method are shown in Fig.1 and Fig. 2, respectively.
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Figure 1 The time series of Rucklidge chaotic system using Eu-
ler’s numerical solution.

Figure 2 The phase portraits of Rucklidge chaotic system using
Euler’s numerical solution.

ARTIFICIAL NEURAL NETWORKS (ANNS)

Artificial Neural Network (ANN), is a computer algorithm in-
spired by the neuron system in order to imitate the process of
producing new information with learning in the human brain. It
has been developed so that machines can recognize the desired
pattern in complex data and generally performs better than other
algorithms when recognizing audio, image or video segments. An
ANN consists of inputs (X), weights (W), addition function, activa-
tion function (Tansig, Purelin, Satlins etc.) and outputs. In ANN
modeling, the relationship between Inputs (X) and Outputs (Y) is
Y = f (X) + b. Here Weight (W) information is used to reduce the
error (b).

Figure 3 Artificial Neuron Structure

ANNs can also consist of one hidden layer or more than one
hidden layer, and different activation functions can be used in these
hidden layers. In this project, multi-layer ANNs were studied and
single-layer ANNs were excluded. In ANNs, there is no certain
rule such as how many hidden layers will be found or how many
neurons will be used, zthey are usually created according to the
needs of the problem and the best model is tried to be reached by
using trial and error method.

In this network structure, the information received from the
inputs is transmitted to the hidden layer and has a one-way work-
ing principle. The output value is determined by processing the
information in the hidden layers and the output layer.ANNs can be
created in various structures such as FFNN, LRN, and CFBN. Since
MATLAB R2021A program has functions that allow the modeling
of the above-mentioned ANNs, the MATLAB R2021A program
was used in this study and various variations of the specified
ANNs were created and the results were compared.

Feed-Forward Back-propagation Neural Network (FFNN)
In this network structure, the information received from the in-

puts is transmitted to the hidden layer and has a one-way working
principle. The output value is determined by processing the infor-
mation in the hidden layers and the output layer.

Figure 4 The structure of Feed-Forward Backpropagation Neural
Network

Layered-Recurrent Neural Network (LRN)
In Layered-Recurrent Neural Networks, the outputs in the hidden

layers and the output layers are also fed back as inputs. Thus, it
has a bidirectional working principle. Since there is feedback, this
type of ANNs have memory. It is shown in Fig 5

Figure 5 The structure of Layered-Recurrent Neural Network
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Cascade Forward Back-propagation Neural Network (CFNN)

Cascade Forward Back-propagation Neural Networks are similar
to feed-forward networks. The difference is that the data from the
input contains a link to each hidden layer.

Figure 6 The structure of Cascade Forward Back-propagation
Neural Network

In this research, the solution values produced by applying the
Euler numerical solution algorithm were given as input to the mod-
eled ANNs, and the ability to model the Rucklidge chaotic system
of FFNN, LRN, CFBN were analyzed and the results obtained are
presented.

Activation Functions

Activation Functions are used to decide whether neurons will be
active or not by processing the information from the summing
function. For this reason, it is important to choose an appropriate
activation function for the solution of the problem. In this study,
the most suitable activation function options for the problem were
determined by using different activation functions.

Hyperbolic Tangent Sigmoid Activation Function (tansig)

Hyperbolic tangent sigmoid activation function is an S-shaped
activation function that compresses the input values in the infinite
space range to the range of −1 and 1 and is expressed mathemati-
cally as follows:

f (n) =
2

1 + e−2π
− 1 (11)

The input-output relationship of the hyperbolic tangent sigmoid
transfer function is demonstrated in Fig. 7, where n is the input
value and a is the output value for this activation function.

Figure 7 Hyperbolic Tangent Sigmoid Activation Function

Linear Activation Function (Purelin)
Purelin is a linear transfer function used by neural networks and

it is mathematically expressed as follows:

f (n) = n (12)

Figure 8 Purelin Activation Function.

Symmetric Saturating Linear Activation Function (Satlins)
The Satlins function is an inverse Z-shaped activation function

that transmits to the output in the space interval [-1 1], gives an
output of −1 for values between −1 and infinity, and gives an
output of 1 for values between 1 and infinity. This function is
mathematically expressed as follows:

f (n) =


−1, n ≤ −1

n, −1 < n < 1

1, n ≥ 1

(13)

Figure 9 Satlins Activation Function.

In this study, 70% of the 3x10.000 data obtained by the Euler
method of the Rucklidge chaotic system was reserved for training,
15% for validation and 15% for testing, and was used in network
training of 14 different ANNs. These ANN structures, Trainlm,
Trainbr, Trainscg training functions; Various hidden layer numbers
and sequences of Tansig, Purelin, Satlins activation functions have
been created on different ANN types such as FFNN, LRN, and
CFBN.

62 | Keles et al. CHAOS Theory and Applications



■ Table 1 Training results on modeling the Rucklidge chaotic system with different ANN structures

No Network Dimen-
sion

Model Training Func-
tion

1st Activation
Function

2nd Activation
Function

3rd Activation
Function

Best Perfor-
mance

1 8x8x3 CFNN Trainlm Tansig Purelin Satlins 15.2867

2 8x5x3 CFNN Trainbr Tansig Purelin Purelin 1.57x10−11

3 8x5x3 CFNN Trainlm Tansig Purelin Purelin 4.4519x10−15

4 8x3 CFNN Trainlm Tansig Purelin - 5.13x10−12

5 8x5x3 FFNN Trainbr Tansig Purelin Satlins 0.0012001

6 5x3 FFNN Trainlm Tansig Purelin - 6.6562x10−9

7 5x5x3 FFNN Trainlm Tansig Satlins Purelin 4.3206x10−9

8 5x5x3 FFNN Trainlm Tansig Purelin Satlins 16.3083

9 8x3 FFNN Trainlm Tansig Purelin - 2.297x10−11

10 8x8x3 FFNN Trainbr Tansig Purelin Satlins 15.2869

11 8x8x3 FFNN Trainlm Tansig Satlins Purelin 5.4601x10−7

12 8x8x3 FFNN Trainscg Tansig Purelin Satlins 15.287

13 8x5x3 LRN Trainlm Tansig Purelin Purelin 3.7906x10−12

14 8x3 LRN Trainlm Tansig Purelin - 2.94x10−10

FINDINGS AND DISCUSSION

In this study, 14 different ANN structures have been trained with
respect to different Network Dimension, Training Function, Activa-
tion Function. In these ANN structures, there are 2 hidden layers
in 8x3 and 5x3, structures. Here, the first and second numbers
express the number of neurons in the first and the second hidden
layer, respectively. Also, the third refers to the number of neurons
in the output layer. Apart from these, there are 1 hidden layers
in 8x3 and 5x3 structures. Here, the first and second numbers de-
note the number of neurons in the hidden layer and output layer,
respectively.

Levenberg-Marquardt backpropagation (Trainlm), Bayesian reg-
ularization backpropagation (Trainbr) and Scaled conjugate gra-
dient backpropagation (Trainscg) functions have been used as
Training Function in these structures. Hyperbolic tangent sigmoid
transfer function (Tansig), Linear transfer function (Purelin) and
Symmetric saturating linear transfer function (Satlins) functions
have been used as Activation Function in these structures.

The results obtained by changing the training and activation
functions in different ANN structures of the Rucklidge chaotic
system are given in Table 1.

According to the data obtained from Table 1, the ANN struc-
tures that can best model the Rucklidge chaotic system are marked
with red in the table, and the best result is the CFBN 3rd architec-
ture, which is the 8x5x3 hidden layer Trainlm training function and
has the tansig-purelin-purelin activation function order and the
best test performance is 4.4519x10-15. The worst test performance
is the 8th architecture, an FFNN with 5x5x3 hidden layer Trainlm

training function and Tansig- Purelin- Satlins activation function
sequence. Based on this comparison, it can be concluded that
FFNN gives better results for the Rucklidge chaotic system among
network structures under the same conditions. For this reason,
the network structure no. 9, which has fewer neurons and gives
satisfactory accuracy values, was preferred in the error analysis.

For 100 iterative values produced by the Rucklidge Chaotic
System with the Euler algorithm and 100 iterative values produced
by the selected reference number 9 FFNN, Mean Squared Error
(MSE), Root Mean Squared Error (RMSE) and Normalized Mean
Squared Error (NMSE) values are obtained for 3 outputs, namely
X, Y and Z. Here, X, Y and Z represent the produced outputs of the
9th FFNN structure of Rucklidge Chaotic System. The comparison
of their outputs for 100 input values is presented in Table 2.

■ Table 2 MSE, RMSE and NMSE values for 100 produced
outputs between Rucklidge Chaotic System with the Euler algo-
rithm and the FFNN network structure no. 9.

MSE RMSE NMSE

X 3.8965E − 04 1.9740E − 02 1.2065E − 03

Y 2.4895E − 04 1.5778E − 02 1.1937E − 03

Z 6.0393E − 04 2.4575E − 02 1.3986E − 03
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CONCLUSION

In this study, the Rucklidge chaotic system, which has not been
modeled using ANN before in the literature, has been solved by
Euler numerical algorithm and network trainings with different
architectures have been carried out with these solution values,
making use of the proof of the rapid applicability of ANNs to the
hardware implementation in the literature. In this context, network
training results were compared by using different ANN structures
and different activation functions in these structures, and ANN
structures that could best model the Rucklidge Chaotic System
were specified. The FFNN with 8x3, which get more satisfactory
results in terms of MSE as 2.297x10−11 in Table 1 in a shorter
time than the others, was preferred for error analysis. In error
analysis, 100 output values generated by Rucklidge Chaotic System
with the Euler algorithm and 9th FFNN structure have been used
and MSE, RMSE and NMSE values have been obtained. MSE,
RMSE and NMSE values for X are 3.8965E − 04, 1.9740E − 02 and
1.2065E − 03, respectively. MSE, RMSE and NMSE values for Y
are 2.4895E-04, 1.5778E-02 and 1.1937E − 03, respectively. MSE,
RMSE and NMSE values for Z are 6.0393E − 04, 2.4575E − 02 and
1.3986E − 03, respectively. In future studies, an application can
be made about the hardware implementation of the ANN-based
Rucklidge chaotic system.
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Alcin, M., İ. Koyuncu, M. Tuna, M. Varan, and İ. Pehlivan, 2019
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et al., 2019 Dynamical analysis, sliding mode synchronization
of a fractional-order memristor hopfield neural network with
parameter uncertainties and its non-fractional-order fpga imple-
mentation. The European Physical Journal Special Topics 228:
2065–2080.

Ramakrishnan, B., M. E. Cimen, A. Akgul, C. Li, K. Rajagopal,
et al., 2022 Chaotic oscillations in a fractional-order circuit with a
josephson junction resonator and its synchronization using fuzzy
sliding mode control. Mathematical Problems in Engineering
2022.

Tuna, M., 2020 A novel secure chaos-based pseudo random num-
ber generator based on ANN-based chaotic and ring oscillator:
design and its FPGA implementation 105: 167–181.
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ABSTRACT
The intention was to associate blood pressure (BP) variability (BPV) measurements to Local field potentials
(LFPs). Thus, assessing how LFPs can co-vary with BPV to permit implantable brain devices (via LFPs) to
control output. Elevated BPV is a considerable cardiovascular disease risk factor. Often patients are resistant
to pharmacotherapies. An alternative treatment is Deep Brain Stimulation (DBS). Mathematical techniques
based on nonlinear dynamics assessed their correlation of BPV chaotic global metrics to LFPs. Chaos Forward
Parameter (CFP6) was computed for LFPs, at three electrode depths in the mid-brain and sensory thalamus.
Mean, root mean square of the successive differences (RMSSD) and the chaotic global metrics (CFP1 to
CFP7) were computed for the BP signal. The right ventroposterolateral (RVPL) nucleus provided a substantial
correlation via CFP6 for BP with R-squared up to approximately 79% by means of LFP gamma oscillations.
Investigation of BPV via LFPs as a proxy marker might allow therapies to be attuned in a closed-loop system.
Whilst all patients were chronic pain patients the chaotic global relationship should be unperturbed. LFPs
correlation does not unconditionally predict its causation. There is no certainty DBS in these locations would
be therapeutic but can be used as an assessment tool.
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INTRODUCTION

Monitoring deep brain local field potentials (LFPs) can provide
wide-ranging information. They show oscillatory behaviour in
several frequency bands. The frequency ranges explored here
are delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30
Hz), gamma (30-100 Hz) and fast (100-200 Hz) (McAfee 2017).
They seed the electroencephalograms (EEGs) that are recorded
non-invasively; so are clinically relevant. LFPs reflect the totalled
synaptic activity from a local neuronal population within a region
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of about 100 micrometres located around the recording electrode.
Implanted Deep Brain Stimulation (DBS) electrodes can be used to
record their activity from precise areas of the brain. They have been
targeted to within sub-millimetric accuracy. Such oscillations are
relevant to the neurophysiological and neuropathological aspects
of neuropathic pain (Ploner et al. 2017), dystonia (Whitmer et al.
2013) and Parkinson’s disease (Dauer and Przedborski 2003; Lang
and Lozano 1998; Stoco-Oliveira et al. 2021), amongst others. LFP
oscillations in the different frequency ranges are created by distinct
mechanisms but, are all related to neural synchrony.

Concentrating on blood pressure (BP) variability (BPV); ele-
vated levels of BP and BPV are interesting because of their cor-
relation with adverse cardiovascular and cerebrovascular events
(Appiah et al. 2021). The cause of BPV fluctuations versus the
LFPs from deep brain areas could provide a therapeutic solution
using DBS, pharmacotherapies and so forth. These associations
are upheld throughout all age and ethnic groups (Mancia et al.
2013). Despite numerous pharmacotherapies, fewer than 50% of
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hypertensive patients regulate their BP and variabilities effectively.
Approximately 0.5% are refractory to treatment, implying uncon-
trollability despite taking up to five categories of anti-hypertensive
medication (Calhoun et al. 2014).

Whilst mainstream clinical studies focus on intermittently mea-
sured, static BP measurements, BP is not a constant variable. It
oscillates, exhibiting short-term (seconds to minutes), mid-term
(hours to days) and long-term (between seasons) fluctuations
(Parati et al. 2018; Webb et al. 2021). Likewise, it varies with circa-
dian cycles (Frank et al. 1966). Clinical studies have established
an independent relationship between both short and long term
BPV (Parati et al. 2008) to cardiovascular events, regardless of their
mean BP levels. These mentioned cardiovascular events and mean
BP associations to the chaotic global techniques (discussed later)
are expected to initiate from different areas of the midbrain. BPV
deviations have been related to target organ damage, such as ar-
terial stiffness (Kim et al. 2016; Zhou et al. 2018), left ventricular
hypertrophy (Mustafa et al. 2016), risk of developing diabetic foot
ulcers (Palatini 2018) and risk of pre- and post- surgical complica-
tions (Henriques et al. 2019; Jinadasa et al. 2018; Packiasabapathy
et al. 2020; Rangasamy et al. 2020).

Treatment using antihypertensive medications may reduce BPV.
Consequently, this is linked with optimal cardiovascular protection
(Appiah et al. 2021; Corrao et al. 2011). This may have implications
for stroke (Appiah et al. 2021; Rothwell et al. 2010), myocardial
infarction, heart failure, peripheral artery disease, end-stage renal
disease (Parati et al. 2012) and explicitly the dynamical diseases
(Mackey and Milton 1987). Dynamical diseases are categorized
by unexpected aberrations in the qualitative dynamics of physio-
logical processes (Bernardo et al. 2014; Chang 2010). This causes
irregular dynamics and pathological states. Accordingly, there is
an association between the mathematical niche of nonlinear dy-
namics and complexity theory with clinical medicine (Belair et al.
1995).

Initially, we focussed on LFPs in six bandwidths: delta (0.5-4
Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), gamma (30-
100 Hz) and fast (100-200 Hz) in four anatomical locations and at
three electrode depths. We computed the chaotic global metrics
(Chaos Forward Parameter, CFP1 to CFP7) that assess the chaotic
response and irregularities of datasets, as described by Garner
and Ling in 2014 (Garner and Ling 2014). These methods were
later advanced to investigate high spectral variants and applied
them to mathematical inverse problems in 2021 (Garner and Ling
2021). They had already been applied to forward problems (Garner
et al. 2020a, 2017). We computed the spectral multi-Taper Method
(sMTM) for the LFPs. Then, we concurrently logged the mean, root
mean square of the successive differences (RMSSD) (Nazaraghaei
and Bhat 2020; Schmitt et al. 2015) and the non-trivial permutations
of three chaotic global metrics of BP. We are assessing its BPV via
the somewhat sinusoidally oscillating BP signal. This is analogous
to the Duffing (Bonatto et al. 2008), Brusselator (Osipov and Poni-
zovskaya 2000) and Lorenz (Jeppesen et al. 2015) signals in Garner
and Ling (Garner and Ling 2021).

BPV fluctuates highly irregularly and conceivably chaotically.
So, algorithms that assess this property are appropriate. BPV
arises as a result of the cross-talk between several cardiovascular
and physiological regulatory systems. These include but are not
limited to the baroreceptor reflex, the renin-angiotensin system,
the vascular myogenic response and release of nitric oxide from
the endothelium (Hocht 2013).

Up until now, the most sophisticated techniques applied to mea-
sure BPV have been their mean, standard deviation (Parati et al.

2013) and, Detrended Fluctuation Analysis (DFA) (Peng et al. 1995)
in rats. Nonetheless, whilst DFA has been studied previously (Gal-
hardo et al. 2009) it necessitates enforcement on the BP interpeak
intervals not the periodic signal described here. Consequently, we
later apply high spectral Detrended Fluctuation Analysis (hsDFA)
as CFP5 instead. The chaotic global techniques implemented here
(Barreto et al. 2014) are anticipated to have elevated responses to
those changes than the linear time-domain descriptive statistics
and DFA. Here, mean and RMSSD are set as benchmarks.

Some antihypertensive medications such as Calcium Channel
Blockers (Rothwell et al. 2010; Silke et al. 1987) have been demon-
strated to be effective in reducing BPV, either as monotherapy, or
in combination with other therapies. Since diminishing BPV might
avert the risk of cardiovascular mortality (Dolan and O’Brien 2010),
under circumstances of refractory hypertension (Bacan et al. 2022;
Matanes et al. 2022), an alternative treatment might be effective.
Whilst not without significant risk, a potential substitute is DBS.
DBS can effectively lower the absolute mean BP when stimulation
is enforced to the ventral columns of the Periaqueductal grey area
(PAG) (Green et al. 2005). BPV can fluctuate with chronic pain
(Spallone 2018). So far, even if we can monitor the BPV levels via
the LFPs; it is not inevitably the case that correlation implies causa-
tion. DBS in identical regions could be ineffective. Yet, additional
pharmacotherapies should be analysed using these chaotic global
techniques.

Anatomically, the periaqueductal grey matter (PAG) and ros-
trally contiguous periventricular grey (PVG) are located in the
mid-brain and organized into functionally distinct and opposite
columns (Carrive and Bandler 1991). These columns receive af-
ferents from the sympathetic chain (Farkas et al. 1998), the ros-
tral raphe (Marcinkiewicz et al. 1989), anterior hypothalamus
(Cameron et al. 1995), thalamus (Krout and Loewy 2000) and cor-
tex (Newman et al. 1989). In sequence, the PAG/PVG projects to
sympathetic premotor neurons in the hypothalamus, pons and
medulla. These projections influence sympathetic outflow that
alter cardiovascular output (Farkas et al. 1998). Moreover, the
PAG/PVG projects to vagal preganglionic neurons (Farkas et al.
1997). Assuming that the neurocircuitry of the PAG/PVG and their
cross-talk components perform a pivotal role in cardiovascular con-
trol the central question of this study is whether the mathematical
measures of complexity of this neural activity, in the appropriate
region, correlate with BPV. Neuromodulation has the potential to
reduce BPV and therefore reduce morbidity associated with this
elevated BPV. The necessary neuromodulation may occur in very
specific, sub-millimetric locations of the mid-brain and sensory
thalamus.

MATERIAL AND METHODS

Twenty-two human patients underwent DBS for neuropathic pain;
all were chronic pain. All DBS implantations were performed at
the John Radcliffe Hospital, Oxford, United Kingdom. The surgical
procedures for the targeting and implantation of DBS electrodes
(Model 3387, Medtronic, Minneapolis, MN, United States of Amer-
ica) have been described previously (Bittar et al. 2005). All subjects
provided their informed written consent and confidentiality rights
observed. This study was approved by the Oxford Local Ethics
Committee (OxRecB): study number 05 Q1605 47 and conformed
to the declaration of Helsinki.
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Data Acquisition & Experimental Procedures

The DBS electrodes were temporarily externalized for one week of
trial stimulation. This delay was to ascertain if there was a clinical
effect prior to implanting the battery. We recorded three bipolar
recording signals in four different locations with each electrode
situated either in the mid-brain or sensory thalamus (see Figure
1). Electrode contacts are labelled such that ’0’ is the deepest and
’3’ the most rostral so that bipolar channel (M23) was the most
superficial, (M12) the middle depth and, (M01) the deepest of the
recordings. The mid-brain regions were left and right periaque-
ductal/periventricular grey (LPVG & RPVG respectively). The
thalamic areas were right and left ventroposterolateral nucleus
(RVPL & LVPL respectively). In subjects with facial pain, their tar-
get was slightly medial and termed ’ventroposteromedial’ nucleus
or ’VPL’ for simplicity as there is no structural or functional dif-
ference. This sensory thalamic location is ordered somatotopically
with face medial and leg lateral (arm in between).

The researchers’ ensured synchronisation between the BP signal
and LFP measurements. The two outputs were logged simulta-
neously, aligned on the same clock and displayed online whilst
recorded onto a hard disk in Spike2 (Cambridge Electronic Design,
United Kingdom).

Datasets were acquired at two sampling frequencies; 4 kHz
and 5 kHz. Those at 5 kHz were down-sampled to 4kHz so that
all datasets could be manipulated identically. All signals were
linearly detrended; the mean of the signal subtracted from the
signal itself. The LFPs were bandpass filtered in accordance with
delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz),
gamma (30-100 Hz) and fast (100-200 Hz). They were screened
so that all values above and below four standard deviations were
excluded from the time-series. This had the beneficial effect of
removing the most extreme outliers without compromising the
signal information. The blood pressure signal was Butterworth
notch filtered to eliminate the 50 Hz UK mains noise. The width
of the notch was defined by the 49 to 51 Hz frequency interval.
This notch filter provided up to 24 dB of attenuation. The LFPs
were not filtered in this way since they are only used to compute
the sMTM (CFP6) which is contingent on the area between the
power spectrum and the baseline, not the signal itself. (See later
for elucidation on sMTM & CFP6). Next, all signals were down-
sampled to 1 kHz so not too computer processor intensive when
further processed. All time-series were 200 seconds long. To
achieve correlations with LFP electrode recordings, we logged
the concurrent blood pressure signals from the subjects. The LFPs
and blood pressure signals had their power spectra computed for
supplementary analysis. (See Figure 2).

An elevated level of chaotic global response is correlated with
optimal physiological performance (Bernardo et al. 2014; De Souza
et al. 2015). If the level of chaotic global response is lowered this
is usually (there are exceptions) associated with the purported
dynamical diseases (Belair et al. 1995; Mackey and Milton 1987;
Pezard et al. 1996). These include cardiac arrhythmias and res-
piratory failures and are potentially fatal. Psychiatric disorders
such as Schizophrenia (Bar et al. 2010, 2007) and bipolar disorder
(Voss et al. 2006) are other examples. Chaotic global techniques
have previously detected irregularities of the Heart Rate Variability
(HRV) in attention deficit hyperactivity disorder (ADHD) (Wajn-
sztejn et al. 2016), type 1 diabetes mellitus (T1DM) (De Souza et al.
2015; Garner et al. 2017) and chronic obstructive pulmonary disease
(COPD) (Bernardo et al. 2014). The restoration of HRV levels have
been confirmed in subjects who have undergone Bariatric surgery
(Benjamim et al. 2021). These novel chaotic global techniques to

scrutinize BPV have not been applied to blood pressure signals
prior to this study.

Signal Processing of Data Regarding further analysis we enforced
100 seconds of time-series. This is since we evaluate half of the 200
second time-series by implementing a sliding window 20 times.
Generally, by means of the standard techniques based on nonlin-
ear dynamics such as Shannon Entropy (Shannon 2001) and DFA
to assess HRV we require as a minimum of 5 to 20 minutes of
time-series (Camm et al. 1996). Yet, with the use of chaotic global
techniques an ultra-short time series has been proven to be ade-
quate (Garner et al. 2019b). The high spectral chaotic global metrics
are very sensitive and therefore further responsive to chaotic and
irregular signals (Garner and Ling 2021).

Each recorded time-series was disconnected into 20 comparable
epochs. This attained 20 values. This was to substantiate that
if the measures of the linear regression increased. This would
indicate that the two samples are more highly correlated. Each
epoch incorporated half of the time-series with subsequent epochs
being shifted forward by 2.5%. Therefore, the first epoch was
measured from 0 to 50%, second from 2.5 to 52.5% and so on until
the 20th epoch measured from 50 to 100%. We recorded three
bipolar signals (M01 deepest, M12 middle, M23 most superficial)
in four different locations of the mid-brain and sensory thalamus.
This gave us 20 sections for each bipolar recording signal which
were taken per data set.

With regards the LFPs, the sMTM (CFP6) of the 20 phases was
taken for each section. This gave 20 values for (M01), 20 values
for (M12) and 20 values for (M23) recordings for each of the four
regions. The last channel of data to be processed was the blood
pressure which was monitored concurrently with the bipolar elec-
trode recordings. We separated this into 20 phases synchronously
with the bipolar recordings. For the blood pressure, we computed
the mean, RMSSD and the seven non trivial chaotic global metric
combinations (CFP1 to CFP7). For a full chaotic global analysis
all seven permutations are necessary. It is not sufficient to just
equate the signal chaotic global values CFP5, CFP6 and CFP7. This
corresponded to 20 for mean, 20 for RMSSD, 20 for CFP1 and so
on up to and including 20 for CFP7.

The Multi-Taper Method (MTM) power spectrum provided the
foundation for all calculations regarding CFP1 to CFP7 parame-
ters. In this study the parameters for MTM are set at: (i) 1Hz for
sampling frequency; (ii) time bandwidth for the DPSS is set to
4; (iii) FFT is the larger of 256 and the next power of two greater
than the length of the segment (iv) Thomson’s ’adaptive’ nonlinear
combination method to combine individual spectral estimates.

CFP1 =
[

n (hsEntropy)2 + n (sMTM)2 + (1 − [n (hsDFA)])2
] 1

2

CFP2 =
[

n (hsEntropy)2 + (1 − [n (hsDFA)])2
] 1

2

CFP3 =
[

n (hsEntropy)2 + n (sMTM)2
] 1

2

CFP4 =
[

n (sMTM)2 + (1 − [n (hsDFA)])2
] 1

2

CFP5 =
[
(1 − [n (hsDFA)])2

] 1
2

CFP6 =
[

n (sMTM)2
] 1

2

CFP7 =
[

n (hsEntropy)2
] 1

2

.
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Figure 1 A 3-Dimensional image of the electrode locations. One electrode is PAG/PVG and the other is in the sensory thalamus. These signify
a ’mean’ position for the cohort described. The coordinates are the mean target (middle 2 contact points) from the mid-commissural point in
millimetres (mm). anterior commissure (AC) - posterior commissure (PC) coordinates. PAG array centre : X = 5mm, Y = -16mm, Z = -2mm.
Thalamic electrode: X = 16mm, Y = -9mm, Z = 4mm. [PAG = periaqueductal grey, MRF = midbrain reticular formation, ML = medial lemniscus,
Vcp = Ventro-caudalis parvocell, VPL = ventral posterolateral, VPM = ventral posteromedial].

Multi-Taper Method Power Spectrum The MTM power spectrum
is preferred and implemented as it has been established to statisti-
cally outperform several other power spectra (Alkan and Yilmaz
2007; Subasi 2007) when calculating chaotic global metrics (Garner
et al. 2020a, 2017). MTM (Ghil 1997) is advantageous for spectral
estimation and signal reconstruction, of a time-series of a spectrum
that may contain broadband and line components. MTM is non-
parametric as it does not enforce an a priori, parameter dependent
model of the process that generated the time-series under analysis.
It lessens the variances of spectral estimates by using a small set
of tapers. Data is pre-multiplied by orthogonal tapers created to
minimize the spectral leakage on account of the finite length of
the time series. A set of independent approximations of the power
spectrum is calculated. Functions identified as discrete prolate
spheroidal sequences (DPSS) or Slepian sequences (Day et al. 2020;
Slepian 1978) are a set of functions which optimize these tapers.
They are defined as eigenvectors of a Rayleigh-Ritz minimization
problem (Gould 1995). For further information consult Thomson
(Thomson 1982) or Percival and Walden (Percival and Walden
1993).

Statistical Assessments: Mean, RMSSD & Chaotic Global Vari-
ants Firstly, the sMTM (or CFP6) of the pre-processed (linearly
detrended and bandpass filtered) LFPs signal was computed. This
was for all three depths of electrode (M01, M12, M23), and at the
four locations of the mid-brain (LPVG, LVPL, RPVG and RVPL).
Secondly, we measured the mean and RMSSD of the blood pressure
signal. These were the linear time-domain measurements. They are
the simplest to compute, least computer processor intensive and
are applied directly to the time-series. These two measurements
could then be compared against the chaotic global metrics; key to
this investigation. The linear metrics are applied as benchmarks to
which all other chaotic global parameters are compared.

The motivation for implementing techniques founded on non-
linear dynamics is that they measure the chaos and irregularity
of responses in slightly different ways. The initial chaotic global
metrics by Garner and Ling (2014) (Garner and Ling 2014) were
later distinguished into their high spectral variants (Garner and
Ling 2021), namely high spectral Entropy (hsEntropy) and hsDFA.
These were demonstrated to be more responsive and influential on
the basis of a multivariate statistical technique termed Principal
Component Analysis (PCA) (Jolliffe 2005). They are functional
with ultra-short time-series (Garner et al. 2019b). Here the time-
series assessed are 100 seconds which is well within the range
of the aforementioned study. Thus, the statistical hazards in the
application of one are potentially compensated by the others in
the CFP1 to CFP7 combinations. This is standard procedure when
assessing chaotic global metrics (Bernardo et al. 2014; De Souza
et al. 2015; Garner et al. 2022, 2020a, 2017).

hsEntropy is a function of the irregularity of amplitude and
frequency of the power spectrums peaks. It is derived by applying
Shannon entropy (Shannon 2001) to the MTM (Ghil 1997; Vautard
et al. 1992) power spectrum. Such variability and introduction of
errors from spectral leakage in the time-series and its mathematical
relationships over the duration of the datasets are minimised by
using the MTM power spectrum, as opposed to that of the Welch
(Alkan and Kiymik 2006; Alkan and Yilmaz 2007) power spectrum,
which has been applied previously (Bernardo et al. 2014; De Souza
et al. 2015).

DFA (Peng et al. 1995) can be implemented to datasets where
statistics such as mean, variance and autocorrelation fluctuate with
time. To obtain the hsDFA the spectral adaptation is computed
precisely as for hsEntropy. But, this time DFA is enforced onto
the MTM power spectrum which has settings identified above.
hsDFA responds to chaos and irregularities in the reverse way, so
we subtract its value from unity; hence we enforce (1-hsDFA) when
making comparisons.
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Figure 2 Right ventroposterolateral (RVPL): Three bipolar electrode recording signals; linearly detrended by subtracting the mean of the signal
from the signal itself. Then, bandpass filtered in the gamma region (30 to 100 Hz); Electrode M01 (a:upper left) Electrode M12 (b:upper middle)
and Electrode M23 (c:upper right) all in units of microVolts. Next, Multi-Taper Method (MTM) Power Spectrum of RVPL linearly detrended
Gamma M01 with sMTM (or CFP6) illustrated as the area under the vertical downwards pointing arrow of the power spectrum yet above the
baseline (d:lower left) with power in arbitrary units; Blood Pressure signal (e:lower middle) in arbitrary units and time in seconds. MTM power
spectrum of the Blood Pressure signal only with sMTM (or CFP6) again illustrated as the area under the vertical arrow of the power spectrum
but above the baseline. High spectral Entropy (hsEntropy) and high spectral Detrended Fluctuation Analysis (hsDFA) labelled by enforcing
Shannon Entropy and DFA onto the power spectrum, respectively as indicated by the horizontal arrow. Power in arbitrary units (f:lower right).

sMTM (CFP6) is the area between the MTM power spectrum
and the baseline. MTM of a clean sinusoidal signal in continuous
time and infinite length has zero area beneath it (Dirac 1939). For
totally uniformly distributed random variables the spectrum is
essentially flat. These lesser chaotic and irregular responses offer
lower values and totally random data has a value of zero. Within
these extremes, chaotic responses are often present with a contin-
uous broadband spectrum. Broadband noise lifts peaks and the
trend of the spectrum up and above the baseline, and so chaotic
sets have greater values of sMTM. All three chaotic global metrics
have identical weightings of unity throughout.

Optimal bandwidth We assessed oscillatory performance using
linear regressions during six frequency bands. These frequency
ranges were delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta
(12-30 Hz), gamma (30-100 Hz) and fast (100-200 Hz). (See Fig-
ure 3). These regressions were also for the mean of the depth of
electrodes (M01, M12, M23) for the four locations of the six afore-
said bandwidths. The gamma region achieved the highest level
of linear regression. Therefore, indicating the strongest correla-
tion. Accordingly, we enforce the 30 to 100 Hz bandwidth in all
succeeding analysis.

Goodness-of-Fit Assessments: Gamma region (30-100Hz) R-
squared (Miles 2005) is referred to as the coefficient of multiple
determination for multiple regression. It is a statistical method to
assess the proportion of variance in the dependant variable that
can be explained by an independent variable. Namely, how good
does the data fit the regression model. R-squared is the variation
divided by its total variation. R-squared is always between 0 and
1; or as a percentage, 0% and 100%. 0% percent indicates that the
model explains none of the variability of the response data about

its mean. Whilst, 100% specifies that the model explains all the
variability of the response data about its mean.

Whilst R-squared delivers an insight into the assessment of
the statistical model it ought not be relied upon alone. Further
procedures need enforcement besides this technique. Moreover, it
does not reveal information about the causal connection between
the independent and dependent variables.

Residuals (Cook and Weisberg 1982; Gourieroux et al. 1987;
Pierce and Schafer 1986) are useful for detecting outlying y values.
They verify the linear regression expectations in regard to the error
term in the regression model. High-leverage values have smaller
residuals as they often shift the regression line nearer to them.
They can detect types of autocorrelations and heteroscedasticity.

Studentized residuals (Gray and Woodall 1994) provide an alter-
nate measure for identifying outliers. They are more discriminative
than the Raw, Pearson or Standardized residuals. The notion is
to delete certain values in turn; each time refitting the regression
model on the remaining (n-1) values. So, comparing the observed
response values to their fitted values based on the models with the
appropriate value deleted. Standardizing these deleted residuals
attain the Studentized residuals. They are more effective at detect-
ing outlying y values than the other above-mentioned residuals.

We computed the mean of the standard deviation of the modulus
of the Studentized Residuals and the mean of the maximum of
the modulus of the Studentized Residuals. There were 20 residuals
per regression. Residuals can be positive or negative and would
cancel each other out if the mean was applied here just as they
are. Consequently, we compute the modulus of the Studentized
Residuals which indicates that all the negative values are made
positive. Their individual magnitudes are unchanged. Then, since
the outliers have greater values; be it the standard deviation or the
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maximum; lower values indicate a better fit of regression.
Mean squared error (MSE) (Das et al. 2004; Tuchler et al. 2002;

Wang and Bovik 2009) of an estimator calculates the mean of the
squares of the errors. Intrinsically, the mean squared difference
between the estimated values and the actual value. MSE is a
function of risk, consistent with the expected value of the squared
error loss. MSE is always above zero as there is always some
randomness or noise inherent in the system. Again, lower values
signify a better fit of regression.

RESULTS

The objective is to obtain the highest R-squared. In Figure 3 we
are considering the regressions between the LFPs sMTM (or CFP6)
and one of the nine metrics; the mean, RMSSD and chaotic global
metrics (CFP1 to CFP7) of BP. For each measure of the BP, we have
four areas of mid-brain. When the location for the best regressions
has been attained, we explore those with a positive y-intercept and
a significant slope. These are for the LFPs in the gamma region
(30-100Hz) and at three electrode depths (see Table 1). Negative y-
intercepts indicate a negative chaotic response which is forbidden
by the non-equilibrium laws of thermodynamics (Prigogine 1962).
A significant slope is required for an adequate recorded response.
A slope of zero would indicate a flat response, hence unresponsive
and futile. With regards the standard deviation and maximum of
the mean of modulus for the studentized residuals (see Figure 4a &
Figure 4b); a lower value indicates a better fitted regression. MSE
is also lowest for the optimal regression (see Figure 4c).

LPVG: Left Periventricular Grey

CFP2 (39-59%), CFP4 (31-55%), CFP6 (31-55%) and CFP7 (36-
60%) are significant with R-squared between 31% and 60%. The
slopes are fairly weak and unresponsive to the electrode depths.
CFP2, CFP4, CFP6 and CFP7 all have positive y-intercepts.

CFP1 (19-35%), CFP3 (22-35%) and CFP5 (25-50%) have low
values for R-squared. None of the CFPs cited are consistent with
positive or negative slopes at all electrode depths.

CFP2, CFP4, CFP6 and CFP7 have very high standard devi-
ation (0.5844-0.8060) and maximum (2.2352-3.1660) Studentized
residuals and MSEs (0.0055-0.0083).

RMSSD at M23 has high standard deviation (0.6659-0.7264) and
maximum (2.3182-2.6788). Studentized residuals and quite high
MSEs (0.0072-0.0091). It is rejected on the basis of a flat response
and these low goodness-of-fit values.

So, the regressions for LPVG are confirmed to be lower than
most of the other locations.

LVPL: Left Ventroposterolateral

Mean (30-32%) and RMSSD (30-38%) values for R-squared are
all low at 30% to 38%. CFP1 (16-32%), CFP2 (28-39%), CFP3 (17-
32%) and CFP7 (30-39%) are rejected as they have low R-squared
across all electrode depths.

CFP4 (32-47%) and CFP6 (33-47%) have quite low R-squared
at 32% to 47%. Yet, CFP5 is rejected as it has negative y-intercepts
throughout. Then, CFP4 and CFP6 slopes are fairly weak and so
unresponsive to electrode depths. They give a flat response. None
of the CFPs are consistent with positive or negative slopes at all
electrode depths

CFP4 and CFP6 have very high standard deviation (0.6478-
0.7790) and maximum (2.4447-2.9734) Studentized residuals and
quite high MSEs (0.0016-0.0114).

Overall for LVPL, the regressions are low and the responses
when the regression are high are flat and unresponsive.

RPVG: Right Periventricular Grey

Mean (not RMSSD) gives two robust values for R-squared at
M01 (63%) and M12 (55%). CFP1 gives one strong value for R-
squared of 54% at electrode location M01. But, the response is
relatively flat too.

CFP2 (20-43%) and CFP7 (21-44%) are rejected as they give a
low value for R-squared across all electrode depths. There are
moderately significant values for R-squared CFP3 (39-58%), CFP4
(46-54%), CFP5 (55% only) and CFP6 (43-52%) are significant for
R-squared at 39% to 58%. Yet, the slopes are steeper and are so are
responsive with respect to all electrode depths. The Mean is consis-
tent in that it has all y-intercepts positive for all electrode depths
and very steep negative slopes. None of the CFPs or RMSSD
are consistent as they respond with positive or negative slopes
throughout at all electrode depths. Mean responds with all nega-
tive slopes.

All those with high R-squared CFP3, CFP4, CFP5 and CFP6
have moderately high standard deviation (0.6010-0.6377) and max-
imum (2.1023-2.4154) Studentized residuals and exceptionally low
MSEs (<0.0001-0.0002).

RVPL: Right Ventroposterolateral

RMSSD (not mean) presents robust values for R-squared at
M12 (66%) and M23 (56%). Nevertheless, they give low slopes so
unresponsive with regards to the electrode depths. The response is
flat and so rejected. CFP1 (16-36%) and CFP3 (19-41%) are rejected
as they give a low value for R-squared across all electrode depths.
CFP5 (39%) for M01 electrode only. All other electrodes gave a
y-intercept which was negative and so forbidden.

CFP2 (44-57%), CFP4 (55-80%) and CFP6 (55-79%) gave strong
R-squared and all positive y-intercepts throughout. Slopes are
consistently negative for CFP2 and constantly positive for CFP4
and CFP6. CFP4 and CFP6 have the best R-squared at 55% to 80%
and all slopes are similarly positive at all electrode depths.

CFP2 has high standard deviation (0.6062-0.6418) and maxi-
mum (2.2266-2.4339) Studentized residuals and relatively high
MSE (0.0002-0.0021) compared to CFP4 and CFP6, later. CFP4
(SD 0.5307-0.6380; Max 2.0569-2.3452) and CFP6 (SD 0.5317-0.6364;
Max 2.0349-2.3813) have low Studentized residuals and the low
MSEs (0.0002-0.0008).

CFP7 (44-58%) for R-squared consistently negative slopes and
always positive y-intercepts. CFP7 (SD 0.6009-0.6320; Max 2.2180-
2.4339) have low Studentized residuals and the moderately low
MSEs (0.0002-0.0021).

DISCUSSION

The principal aim is to assess the relationship between BPV and
LFPs using chaotic global metrics. A relationship between them
has clinical implications in that (a) it may allow us to monitor
LFPs via DBS electrodes and imply a specific BPV state that may
be useful for monitoring or guiding therapy (b) it may imply (if
causative) that DBS can be used to clinically alter BPV, and (c)
whether DBS confirms suitable pharmacotherapies effective in
absence of other designated techniques.

When assessing the regressions of CFP6 for the LFPs versus the
mean, RMSSD and CFP1 to CFP7 for the BP signal, we established
that the gamma region (30 to 100 Hz) had the highest R-squared
which inferred the strongest correlation (See Figure 3).

LPVG and particularly LVPL have the weakest regressions
throughout. This is the case for the mean, RMSSD and CFP1 to
CFP7. Their slopes are weak and so their responses are flat. Their
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Figure 3 Regressions (R-squared) of sMTM (CFP6) for Local Field Potentials (LFPs) in the delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz),
beta (12-30 Hz), gamma (30-100 Hz) and fast (100-200 Hz) ranges for the mean of electrodes contacts [M01 (deepest depth), M12 (middle
depth) and M23 (most superficial)] at four locations [LPVG (n=5), LVPL (n=5), RPVG (n=8) and RVPL (n=4)] versus the two linear descriptive
(Mean & RMSSD) and the seven non-trivial permutations of the three high spectral chaotic global variant metrics (high spectral Entropy, high
spectral Detrended Fluctuation Analysis (hsDFA) and spectral Multi-Taper Method (sMTM)) of the blood pressure signal (CFP1 to CFP7). The
four symbols (circle, square, triangle and diamond) represent the level of R-squared for the LPVG, LVPL, RPVG and RVPL. There are three
symbols describing the electrode contacts [M01, M12, M23]. The upper symbol is the maximum R-squared, the lower symbol the minimum
R-squared and finally the middle symbol the median R-squared. The horizontal line between the maximum and minimum symbols represents
their mean value.
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■ Table 1 Multi-Taper Method (MTM) Power Spectrum: Mean Regressions (R-squared), Mean Slopes and Mean Y-Intercepts of CFP6
for Local Field Potentials (LFPs) in the gamma range (30Hz to 100Hz) for the electrode contacts [M01 (deepest depth), M12 (middle
depth) and M23 (most superficial)] versus the two linear descriptive (Mean and RMSSD) and the seven non-trivial permutations of the
three high spectral chaotic global variant metrics (high spectral Entropy, high spectral Detrended Fluctuation Analysis and spectral Multi-
Taper Method (sMTM)) of blood pressure (CFP1 to CFP7) for recordings from the mid-brain and sensory thalamus locations, namely
LPVG (n=5), LVPL (n=5), RPVG (n=8) and RVPL (n=4).

Gamma
MTM

CFP
(MTM)

Mean R-squared (Regression) Mean Slope Mean Y-Intercept
M01 M12 M23 M01 M12 M23 M01 M12 M23

LPVG
(n=5)

Mean 0.3189 0.3525 0.2449 -0.0720 -0.0155 0.0594 0.0686 0.0124 -0.0583
RMSSD 0.3116 0.4435 0.5523 0.0000 -0.0003 0.0005 0.0065 0.0067 0.0061

CFP1 0.2410 0.3450 0.1896 -0.5489 -0.0774 0.3674 1.4466 0.9777 0.5778
CFP2 0.4359 0.5928 0.3919 -1.0948 0.0418 0.4259 1.8926 0.7694 0.4505
CFP3 0.2502 0.3531 0.2217 -0.5537 -0.0874 0.4114 1.4481 0.9837 0.5330
CFP4 0.3177 0.5467 0.3906 -0.1441 -0.2564 0.2839 1.0639 1.1678 0.6629
CFP5 0.2476 0.4947 0.4075 -1.4032 4.1011 4.0996 1.9084 -3.4154 -3.6113
CFP6 0.3132 0.5492 0.4113 -0.1534 -0.2787 0.3772 1.0659 1.1819 0.5677
CFP7 0.4431 0.5979 0.3597 -1.1093 0.0220 0.5019 1.9072 0.7877 0.3801

LVPL
(n=5)

Mean 0.3222 0.3082 0.3015 -0.0111 0.0368 -0.0064 0.0055 -0.0329 0.0086
RMSSD 0.3768 0.3650 0.3001 -0.0001 -0.0009 -0.0005 0.0064 0.0072 0.0067

CFP1 0.2736 0.3194 0.1644 0.5669 -0.5029 -0.0449 0.3576 1.3904 0.9170
CFP2 0.3481 0.3855 0.2834 1.1999 -0.9483 0.0159 -0.3325 1.7033 0.7151
CFP3 0.2812 0.3173 0.1651 0.5730 -0.5084 -0.0493 0.3482 1.3935 0.9184
CFP4 0.3215 0.4722 0.4298 0.0855 -0.3483 -0.1469 0.8465 1.2939 1.0808
CFP5 0.3995 0.5500 0.3962 3.1834 7.6659 3.0033 -2.3982 -7.0839 -2.4554
CFP6 0.3296 0.4715 0.4263 0.0900 -0.3570 -0.1575 0.8347 1.2972 1.0850
CFP7 0.3757 0.3891 0.2976 1.2406 -0.9806 0.0075 -0.3724 1.7352 0.7213

RPVG
(n=8)

Mean 0.6332 0.5532 0.4144 -17.3424 -3.4684 -35.1832 16.2967 2.5193 34.2220
RMSSD 0.4248 0.2557 0.3664 -0.1180 2.0073 -1.7408 0.8548 -1.2691 2.4785

CFP1 0.5438 0.3699 0.3650 0.1079 -2.5581 1.7963 0.8440 3.5045 -0.8619
CFP2 0.4326 0.2024 0.3948 -0.2817 -24.9221 15.1715 1.1101 25.7363 -14.3729
CFP3 0.5773 0.3853 0.4315 0.1508 -4.1633 2.8160 0.7966 5.1043 -1.8856
CFP4 0.5428 0.3251 0.4554 0.0834 20.3526 -14.4953 0.8200 -19.4365 15.3966
CFP5 0.5818 0.3833 0.5508 4.0876 68.1583 -30.3918 -3.3819 -67.4462 31.1401
CFP6 0.5216 0.3043 0.4340 0.1343 18.7723 -13.5547 0.7770 -17.8495 14.4640
CFP7 0.4429 0.2134 0.4072 -0.2136 -28.9885 17.4886 1.0320 29.7911 -16.6985

RVPL
(n=4)

Mean 0.2692 0.3813 0.2958 11.3574 -3.2315 -1.4466 -11.0458 3.0903 1.5040
RMSSD 0.4570 0.6589 0.5576 -0.1824 0.1025 0.0459 1.0476 0.7686 0.8224

CFP1 0.3622 0.1597 0.2765 -0.1647 0.0466 0.0496 1.1374 0.9384 0.9325
CFP2 0.4902 0.4407 0.5731 -0.7910 -0.1683 -0.3987 1.7010 1.1084 1.3244
CFP3 0.4055 0.1861 0.3069 -0.1954 0.0284 0.0188 1.1657 0.9546 0.9610
CFP4 0.5458 0.6197 0.7973 0.4875 0.2878 0.5411 0.4723 0.6671 0.4227
CFP5 0.3918 0.7319 0.7723 -0.1385 2.1030 3.3639 0.5431 -1.7147 -2.9434
CFP6 0.5474 0.6179 0.7930 0.4483 0.2641 0.5013 0.5140 0.6938 0.4651
CFP7 0.4880 0.4426 0.5750 -0.8580 -0.2064 -0.4636 1.7627 1.1422 1.3842
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Figure 4 (a: upper left) Mean of the Standard Deviation of the modulus of the Studentized Residuals (b: upper right) Mean of the Maximum
of the modulus of the Studentized Residuals (c:lower left) Mean of the mean squared error (MSE); of spectral Multi-Taper Method (or CFP6)
for LFPs in the gamma range (30 to 100Hz) for the electrode contacts at three depths [M01 (deepest), M12 (middle) and M23 (superficial)]
versus the two linear descriptive (Mean & RMSSD) and the seven non-trivial permutations of the three high spectral chaotic global variant
metrics (hsEntropy, hsDFA and sMTM) of blood pressure (CFP1 to CFP7) for recordings in the four areas, specifically LPVG (n=5), LVPL (n=5),
RPVG (n=8) and RVPL (n=4). Again as with Figure 3. The four symbols (circle, square, triangle and diamond) represent appropriate values
for the LPVG, LVPL, RPVG and RVPL. There are three symbols describing the electrode contacts [M01, M12, M23]. The upper symbol is the
maximum, the lower symbol the minimum and finally the middle symbol the median. The horizontal line between the maximum and minimum
symbols represents their mean value.
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slopes are inconsistent throughout for both locations. Some slopes
are negative, some positive. Their slopes are such that when the
electrodes are surgically implanted for monitoring the different
depths they give radically different results. Their goodness-of-fits
via their Studentized residuals and MSE are poor. These highlight
yet again that the regressions are less significant. The points form
an excess of high residuals signifying that the model explains little
of the variability of the response data around its mean. For LVPL,
CFP5 is totally rejected as all y-intercepts are negative.

RVPL and RPVG are better sites for monitoring. They give
higher values for their regressions throughout equated to LPVG
and LVPL. With regards RPVG for CFP1 to CFP7 and RMSSD they
are unreliable as they respond with positive or negative slopes
at all electrode depths. Yet, their mean is dependable with all
negative slopes. The slopes are steeper and are so are highly
responsive regarding electrode depths. The mean is consistent
in that it has all y-intercepts positive at all electrode depths. The
mean, however, only measures the datas’ magnitude and does
not assess its sequence as with the nonlinear dynamic techniques.
Therefore, it should be judged with caution.

For RVPL, RMSSD has high R-squared values at electrode loca-
tions M12 (66%) and M23 (56%) but at these locations they have
low slopes; so unresponsive and flat. Slopes are moderately steep
and consistently negative for CFP2. They are continually positive
and quite steep for CFP4 and CFP6. As their slopes are consistent
they are good locations to position electrodes since surgical preci-
sion is less critical. CFP2, CFP4 and CFP6 give positive values for
their y-intercepts throughout. Their regressions are CFP4 (55-80%)
and CFP6 (55-79%). These are the most significant regressions of
all of the locations. But, RVPL could be unduly significant as a
result of its low sample size.

We have demonstrated that the most statistically robust and
significant combinations are CFP4 and CFP6 for RVPL with re-
gressions significant at the level of about 55% to 80%. CFP1 and
CFP3 are usually the most robust and statistically significant when
applied to forward problems (Garner et al. 2019b, 2017; Wajnsztejn
et al. 2016). Yet, CFP6 is favoured as it has been confirmed to be
significant with forward and mathematical inverse problems, in
particular, as in Garner and Ling (2014) (Garner and Ling 2014).
Moreover, in 2021 with high spectral variants (Garner and Ling
2021). CFP6 is simple to implement and computationally fast.

Green et al in 2005 (Green et al. 2005) revealed that stimulation
in the rostral PVG/PAG can increase or decrease levels of arterial
blood pressure. This effect is contingent on the ventral/dorsal loca-
tion of the electrode. In this study, we revealed that with recordings
of RVPL, decreases in the blood pressure signal complexity can be
monitored in a similar manner. It is important to realize the study
by Green et al (Green et al. 2005) was considering BP whereas here
we are assessing BPV. Interestingly the neuromodulation of BP and
BPV are in different positions as revealed here. BPV neuromodu-
lation is unique and so different LFPs are measured in dissimilar
locations.

During some of the recorded LFPs time-series there were some
locations in a few of the subjects which experienced short sec-
tions of DBS. These stimulations were not elongated enough to
be measured for irregularities and chaotic responses. They are,
nevertheless, not overlooked in the analysis. There were 20 epochs
in the analysis which had a window of half of the entire time-series.
This sliding window progresses from start to finish and for some
zones or a few subjects this would have included short areas of
DBS stimulation. These affect the LFPs recordings at three depths
of electrode in the four areas of the brain. These were not excluded

as their effects would be minimal. They cannot be spliced online
which is the proposed format of the analysis. The LFPs would be
principally resting but the zones of stimulation would improve the
significance of the regressions by extending the statistical range of
the LFPs. Each regression was computed from 20 points from the
20 sections. Next, a mean regression was computed for all the four
locations. The number of subjects in the mean regression varied
from four (RVPL) to eight (RPVG). The mean regression was used
in the correlation of LFPs with BPV from the mean, RMSSD and
chaotic global metrics.

It is important to understand that the human subjects in this
study were all chronic pain patients. BP and BPV responses may
be altered by chronic pain. Correspondingly, we should consider
lateralisation (Hodgetts and Hausmann 2022; Hwang et al. 2022;
Srinivasan et al. 2022). This is the inclination of some neural func-
tions or cognitive processes to be located in one hemisphere of the
brain instead of the other. There is lateralisation in BPV autonomic
control.

If subjects experience Hypertension refractory to current phar-
macotherapies, DBS may be a potential alternative treatment. DBS
is a surgical procedure and as such cannot be performed without
substantial risk and unanticipated difficulties. Whilst DBS of the
PAG has been enforced to treat refractory Hypertension both in
the context of pain (Patel et al. 2011) and without (O’Callaghan
et al. 2017), its lack of use for this indication since our original con-
clusions in 2005 are possibly on account of this balance of risks. A
potential correlation between the LFPs and BPV would be advan-
tageous as it could be useful for developing adaptive forms of DBS
(or novel pharmacotherapies) to reduce BPV using closed-loop
feedback. The chaotic global sMTM (CFP6) could be a statistical
marker.

Additionally, it would be wise to consider alternative neuro-
modulator therapies such as carotid body stimulation or renal
sympathetic nerve ablation as they have lower risk. Both ther-
apies failed phase three trials (Simplicity and BAROSTIM NEO
Hypertension Pivotal Study ClinicalTrials.gov) for refractory Hy-
pertension, but the latter is currently undergoing reassessment
using specific patient cohorts and updated technology and tech-
niques (SPYRAL HTN-ON MED Study ClinicalTrials.gov).

Further work could be commenced. For instance, the parame-
ters for the MTM spectra could be adjusted. MTM was predomi-
nantly chosen as it has less spectral leakage. Yet, the manipulation
of DPSS and Thomson’s Multi-Taper settings have been repeatedly
shown to be trivial (Garner et al. 2019a). Other methods of monitor-
ing might be better. Levels of chaotic response could be assessed
alternatively by the fractal dimensions of Higuchi (Garner et al.
2018; Nogueira et al. 2017) or Katz (Garner et al. 2018). Approxi-
mate (Garner et al. 2021b; Pincus 1995) and Sample (Richman and
Moorman 2000) entropies could be computed. However, the latter
two are excessively reliant on their embedding dimensions and
tolerances. These cannot be attained in any systematic way which
maintains them undependable (Garner et al. 2021b,a, 2020b). Also,
they are usually enforced on the inter-beat intervals rather than
just the oscillating signal as with chaotic global metrics.

CONCLUSION

We revealed correlation (R-squared: up to 79%) in the RVPL site
for all electrode depths (deep to superficial) between the LFPs
gamma oscillations (30 to 100 Hz) and BPV for CFP6. This may
have clinical uses. Perhaps, therapy could be achieved pharmaco-
logically, surgically or otherwise by monitoring BPV using LFPs
and making adjustments. Yet, correlation of the LFPs does not
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inevitably predict its causation. There is no certainty that DBS in
these areas will be therapeutic. They have only been confirmed
for monitoring purposes with BPV. Further studies are suggested
to ascertain if DBS or novel therapies do reduce BPV and lessen
cardiovascular complications, potential morbidity and accordingly
mortality.
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University, Niğde, 51240, Türkiye.

ABSTRACT A time series data contains a large amount of information in itself. Chaos data and volatility data
which calculated by any time series are also derivative information included in the same time series. According
to these assumptions, it is very important to question the ability of chaos and volatility information to affect
each other, and which information affects and which information is affected. It is very important to determine
the causes of volatility, which is an important result indicator for the finance literature, and especially with
this study, it was tried to determine whether the chaos data is in a causal relationship with volatility. If some
of the chaos data can be identified as the cause of volatility, the detected chaos data can be used in other
research as a leading indicator of volatility. The data set used in the study is the daily C/$ exchange rate index
between 01.01.2005 and 10.11.2022. In the study, time series of chaos data were created with Windowed
RQA method and Hatemi-J asymmetric causality analysis research was carried out between these time series
and C/$ exchange rate index volatility. The findings of the study conclude that the chaos data LnRR, LnEntr
and LnLAM could be used as leading indicators of the C/$ exchange rate index volatility.
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Recurrence
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rate index
Volatility

INTRODUCTION

Traditional methods in determining the fundamental variables in
time series containing economic data are generally insufficient be-
cause they require time series to be stationary. Making time series
stationary can cause data loss and make it difficult to examine
long-term behavior (Engle and Granger 1987). RQA is a method
that can be applied to stationary and nonlinear time series with
insufficient number of data (Kamphorst et al. 1987).

The literature indicates that RQA has found a wide range of
applications in other fields of science. In the field of finance, it
has been used recently, and the number of related studies is quite
limited. The aim of this study is to investigate the causality rela-
tionship between the chaos data obtained from the €/$ exchange
rate index using the RQA method and volatility. Through this
aim, acording to the literature review, RQA Method and Hatemi-J
Asymmetric Causality Analysis are included in the study. In the
5th part of the study, how the chaos data are prepared is explained
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and in the 6th part, the findings obtained by applying the Hatemi-
J asymmetric causality analysis to the chaos data are presented.
Within the framework of the findings, it can be concluded that
the chaos data LnRR, LnEntr and LnLAM can be used as leading
indicators of the €/$ exchange rate index volatility. As a result of
the obtained results; It has been proven that the RQA method can
be used in financial decision processes.

Although the number of studies applying the RQA methodol-
ogy to the data obtained from the financial time series is increasing
day by day in the literature, there are not many studies. In this
study, it is tried to examine the relationship between volatility and
chaos data, which is an important result indicator in the finance
literature with using RQA. Some of the studies on financial time
series are summarized below:

Belaire-Franch (2004) examined the time series behavior of sim-
ulated data from a financial market model with Lux and Marchesi
(1999)’s interacting intermediaries. All RQA descriptors outper-
formed all nonlinear tests in terms of the number of rejections of
the null hypothesis of linearity for the realization of the artificial
financial market. Thus, it has been shown in the study that this
new framework provides a useful complementary tool for testing
complexity in financial data.
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Karagianni and Kyrtsou (2011) investigated the dynamics be-
tween US inflation and the Dow Jones Index using a set of non-
linear methods, including RQA, and found evidence in favor of
negative nonlinear links between the natural dynamics of inflation
and stock returns. Sasikumar and Kamaiah (2014) examined In-
dia’s two major stock market indices, BSE Sensex and CNX Nifty.
The analysis by applying RQA to two time series covering 2002 and
2013 provides conclusive evidence that the Indian stock market is
inherently chaotic.

Celik and Afsar (2010)’s study considering the daily return se-
ries of the ISE 100 index between 1986 and 2008, concluded that
the index movements are 25% based on internal dynamics and are
predictable. However, when the ISE 100 index is analyzed by peri-
ods, it is seen that the periods of 1991-1995 and 2006-2008 are the
periods in which deterministic tendencies are most intense, and the
period of 1996-2000 is the period with the weakest predictability.

Niu and Zhang (2017) used MWPE (Multiscale Weighted Per-
mutation Entropy) and RQA methods in their study in which they
examined the price fluctuations in exchange rates between 2006
and 2016 in 8 different economies. According to their empirical re-
sults; They found that while some economies, such as South Korea,
Hong Kong, and China, showed lower and weaker activity in their
foreign exchange markets, JPY/USD indicates a higher complexity
and the Japanese foreign exchange market has a relatively higher
activity. Niu and Zhang (2017) also suggested that the financial
crisis increased market efficiency in foreign exchange markets.

Facchini et al. (2019) studied the changes in price volatility
after the modification in 2002 using a combination of RP and RQA
in their study which is about the UK electricity supply industry.
According to the findings of the study, after the modification, short-
term price volatility decreased significantly between 2001 and
2008, long-term price volatility was not affected by the change,
a dynamic regime change occurred in the price, and shorter GC
(Gate Closure) intervals made easier short-term predictions of
electricity demand and on the supply side, it facilitates reliability.
In the study, the relationship between the GC, which is closer to
real time, and the decreasing price fluctuations in the wholesale
market is revealed.

Wu et al. (2020) investigated the volatility spread between the
crude oil, natural gas and coal futures market and the carbon
emissions market using RP and RQA. According to the findings
from the study, it was seen that the volatility spread between the
coal market and the carbon emission market was stronger than
the others. Based on this, industries need to switch from coal
to natural gas or oil in order to avoid the risk from the carbon
emission market, and it is concluded that this behavior will lead to
a reduction in carbon emissions.

Baki (2022b) examined how the dynamic properties of Bitcoin
changed over time using RQA. In the study, it was concluded that
Bitcoin became more unpredictable, more random, more unstable,
more irregular and less complex in 2021.

Baki (2022a) analyzed the USD/TRY and EUR/TRY exchange
rates using nonlinear and chaotic time series analysis methods.
In the study, RQA and CRQA were used to determine how the
chaotic characteristics of the exchange rates changed over time,
and it was concluded that the exchange rate market became more
unpredictable, more irregular and more unstable after 2014.

In the study, it was tried to determine the chaotic structures
occurring in the foreign exchange markets and the interaction of
this chaotic structure with volatility. Since the 2008 Mortgage crisis
and the Covid-19 outbreak are the most important events that
have deeply affected the global financial markets, the data set is

formed from the end-of-day values of the cross currency index of
the units $ (United States Dollar) and € (European Union Euro)
money between 01.01.2005 - 01.11.2022 in order to keep it within
the scope.

The main problem of the study is to determine whether the
chaos or volatility started earlier. If it can be determined that the
chaos structure started before the volatility in the foreign exchange
market, measures can be taken against volatility with the chaos
data which will be explained in the following sections. For this rea-
son, RQA studies will be carried out on the obtained data set and
a volatility time series will be created with the historical volatility
calculation method over the same time series. In addition, time
series will be created on the chaos data to be calculated and the
Hatemi-J asymmetric causality test queries will be performed on
the derived time series. If a causality can be determined from
chaos data to volatility, it will be assumed that investors in the for-
eign exchange market begin to exhibit different behaviors before
volatility begins.

METHODOLOGY

RQA (Recurrence Quantification Analysis)
According to Schumpeter, capitalism is inherently a form of change,
and the economy is not static and can never be static (Schumpeter
1976; Orlando and Zimatore 2018). However, time series analyzes
used in the literature accept the precondition of being stationary for
the time series, if the time series is not stationary, it is requested to
make the time series stationary. The stagnation process of the time
series, on the other hand, causes data loss, especially in financial
time series, and makes the interpretation of the results difficult
(Engle and Granger 1987). Kamphorst et al. (1987) developed a
method of visualization by transforming one-dimensional time
series into two-dimensional with a delay of j in order to facilitate
the research due to the stationarity problem in time series. In the
method developed by Eckmann, the xi time series is formed by a
matrix with the xj time series of the same time series with j delay.
The repetitions detected by running the cascading H (Heaviside)
function on the obtained matrix are converted to 1, and 0 if there is
no repetition. Visual graphics can also be obtained by coloring the
matrix consisting of 1 and 0. The resulting square matrix image
is called the refresh matrix (Rij). The mathematical derivation
method of the renewal matrix is as shown in Equation (1).

Rij = Θ
(

εi∥−→xi − −→xj ∥
)

, −→xi ∈ Rm , i, j = 1, 2, . . . , N (1)

Θ(x) =
{

1, xj ≥ xi0, xj < xi

}
In the formula, ’εi’ defines the threshold distance, ’Θ’ defines

Heaviside stepping function, ’−→xi ’ defines time series vector and
’−→xj ’ defines delay time series vector. The resulting refresh graph
can be applied to all stationary or non-stationary time series. In
the renewal graph, the dark areas are considered to indicate that
the two vectors converge, in other words, a repetition occurs on
the time series, and the open areas are considered to indicate that
there is no convergence or repetition between the two vectors
(Celik and Afsar 2010). Although time series were visualized by
Eckmann, mathematical analysis and visual description methods
were developed by Zbilut and Webber Jr (2006) and the method
was named RQA. While RQA was a method that was used to draw
conclusions with topological (changes on the visual) analyzes in
the early days, it was translated into mathematical models by the
work of Zbilut, Webber, Marwan and Kurths. After this stage, it
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has become a more understandable model with the interpretation
of various variables obtained by RQA. Some of the numerical data
obtained by RQA are explained below, respectively (Marwan and
Kurths 2002; Zbilut and Webber Jr 2006).

RR (Recurrence Rate) It measures the repetition density as a per-
centage on the refresh graph obtained based on the RQA. The
higher this ratio, the greater the number of repeated information
on the time series. The RR ratio is explained on Equation (2).

RR =
1

N2

N

∑
i,j=1

R(i, j) (2)

The ’N’ shown in equation (2) describes the recurrence points
on the refresh graph.

DET (Determinism Ratio) It is the value that measures the pre-
dictability of the time series as a percentage ratio. It is understood
that the larger the DET measurement value, the more predictable
the system on the time series is. The calculation of the DET value
is explained in Equation (3).

DET =
∑N

l=lmin
lP(l)

∑N
i,j=1 R(i, j)

(3)

The length of the diagonal lines P(l) formed in the refresh graph
shown in the formula l shows the diagonal line length frequency.

Entr (Entropy) The entropy value calculated with the RQA struc-
ture is the disorder value defined as Shannon Entropy. It shows
that as the Entr value increases, the disorder in the system in-
creases, that is, the time series turns into a chaotic structure, and as
it decreases, it shows that the disorder decreases. The calculation
made using the equation (4) is shown below:

Entr = −
N

∑
l=lmin

p(l) lnp(l) (4)

The p(l) shown in equation (4) represents the probability of
diagonal lines.

LAM (Laminarity) It represents laminar flow in time series. The
higher the LAM value in the time series, the more stationary the
system is. The frequencies of the vertical lines are used to calculate
the slide value and the calculation is shown in Equation (5),

LAM =
∑N

v=vmin
vP(v)

∑N
v=1 vP(v)

(5)

The v shown in equation (5) represents the vertical line length
on the refresh graph, and P(v) the vertical line length frequency.

Although it is possible to calculate many more variables in
RQA, analyzes will be performed with the four variables described
in this study. The calculation formulas of the other RQA variables
that were not included in the study were not included in this study.

As it can be understood from the calculations of RQA variables,
static results are obtained with time series data. When the previ-
ous RQA studies were examined, it was examined whether the
system had a chaotic structure mostly through the obtained static
variables. In order to transform this static structure of RQA into
a dynamic structure, Zbilut et al. (2002) created the windowed
RQA method with their study. With this proposition, it is shown
how to switch from a static structure to a dynamic data set in RQA
calculations. Unlike the normal RQA structure, the windowed

RQA structure is divided into smaller time series using the win-
dow step number (s) and window size (m) parameters, and the
RQA data are calculated over these newly created small time se-
ries. Derivative time series of the current time series based on
RQA data can be created with the obtained RQA data. Windowed
RQA has found use in the analysis of time series in many different
fields of science, and in finance, Bastos and Caiado (2011); Piskun
and Piskun (2011); Sasikumar and Kamaiah (2014); Soloviev and
Belinskiy (2019); Soloviev et al. (2020); Baki (2022a) have been pi-
oneering researchers using windowed RQA analysis techniques.
After the windowed RQA technique was put into practice, apart
from making inferences from RQA static data, dynamic chaos data
were derived and different econometric analyzes were made with
time-dependent chaos data indices. With this new situation, the
effect of the chaos data obtained from the time series data on the
same time series can be examined. Considering the studies ex-
amined in the literature review; structural breaks on time series
and time series derived from chaos data were examined and the
values of RQA data during structural break periods were tried
to be interpreted. However, no causality research was conducted
between time series and RQA data during structural break periods.
In our study, it was aimed to find the traces of chaotic structure
on the €/$ exchange rate, and to reveal the causal relationship
between the exchange rate and the chaos data time series that
obtained with windowed RQA. Thus, this study will present a
different perspective to chaos research on time series.

In the first stage of this study, derivative time series were cre-
ated with RR, DET, Entr and LAM values obtained as a result of
windowed RQA applied on the €/$ exchange rate time series. In
the second stage of the research, causality analyzes will be made
between the €/$ variable and the RR, DET, Entr and LAM vari-
ables, and a causality research will be carried out between the
variables. In the causality research, Hatemi-J asymmetric causality
analysis was preferred, which allows to understand the effects of
negative and positive shocks of the variables. The main reason
for choosing the Hatemi-J asymmetric causality analysis among
the causality analyzes is; It is the desire to investigate how the
negative or positive shocks experienced in the chaos data affect
the volatility separately. In order to convey the subject better, the
Hatemi-J asymmetric causality analysis is briefly explained in the
next section.

Hatemi-J Asymmetric Causality Analysis

The concept of causality is a set of models that try to explain the
correlation between two variables that depend on the stationarity
problem on time series. According to the idea first put forward
by Granger in 1969; If x and y are two different time series, y time
series lagged values by t can explain x time series, then the hy-
pothesis that y time series is the cause of x time series is accepted.
However, it is not known whether the shocks in the y time series
are positive or negative. Therefore, it will not be possible to deter-
mine whether a positive situation in the y time series or whether a
negative situation explains the x time series. In order to eliminate
this problem, Hatemi-j (2012) extracted the negative and positive
shocks on the time series and derived two different time series,
negative and positive, from one time series. By performing a Vec-
tor Autoregressive analysis on these derived time series, he was
able to reach causality results due to positive and negative shocks
(Hatemi-j 2012; Mert and Çağlar 2019). In order to better under-
stand the subject, the mathematical propositions of the Hatemi-J
asymmetric causality analysis will be briefly explained. Let xt and
yt be time series which we think there is a causal relationship be-
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tween them. Accordingly, the time series can be written as shown
in equations (6) and (7),

xt = xt−1 + εt = x0 +
t

∑
i=1

εxi (6)

yt = yt−1 + εt = y0 +
t

∑
i=1

εyi (7)

In here, while x0 and y0 are the initial values of both time series,
εxi and εyi are the error terms of time series. The resulting error
terms are converted to negative and positive shock data as shown
in Equation (8).

ε+xi = ( εxi , 0), ε−xi = (εxi , 0) (8)

ε+yi = (εyi , 0), ε−xi = (εyi , 0)

and from here we obtain Equation (9),

εxi = ε+xi + ε−xiandεyi = ε+yi + ε−yi (9)

After the error terms of the time series are divided into positive
and negative series, equations (6) and (7) can be modified and
written as equations (10) and (11).

xt = xt−1 + εt = x0 +
t

∑
i=1

ε+xi +
t

∑
i=1

ε−xi (10)

yt = yt−1 + εt = x0 +
t

∑
i=1

ε+yi +
t

∑
i=1

ε−yi (11)

Positive and negative models are obtained from the structure
modified as equations (10) and (11).

x+t =
t

∑
i=1

ε+xi , x−t =
t

∑
i=1

ε−xi , y+t =
t

∑
i=1

ε+yi , y−t =
t

∑
i=1

ε−yi (12)

Let’s build a model as seen in equation (13), which is completely
different from the models created in equation (12), and let’s assume
that this model is valid.

z+t = x+t y+t (13)

In here, the causality relationship between x+t and y+t variables
will be determined by the p delayed Var model.

z+t = v + A1z+t−1 + . . . + Apz+t−1 + µ+
t (14)

In equation (14), z+t denotes 2x1 variable vector, 2x1 denotes
constant vector, µ+

t denotes 2x1 vector of error terms and Ap de-
notes 2x2 parameters matrix created for delay p. The results of the
Var model are interpreted with the results of the Wald test statistics
and the hypotheses are accepted or rejected.

THE DATA SET PREPARATION

In accordance with the purpose of the research, the daily
€/$ exchange rate index was obtained from the Yahoo/finance
website between 02/01/2005 - 10/11/2022. The structure of the
mentioned data set is shown in Figure 1.

In order to generate RR, DET, Entr and LAM data, which are
chaos indicators, Coco et al. (2020) prepared by (CRQA) software
was used. Although the CRQA software package was originally
prepared for Cross RQA structures, instead of choosing different

Figure 1 €/$ Daily Exchange Rate, Source: Yahoo

variables, it turns into an RQA structure if both variables are the
same. In addition, the ease of use and the reliability of the tested
analysis results were effective in our preference for this software
package Coco and Dale (2014). The mentioned CRQA software
package runs on the R package program. In order to obtain win-
dowed RQA results in the CRQA software package, the delay
number (d), the embedding degree of the phase space (n) and the
critical threshold value diameter (r), which are a requirement of the
RQA structure, must be determined. In order to obtain these data,
it will be necessary to run the "optimizeParam" module, which is
also included in the same software package.

When the module that mentioned was run, it was determined
that d=1, n=1 and r=0.01. After the necessary parameters were
prepared, the window size (m) and window step number (s) values
were determined for the windowed RQA. Since daily exchange
rate data were used in the research, it was thought that it would
be appropriate to produce chaos data as daily data, and s=1, that
is, the number of window steps was determined as 1 day. For the
appropriate window size, the ’windowdrp’ module was run and
it was determined that the smallest suitable window size would
be m=10. Chaos data of the €/$ exchange rate time series were
obtained with all the parameters obtained, and the graphics of the
chaos data are presented below.

Figure 2 Daily RR Time Series

The RR value shows the number of repetitions of an information
on the time series, and as this value decreases, it shows that the
repetition of the information decreases. When Figure 2 is examined,
the rate of recurrence before the 2008 crisis approached 100% and
decreased to 20% with the onset of the crisis.

DET data determines the deterministic structure of the time
series, that is, its predictability. While DET data, like RR data, had
a high value before 2008, it was at low levels until 2014. Afterwards,
it entered an upward trend again until 2020, the predictability of
the time series decreased with the pandemic crisis.
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Figure 3 DET Time Series

Figure 4 Entr Time Series

Entr is a measure of the disorder on the time series. If the
information in the time series is in the same direction, the Entr
variable will approach zero, and if the information differs, the
value of the Entr variable will increase. According to the random
walk hypothesis in financial markets, if Entr data is interpreted, the
efficient market should be in a high entropy state. Otherwise, since
all investors in the financial market will have the same opinion,
the predictability of prices will increase.

When Figure 4 is examined, the entropy of the €/$ exchange
rate reached the highest levels before the 2008 crisis, and after the
crisis, the complexity in the market started to decrease.

Figure 5 LAM Time Series

LAM data is an indicator of the stationarity of the time series. In
the RQA literature, it is stated that LAM data is a suitable data for
detecting the exit from chaos (Orlando and Zimatore 2018). When
Figure 5 is examined, the LAM value decreased to its lowest level
at the end of 2009 and showed a rapid increase after that. For this
reason, it is necessary to carefully examine the proposition that
sudden and large increases in the LAM value can be the points of
exit from the chaos of the time series.

After creating the chaos data to be used in the research, histori-
cal volatility time series were created from the €/$ exchange rate

index data. The reason for using historical volatility instead of log-
arithmic return is to investigate whether chaos data has an effect
on volatility, which is a measure of risk in the market. For this
purpose, it was decided to use the historical volatility time series
with the thought that more accurate results would be obtained,
and Equation (15) was used in the calculation of this series.

σ = |Pn − Pn−1| (15)

In here, by calculating the absolute value of the difference be-
tween the price of P and the price of the previous period, the
historical volatility time series is created and shown in Figure 6.

Figure 6 €/$ Exchange Rate Volatility Time Series

EMPIRICAL FINDINGS

The Hatemi-J asymmetric causality analysis, which was previously
explained, will be performed in order to test whether the chaos
data has an effect on the €/$ exchange rate volatility with the
created data set. However, since the fundamental theorem of this
analysis is the Var analysis, the stationarity problem of the time
series should be questioned. Unit root tests are used to detect
stationarity problems in time series. In this study, PP and ADF
unit root tests were performed on time series and their results are
shown in Table-1.

Notes: (*)Significant at the 10%; (**)Significant at the 5%; (***)
Significant at the 1%. and (no) Not Significant *MacKinnon (1996)
one-sided p-values.

As can be seen from the test results in Table-1, no unit root prob-
lem was detected in any of the variables to be used in the research,
and accordingly, all of the variables were considered stationary
at the level. In the next stage, the Var model was established and
the most appropriate number of lags between the variables was
determined and presented in Table-2.

The most appropriate lag number of the model created accord-
ing to Table-2 was determined as 2 periods, and the results of
the analysis were obtained with this lag number in the Hatemi-
J asymmetric causality analysis and the results are presented in
Table-3.

When the causality analysis results were examined, it was de-
termined that both the negative shocks and positive shocks of the
chaos data RR, DET, Entr and LAM data were not the cause of
the negative and positive shocks of the €/$ exchange rate index
volatility. However, on the contrary, the negative and positive
shocks of the €/$ exchange rate index volatility are the cause of the
negative and positive shocks of the RR, DET, Entr and LAM data.
Depending on these determinations, while the volatility variable
affects the chaos data, the chaos data does not affect the volatility.
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■ Table 1 Unit Root Test Results

UNIT ROOT TEST TABLE (PP)

At Level

DET ENTR LAM RR Volatilite

With Constant t-Statistic -32.6300 -16.7856 -16.5460 -10.3829 -9.8304

Prob. 0.0000 0.0000 0.0000 0.0000 0.0000

*** *** *** *** ***

With Constant & Trend t-Statistic -33.6054 -17.3222 -17.2308 -11.1659 -10.2556

Prob. 0.0000 0.0000 0.0000 0.0000 0.0000

*** *** *** *** ***

UNIT ROOT TEST TABLE (ADF)

At Level

DET ENTR LAM RR STDAVDO

With Constant t-Statistic -7.5979 -9.6085 -7.3866 -5.0824 -14.5642

Prob. 0.0000 0.0000 0.0000 0.0000 0.0000

*** *** *** *** ***

With Constant & Trend t-Statistic -7.9746 -10.0362 -7.7480 -5.2695 -15.3171

Prob. 0.0000 0.0000 0.0000 0.0001 0.0000

*** *** *** *** ***

■ Table 2 The Most Appropriate Number of Lags

Lag LogL LR FPE AIC SC HQ

0 1885.041 NA 0.000189 -2.896987 -2.889032 -2.894002

1 2106.520 441.9349 0.000135 -3.231569 -3.207707 -3.222616

2 2170.273 127.0159* 0.000124* -3.323497* -3.283727* -3.308575*

■ Table 3 Hatemi-J Causality Analysis Results Between Chaos Data and Volatility

Wald İst. %1 %5 %10

entr +=>vol+ 3.923 13.234 7.748 4.509

entr +=>vol- 2.529 11.237 8.170 4.642
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■ Table 3 Hatemi-J Causality Analysis Results Between Chaos Data and Volatility (continued)

entr -=>vol+ 3.735 10.172 7.891 5.428

entr -=>vol- 2.324 11.765 7.072 5.143

Vol+ => entr+ 25.132(*) 13.321 7.943 5.802

Vol+ => entr- 35.223(*) 11.632 6.832 4.732

vol- => entr+ 31.219(*) 12.167 6.982 4.290

vol- => entr- 45.208(*) 11.291 6.219 4.231

rr +=>vol+ 3.764 10.874 6.326 4.248

rr +=>vol- 5.043 12.215 7.884 6.981

rr -=>vol+ 1.028 12.183 6.994 5.875

rr -=>vol- 1.432 11.764 7.162 6.231

vol+ => rr+ 35.278(*) 10.342 6.442 4.743

vol+ => rr- 42.237(*) 12.453 7.349 5.658

vol- => rr+ 46.286(*) 12.893 6.238 4.673

vol- => rr- 39.587(*) 12.752 7.872 5.125

det +=>vol+ 3.543 11.592 7.816 5.827

det +=>vol- 2.445 12.986 8.438 6.521

det -=>vol+ 3.091 11.446 7.171 6.392

det -=>vol- 2.854 12.659 8.215 6.383

vol+ => det+ 23.842(*) 11.832 6.212 5.408

vol+ => det- 36.128(*) 11.109 6.649 5.787

vol- => det+ 43.485(*) 12.954 8.221 6.734

vol- => det- 44.228(*) 11.184 7.843 5.543

lam +=>vol+ 1.556 11.265 6.978 4.874

lam+=>vol- 1.754 13.129 8.508 6.548

lam-=>vol+ 2.386 12.328 8.761 6.109

lam-=>vol- 1.326 13.673 8.265 6.439

vol+ => lam+ 22.452(*) 11.912 6.867 4.381

vol+ => lam- 35.945(*) 12.769 6.743 4.214

vol- => lam+ 39.281(*) 14.679 9.389 7.222

vol- => lam- 28.328(*) 12.769 8.325 6.927
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According to this result, it is not possible to make early decisions
about volatility using chaos data. However, chaos data was used
directly in the research and it was not allowed to clearly reveal
negative and positive shocks. In order to eliminate this problem,
new time series were created by taking the logarithmic differences
of the chaos data. The new time series created are presented in
Figures 7,8,9,10.

Figure 7 lnRR = ln(RRn/RRn-1)

Figure 8 lnDET = ln(DETn/DETn-1)

Figure 9 lnEntr = ln(Entrn/Entrn-1)

With the new variables created, the Hatemi-J asymmetric causal-
ity analysis procedures were repeated and the new analysis results
are presented in tables below. While the negative and positive
differences in the logarithmic difference of the RR data, which
gives the repetition percentage of the time series, were determined
as the cause of the positive shocks of volatility, causality towards

Figure 10 lnLAM = ln(LAMn/LAMn-1)

the negative shocks of volatility of the same variable could not be
determined.

The negative and positive shocks of the €/$ exchange rate
volatility are the cause of both the negative and positive shocks of
the LnRR variable. Based on these determinations, it is accepted
that the LnRR variable can be used as a leading indicator for pos-
itive shocks of €/$ exchange rate volatility,and additionally that
all shocks in the €/$ exchange rate volatility are the cause of the
LnRR variable makes it difficult to accept the LnRR variable as a
leading indicator in any case.

Depending on these determinations, LnRR data can be used as
a leading indicator that €/$ exchange rate volatility will increase
when sudden and large shocks are detected, as in the crises expe-
rienced in 2008 and 2020. However, this determination does not
reduce the importance of the LnRR variable, if it is followed as an
index, it can be added to the literature as a very important leading
indicator in terms of increasing the limited data diversity in risk
management.

It has been understood that the logarithmic difference of LnDET,
which is the predictive variable in chaos data, does not affect the
negative or positive shocks of volatility. On the contrary, it is
understood that both negative and positive shocks of volatility
affect the negative and positive shocks of LnDET. Depending on
these determinations, it is not possible to use the LnDET variable
as a leading indicator. However, it can be used to understand and
interpret the general situation in the time series.

When the asymmetric causality analysis results between the
logarithmic difference value of the entropy data, which is the
indicator of the irregularity in the time series, and the €/$ exchange
rate volatility are examined, it is understood that the LnRR, that is,
the repetition data, shows consistent results with the logarithmic
difference. Here, the hypothesis that the negative and positive
shocks of the LnEntr data is the cause of the negative shock of the
€/$ exchange rate volatility is accepted.

The negative and positive shocks of the €/$ exchange rate
volatility are the cause of both the negative and positive shocks
of the LnEntr data. In this case, it is understood that the result
obtained with LnRR data is the opposite for LnEntr, and this re-
sult should be considered quite consistent. Because while RR is
a measure of regular repetitions, Entr is defined as a measure of
irregularity and they give opposite results. With this study, it has
been accepted that it is possible to use sudden large shocks in
the logarithmic difference of entropy as a leading indicator that
volatility will decrease.

CHAOS Theory and Applications 85



■ Table 4 Causality Results Between LnRR and Exchange Rate Volatility

Wald İst. %1 %5 %10

Lnrr +=>vol+ 10.199 (**) 11.863 7.538 5.728

Lnrr +=>vol- 4.390 12.005 7.994 6.241

Lnrr -=>vol+ 918.028(*) 9.243 5.928 4.605

Lnrr -=>vol- 1.156 11.884 7.817 6.191

vol+ => Lnrr+ 79.618(*) 10.587 6.213 4.698

vol+ => Lnrr- 44.174(*) 12.149 7.733 5.909

vol- => Lnrr+ 86.936(*) 10.593 6.101 4.535

vol- => Lnrr- 49.521(*) 10.902 6.638 5.008

■ Table 5 Causality Results Between LnDET and Exchange Rate Volatility

Wald İst. %1 %5 %10

Lndet +=>vol+ 2.815 11.828 7.535 5.836

Lndet +=>vol- 0.020 12.273 8.434 6.626

Lndet -=>vol+ 3.464 11.961 7.814 6.224

Lndet -=>vol- 0.324 12.726 8.791 6.863

vol+ => Lndet+ 47.638(*) 11.868 6.892 5.114

vol+ => Lndet- 76.446(*) 12.090 7.456 5.577

vol- => Lndet+ 26.934(*) 12.779 8.612 6.800

vol- => Lndet- 37.082(*) 11.311 7.550 5.895
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■ Table 6 Causality Results Between LnEntr and Exchange Rate Volatility

Wald İst. %1 %5 %10

Lnentr +=>vol+ 2.193 14.229 8.078 5.959

Lnentr +=>vol- 217.272(*) 12.897 7.890 5.802

Lnentr -=>vol+ 3.022 12.611 8.011 6.227

Lnentr -=>vol- 216.543(*) 11.855 7.562 5.653

Vol+ => Lnen+ 37.221(*) 14.161 7.053 5.106

Vol+ => Lnen- 58.123(*) 11.390 6.620 4.855

vol- => Lnen+ 41.256(*) 12.000 7.539 5.670

vol- => Lnen- 41.256(*) 12.000 7.539 5.670

■ Table 7 Causality Results Between LnLAM and Exchange Rate Volatility

Wald İst. %1 %5 %10

Lnlam +=>vol+ 198.185(*) 9.802 5.921 4.478

Lnlam+=>vol- 3.277 13.418 8.090 6.259

Lnlam-=>vol+ 2.825 15.565 8.400 6.078

Lnlam-=>vol- 1.181 13.579 8.250 6.198

vol+ => Lnlam+ 36.330(*) 13.907 6.780 4.901

vol+ => Lnlam- 56.945(*) 12.240 6.667 4.884

vol- => Lnlam+ 39.281(*) 14.679 9.389 7.222

vol- => Lnlam- 56.272(*) 12.954 8.229 6.183
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Notes: (*)There is causality with 1% margin of error. (**)There is
causality with 5% margin of error. (***)There is causality with 10%
margin of error.

According to the results of the causality inquiry that is made
between the logarithmic difference values of the LAM data, which
is an indicator of a stable structure in time series, and the €/$
exchange rate volatility; The positive shocks of the LnLAM data
are determined to be the cause of only the positive shocks of the €/$
exchange rate volatility, while the negative shock of the LnLAM
data is not the cause of the negative and positive shocks of the
volatility. With this finding, it was concluded that positive shocks
in LnLAM data can be used as an important indicator that volatility
will increase.

CONCLUSION

When the literature in the field of RQA is examined, it has been
seen that the chaotic structures on the time series are interpreted
by calculating static chaos data by dividing the time series into
certain sub-time periods. By using the chaos data converted from
static structure to dynamic structure with windowed RQA, it was
possible to create time series and limited number of studies on this
subject could be reached. From these studies;

Soloviev et al. (2020) tested whether the chaos data would be a
leading indicator by detecting structural breaks on the daily data
of the US, German and French stock markets. According to the
results of the research, it has been suggested that DET, LAM and
Entr data can be used as crisis leading indicators.

Piskun and Piskun (2011) produced windowed RQA dynamic
chaos data during financial crisis periods in different countries and
argued that LAM data could be the leading indicator of crises by
detecting structural breaks on these data.

The path followed in the research conducted in the field of fi-
nance with windowed RQA is generally to determine the structural
break times of the time series in order to determine the relation-
ship between the generated chaos data and volatility. In our study,
whether the chaos data will be a leading indicator for volatility
was investigated by Hatemi-J asymmetric causality analysis. In
this respect, this study reveals an innovation for the finance lit-
erature. Our study has proven that RR, Entr and LAM data can
be leading indicators of volatility, consistent with other studies.
However, it has also been proven in the study that using logarith-
mic differences instead of using these data directly will give better
results.

As a result of econometric analysis, it was determined that the
negative and positive shocks of the lnRR value were the cause
of the positive shocks of the €/$ exchange rate volatility, and the
negative and positive shocks of the lnEntr value were the cause of
the negative shocks of the €/$ exchange rate volatility. In addition,
it has been determined that the positive shock of the lnLAM value
is the cause of the positive shock of the €/$ exchange rate volatility.
It has also been determined that both negative and positive shocks
of the €/$ exchange rate volatility are the cause of the negative
and positive shocks of all chaos data. According to this result,
it is concluded that the €/$ exchange rate volatility affects the
chaos data under normal conditions, while the chaos data has
the ability to affect the €/$ exchange rate volatility in extreme
cases (Financial Crises). This interpretation of opinion does not
eliminate the importance of chaos data in volatility analysis. It
indices to be derived from chaos data (especially LnRR, LnEntr
and LnLAM) have increased their importance in order to provide
new opportunities for analysis for stakeholders working in the
field of volatility detection and risk management.
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Bifurcation Analysis and 0-1 Chaos Test of a Discrete T
System
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ABSTRACT This study examines discrete-time T system. We begin by listing the topological divisions of
the system’s fixed points. Then, we analytically demonstrate that a discrete T system sits at the foundation
of a Neimark Sacker(NS) bifurcation under specific parametric circumstances. With the use of the explicit
Flip-NS bifurcation criterion, we establish the flip-NS bifurcation’s reality. Center manifold theory is then used
to establish the direction of both bifurcations. We do numerical simulations to validate our theoretical findings.
Additionally, we employ the 0-1 test for chaos to demonstrate whether or not chaos exists in the system. In
order to stop the system’s chaotic trajectory, we ultimately employ a hybrid control method.
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INTRODUCTION

The nonlinear differential systems, including those in engineering,
economy, physics, biology, chemistry, and other domains, have
been explored from both theoretical and potential practical per-
spective. The feature of sensitivity to the beginning circumstances
is frequently seen in nonlinear systems (some authors consider
this property sufficient for a system to be chaotic). One of the first
examples of a 3-D continuous dynamical system using numeri-
cal simulations that illustrate the property of sensitivity to initial
conditions is the Lorenz system (Lorenz 1963).

The Rayleigh-Benard experiment is the Lorenz system’s phys-
ical implementation. A dynamical model for meteorology was
developed using the system, which was derived from the hydro-
dynamical Navier-Stokes equations. Scientists have looked into
numerous 3-D chaotic systems as a result of his classically inno-
vative work. After a decade, Rössler (1976) made the discovery
of a 3-D chaotic system that had been built up while studying a
chemical reaction. The discovery of numerous 3-D chaotic sys-
tems was made possible by these classical pioneering works on
chaotic systems. Attempting to convert the Lorenz system from
a stable to a chaotic condition (concept known as anticontrol of
chaos), Lü et al. (2002) and Ueta and Chen (2000) constructed new
critical chaotic systems by anti-control technique in Lorenz system
(Lorenz 1963) which were known as Lü system and Chen’s system
respectively.
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Qualitative analyses of these empirical works found many dy-
namical properties including local bifurcations, chaotic, periodic,
quasi-periodic orbits and route to chaos. They also obtained super-
critical and sub-critical bifurcations conditions around positive
equilibrium. In Sachdev and Sarathy (1994), a nonlinear system
resulting from a nuclear spin generator is explored and contrasted
with the Lorenz system. The T system, which Tigan (Tigan 2005) ex-
plored, is a novel chaotic system deriving from the Lorenz system.
The system T exhibits a more complicated dynamics than the Lü
system because it offers greater flexibility in selecting the system’s
parameters. To improve the chaotic system’s complexity and the
accuracy of the weak signal detection, a novel 3-D chaotic system
studied (Luo et al. 2020). A 3-D jerk system dynamics examined in
(Kengne et al. 2016), which can be utilized as an analog simulator
for experiments made in a lab. This work investigated several
dramatic and uncommon bifurcation situations, such as those with
multiple attractors, symmetry-recovering crises, and basins of at-
traction for a variety of coexisting attractors. These applications
provide justification for the creation of new chaotic systems. Nu-
merous fields, ranging from ecology (Tang and Chen 2003) and
physics (El Naschie 2003), encounter nonlinear dynamics.

We recall some applications of such systems in biological sys-
tems, secure communication, information processing (see, for ex-
ample, (Babloyantz et al. 1985; Chen and Dong 1998; Chen 1999;
Pecora and Carroll 1991; Rabinovich and Abarbanel 1998; Yang
and Chua 1997)). A numerous number of scholars have been given
attention and investigated extensively system’s bifurcation in con-
tinuous dynamical system, but a little works have been studied in
system’s bifurcations in discrete dynamical system. However, a
lot of exploratory works have been suggested that discrete-time
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models are more suitable compared to differential equation model
as discrete-time model reveal rich chaotic dynamics and give effec-
tive computational models for numerical simulations (Chakraborty
et al. 2020; Li and He 2019; Liu and Li 2021; Rana 2019b,a; Zhao
2021; Liu and Li 2021; Zhang et al. 2022; Fei et al. 2021; Singh and
Deolia 2021). These studies investigated unexpected characteris-
tics, such as the occurrence of (flip-NS) bifurcations and chaotic
events, using either numerical methods or center manifold theory
applications. In fact, these studies solely focused on 2-D discrete
systems.

A limited number of contributions have recently been made
to the study of the dynamics of 3-D discrete systems (Khan and
Javaid 2021; Abdelaziz et al. 2020; Din and Ishaque 2019; Feng et al.
2021; Hu et al. 2014; Ishaque et al. 2019; Qin et al. 2016; Khan et al.
2021; Xin et al. 2010). For example, a discrete-time SIR epidemic
models discussed in (Abdelaziz et al. 2020; Khan et al. 2021; Hu et al.
2014), in (Xin et al. 2010) the authors investigated discrete financial
system and in (Qin et al. 2016), the authors studied discrete chaotic
system.

The explicit Flip-NS bifurcation criterion, center manifold
theory, and bifurcation theory were all used by the researchers in
these works to focus their efforts on figuring out the direction
and stability of Flip and NS bifurcation. The studies in (Khan
and Javaid 2021; Din and Ishaque 2019; Ishaque et al. 2019)
investigated discrete population models. In (Feng et al. 2021), the
authors explored NS bifurcation for discrete food chain model.
For the existence of flip and NS bifurcations, these research solely
employed the explicit (Flip-NS bifurcaton) criteria and numerical
simulations. In nonlinear field research, the chaos theory has
recently attracted a lot of attention.

In light of the aforementioned research projects, we express our
interest in studying at 3-D T system (Tigan 2005):

ẋ = a(y − x)
ẏ = (c − a)x − axz
ż = xy − bz

(1)

In system (1), x, y, z ∈ R are the state variables with parameters
a, b, c ∈ R and a ̸= 0. The parameters a, b, c ∈ R+ in the system
represent the Prandal number, the Rayleigh number, and some
physical proportions of the region under study and for more de-
scription of these parameters we refer (Sparrow 2012). Diverse
perspectives were used to study the T system: dynamics (Jiang et al.
2010), chaos control (Yong and Zhen-Ya 2008), anti-synchronization
(Vaidyanathan and Rajagopal 2011). Secure communications might
benefit from the system (1) (Li et al. 2009; Sundarapandian 2011).
The T system undergoes a Hopf bifurcation and possesses a strange
chaotic attractor (Jiang et al. 2010).

A continuous-time differential equation can be discretized in
a variety of ways, but the fourth-order Runge-Kutta approach
and the forward Euler scheme are the most straightforward. The
discrete systems’ features can change significantly from those of
the original continuous ones since the forward Euler technique
uses first-order precision to solve approximation differential equa-
tion solutions. However, a big step size ensures low stability of
the selected Euler integrator, which means all of the impacts we
see may have nothing to do with the characteristics of the origi-
nal continuous system. This intentionally induced instability of
the finite-difference system is where the chaotic regimes mostly
develop. How the forward Euler scheme affects the capabilities

of continuous systems is something we are interested in. Our
present work is looking at a discrete-time system that is built on
the continuous-time 3D T system. Applying forward Euler scheme,
the discrete form of (1) is given by

x

y

z

 −→


x + δ(a(y − x))

y + δ((c − a)x − axz)

z + δ(xy − bz)

 (2)

We are motivated to investigate the T system in discrete form
because of the interest in studying it. The discrete T system differs
from the continuous one in both characteristics and structure,
according to analysis. The Flip and NS bifurcations play an
significant role for generation of critical chaotic dynamics in
discrete system and trigger a route to chaos. The objective of this
work is to analyze systematically the conditions for occurence of
flip and NS bifurcations by using an explicit Flip-NS bifurcation
criterion and to determine the stability and direction of both
bifurcations by the applications of bifurcation theory.

The structure of this study is as follows. The local stability re-
quirements of possible fixed points are examined in Section 2. In
Section 3, we theoretically examine whether the system (2) experi-
ences a Flip or NS bifurcation under a certain parametric condition.
To support the conclusions of our analytical work, we numerically
show system dynamics in Section 4 together with bifurcation di-
agrams, phase portraits, and MLEs. There is also a 0 − 1 chaotic
test method offered. In Section 5, we put a hybrid control tech-
nique into practice to stabilize the uncontrolled system’s chaos. We
provide a brief summary in Section 6.

LOCAL DYNAMICS

The fixed points of the system (2) are the solutions of the following
system of non-linear equations:

x = x + δ(a(y − x))
y = y + δ((c − a)x − axz)
z = z + δ(xy − bz)

(3)

By some algebraic computation, we obtain the following
lemma.

Lemma 1 (i) For any parameter values, the system (2) has only
one fixed point E0 = (0, 0, 0), (ii) if c > a, the system (2) has
three fixed points E0 = (0, 0, 0), and E± =

(
x±, y±, z±

)
=(

±
√

b
a (c − a),±

√
b
a (c − a), c−a

a

)
.

Given at fixed point E(x, y, z), the Jacobian matrix of the system
(2) and its characteristic equation are as follows

J(E) =


1 − aδ aδ 0

−(a − c + az)δ 1 −axδ

yδ xδ 1 − bδ

 = (jkl), k, l = 1, 2, 3

(4)
and

P(µ) := µ3 + ϑ2µ2 + ϑ1µ + ϑ0 = 0 (5)
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where,

ϑ2 = −tr(J),

ϑ1 =

∣∣∣∣∣∣∣
j11 j12

j21 j22

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

j22 j23

j32 j33

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

j11 j13

j31 j33

∣∣∣∣∣∣∣ ,

ϑ0 = − |J| .

We first provide the following lemma regarding the necessary
and sufficient criteria for stability around fixed point of system
(2) in order to study the nature of the system around fixed point
E(x, y, z).

Lemma 2 (Camouzis and Ladas 2007) Suppose that ϑ2, ϑ1, ϑ0 ∈
R.Then, the necessary and sufficient conditions for all roots µ of the
equation

µ3 + ϑ2µ2 + ϑ1µ + ϑ0 = 0

to satisfy |µ| < 1 are
|ϑ2 + ϑ0| < 1 + ϑ1, |ϑ2 − 3ϑ0| < 3 − ϑ1, and ϑ0

2 + ϑ1 − ϑ0ϑ2 <
1.

Now, the local dynamics of system (2) around fixed points E0
and E+ are as follows.

At E0, the Jacobian matrix J(E0) have eigenvalues µ1 = 1 −
bδ, µ2,3 = 1

2

(
2 − aδ ±

√
δ2(−3a2 + 4ac)

)
, where µ2,3 satisfy the

equation

µ2 − (2 − aδ)µ + (1 − aδ + (a2 − ac)δ2) = 0.

We obtain the topological classification of E0 presented in the
following Lemma.

Lemma 3 If c < a, the fixed point E0 is a
− sink if (i)− 3a2 + 4ac ≥ 0, δ < min

{
2
b , a−

√
−3a2+4ac
a2−ac

}
,

(ii)− 3a2 + 4ac < 0, δ < min
{

2
b , 1

a−c

}
,

− source if (iii)− 3a2 + 4ac ≥ 0, δ > max
{

2
b , a−

√
−3a2+4ac
a2−ac

}
,

(iv)− 3a2 + 4ac < 0, δ > max
{

2
b , 1

a−c

}
,

− non-hyperbolic if (v) − 3a2 + 4ac ≥ 0, δ = 2
b , or δ =

a±
√
−3a2+4ac
a2−ac ,

(vi)− 3a2 + 4ac < 0, δ = 1
a−c .

Let,

FBE0 =

{
(a, b, c, δ) : δ =

a ±
√
−3a2 + 4ac

a2 − ac
, δ ̸= 2

b
, −3a2 + 4ac ≥ 0

}

and

NSBE0 =

{
(a, b, c, δ) : δ =

1
a − c

,−3a2 + 4ac < 0
}

,

then system (2) encounters a flip (NS) bifurcation at E0 if pa-
rameters change in small vicinity of FBE0 (NSBE0 ).

At E+, we rewrite the equation (5) as

P(µ) := µ3 + κ2µ2 + κ1µ + κ0 = 0. (6)

where,

κ2 = −3 + δ(a + b),
κ1 = 3 − 2aδ + bδ(−2 + cδ),

κ0 = −1 − 2a2bδ3 + b(δ − cδ2) + a(δ + 2bcδ3)

(7)

Following is the Lemma for stability requirement of E+.

Lemma 4 The fixed point E+ of system (2) is locally asymptotically
stable if and only if the coefficients κ2, κ1, κ0 of (6) satisfy

|κ2 + κ0| < 1 + κ1, |κ2 − 3κ0| < 3 − κ1, and κ0
2 + κ1 − κ0κ2 <

1.

ANALYSIS OF BIFURCATIONS

This part will focus to recapitulate the conditions for stability and
direction of flip and NS bifurcations of system (2) around fixed
points E0 and E+ by using an explicit Flip-NS bifurcation criterion
without computing the eigenvalues of the respective system and
bifurcation theory (Kuznetsov 2013; Wen 2005; Yao 2012). We take
δ as bifurcation parameter, otherwise stated.

NS bifurcation around E0

Suppose that parameters (a, b, c, δ) ∈ NSBE0 , then the eigenvalues
of system (2) are

µ1 = 1 − bδ, µ2,3 = α ± iβ (8)

where α = 1 − aδ
2 and β = δ

√
3a2 − 4ac.

Let, δ = δNS = 1
a−c , then we have

|µ2,3(δNS)| =
√
(1 − aδNS + (a2 − ac)δ2

NS) = 1, µ1(δNS) = 1− b
a − c

(9)
and

d |µi(δ)|
dδ

|δ=δNS =
a
2
̸= 0, i = 2, 3 (10)

Moreover,
a

a − c
̸= 2, 3 (11)

implies that µk
2,3 ̸= 1, k = 1, 2, 3, 4. We write the system (2) as

X = A(δ)X + F (12)

where A(δ) = J(E0) and F = (0,−axzδ, xyδ)T with δ = δNS. It
is possible to express the system (12) as

Xn+1 = AXn +
1
2

B (Xn, Xn) +
1
6

C (Xn, Xn, Xn) + O
(

X4
n

)
where,

B(x, y) =


B1(x, y)

B2(x, y)

B3(x, y)

 and C(x, y, u) =


C1(x, y, u)

C2(x, y, u)

C3(x, y, u)


(13)

are the symmetric multi-linear functions of x, y, z, u ∈ R3 and
defined by

Bi(x, y) = ∑3
j,k=1

∂2 Fi(υ,δ)
∂υj∂υk

∣∣∣
υ=0

xjyk,

92 | Sarker Md. Sohel Rana CHAOS Theory and Applications



Ci(x, y, u) = ∑3
j,k,l=1

∂3 Fi(υ,δ)
∂υj∂υk∂υl

∣∣∣
υ=0

xjykul .

In particular,

B(x, y) =


0

−ax3y1δ − ax1y3δ

x2y1δ + x1y2δ

 and C(x, y, u) =


0

0

0


(14)

Let ζ1, ζ2 ∈ C3 be two eigenvectors of A(δNS) and AT(δNS)
respectively such that

A (δNS) ζ1 = µ2 (δNS) ζ1, AT (δNS) ζ2 = µ3 (δNS) ζ2 (15)

then after some algebraic calculation, we obtain

ζ1 = (ϕ1 + iψ1, 1, 0)T and ζ2 = (ϕ2 + iψ2, 1, 0)T

with ϕ1 = aδ
2(a−c)δ , ψ1 =

−β
2(a−c)δ and ϕ2 = −aδ

2aδ , ψ2 =
−β
2aδ .

The standard inner product property ⟨ζ1, ζ2⟩ = ∑3
i=1 ζ1iζ2i is

applied to set the normalized vector ζ2 = ξζ2 so that ⟨ζ1, ζ2⟩ = 1
is obtained where ξ = ξ1 + iξ2 with

ξ1 =
ϕ1ϕ2+ψ1ψ2+1

(ϕ1ϕ2+ψ1ψ2+1)2+(ϕ2ψ1−ϕ1ψ2)2 ,

ξ2 =
ϕ2ψ1−ϕ1ψ2

(ϕ1ϕ2+ψ1ψ2+1)2+(ϕ2ψ1−ϕ1ψ2)2 .

Now, decomposing the vector X ∈ R3 as X = zζ1 + z̄ζ̄1 by
considering δ vary near to δNS and for z ∈ C. Obviously, z =
⟨ζ2, X⟩. So, we derive the transformed form of system (12) for |δ|
close to δNS as follows:

z 7−→ µ(δ)z + ĝ(z, z̄, δ) (16)

where µ(δ) = (1 + φ̂(δ))eiθ(δ) with φ̂ (δNS) = 0 and ĝ(z, z̄, δ) is
a smooth complex-valued function. Then we obtain

ĝ(z, z̄, δ) = ∑k+l≥2
1

k!l! ĝkl(δ)zk−l with ĝkl ∈ C, k, l =
0, 1, . . . .

The coefficients ĝkl are determined via multilinear symmetric
vector functions:

ĝ20 (δ) = ⟨ζ2, B(ζ1, ζ1)⟩, ĝ11 (δ) = ⟨ζ2, B(ζ1, ζ̄1)⟩,

ĝ02 (δ) = ⟨ζ2, B(ζ̄1, ζ̄1)⟩,

ĝ21 (δ) = ⟨ζ2, C(ζ1, ζ1, ζ̄1)⟩+ 2
〈

ζ2, B
(

ζ1, (In − A)−1 B(ζ1, ζ̄1)
)〉

+
〈

ζ2, B
(

ζ̄1,
(
µ2

2 In − A
)−1 B(ζ1, ζ1)

)〉
+ (1−2µ2)µ3

1−µ2
ĝ20 ĝ11

+ 2
1−µ2

|ĝ11|2 +
µ2

µ3
2−1 |ĝ02|2 .

(17)
with δ = δNS.

After some tedious calculation, we get

ĝ20 (δNS) = 0, ĝ11 (δNS) = 0, ĝ02 (δNS) = 0,

ĝ21 (δNS) =
−2aδNS

b(Φ2
4+Ψ2

4)
[(Φ3Φ4 + Ψ3Ψ4) + i (Φ4Ψ3 − Φ3Ψ4)]

(18)

where

Φ4 = −1 + α2 − β2 + bδ,

Ψ4 = 2αβ,

Φ3 = Φ1Φ2 − Ψ1Ψ2,

Ψ3 = Φ2Ψ1 + Φ1Ψ2,

Φ2 = ϕ1(−2 + 2α2 − 2β2 + 3bδ),

Ψ2 = 4ϕ1αβ − bψ1δ,

Φ1 = ϕ1ξ1 + ψ1ξ2,

Ψ1 = ψ1ξ1 − ϕ1ξ2.

Then using coefficient of the critical normal form

l1 (δNS) = Re
(

µ3 ĝ21
2

)
−Re

(
(1 − 2µ2) µ2

3
2 (1 − µ2)

ĝ20 ĝ11

)
− 1

2
|ĝ11|2 −

1
4
|ĝ02|2

(19)
we obtain l1 (δNS) =

−aδNS
b(Φ2

4+Ψ2
4)

(Φ6Φ4 + Ψ6Ψ4) where

Φ5 = αΦ1 + βΨ1,

Ψ5 = αΨ1 − βΦ1,

Φ6 = Φ2Φ5 − Ψ2Ψ5,

Ψ6 = Φ2Ψ5 + Φ5Ψ2.

The following theorem can be used in conjunction with the
preceding description to demonstrate the direction and stability of
the NS bifurcation.

Theorem 1 Suppose (11) holds and l1(δNS) ̸= 0, then NS bifurcation
emerges at fixed point E0(0, 0, 0) for system (2) if the δ changes its
value in small neighbourhood of NSBE0 . Additionally, there exists an
attractive (resp. repelling) smooth closed invariant curve bifurcate from
E+ if l1(δNS) < 0 (resp. l1(δNS) > 0) and the bifurcation is sub-
critical (resp. super-critical).

Bifurcation Analysis around E+

Flip Bifurcation: Existence condition To investigate the existence
of flip bifurcation, we will use Lemma in (Yao 2012).

Lemma 5 The flip bifurcation of system (2) takes place around fixed

point E+ =

(√
b
a (c − a),

√
b
a (c − a), c−a

a

)
at δ = δF if and only if

1 − κ1 + κ0(κ2 − κ0) > 0,
1 + κ1 − κ0(κ2 + κ0) > 0,
1 + κ2 + κ1 + κ0 > 0,
1 − κ2 + κ1 − κ0 = 0,
1 + κ0 > 0,
1 − κ0 > 0,

and ∑n
i=1(−1)n−i

ι
′
i

∑n
i=1(−1)n−i(n−i+1)ιi−1

=
κ
′
2−κ

′
1+κ

′
0

3−2κ2+κ1
̸= 0,

where κ2, κ1, κ0 are given as in (7) and κ
′

i =
dκi
dδ |δ=δF with
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δF = −c
3a2−3ac +

6a3+6a2(b−c)−6abc+bc2

3a(a−c)Γ1
+ Γ1

3ab(a−c) ,

Γ1 = 3
√
−54a4b2 + 99a3b2c + 9ab3c2 − b3c3 − 9a2b2c(b + 5c) + 3

√
3
√

Γ2),
Γ2 = −a2b3(a − c)2(8a5 + b2(b − 4c)c2 − 4a4(21b + 2c) +
12a3b(2b + 13c) + Γ3),
Γ3 = 2ab2c(−4b + 19c) + a2b(8b2 − 60bc − 71c2).

Define the set

FBE+
= {(a, b, c, δ) : δ = δF, a, b, c > 0}.

If system parameters value vary in a small vicinity of FBE+
,

one of the eigenvalue of (6) is µ3(δF) = −1 and other two are
|µ1,2(δF)| ̸= ±1, and then system (2) underlies a flip bifurcation
around E+.

Flip Bifurcation: Direction and Stability We choose parameter
(a, b, c, δ) ∈ FBE+

and let δ = δF, then the eigenvalues of J(E+)
are:

µ1(δF) = −1, |µi(δF)| ̸= ±1, i = 2, 3 (20)

Next, we set x̂ = x − x+, ŷ = y − y+, ẑ = z − z+, A(δF) =
J(E+) and transfer the fixed point E+ of system (2) to the origin.
Since symmetric multi-linear functions are not associated with
fixed point, the bi-linear and trilinear functions for flip bifurcation
will remain unchanged as in (14).

Consider two eigenvectors η1, η2 ∈ R3 of A for eigenvalue
µ1(δF) = −1 such that

A(δF)η1 = −η1, AT(δF)η2 = −η2, ⟨η2, η1⟩ = 1.

Then the coefficient of normal form is

l2 (δF) =
1
6
⟨η2, C(η1, η1, η1)⟩−

1
2

〈
η2, B

(
η1, (A − I)−1B(η1, η1)

)〉
(21)

In light of the aforementioned investigation, we provide the
following conclusion with regard to the stability and direction of
the flip bifurcation.

Theorem 2 Suppose (20) holds well and l2(δF) ̸= 0 for the fixed point
E+(x+, y+, z+). Then the system (2) encounters a flip bifurcation at
E+ if l2(δF) ̸= 0 and δ fluctuates its value in a limited proximity of
bifurcation point. Moreover, stable (resp., unstable) period-2 orbits split
off from E+ if l2(δF) is positive (resp., negative).

NS Bifurcation: Existence condition We will use the explicit
Flip-NS bifurcation criterion (Wen 2005; Yao 2012) for the existence
of NS bifurcation and the subsequent lemma will give the
necessary and sufficient parametric conditions for which system
(2) underlies NS bifurcation if bifurcation parameter δ passes its
critical value.

Lemma 6 The NS bifurcation of system (2) occurs around the fixed
point E+ at δ = δNS+

if and only if
1 − κ1 + κ0(κ2 − κ0) = 0,
1 + κ1 − κ0(κ2 + κ0) > 0,
1 + κ2 + κ1 + κ0 > 0,
1 − κ2 + κ1 − κ0 > 0,
d
dδ (1 − κ1 + κ0 (κ2 − κ0))δ=δNS+

̸= 0,

and cos
(

2π
l

)
̸= 1 − 1+κ2+κ1+κ0

2(1+κ0)
, l = 3, 4, 5, . . .

where κ2, κ1, κ0 are given as in (7) with

δNS+
= 1

48a2b(a−c)2

(
16abc(−a+c)−(8a2b(a−c)2(6a3+6a2(b−c)−6abc+bc2))

Λ1
− 8Λ1

)
,

Λ1 = 3
√

Λ2 + Λ3 + 3
√

3
√

Λ4),
Λ2 = −54a10b2 + 261a9b2c − 12a4b3c5 + a3b3c6 + 3a5b2c4(13b +
15c),
Λ3 = 18a7b2c2(2b + 27c)− 9a8b2c(b + 56c)− a6b2c3(55b + 234c),
Λ4 = −a8b3(a − c)8(8a5 + b2(b − 4c)c2 − 4a4(21b + 2c) +
12a3b(2b + 13c) + Λ5),
Λ5 = 2ab2c(−4b + 19c) + a2b(8b2 − 60bc − 71c2).

Set
NSBE+

= {(a, b, c, δ) : δ = δNS+
, a, b, c > 0},

and for parameter perturbation in a small neighborhood of NSBE+
,

two roots (eigenvalues) of (6) are complex conjugate having modu-
lus one and the magnitude of other root is not equal to one, then
the system (2) experiences NS bifurcation around E+.

NS Bifurcation: Direction and Stability This section will present
the direction of NS bifurcation. We choose the fixed point E+

of system (2) with arbitrary parameter (a, b, c, δ) ∈ NSBE+
. Let,

δ = δNS+
, then the matrix J(E+) has the eigenvalues satisfying∣∣µi(δNS+

)
∣∣ = 1, i = 2, 3 (22)

and µ1(δNS+
) ̸= 1.

For eigenvalues µ2(δNS+
) and µ3(δNS+

), let τ1, τ2 ∈ C3 be two
eigenvectors of A(δNS+

) and AT(δNS+
) respectively such that

A
(
δNS+

)
τ1 = µ2

(
δNS+

)
τ1, AT (δNS+

)
τ2 = µ3

(
δNS+

)
τ2,

⟨τ2, τ1⟩ = ∑3
i=1 τ2iτ1i = 1

(23)

The coefficient l3(δNS+
) calculated by (19) presents the direction

and stability of NS bifurcation which has been stated in the
following theorem.

Theorem 3 Suppose (22) holds and l3(δNS+
) ̸= 0 for the fixed point

E+. Then system (2) encounters NS bifurcation at E+ if the δ fluctuates
its value in a limited vicinity of NSBE+

. Moreover, if l3(δNS+
) <

0 (resp. l3(δNS+
) > 0), a singular invariant closed curve bifurcates

from E+ that is attracting (resp., repelling) and the bifurcation is sub-
critical (resp. super-critical).

NUMERICAL SIMULATIONS

Using numerical simulations with the aid of bifurcation diagrams,
phase portraits, and MLEs, we will confirm our theoretical conclu-
sions for the system (2) in this section. The presence of chaos has
been supported by the 0 − 1 test algorithm. For the investigations
of bifurcations, we will take different set of parameter values.

Example 1 We take parameter values a = 18, b = 12, c = 10 and
0.1 ≤ δ ≤ 0.1317. By calculation, we find a fixed point E0 = (0, 0, 0)
of system (2) and the bifurcation point is obtained as δNS = 0.125. The
Jacobian matrix J evaluated at E0 have eigenvalues µ1 = −0.5 and
µ2,3 = −0.125 ± 0.9921575i with |µ2,3| = 1.

Furthermore,

d |µi(δ)|
dδ

|δ=δNS =
a
2
= 9 ̸= 0, i = 2, 3,
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a
a − c

=
9
4
̸= 2, 3.

So, the criterion for the existence of NS bifurcation are fulfilled
with (a, b, c, δ) ∈ NSBE0 . This confirms the correctness of Lemma 3.
Therefore, a NS bifurcation occurs around fixed point E0 if δ crosses its
critical value δNS.

Let ζ1, ζ2 ∈ C3 be two complex eigenvectors of A(δNS) and
AT(δNS) corresponding to µ2,3, respectively. Therefore,

ζ1 ∼ (1.125 − 0.992157i, 1, 0)T , ζ2 ∼ (−0.5 − 0.440959i, 1, 0)T .

For ⟨ζ1, ζ2⟩ = 1, we can take normalized vector as ζ2 = γζ2 where,
γ = 0.5 + 0.566947i. Then

ζ1 ∼ (1.125 − 0.992157i, 1, 0)T , ζ2 ∼ (−0.503953i, 0.5 +
0.566947i, 0)T .

Also by (18) the Taylor coefficients are , ĝ20 = 0, ĝ11 = 0, ĝ02 =
0, ĝ21 = 0.421875 − 0.797269i.

From (19), we obtain the Lyapunov coefficient l2(δNS) =
−0.421875 < 0. As a result, the NS bifurcation is super-critical and the
Theorem 1 conditions are satisfied.

The NS bifurcation diagrams are displayed in Figure 1 (a) which
reveal that the condition of stability for the positive fixed point E0 occurs
when δ < δNS, loses its stability at δ = δNS and there appears an
attracting closed invariant curve when δ > δNS. The MLEs related
to Figure 1 (a) are shown in Figure 1 (b). The non stability of system
dynamics are justified with the sign of MLEs.

The phase portraits of system (2) that correspond to the bifurcation
diagram in Figure 1 (a) are plotted in Figure 2, explicitly illuminating the
mechanism by which an invariant smooth closed curve splits from a stable
fixed point E0 when δ varies close to its critical value. We noticed that
NS bifurcations occurs at δ = δNS (see in Figure 2(b)). When δ > δNS,
there appears an invariant closed curve and further increasing of δ, NS
bifurcation instigate a route to chaos.

Example 2 We take a = 5.2, b = 13.5, c = 6.5, 0.14 ≤ δ ≤ 0.1636.
We obtain E+ = (1.83712, 1.83712, 0.25) and bifurcation point δF =
0.1533. At δ = δF, the Jacobian matrix of system (2) takes the form

A(δF) =


0.202839 0.797161 0

0 1 −1.46448

0.28163 0.28163 −1.06955

 .

and the eigenvalues of A(δF) are µ1 = −1 and µ2,3 =
0.566644 ± 0.375479i with |µ2,3| = 0.679757. Moreover,

1 − κ1 + κ0 (κ2 − κ0) = 1.39612 > 0,
1 + κ1 − κ0 (κ2 + κ0) = 0.176862 > 0,
1 + κ2 + κ1 + κ0 = 0.657564 > 0,
1 − κ2 + κ1 − κ0 = 0,
1 + κ0 = 1.46207 > 0,
1 − κ0 = 0.53793 > 0,
and
κ′

2−κ′
1+κ′

0
3−2κ2+κ1

= 13.0463 ̸= 0

This shows that all requirements of Lemma 5 are validated with
(a, b, c, δ) ∈ FBE+

. Thus, the requirement for flip bifurcation’s existence
is confirmed and system (2) experience a flip bifurcation around E+ at
δ = δF.

Next, let the two eigenvectors of A(δF) corresponding to
µ1(δF) = −1, be η1, η2 ∈ R3 respectively. Then, we obtain

η1 ∼ (−0.364586, 0.550125, 0.7512923)T , η2 ∼
(−0.227729,−0.0461924, 0.972628)T .

To set ⟨η1, η2⟩ = 1, we can choose normalized vector as η2 = γζ2
where, γ = 1.26848. Therefore,

η1 ∼ (−0.364586, 0.550125, 0.751292)T , η2 ∼
(−0.288871,−0.0585943, 1.23376)T .

Then from (21), the Lyapunov coefficient l2(δF) = 0.0397406 > 0 is
obtained. This guarantees the appropriateness of Theorem 2.

The diagrams of bifurcation shown in Figure 3 (a) express the stability
of fixed point E+ when δ crosses bifurcation point. The MLEs and phase
portraits of system (2) associated with Figure 3 (a) are shown in Figure 3
(b) and Figure 4 respectively which explicitly illustrate the mechanism of
how period doublling phenomena leads to chaos.

Example 3 We choose 0.06 ≤ δ ≤ 0.11, a = 12, b = 12, c = 18. Then
we find a fixed point E+ = (2.44949, 2.44949, 0.5) of system (2) and the
bifurcation point is obtained as δNS+

= 0.0671545. The Jacobian matrix
is evaluated at E+ is

A(δNS) =


0.194146 0.805854 0

0 1 −1.97393

0.164494 0.164494 0.194146

 ,

and the eigenvalues of A(δNS) are µ1 = −0.16093 and µ2,3 =
0.77461 ± 0.632439i with |µ2,3| = 1.

Furthermore,
1 − κ1 + κ0 (κ2 − κ0) = 0,
1 + κ1 − κ0 (κ2 + κ0) = 1.9482 > 0,
1 + κ2 + κ1 + κ0 = 0.523323 > 0,
1 − κ2 + κ1 − κ0 = 2.97805 > 0,
d
dδ (1 − κ1 + κ0 (κ2 − κ0)) = −8.55995 ̸= 0
and
1 − 1+κ2+κ1+κ0

2(1+κ0)
= 0.77461.

From the resonance condition cos
(

2π
l

)
= 0.77461, we get

l = ±9.17659.

So, the criterion for the existence of NS bifurcation are fulfilled
with (a, b, c, δ) ∈ NSBE+

. This confirms the correctness of Lemma 6.
Therefore, a NS bifurcation occurs around fixed point E+ if δ crosses its
critical value δNS+

.

Let τ1, τ2 ∈ C3 be two complex eigenvectors of A(δNS) and
AT(δNS) corresponding to µ2,3, respectively. Therefore,

τ1 ∼ (0.449192 − 0.489412i, 0.70765, 0.0808016 −
0.226728i)T , τ2 ∼ (0.117028 + 0.127506i,−0.265599 +
0.28938i, 0.903196)T .
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(a) (b)

Figure 1 NS Bifurcation Diagram: in (a) (δ, x) plane, (b) MLEs, (x0, y0, z0) = (0.93, 0.93, 0.33).

(a) (b) (c)

(d) (e) (f)

Figure 2 Phase portrait for different values of δ connected to Figure 1 a. Red ∗ is the fixed point E+.

96 | Sarker Md. Sohel Rana CHAOS Theory and Applications



(a) (b)

Figure 3 Flip Bifurcation Diagram: in (a) (δ, x) plane, (b) MLEs, (x0, y0, z0) = (0.93, 0.93, 0.33).

(a) (b) (c)

(d) (e) (f)

(d) (e) (f)

Figure 4 Phase portrait for different values of δ associated to Figure 3 a. Red ∗ is the fixed point E+.
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For ⟨τ1, τ2⟩ = 1, we can take normalized vector as τ2 = γτ2 where,
γ = −0.429971 − 1.80561i. Then

τ1 ∼ (0.449192 − 0.489412i, 0.70765, 0.0808016 −
0.226728i)T , τ2 ∼ (0.179908 − 0.266131i, 0.636707 +
0.355143i,−0.388348 − 1.63082i)T .

Also by (17) the Taylor coefficients are , ĝ20 = 0.216831 +
0.190042i, ĝ11 = −0.167694 + 0.153913i, ĝ02 =
−0.0967446 − 0.136271i, ĝ21 = 0.074238 − 0.170412i.

From (19), we obtain the Lyapunov coefficient l2(δNS) =
−0.094591 < 0. Therefore, the NS bifurcation is super-critical and the
requirements of Theorem 3 are established.

The NS bifurcation diagrams are displayed in Figure 5 (a) which
reveal that the condition of stability for the positive fixed point E+ occurs
when δ < δNS, loses its stability at δ = δNS+

and there appears an
attracting closed invariant curve when δ > δNS. The MLEs related
to Figure 5 (a) are shown in Figure 5 (b). The non stability of system
dynamics are justified with the sign of MLEs.

The phase portraits of system (2) corresponding to diagram of bifurca-
tion shown in Figure 5 (a) are plotted in Figure 6. This figure explicitly
illustrate the mechanism of how an invariant smooth closed curve bifur-
cates from stable fixed point E+ when δ changes near its critical value.
We noticed that NS bifurcations occurs at δ = δNS+

(see in Figure 6(b)).
When δ > δNS+

, there appears an invariant closed curve and further
increasing of δ, NS bifurcation instigate a route to chaos.

Example 4 Taking parameter values 11.63 ≤ a ≤ 14.5, 10 ≤ c ≤ 20.5,
b = 12, c = 18, δ = 0.1057, the two-dimensional parametric space
is depicted in Figure 7(a) which shows critical value curves of NS
bifurcation of system (2) in (a, c) plane and regions of stability. It may
help one to choose parameter values to see how do dynamics of the system
change its topological properties. Varying two parameters, multiple
bifurcation diagrams of system (2) are plotted in Figure 7(c) together
with the sign of MLEs presented in Figure 7(b). We notice that the
growth of parameter c delays NS bifurcation.

In particular, for c = 18 the NS bifurcation of system (2) takes place at
aNS+

= 13.999 around fixed point E+ = (1.85193, 1.85193, 0.285803).
The bifurcation diagram of system (2) with MLEs are plotted in Figure 8
(a,b). The Lyapunov coefficient l3(aNS+

) = −0.543329 < 0 results that
the NS bifurcation is super-critical. The phase portraits of system (2) in
Figure 9 reflect the break down of invariant closed curve, a period of 9, 11
orbits and attracting chaotic set.

0-1 test algorithm for chaos
The 0 − 1 test algorithm (Gottwald and Melbourne 2004; Xin and
Li 2013; Xin and Wu 2015) returns a real number K ∈ [0, 1] and a
graph in 2D new coordinates (u, v)-plane.

Let Φ̂(n) be finely sampled set of measurement data, where
n = 1, 2, 3, . . . , Ntot and Ntot is length of data. The test steps are as
follows.

Step 1: Take a random real number d ∈
(

π
5 , 4π

5

)
, and define

new coordinates (ud(n), vc(n))) as follows.

ud(n) = ∑n
j=1 Φ̂(j) cos(θ̂(j))

vd(n) = ∑n
j=1 Φ̂(j) sin(θ̂(j))

(24)

where

θ̂(j) = jd +
j

∑
i=1

Φ̂(j), j = 1, 2, 3, . . . , n

Step 2: Define the quantity SDd(n) called mean square displace-
ment as follows:

SDd(n) = lim
Ntot→∞

1
Ntot

Ntot

∑
j=1

(ud(j + n)− ud(j))2 +(vd(j + n)− vd(j))2 ,

(25)

n ∈
[

1,
Ntot
10

]
Step 3: Define the quantity MSDd(n) called modified mean

square displacement as follows:

MSDd(n) = SDd(n)−

 lim
Ntot→∞

1
Ntot

Ntot

∑
j=1

Φ̂(j)

2
1 − cos nc
1 − cos c

(26)

Step 4: Define the median value of correlation coefficient K as
follows:

K = median(κc) (27)

where

κc =
cov(Ω1, Ω2)√

var(Ω1)var(Ω2)
∈ [−1, 1]

witl vectors Ω1 = (1, 2, 3, . . . , ncut), Ω2 =
(MSDd(1), MSDd(2), MSDd(3), . . . , MSDd(ncut)), ncut =

round
(

Ntot
10

)
. For the vectors p, s of length nt, the covariance and

variance are defined as follows:

cov(p, s) = 1
nt

∑nt
j=1(p(j)− p̄)(s(j)− s̄)

p̄ = 1
nt

∑nt
j=1 p(j)

var(p) = cov(p, p)

Step 5: Use the test outputs’ interpretation as follows:
(i) K ≈ 0 suggests that the dynamics of observed data are regular
(i.e., periodic or quasi-periodic), whereas K ≈ 1 suggests that the
dynamics of recorded data are chaotic.
(ii) Bounded trajectories in the new coordinate system (p, s) denote
regular underlying dynamics, while Brownian-like (unbounded)
trajectories denote chaotic underlying dynamics.

Example 5 The chaotic dynamics ( see Figure 9 (a)) of the system (2)
are quantified with correlation coefficient value K = 0.97639 by 0 − 1
test for chaos and the plot in transformed coordinates (p, s) ( see Figure
10(b) ) showing Brownian-like trajectories. The diagram of correlation
coefficient value K is displayed in Figure 10(a) which guarantees that
decreasing the values of parameter a causes unstable system dynamics
for discrete T system.
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(a) (b)

Figure 5 NS Bifurcation diagram: in (a) (δ, x) plane, (b) MLEs, (x0, y0, z0) = (0.98, 0.98, 0.6).

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6 Phase portrait for different values of δ corresponding to Figure 5 a. Red ∗ is the fixed point E+.
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(a) (b)

(c)

Figure 7 System Dynamics for two control parameters (a) Stability region in (a, c) plane (b) The projection of MLEs onto (a, c) plane (c) NS
bifurcation in (a, c, x) space for a ∈ [2.6, 7.5] and c = 3, 3.6, 4.2, 5.04, 6 ∈ [3, 6].

(a) (b)

Figure 8 NS Bifurcation diagram: in (a) (a, x) plane, (b) MLEs, (x0, y0, z0) = (1.95, 1.95, 1.2).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (g)

(g) (h) (g)

Figure 9 Phase portrait for different values of a corresponding to Figure 8 a. Red ∗ is the fixed point E+.
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(a) (b)

Figure 10 0 − 1 test for Chaos of system (2). (a) The curve of median of correlation coefficient in (K, δ) plane (b) Dynamics of system (2) in new
(p, s) plane.

CHAOS CONTROL

Hybrid control strategy (Yuan and Yang 2015) is applied to system
(2) to get the following controlled system


xn+1 = ρ (xn + δ (a(yn − xn))) + (1 − ρ) xn,

yn+1 = ρ (yn + δ ((c − a)xn − axnzn)) + (1 − ρ) yn,

zn+1 = ρ (zn + δ (xnyn − bzn)) + (1 − ρ) zn

(28)

For the controlled system (28), at fixed point E+ =(√
b
a (c − a),

√
b
a (c − a), c−a

a

)
,the zeroes of |µI − J(E+)| (eigen-

values of J ) satisfy the equation

µ3 + ε2µ2 + ε1µ + ε0 = 0. (29)

where,

ε2 = −3 + δρ(a + b),

ε1 = 3 − 2aδρ + bδρ(−2 + cδρ),

ε0 = −1 − 2a2bδ3ρ3 + bδρ(1 − cδρ) + a(δρ + 2bcδ3ρ3)

(30)

Lemma 7 If the fixed point E+ of the uncontrolled system (2) is unstable,
then it is a sink (stable) the controlled system (28), if the roots of (29) lie
inside open disk satisfying conditions in Lemma 2.

Example 6 To see the effectiveness of hybrid control strategy to
control chaotic (unstable) system dynamics, we fix b = 12, c =
18, δ = 0.1057 with a = 11.64 < aNS+

. The fixed point
E+(2.56061, 2.56061, 0.546392) of system (2) is then demonstrated to
be unstable (see Fig 8), however it is stable for the controlled system (28)
iff 0 < ρ < 0.596385. Taking ρ = 0.55, the unstable system dynamics
around E+ are eliminated showing that E+ is a sink for the controlled
system (28) which have been displayed in Figure 11 (a,b). Moreover,
for the choice of ρ = 0.7, the NS bifurcation moves to negative a-axis
and occurs at a = 12.5042 for this controlled system by hybrid control
strategy (see Figure 11 (c)).

(a)

(b)

(c)

Figure 11 Dynamics of controlled system (28), (a) Time history of
x (b) Phase diagram (c) NS bifurcation in (a, x)-plane for ρ = 0.7.
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CONCLUSION

We analysis discrete-time chaotic T system both qualitatively and
quantitively. The Hopf bifurcation of the T system occurs, and it
has an irregular chaotic attractor. We discover that the discrete T
system exhibits more varied dynamical behaviors than the continu-
ous system. Firstly, the conditions and directions of NS bifurcation
of system (2) around E0 are explicitly described by center mani-
fold theory. Then we find the criteria of happening Flip and NS
bifurcations of system (2) around fixed point E+.

In addition, we determine directions of these bifurcations. More
Specifically, NS bifurcation around E0 and Flip or NS bifurcation
around E+ take place of system (2) for small perturbation of bifur-
cation parameter δ or a. Both bifurcations change system dynamics
topologically and trigger a route to chaos. For the generation of NS
bifurcation, we find closed invariant curve, sudden break down
of closed curve, period −9,−11 orbits and chaotic attractors when
δ and/or a pass their threshold values. For the generation of flip
bifurcation, we observe the stable period −1 orbit becomes period
−2,−4,orbits, 4 closed curves, two-coexisting chaotic sets and nice
attracting chaotic set respectively for growth of δ.

Based on two dimensional parameteric space, we see how the
mechanism of NS bifurcation switch the behaviors of system and
advance or delay of occuring bifurcation when two parameters
vary simultaneously. Moreover, for all the cases chaoticity of sys-
tem dynamics are justified with sign of MLEs and 0 − 1 chaos
test. Finally, we are able to control and eliminate unstable system
trajectories by hybrid control strategy. For this system, it is open to
study the other properties like synchronization and co-dimension-
2 bifurcation. Studying how two factors affect the dynamics of the
discrete T system will be intriguing and difficult, but it is some-
thing to keep in mind for future study.
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ABSTRACT Using deep learning methods, age and gender estimation from people’s facial area has become
popular. Recently, with the increase in the use of masks due to Covid-19, only the eye area of people is seen.
The periorbital region can give an idea about the person’s characteristics, such as age and gender. This study
it is aimed to predict gender and age from images obtained by cutting the eye area from facial photographs of
people using Visual Geometry Group-16 (VGG16). With the transfer learning method for age group (male,
female) and gender group (child, youth, adults, and old) classification, 5714 images in the data set were used
for the age group, and 3280 images were used for the gender group. As a result of this study, 99.41% success
in age estimation and 95.73% in gender estimation was achieved.

KEYWORDS

Deep learning
Age and gender
prediction
VGG16
Periorbital area

INTRODUCTION

Humans are social beings that interact with the environment they
live in. Gender plays a fundamental role in social life. With the
gender difference situation, people’s speech, form of address, and
behavior also differ. These differences are just a few of the gender
commitments in social interactions (Gündüz and Cedimoğlu 2019).

The use of artificial intelligence and deep learning applications
is becoming more and more common (Hinton and Salakhutdinov
2006; Solmaz et al. 2020). Artificial intelligence applications that
make predictions about age and appearance on social media are
frequently preferred by users. It is seen that many mobile ap-
plications make applications such as age estimation, aging, and
rejuvenation on mobile platforms. These applications are generally
used for entertainment purposes. Another important example is
that the Xiaomi Mi 6 has an 8-megapixel front camera. In addition
to the automatic facial beautification filter, this front camera also
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offers the user a system that can predict gender and age with its
artificial intelligence.

Artificial intelligence applications are becoming widespread in
every field, and their applications have been seen in forensic cases
recently (Zha et al. 2022; Aslan et al. 2022). The amount of data
stored or transferred has increased with the intensive use of the
Internet and information devices. As a result, there has been an
increase in the crime rate. The amount of evidence obtained re-
garding the crimes committed has increased as the amount of data.
Increasing evidence has made it difficult for experts in the field of
forensic informatics to analyze the data with the available facilities.
The disruptions experienced in the forensic informatics evidence
and data analysis processes have caused negativities in the forensic
trial processes (Dilber and Çetin 2021). In some forensic cases, the
evidence is very insufficient. In such cases, artificial intelligence
applications can come into play. This study developed models
that predict gender and age group from photographs using deep
learning methods. The study aimed to estimate the gender and
age group using only eye photographs as evidence in a forensic
case using deep learning algorithms. It is aimed to speed up the
process of gender determination in the evidence related to this
method and to facilitate data analysis.

Numerous studies have been conducted to improve and de-
velop methods for assessing age and gender. In order to iden-
tify the gender and age of a single individual from their photo,
Abu Nada et al. (2020) developed a double-check layer validator
that makes use of deep learning methods, specifically a Convolu-
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tional Neural Network (CNN). In their investigation, they discov-
ered that estimating age was 57% correct while estimating gender
was 82% accurate. Duan et al. (2018) introduced a hybrid structure
which includes CNN and Extreme Learning Machine to perform
age and gender classification. They stated that the accuracy rate
in the test results was 52.3% for age prediction and 88.2% for gen-
der prediction. Oladipo et al. (2022) developed an age estimations
system using genetic algorithm and backpropagation trained arti-
ficial neural network. Kumar et al. (2022) proposed a study, which
is based on Seg-Net based architecture and machine learning al-
gorithms to classify person’s gender anda ge from diverse facial
photos. Although it is seen that various age and gender estimation
studies have been carried out for different application areas, it has
been observed that these studies have not been studied sufficiently
in the field of forensics.

MATERIAL AND METHOD

Artificial intelligence refers to systems or machines in which the
human learning process is mathematically modeled. It imitates
human intelligence to perform tasks and can gradually improve
itself with the information it collects. Different techniques have
emerged with the increase in artificial intelligence studies. Deep
learning is one of the machine learning methods used in artificial
intelligence studies that allow computers to learn from experience
(Kim 2016). When the literature is scanned, it is seen that there are
many areas where deep learning is used. Deep learning applica-
tions are being developed in various subjects, such as image and
video processing, biomedical signal processing, object recognition,
robotics, chemistry, finance, search engines, and autonomous ve-
hicle systems (Şeker et al. 2017). VGG16 including deep learning,
is an artificial neural network that is effective in prediction and
classification (Zhu et al. 2023). Therefore, the VGG16 method was
preferred in this study.

Deep Learning
Machine learning is the scientific study of statistical models for
computer systems to perform a specific predefined task without
specifying an explicit command or instruction by the user (Bingol
et al. 2020). A sub-branch of artificial intelligence studies is machine
learning. One of the most popular applications of machine learning
is image and image recognition. In image recognition applications,
machine-like images must be introduced for the machine to learn
the image in question. As a result of this learning, the machine can
easily distinguish different pictures from each other or detect the
common points of similar pictures. VGG16 architecture is effective
in computer vision tasks and is used in detail in the modeling of
this study.

Many libraries are available in the Python programming lan-
guage, each suitable for a different purpose. Selecting the appro-
priate libraries according to the data to be studied increases the
accuracy rate. This study used Keras and TensorFlow libraries
containing machine learning algorithms. In the study, images
belonging to two classes (female and male) were used for gen-
der estimation with the VGG16 model. Images belonging to four
classes (child, young, adult, and old) were used for age estima-
tion. In the study, age and gender classification was made with the
VGG16 transfer learning model.

Dataset
The photos used in the dataset were taken from (Generated Photos
2022). These photos are artificial faces created by artificial intel-
ligence methods, which are not in reality but are very realistic.

As seen in Figure 1, the eye parts of the photographs in the data
set were cut to the same dimensions. Each of the images has a
resolution of 120x280 pixels. The photographs used in the data set
were divided into two classes, 1630 female and 1650 male. This
dataset is also divided into four more classes, 1486 of which are
children, 1354 are young, 1472 are adults, and 1402 are old. The
application is written using the python programming language on
the TUBITAK ULAKBIM, High Performance and Grid Computing
Center (TRUBA resources).

Figure 1 Examples of datasets compiled for the application.

Figure 2 shows the distribution of train, test, and train-test
classes by age group. The distribution for train is 26% child, 23.9%
youth, 25.5% adult, and 24.7% old. The distribution of each group
for train-test is 80% as train and 20% as test.

Figure 2 Train data set, test data set, train and test data set graphs
for the age group.

In the study, data duplication was applied using the DataIm-
ageGenerator Function. The parameters used are shown in Table
1.

Regarding gender, Figure 3 shows the distribution of train, test,
and train-test classes, respectively. For train, it is 49.7% female and
50.3%, male. It was determined as 50% female and 50% male for
the test. For the train test, 80% was reserved as train and 20% as
test.

Figure 3 Graphs of train dataset, test dataset, train and test dataset
for Gender.

Convolutional Neural Network
CNN, a deep learning algorithm, uses images as input data. It
performs the classification process of images. CNN architecture
consists of three layers. Convolutional Layer, Pooling Layer, and
Fully Connected Layer (Bulut 2017). The features such as edge
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■ Table 1 Parameters of ImageDataGenerator Function.

Parameter Value

Rotation_range 10

Zoom_range 0.1

Width_shift_range 0.1

Height_shift_range 0.1

Figure 4 VGG16 model.

■ Table 2 Parameters of Model.fit_generator Function.

Parameter Value

Batch_size 8

Epochs 15

Steps_per_epoch 8

Verbose True

■ Table 3 Gender Confusion Matrix.

Accuracy : 95.73% True Female True Male Total Class Precision

Predicted Felame 230 (TP) 6 (FP) 236 94%

Predicted Male 15 (FN) 241 (TN) 256 98%

Total 245 247 492 96%

Class Recall 97% 94% 96%

CHAOS Theory and Applications 107



■ Table 4 Age Group Confusion Matrix.

Accuracy :
99.41%

True Adult True Child True Old True Youth Total Class Precision

Predicted Adult 216 0 0 1 217 100%

Predicted Child 0 221 0 4 225 100%

Predicted Old 0 0 211 0 211 100%

Predicted Youth 0 0 0 198 198 98%

Total 216 221 211 203 851 99%

Class Recall 100% 98% 100% 100% 99%

■ Table 5 Gender and Age Group Confusion Matrix.

Accuracy F1-Score Precision Recall

Gender 96% 96% 96% 96%

Age Group 99% 99% 99% 99%

Figure 5 Gender classification success and loss graph.

and texture belonging to the features obtained from the image are
found and transmitted to the other sublayers, respectively, and the
values in the result layer are obtained (Metlek and Kayaalp 2020).

Convolutional Layer The Convolutional layer is the main layer
of the CNN model. CNN extract features automatically in the
convolution layer (Gündüz and Cedimoğlu 2019). Attributes are
extracted using matrices whose input sizes are determined in the
convolution layer (such as 11x11 in AlexNet, 5x5, 3x3, and 2x2 in
VggNet). In our study, features were extracted using 2x2 matrices
for the age group and 3x3 matrices for gender. With these extracted
features, a new matrix was created, and data smaller than the
input data were obtained. The matrix to be circulated on the image
impacts the network’s training and success (Metlek and Kayaalp
2020).

Pooling Layer The pooling layer usually comes after the activation
process. In this layer, the data is reduced to smaller sizes. This
process makes the network work faster and can lead to data loss.
The preferred matrices for data reduction are the maximum (max
pooling) value, the smallest (min pooling) value, and the average
(average pooling) value matrices. A new matrix is obtained by
circulating these matrices over the matrix obtained from the acti-
vation process. In our study, the softmax activation formula was
used for the age group, and the sigmoid activation formula for
gender. The equations of the functions are as follows:

so f tmax : y =
exi

∑n
j=1 exj

(1)

sigmoid : y =
1

1 + e−x (2)
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Figure 6 Age group classification success and loss graph.

Fully Connected Layer The fully connected layer is where all the
connections in the previous layer are collected. The data from
the fully connected layer is transferred to the result layer in one
dimension (Metlek and Kayaalp 2020).

VGG16 Model

VGG16 is a deep learning model developed by the Visual Geometry
Group at the University of Oxford. VGG16 represents a network
architecture called VGGNet, an important milestone in the field of
Convolutional Neural Networks. VGG16 is a convolutional neural
network with 16 deep layers. These layers consist of convolutional
layers, fully connected layers and activation layers. The VGG16
model differs from previous models in that it is deeper and has
more parameters. The VGG16 model is specifically designed to
be used in image classification tasks (Theckedath and Sedamkar
2020).

The model (Fig.4) was trained on the ImageNet dataset and
achieved successful results in recognizing many different object
classes. In addition, VGG16 can be used in different tasks with
transfer learning methods, often using it as a pre-trained model.
VGG16 is considered a milestone in the field of deep learning and
convolutional neural networks and is used today as a basic model
in many research and applications (Alkurdy et al. 2023).

The parameters used in the training of the model in the study
are given in Table 2.

Performance Measurement Metrics

In classification models, the success rate is mostly determined by
the relationships between the class values labeled by the practi-
tioner and the actual class value (Aslan 2022). Accordingly, the
performance is evaluated based on the TP (True Positive), TN
(True Negative), FP (False Positive), and FN (False Negative) val-
ues in the complexity matrix. In scientific studies, values such
as Accuracy, Precision, Recall, and F1 score are generally used
for performance evaluation criteria (Bulut 2017). Accuracy is the
overall correctness rate.

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Precision is the proportion of correctly detected positive classes
to all positives.

Precision =
TP

TP + FP
(4)

Recall expresses the proportion of correctly identified Positive
classes to true positives.

Recall =
TP

TP + FN
(5)

The harmonic mean of sensitivity and precision is the F1-score.

F1 − score =
2xPrecisionxRecall
Precision + Recall

(6)

RESULTS

The training-validation accuracy and training-validation loss
graphs of the VGG16 model are shown in Figure 5, respectively. As
seen during the network training phase, the training process was
completed with a data loss that could be considered insignificant,
with a loss rate of 0.12.

The training-validation accuracy and training-validation loss
graphs of the VGG16 model are shown in Figure 6, respectively. As
seen during the network training phase, the training process was
completed with a data loss that could be considered insignificant,
with a loss rate of 0.015.

According to Table 3, the model correctly predicted gender at
96%. TP: true positives, TN: true negatives, FN: false negatives, and
FP: false positives. Precision is the proportion of correctly detected
positive classes to all positives. Recall expresses the proportion of
correctly identified positive classes to true positives.

According to Table 4, Precision: Ratio of correctly detected Pos-
itive classes to all positives. Recall: Ratio of correctly detected
Positive classes to true positives. Table 5 shows the model’s ac-
curacy, F1, precision, and recall values for gender and age group
prediction. Accuracy is the overall correctness rate. F1-score: The
harmonic mean of sensitivity and precision is the F1-score. Preci-
sion is the proportion of correctly detected positive classes to all
positives. Recall expresses the proportion of correctly identified
Positive classes to true positives.

CONCLUSION

This article it is aimed to estimate the gender and age group of
individuals belonging to different gender and age groups, with
photographs obtained by cutting the eye parts from the face area.
A success rate of 95.73% was achieved in estimating gender and
99.41% in estimating age group. In the study, eye photographs of
individuals wearing masks can be used to estimate their gender
and age group information. As age and gender determination
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can be important in revealing victim or suspect profiles, this and
similar studies can support forensic processes. When the results
obtained in the study were compared with those in the relevant
literature, it was seen that more successful results were obtained
for age and gender estimation. In future studies, new methods can
be developed to enable us to reach faster, more accurate, and more
reliable results using different data sets and models.
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ABSTRACT The electroencephalogram is a promising tool used to unravel the mysteries of the brain. However,
such signals are often disturbed by ocular artifacts caused by eye movements. In this study, Independent
Component Analysis and Wavelet Transform based ocular artifact removal method, which does not need
reference signals, is proposed to obtain signals free from ocular artifacts. With our proposed method, firstly,
the ocular artifact regions in the time domain of the signal are detected. Then the signal is decomposed into
its components by independent component analysis and independent components containing artifacts are
detected. Wavelet transform is only applied to these components with artifact. Zeroing is applied to the parts
of the wavelet coefficients obtained as a result of the wavelet transform corresponding to the ocular artifact
regions in the time domain. Finally, the clean signal is obtained by inverse Wavelet transform and inverse
Independent Component Analysis methods, respectively. The proposed algorithm is tested on a real data
set. The results are given in comparison with the method in which the zeroing is applied to the classical
independent components. According to the results, it is seen that most of the signal is not affected by the
zeroing and the neural part of the EEG signals is successfully preserved.
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INTRODUCTION

The investigation of psychophysiological signals has become an
important research area by the desire for the human brain to be dis-
covered. Researchers have been trying to understand psychophys-
iological signals and develop Brain Computer Interfaces (BCI) that
can work in harmony with these signals in this area. Electroen-
cephalography (EEG) the result of firing many neurons in the brain
is the commonly used signal type in BCI studies (Wolpaw et al.
2006). The various types of artifacts could interfere) with EEG
signals such as ocular artifacts (OAs), cardiac artifacts and muscle
artifacts. The OAs are the important sources of noise which make
access to neural information difficult in EEG. The high amplitude
of OAs are distorted the neural part of EEG signals (Yang et al.
2015).

The electrooculogram (EOG), which leads to OAs is the result
of eye blinks and movements. These artifacts affect analysis of
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EEG signals negatively. Therefore, EEG signals need to artefact
removal process. In the literature, artifact removal methods have
been proposed such as signal epoch rejection (Kirkove et al. 2014),
regression (Krishnaswamy et al. 2016) and Blind Source Separa-
tion (BSS) methods(James and Hesse 2004; Vigario and Oja 2008).
The Independent Component Analysis (ICA) which is a complex
mathematical technique has been most commonly used to separate
artifacts from EEG signals in many of these proposed methods
(Bell and Sejnowski 1995; Jung et al. 2000; Hyvärinen and Oja 2000).
Various studies have used visual inspection and manual artifact
removal based methods (Akhtar et al. 2012; Mammone et al. 2011).
Beside these methods, several studies that use ICA on the auto-
matic artifacts removal method have been proposed (Sameni and
Gouy-Pailler 2014; Judith et al. 2022). For example, it was reported
an automatic method for ocular removal from simulated EEG sig-
nals based on ICA in a study (Romero et al. 2008, 2009). Sameni
et al. used the ICA based automatic moethod to remove ocular
artifacts from EEG signals (Sameni and Gouy-Pailler 2014). Çinar
et al. presented OD-ICA method for determination of the OAs
(Çınar and Acır 2017).
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In the processes of artifact removal, it is important to recognize
the properties which are decisive of the artifact such as amplitude
and frequency. In order to determine these properties, different
mathematical methods can be used in signal processing. Wavelet
Transform (WT) is a very useful mathematical technique that al-
lows to analyze signals, in the scale-time domain. The WT and
ICA based OA removal methods are introduced in the literature.
Nguyen et al. developed a real time neural network algorithm
based on Wavelet for EEG artifact (Nguyen et al. 2012). Kelly et
al. proposed a new method for use in high dimensional neural
data based on Wavelet thresholding and ICA to localize artifacts
(Kelly et al. 2010). Similarly, Ghandeharion et al. presented a new
automatic artefact detection method which based on a combina-
tion of ICA and WT (Ghandeharion and Erfanian 2010). In the
previous studies, ICA used for EEG decomposition. The artifactual
Independent components (AICs) are rejected and the other ICs are
used in reconstruction of artefact free EEG. The WT is also used
for the focus of the signal to the frequency components containing
artifacts by dividing the EEG signal into frequency components.

In this study, an eye artefact removal algorithm has been pro-
posed. The eye artefact removal algorithm, unlike the studies in
the literature, applies the zeroing operation only to the artifact-
containing time segment of the relevant frequency component of
the artifact. The proposed eye artefact removal algorithm apply
a series of ICA decompositions to the EEG signal. The algorithm
detects and extracts artifactual ICs (AICs) by selecting the best
estimation with high correlation for automatic artifact detection.
Thus, the proposed method, achieved much improvement in terms
of removing OAs and preserving the neural part of EEG signals.

MATERIALS AND METHODS

EEG Acquisition
The data acquisition experiments is performed by 8 adult subjects.
During the experiments, the subjects are imagined that they write
Turkish syllables which are ’mer’, ’ha’, ’ba’ and ’ar’, ’ka’, ’daş’
on the screen. These syllables are the pieces of sound used to
vocalize the ’hello’ and ’friend’ words in Turkish. The brain signals
are recorded during the experiments by using 8 EEG gold-plated
electrodes placed on scalp. Sampling rate is selected as 500 Hz.
Electrodes placement is shown in Figure 1. The experimental
procedure is also given in Figure 2. Before the recording, the
subjects performed the experiment in a short training session. Each
trial is recorded for 4 seconds duration which has rest period for
one second. The EEG signals are obtained by use a Bioradio device
which has been developed by Great Lakes NeuroTechnologies. The
dataset is also published on Kaggle under the name "EEG Dataset
with Ocular Artifact".

Figure 1 Electrodes placement.

Figure 2 The experimental procedure.

Independent Component Analysis (ICA)

For BCI systems, it is essential to remove artifacts from the ac-
quired signals as a result of eye movements, heartbeats, muscle
activities and similar noises (Sahonero-Alvarez and Calderon 2017;
McMenamin et al. 2011). The ICA method is used to convert a
linearly mixed set of signals into another set that is independent
of each other (Hyvärinen and Oja 2000; Stone 2002). The base of
ICA relies on statistical independence. The general ICA approach
is given by Equation 1. x(t), A and s(t) represent the signal vector
received from the electrodes, the mixing matrix and the original
source vector, respectively.

x(t) = γs(t) (1)

ICA method tries to determine unmixing matrix U that an
approximately inverse of γ and given in Equation 2.

Ux(t) = O(t) (2)

O(t) is approximate original signal which separated from
sources. The FastICA algorithm is preferred for the parallel imple-
mentation convenience in this paper (Behera 2009). The FastICA
algorithm uses kurtosis for the independent components estima-
tion (Langlois et al. 2010).

FastICA performs by the following procedure;

1. Initialize Ui (randomly)
2. U+

i = E(ϕ
′
(UT

i X))Ui − E(xϕ(UT
i ))

3. Ui =
U+

i
||U+

i ||
4. if i = 1, go to step 7. otherwise continue with step 5.
5. U+

i = Ui − ∑
j−1
j=1 UT

i UjUj

6. Ui =
U+

i
||U+

i ||
7. If converged go back to step 1 with i = i+ 1 until all components
are extracted else go back to step 2.

Wavelet Transformation (WT)

Wavelet transform is a very useful mathematical technique that
allows to analyze EEG signals, in the scale-time domain. The WT
is used to analyze in more detail the AICs. WT expresses the signal
at different scales and time relative to the main wavelet. WC and
ψ show Wavelet Coefficients and the mother wavelet respectively.
The WCs are calculated in Equation 3 (Liu et al. 2023).

WC(Sca, Pos) =
∫ +∞

−∞
x(t)ψ(Sca, Pos, t)dt (3)

112 | Erkan et al. CHAOS Theory and Applications



Much more efficient WT, Discrete Wavelet Transform (DWT)
which scaled and shifted by powers of two. The DWT calculation
is given in Equation 4.

DWT(i, m) = ∑
i

∑
m

x(m)2−i/2ψ(2−in − m) (4)

The Daubechies mother wavelet which is the fundamental
function to analyze the analog signals is used in DWT (He et al.
2007). 3 Level DWT decomposition is applied to the ICs by using
Daubechies mother Wavelet. DWT levels of the ICs are given in
Figure 3. The zeroing process is applied to only 3th level of the
approximate DWT coefficients.

Figure 3 DWT levels of the ICs.

Eye Artefact Remover
In this section, the OA removal approach is given detailed.

Threshold Determination Determination of the threshold value is
also important process in removal methods. The threshold value
is determined according to each EEG signal by the proposed algo-
rithm, although the value is usually fixed in existing studies (Kelly
et al. 2010; Çınar and Acır 2017). Previous studies have found that
blinking occurs in the 0.5 to 3.5 Hz frequency range. We used
approximately this frequency range in our study (Nguyen et al.
2013). The threshold determination process is given in Figure 4.

Figure 4 The threshold determination process.

The threshold value is obtained by the IIR and moving mean
filtering. The frequency range is chosen as 0.6-3.8 Hz.

Artifact Detection OAs are components of lower frequency and
higher amplitude than the neural part of the signal. The OAs are
detected by using peak properties such as PPV and PVD which
represent peak prominence value and peak distance value. The
PPV that the minimum vertical distance that the signal must de-
scend on either side of the peak before either climbing back to a
level higher than the peak and the PDV that the distance between
the two peaks are given in Figure 5. OAs create peaks in a certain
band range in EEG signals. Determining the threshold value in
this band range directly affects the OA detection success of the
system. The minimum PPV and the minimum PDV are chosen as
0.3 s and 1.3e − 04 µV respectively. After determining the peak of
the artifact by threshold, the bottoms of the artifact are determined
by descending from both points of the artifact peak.

Figure 5 The sample EEG trial with OAs.

The height of descending point are determine the downward
trend of the point. The bottom points of the artifact are reached,
when the downward trend finish. The bottom points of the artifact
determines the OA region which is on the wavelet coefficients of
the AICs to use in the zeroing. However, Savitzky Golay filter was
preferred for signal smoothing. The threshold value, smoothed
signal, the OA region and peak bottoms are shown in Figure 6.

The artifact detection process is also applied to the ICs which
obtained by ICA decomposition. Thus, AICs which are related
with OAs are obtained. The result of a sample ICA decomposition
is given in Figure 7. The OA regions, which given in Figure 6 and
Figure 7 are suppressed by the zeroing process. The estimated
AICs by the eye artefact removal algorithm are shown by yellow
triangle marker in Figure 7.

Artifact Removal Process The block diagram of eye artefact re-
moval is given in Figure 8. In Figure 8, first, It is applied ICA
decomposition to the trials OA-containing by the eye artefact re-
moval. After performing the ICA decomposition, the AICs are
automatically identified by eye artefact removal and WT is applied
to the AICs. The zeroing is applied only to the OA regions of AICs’
third level approximate wavelet coefficients. Thus, the neural part
of EEG signals is more successfully protected. Finally, the OAs free
EEG signal is obtained by the inverse WT and ICA composition.
The original EEG signal, training of the OA extraction process and
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Figure 6 Sample EEG signal.

Figure 7 The result of a sample ICA decomposition.

clean EEG signal are given in a, b, c of Figure 9 which is the eye
artefact removal application screenshot respectively.

The FastICA method is used for signal separation. The eye
artefact removal obtains the best possible separation result by six
iterations for one EEG trial.

Performance Evaluation
There is no general performance evaluation for artifact removal
methods. As is known, EEG includes OA from a separate source
such as eye muscles. These signals are highly inconsistent due to
volumetric differences in their source. Therefore, after applying a
perfect OA removal algorithm, the originally artifact-free portions
of the signal should remain the same after EOG removal. This
situation can best be expressed with the CC and STD parametrics
(Kelly et al. 2010). For artifact removal evaluation has been used
EEG experts or synthetic EEG data in the literature (Islam et al.
2016). Beside the non objective methods, Correlation Coefficient
(CC), standard deviation difference (STD D.) and exterior standard

Figure 8 The general block diagram of the eye artefact removal
algorithm.

Figure 9 The eye artefact removal application screenshot.
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deviation difference (E. STD) can be used to conduct a comparison.
The CC and E. STD are given in Equations 5 and 6 respectively:

CC(x, y) = ∑(So − S̄o)(Sc − S̄c)√
∑(So − S̄o)2(Sc − S̄c)2

(5)

E.STD(x, y) =

√√√√ 1
N

N

∑
i=1

(So − Sc)2 (6)

where S̄o and S̄c represents mean of the original EEGSo and
clean EEG Sc. The N represents length of the selected window in
Equation 4. The CC and STD respectively, show how well the shape
of the result signal is preserved and how much the signal power
is affected. The high CC represents minimum changing between
original and result EEG signal. Another evaluation criteria is the
mean squared error between the STD of the original and result
EEG signal. This is called as exterior STD (E. STD). (Kelly et al.
2010; Jafarifarmand et al. 2017). The CC, STD D. and E. STD are
calculated for both original and result EEG signals.

RESULTS

Data were obtained from 8 healthy subjects. The number of trials,
the number of trials containing OA, the mean number of AICs and
the OA detection success are given in Table 1. The OA detection
success is also confirmed by the expert.

■ Table 1 The results of the experiments

Number Mean OA

Subject Number of trials number of detection

of trials with OA AICs success %

S1 227 108 3.07 96.30

S2 233 122 3.07 98.36

S3 230 125 3.24 95.20

S4 231 147 3.15 95.92

S5 231 158 3.01 98.73

S6 230 183 3.06 98.91

S7 118 28 3.26 96.43

S8 116 30 2.62 100

The mean number of AICs is observed about 3 in Table 1. It
means that the zeroing process affects about 3 ICs for each EEG sig-
nal. The comparison of eye artefact removal and classical zeroing
method results is given in Table 3.

■ Table 2 OA removal by eye artefact removal-ICs zeroing

CC STD E. STD

Subject (x10−2) (x10−6) (x10−9)

S1 64.24±19.97 87.75±86.32 3.33±4.55

S2 57.43±19.71 75.67±90.07 3.99±6.78

S3 53.57±19.04 78.38±62.08 3.78±4.24

S4 55.75±19.20 67.52±56.17 2.13±2.34

S5 48.43±16.03 85.68±57.54 1.28±1.38

S6 55.18±16.76 66.78±48.86 0.93±0.84

S7 61.40±18.92 72.97±49.09 1.34±1.66

S8 79.87±19.73 53.04±66.23 0.86±2.30

■ Table 3 OA removal by eye artefact removal

CC STD E. STD

Subject (x10−2) (x10−6) (x10−9)

S1 98.82±0.35 3.87±4.27 1.32±1.75

S2 98.70±0.39 5.37±6.22 1.74±1.92

S3 98.42±0.40 4.74±4.80 2.11±1.88

S4 98.05±0.44 4.76±6.09 1.38±1.27

S5 98.98±0.34 3.70±4.18 0.83±0.60

S6 99.34±0.19 2.92±3.06 0.68±0.45

S7 97.01±0.54 5.18±5.80 1.05±1.16

S8 98.22±0.49 5.10±5.46 0.38±0.65

The success of the eye artefact removal algorithm is shown in
Table 3 and a,b of Figure 10. The comparison of three signals which
original, cleared by eye artefact removal and cleared by classic ICA
zeroing is also given in b of Figure 10. The values are given in
Table 2 and Table 3 as mean ± standard deviation.
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Figure 10 Visual comparison of eye artefact removal.

CONCLUSION

According to the experimental results, we have obtained that
the proposed eye artefact removal algorithm shows superior per-
formance over several commonly-used ICA based methods on
OA removal. As seen from Table 2 and Table 3, the proposed
method is better than classical zeroing method. As given in Table
3, 99.34±0.19 CC value is achieved with Subject 6. The eye artefact
removal algorithm never disturb any part of the signal except the
OA regions which are shown as sample in Figure 7.

The eye artefact removal obtains the best possible separation
result by six iterations for one EEG trial. The algorithm is used
the FastICA method for signal separation. The selected separation
method is also suitable for parallel programming. In the future,
it is intended to increase of the eye artefact removal algorithm
effectiveness with the parallel program version and analyze of the
results of the eye artefact removal on classification.

In this paper, the eye artefact removal algorithm is proposed
to remove OAs full automatically from OA contaminated EEG
signals without any reference signals and user intervention. The
performance of the eye artefact removal algorithm is tested on
a real EEG dataset. The results are shown that the proposed al-
gorithm could successfully eliminate OAs from real EEG signals
and protect neural information with minimum loss. And also, the
proposed algorithm is superior to the classical ICs zeroing method.
The WT ensured that the signal was better separated and focused
on the responsible frequency domain. The proposed algorithm,
similar to the studies in the literature, detects OA on the EEG sig-
nal and performs OA reset. However, unlike the studies in the
literature, applies the zeroing only to the artifact-containing time
segment of the relevant frequency component of the artifact. By
the applying of the zeroing to the OA regions of AICs’ wavelet
coefficients with a novel approach, a large amount of the EEG
signal is not affected by the zeroing and the neural part of EEG
signals was successfully protected.

Acknowledgments

The acquisition of EEG signals is approved by the Non-
Interventional Clinical Research Ethics Committee at the Univer-
sity of Karabuk in Turkey.

Availability of data and material

The dataset used in the study is available on Kaggle under the
name "EEG Dataset with Ocular Artifact".

Conflicts of interest

The authors declare that there is no conflict of interest regarding
the publication of this paper.

LITERATURE CITED

Akhtar, M. T., W. Mitsuhashi, and C. J. James, 2012 Employing
spatially constrained ica and wavelet denoising, for automatic
removal of artifacts from multichannel eeg data. Signal process-
ing 92: 401–416.

Behera, S. K., 2009 Fast ICA for Blind Source Separation and Its Imple-
mentation. Ph.D. thesis.

Bell, A. J. and T. J. Sejnowski, 1995 An information-maximization
approach to blind separation and blind deconvolution. Neural
computation 7: 1129–1159.

Çınar, S. and N. Acır, 2017 A novel system for automatic removal
of ocular artefacts in eeg by using outlier detection methods and
independent component analysis. Expert Systems with Applica-
tions 68: 36–44.

Ghandeharion, H. and A. Erfanian, 2010 A fully automatic ocular
artifact suppression from eeg data using higher order statistics:
Improved performance by wavelet analysis. Medical engineer-
ing & physics 32: 720–729.

He, Z., Y. Zi, X. Chen, and X. Wang, 2007 Transform principle of in-
ner product for fault diagnosis. Journal of vibration engineering
20: 528–533.

Hyvärinen, A. and E. Oja, 2000 Independent component analysis:
algorithms and applications. Neural networks 13: 411–430.

Islam, M. K., A. Rastegarnia, and Z. Yang, 2016 Methods for artifact
detection and removal from scalp eeg: A review. Neurophysi-
ologie Clinique/Clinical Neurophysiology 46: 287–305.

Jafarifarmand, A., M.-A. Badamchizadeh, S. Khanmohammadi,
M. A. Nazari, and B. M. Tazehkand, 2017 Real-time ocular ar-
tifacts removal of eeg data using a hybrid ica-anc approach.
Biomedical signal Processing and control 31: 199–210.

James, C. J. and C. W. Hesse, 2004 Independent component analysis
for biomedical signals. Physiological measurement 26: R15.

Judith, A. M., S. B. Priya, and R. K. Mahendran, 2022 Artifact re-
moval from eeg signals using regenerative multi-dimensional
singular value decomposition and independent component anal-
ysis. Biomedical Signal Processing and Control 74: 103452.

Jung, T.-P., S. Makeig, C. Humphries, T.-W. Lee, M. J. Mckeown,
et al., 2000 Removing electroencephalographic artifacts by blind
source separation. Psychophysiology 37: 163–178.

Kelly, J. W., D. P. Siewiorek, A. Smailagic, J. L. Collinger, D. J.
Weber, et al., 2010 Fully automated reduction of ocular artifacts in
high-dimensional neural data. IEEE Transactions on Biomedical
Engineering 58: 598–606.

Kirkove, M., C. François, and J. Verly, 2014 Comparative evaluation
of existing and new methods for correcting ocular artifacts in
electroencephalographic recordings. Signal Processing 98: 102–
120.

116 | Erkan et al. CHAOS Theory and Applications



Krishnaswamy, P., G. Bonmassar, C. Poulsen, E. T. Pierce, P. L.
Purdon, et al., 2016 Reference-free removal of eeg-fmri ballisto-
cardiogram artifacts with harmonic regression. Neuroimage 128:
398–412.

Langlois, D., S. Chartier, and D. Gosselin, 2010 An introduction
to independent component analysis: Infomax and fastica al-
gorithms. Tutorials in Quantitative Methods for Psychology 6:
31–38.

Liu, J., S.-l. Liu, M. Medhat, and A. Elsayed, 2023 Wavelet trans-
form theory: The mathematical principles of wavelet transform
in gamma spectroscopy. Radiation Physics and Chemistry 203:
110592.

Mammone, N., F. La Foresta, and F. C. Morabito, 2011 Automatic
artifact rejection from multichannel scalp eeg by wavelet ica.
IEEE Sensors Journal 12: 533–542.

McMenamin, B. W., A. J. Shackman, L. L. Greischar, and R. J. David-
son, 2011 Electromyogenic artifacts and electroencephalographic
inferences revisited. NeuroImage 54: 4–9.

Nguyen, H.-A. T., J. Musson, F. Li, W. Wang, G. Zhang, et al., 2012
Eog artifact removal using a wavelet neural network. Neuro-
computing 97: 374–389.

Nguyen, T., T. Nguyen, K. Truong, and T. Van Vo, 2013 A mean
threshold algorithm for human eye blinking detection using eeg.
In 4th international conference on biomedical engineering in Vietnam,
pp. 275–279, Springer.

Romero, S., M. Mañanas, and M. J. Barbanoj, 2009 Ocular reduction
in eeg signals based on adaptive filtering, regression and blind
source separation. Annals of biomedical engineering 37: 176–
191.

Romero, S., M. A. Mañanas, and M. J. Barbanoj, 2008 A compara-
tive study of automatic techniques for ocular artifact reduction
in spontaneous eeg signals based on clinical target variables: a
simulation case. Computers in biology and medicine 38: 348–
360.

Sahonero-Alvarez, G. and H. Calderon, 2017 A comparison of
sobi, fastica, jade and infomax algorithms. In Proceedings of the
8th International Multi-Conference on Complexity, Informatics and
Cybernetics, pp. 17–22.

Sameni, R. and C. Gouy-Pailler, 2014 An iterative subspace de-
noising algorithm for removing electroencephalogram ocular
artifacts. Journal of neuroscience methods 225: 97–105.

Stone, J. V., 2002 Independent component analysis: an introduction.
Trends in cognitive sciences 6: 59–64.

Vigario, R. and E. Oja, 2008 Bss and ica in neuroinformatics: from
current practices to open challenges. IEEE reviews in biomedical
engineering 1: 50–61.

Wolpaw, J. R., G. E. Loeb, B. Z. Allison, E. Donchin, O. F. do Nasci-
mento, et al., 2006 Bci meeting 2005-workshop on signals and
recording methods. IEEE Transactions on neural systems and
rehabilitation engineering 14: 138–141.

Yang, B.-h., L.-f. He, L. Lin, and Q. Wang, 2015 Fast removal of
ocular artifacts from electroencephalogram signals using spa-
tial constraint independent component analysis based recursive
least squares in brain-computer interface. Frontiers of Informa-
tion Technology & Electronic Engineering 16: 486–496.

How to cite this article: Erkan, E., and Erkan, Y. Ocular Artifact
Removal Method Based on the Wavelet and ICA Transform. Chaos
Theory and Applications, 5(2), 111-117, 2023.

CHAOS Theory and Applications 117



Design of a New Chaotic System with Sine Function:
Dynamic Analysis and Offset Boosting Control
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ABSTRACT A new chaotic system is presented in this research work.The proposed system has three nonlinear
terms and one sine term which improves the complexity of the system. The basic properties of new system
such as Lyapunov exponent, equilibrium point and stability are analyzed in detail. The dynamic analysis is
conducted using classic tools such as bifurcation diagram and Lyapunov exponent plot to verify the chaotic
nature in the proposed system. The changes in the states of the system is verified using bifurcation diagram
and Lyapunov exponent plot. The proposed system presents some special features such as two wing attractors,
forward and reverse periodic doubling bifurcation, and dc offset boosting control. The dc offset boosting
behavior can be used to diagnosis the multistability behaviour in the dynamical system and to reduce the
number of components in the communication system. This special feature converts the bipolar signal in to
unipolar signal which can be used in many engineering applications. The theoretical study and the simulation
results show that the proposed system has wealthy chaotic behaviour itself. Furthermore, the adaptive
sysnchronization of identical new system is achieved for the application of secure communication system.

KEYWORDS

Chaotic system
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Dynamic analy-
sis
Offset boosting
Adaptive syn-
chronization

INTRODUCTION

Since Lorenz discovered a chaotic system in 1963, the generation of
chaotic system becomes hot research topic due to their complex be-
haviour such as unpredictability, variation due to initial conditions
etc. The chaotic systems have wide range of applications in crypto
systems (Zia et al. 2022; El-Latif et al. 2022; Lin et al. 2022), secure
communication (Kumar and Singh 2022; Zhou and Tan 2019) mo-
bile robots (Nwachioma and Pérez-Cruz 2021; Cetina-Denis et al.
2022), Circuit applications (Lai et al. 2021; Wang et al. 2015), IOT
applications (Li et al. 2022a; Trujillo-Toledo et al. 2021) etc. Due to
these applications, recently many researchers introduced new 3D
chaotic systems (Veeman et al. 2022; Hu et al. 2022a; Ablay 2022;
Ramakrishnan et al. 2022).

The traditional chaotic system has low degree of complexity
and it leads to the limitation of usage of chaotic system to solve
some practical problems. The complex dynamic behaviour of
chaotic system is required for various engineering applications
such as image encryption, voice encryption, DCSK, particle motion
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and secure communication etc. Therefore, the construction of
chaotic system using trigonometry function is hot research topic
and many researchers proposed chaotic systems based on product
trigonometric function (Yu and Yu 2020; Yu and Gong 2022; Sriram
et al. 2023), hyperbolic sine (Liu et al. 2018; Mobayen et al. 2020; Hu
et al. 2022b; Joshi and Ranjan 2020), hyperbolic cosine (Signing et al.
2019; Signing and Kengne 2018), cosine function (Yan et al. 2022)
and tangent and cotangent (Guo and Liang 2021).

Recently, many researchers introduced sine function based
chaotic systems for example, Zhou et al. (2021) proposed a new
autonomous chaotic system with sine function and analysed co-
existing nested multiple attractors behaviour for different initial
conditions. Kuate and Fotsin (2020) described a new five term
chaotic system with one sine nonlinearity term which produces
one scroll and double scroll attractor and also analysed its coex-
isting attractor using dc offset boosting method. Yang et al. (2021)
presented a sine chaotic system which generates multi - scroll at-
tractors and observed both homogeneous and heterogeneous multi
stability in the proposed system. Hua et al. (2018) introduced a
one-dimensional sine chaotification model (SCM) and improved
the complexity of three existing systems. Bao et al. (2020) proposed
a 2D sine map and investigated initials – boosted coexisting attrac-
tors in the proposed system. Sahoo and Roy (2022) introduced a
new technique to generate multi wing attractors from two wing

CHAOS Theory and Applications 118

CHAOS
Theory and Applications

in Applied Sciences and Engineering

e-ISSN: 2687-4539
RESEARCH ARTICLE

Vol.5 / No.2 / 2023 / pp.118-126
https:/ /doi .org/10.51537/chaos.1223766

https://orcid.org/0000-0002-6839-0346


existing chaotic attractors. The proposed technique uses a nonlin-
ear function with sine term to generate multi wing attractors from
existing Lu and Chen system. Volos et al. (2021) proposed a dy-
namical system with sine function and observed hidden attractors
in the proposed system.

In the past few decades, the chaos synchronization has great
attention since it can be used to solve many issues in secure com-
munication system. Recently, various adaptive synchronization
scheme Rahman and Jasim (2022); Roldán-Caballero et al. (2023);
Pal et al. (2022); Li et al. (2022b) have been developed for the appli-
cation of secure communication system.

This motivates me in this study to construct another trigonome-
try function based chaotic system. The proposed system presents
offset boosting control property which means the position of the
attractor can be easily controlled by adding a controller with
any one of the state signals of the system. The offset boosting
control method can also be used to identify the multistability of
the dynamical system.

The proposed system has the following features:

• The proposed system produces two wing attractors.
• The proposed system is constructed using sine term which

presents complex behaviour.
• The system presents both forward and reverse periodic dou-

bling bifurcation.
• It presents dc offset boosting property that is the attractor of

proposed system is position controllable.

INTRODUCTION OF SINE FUNCTION BASED NEW
CHAOTIC SYSTEM

In 2017, Lai et al. (2017) introduced a new chaotic system as given
in Equation. (1).

ẋ = ax − yz

ẏ = −by + xz

ż = xyz − cz + d

(1)

where, (a, b, c, d)=(4, 9, 4, 4). The Lyapunov exponents of the sys-
tem (1) are calculated as l1 = 1.7729, l2 = 0, l3 = −7.5549. The
Lyapunov dimension is DL = 2.2334. The system (1) presents one
scroll attractors. In this paper, the new chaotic system is designed
by replacing the term y by sin(x) in second equation and the term
xyz by xy in third equation of system (1). The new system (2) pro-
duces two scroll attractors while the old system (1) produces one
scroll attractor and infinitely many shifted attractors.

Thus, the new chaotic system with sine term can be modelled
as in Equation. (2).

ẋ = ax − kyz

ẏ = bsinx + xz

ż = gxy − cz + d

(2)

Here x, y, and z are the signal variables of new system (2) and
a,b,c,d,g and k are the positive and non-zero parameters. The
system (2) has the parameter values as, a = 1.5, b = 10, c = 4,
d = 2, g = 4 and k = 2.

(a) xy plane

(b) yz plane

(c) xz plane

(d) xyz plane

Figure 1 The two wing attractors of new chaotic system with
sine term.

BASIC INFORMATION ABOUT THE NEW CHAOTIC SYSTEM
WITH SINE TERM

In this section, the basic information about the proposed chaotic
system such as, Lyapunov exponents, dissipative, equilibrium
points, stability and the sensitivity to the initial conditions are
discussed in detail.
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(a) Bifurcation diagram

(b) Lyapunoov exponent spectrum

Figure 2 (a) Bifurcation diagram (b) Lyapunov exponent spec-
trum of system (2) under parameter a with initial condition
(−1, 0, 1).

Lyapunov Exponents (LE) are calculated numerically using
Wolf algorithm and MATLAB with the initial conditions (−1, 0, 1)
and simulation time 10000 sec. The system (2) has Lyapunov expo-
nent value as, (LE1, LE2, LE3)= (0.561522, 0,−3.061664). Since, the
proposed system satisfies the conditions that LE1 > 0,LE2 = 0 and
LE3 < 0, it is found that the system (2) has the chaotic behaviour
itself.

Lyapunov dimension (DL) of system (2) can be calculated using
(3) as,

DL = 2 +
LE1 + LE2

|LE3|
= 2.183 (3)

which indicates that the system (2) has fractional dimension. The
dissipative nature of the system (2) can be verified using (4) as,

∇V =
∂V
∂x

+
∂V
∂y

+
∂V
∂z

= a − c = −2.5 (4)

The dissipative nature of the dynamic system can also be verified
by adding all their Lyapunov exponent values as (5),

LET = LE1 + LE2 + LE3 = −2.5 (5)

The negative values of LET indicates that the proposed system (2)
is dissipative.

The equilibrium (E) points are calculated by letting ẋ=ẏ=ż=0 in
the proposed system (2) and by solving those equations. Thus the

(a) a = 0.8

(b) a = 1.6

(c) a = 1.8

Figure 3 Various periodic and chaotic attractors of system (2)
under the parameter aϵ[0, 2].

system (2) can be written as in (6) and the solution of (6) gives the
equilibrium point as, E = (0, 0, 0.5).

ax − kyz = 0

bsinx + xz = 0

gxy − cz + d = 0

(6)

Now, Jacobian Matrix (J) of the system (2) can be written as in (7),

J =

∣∣∣∣∣∣∣∣∣∣∣
a −kz −ky

z + bcosx 0 x

gy gx −c

∣∣∣∣∣∣∣∣∣∣∣
(7)

By substituting the equilibrium point (E) and the corresponding
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parameter values in (7),

J(E) =

∣∣∣∣∣∣∣∣∣∣∣
1.5 −1 0

10.5 0 0

0 0 −4

∣∣∣∣∣∣∣∣∣∣∣
(8)

The eigen values (λ) can be calculated from (8) as λ1,2 = 0.75 ±
j3.152, λ3 = −4 which indicates that the equilibrium point (E)
is saddle which is always unstable. The attractors of proposed
system (2) in 2D and 3D plane are displayed in Figure 1.

(a) Bifurcation diagram

(b) Lyapunoov exponent spectrum

Figure 4 (a) Bifurcation diagram (b) Lyapunov exponent spec-
trum of system (2) under parameter c with initial condition
(−1, 0, 1).

DYNAMIC ANALYSIS OF NEW CHAOTIC SYSTEM WITH
SINE FUNCTION

In this section, the bifurcation diagram and Lyapunov spectrum
are investigated in order to prove the rich dynamics in the new
system. Both plots can be obtained by varying any one of the sys-
tem parameters and keeping remaining parameters with constant
values. The state of the chaotic system may change from periodic
to chaotic or chaotic to period depends on the system parameter
values. This change in the states can be observed using bifurcation
diagram and Lyapunov exponent spectrum plot under various

(a) c = 3

(b) c = 3.5

(c) c = 5

Figure 5 Various periodic and chaotic attractors of system (2)
under the parameter cϵ[3, 5.5].

system parameters. In Lyapunov exponent spectrum, the positive
Lyapunov exponents region indicates the chaotic attractor and
other regions indicate the periodic attractor. The LE1, LE2 and LE3
are represented using blue, red and green colours respectively.

Figure 2 shows the bifurcation diagram and corresponding Lya-
punov exponents spectrum for parameter a in the region aϵ[0, 2]
and indicates that the system has periodic attractor up to a = 1.3
and chaotic attractor for the region aϵ[1.4, 1.6]. Figure 3 repre-
sents the periodic and chaotic attractors of system (2) under the
parameter aϵ[0, 2] and (b, c, d, g, k)=(10, 4, 2, 4, 2).

Figure 4 shows the bifurcation diagram and Lyapunov exponent
spectrum for the parameter c in the region cϵ[3, 5.5]. The state of the
system is changed from chaotic to periodic beyond c = 4.5 when
the parameter value is increased. Figure 5 represents some of the
periodic and chaotic attractors of system (2) under the parameter
cϵ[3, 5.5] and (a, b, d, g, k)=(1.5, 10, 2, 4, 2).

Figure 6 shows the bifurcation diagram and Lyapunov exponent
spectrum for another parameter d in the region dϵ[0, 4] and also
shows that the system has chaotic flow beyond d = 1.75. Figure 7
represents the periodic and chaotic attractors of system (2) under
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the parameter dϵ[0, 4] and (a, b, c, g, k)=(1.5, 10, 4, 4, 2).

(a) Bifurcation diagram

(b) Lyapunoov exponent spectrum

Figure 6 (a) Bifurcation diagram (b) Lyapunov exponent spec-
trum of system (2) under parameter d with initial condition
(−1, 0, 1).

Figure 8 shows the bifurcation diagram and Lyapunov exponent
spectrum for the parameter g in the region gϵ[3, 5.5]. Figure8 indi-
cates that the system has chaotic atrractors in the region gϵ[3, 4.2]
and then periodic atrractors. It is evident from Figures 6 and 8
that the proposed system experiences both forward and reverses
periodic doubling behaviour. Figure 9 represents the periodic and
chaotic attractors of system (2) under the parameter gϵ[2, 6] and
(a, b, c, d, k)=(1.5, 10, 4, 2, 2).

OFFSET BOOSTING CONTROL

Offset boosting control Chunbiao et al. (2021); Ma et al. (2021); Wen
et al. (2021) is the important property of chaotic system which
is used to find the multistability of the system. It is observed
in the system (2) when we introduce the offset booster m in the
state signal y as given in Equation. (9). When the value of the
booster m is varied, the proposed attractor becomes bipolar to
unipolar as shown in Figure 10. Figures (10a - 10b) show the offset
boosted attractor of system (2) in xy and yz plane for m = −10
(Red), m = 0 (Blue) and m = 10 (Green) respectively. Figure 10c
represents the Lyapunov exponent plot of system (9) in the region
mϵ[−20, 20]. Figure 10c also represents that the system (9) has
constant Lyapunov exponent in the specified region and the offset

(a) d = 0.5

(b) d = 1.4

(c) d = 3.5

Figure 7 Various periodic and chaotic attractors of system (2)
under the parameters dϵ[0, 4].

booster m does not modify the chaotic behavior of the proposed
system (2).

ẋ = ax − k(y + m)z

ẏ = bsinx + xz

ż = gx(y + m)− cz + d

(9)
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(a) Bifurcation diagram

(b) Lyapunoov exponent spectrum

Figure 8 (a) Bifurcation diagram (b) Lyapunov exponent spec-
trum of system (2) under parameter g with initial condition
(−1, 0, 1).

ADAPTIVE SYNCHRONIZATION

In this section, the adaptive synchronization between the proposed
system is achieved using nonlinear feedback control methodology
and master - slave scheme. The adaptive synchronization results
are verified using Lyapunov stability theorem. The master and
slave systems are considered as in (10) and (11) respectively.

ẋ1 = ax1 − ky1z1

ẏ1 = bsinx1 + x1z1

ż1 = gx1y1 − cz1 + d

(10)

ẋ2 = ax2 − ky2z2 + ux

ẏ2 = bsinx2 + x2z2 + uy

ż2 = gx2y2 − cz2 + d + uz

(11)

Here x1, y1, z1 are the signal variables of master system, x2, y2,
z2 are the signal variables of slave system, ux, uy and uz are the
adaptive controllers to be designed. The adaptive synchronization
errors can be written as, ex=x2 − x1, ey=y2 − y1 and ez=z2 − z1. By

(a) g = 2.5

(b) g = 3.5

(c) g = 3.6

Figure 9 Various periodic and chaotic attractors of system (2)
under the parameter gϵ[2, 6].

simple calculation, the adaptive controllers and the estimates of er-
ror dynamics can be obtained as given in (12) and (13) repectively.

ux = −âex − k̂(y1z1 − y2z2)− kxex

uy = −b̂(sinx2 − sinx1)− x2z2 + x1z1 − kyey

uz = −ĝ(x2y2 − x1y1) + ĉez − kzez

(12)

ėx = eaex + ek[y1z1 − y2z2]− kxex

ėy = eb[sinx2 − sinx1]− kyey

ėz = eg[x2y2 − x1y1]− ecez − kzez

(13)

Here, ea = a − â, eb = b − b̂, ec = c − ĉ, eg = g − ĝ, ek = k − k̂ are
the parameter errors, â, b̂, ĉ, ĝ and k̂ are the estimates of unknown
parameters a, b, c, g and k respectively and kx, ky and kz are the
gains of the controllers.
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Now, consider Lyapunov stability function as given in (14),

V̇ = ex ėx + ey ėy + ez ėz + ea ėa + eb ėb + ec ėc + eg ėg + ek ėk

= ea[(ex)
2 − ˙̂a] + ek[ex(y1z1 − y2z2)− ˙̂k]+

eb[ey(sinx2 − sinx1)− ˙̂b] + eg[ez(x2y2 − x1y1)− ˙̂g]+

ec[−(ez)
2 − ˙̂c]− [kx(ex)

2 + ky(ey)
2 + kz(ez)

2] (14)

The Eqn. (14) is a negative function when ˙̂a=(ex)2, ˙̂b = ey(sinx2 −
sinx1), ˙̂c=−(ez)2, ˙̂k=ex(y1z1 − y2z2) and ˙̂g=ez(x2y2 − x1y1). The
negative value of (14) represents that the system (2) is globally
synchronized and the synchronization errors are globally bounded.

The results obtained for adaptive synchronization are verified
using MATLAB software with the assumptions that the initial
conditions for master and slave systems are (−1, 0, 1) and (1,−1, 1)
respectively and gain of the controllers are kx,y,z=0.8. Figure 11
shows the synchronization results obtained in this work. The state
signals are synchronized after the time period t = 11sec and hence
the error signals reach zero after the time period t = 11sec.

(a) xy plane

(b) yz plane

(c) Lyapunov exponent plot

Figure 10 (a-b) Offset boosted attractors of system (2) with initial
condition (−1, 0, 1), (c) Lyapunov exponent plot of system (9).

(a) Synchronized x signal

(b) Synchronized y signal

(c) Synchronized z signal

(d) Synchronized error signal

Figure 11 (a-c) Synchronized state variables of master (Blue) and
slave (Red) system, (d) Synchronized error signals ex (Blue), ey
(Red) and ez (Green).
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CONCLUSION

A new chaotic system with two wing attractor is developed. The
proposed system satifies the basic conditions required to be a
chaotic such as unstable equilibrium point and atleast one positive
Lyapunov value. The chaotic nature in the proposed system is
also verified using the bifurcation diagram, Lyapunov exponent
plot and attractor diagram. The offset boosting control behavior
of the new system is verified by means of attractor diagram and
Lyapunov exponent plot. The offset boosted system has constant
Lyapunov exponent values which means that the system maintain
its chaotic nature for the various values of booster parameter. The
adaptive controllers are designed for the adaptive synchronization
of proposed system using feedback control method. All the state
signal of proposed system can be synchronized and the synchro-
nization errors become zero after the small time period. Due to
these properties, the proposed system has complex dynamic be-
haviour, infinitely multiple attractors which can be used in many
engineering applications.
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chaotic system with multiple attractors: Dynamic analysis, cir-
cuit realization and s-box design. Entropy 20: 12.

Lai, Q., B. Bao, C. Chen, J. Kengne, and A. Akgul, 2021 Circuit
application of chaotic systems: modeling, dynamical analysis
and control.

Lai, Q., Z. Wan, and P. D. Kamdem Kuate, 2020 Modelling and
circuit realisation of a new no-equilibrium chaotic system with
hidden attractor and coexisting attractors. Electronics Letters 56:
1044–1046.

Li, L., A. El-Latif, A. Ahmed, S. Jafari, K. Rajagopal, et al., 2022a
Multimedia cryptosystem for iot applications based on a novel
chaotic system around a predefined manifold. Sensors 22: 334.

Li, S., Y. Wu, and G. Zheng, 2022b Adaptive synchronization for
hyperchaotic liu system. Frontiers in Physics p. 745.

Lin, C.-H., G.-H. Hu, J.-S. Chen, J.-J. Yan, and K.-H. Tang, 2022
Novel design of cryptosystems for video/audio streaming via
dynamic synchronized chaos-based random keys. Multimedia
Systems 28: 1793–1808.

Liu, J., J. Clinton Sprott, S. Wang, and Y. Ma, 2018 Simplest
chaotic system with a hyperbolic sine and its applications in
dcsk scheme. IET Communications 12: 809–815.

Ma, C., J. Mou, L. Xiong, S. Banerjee, T. Liu, et al., 2021 Dynamical
analysis of a new chaotic system: asymmetric multistability, off-
set boosting control and circuit realization. Nonlinear Dynamics
103: 2867–2880.

Mamia, S. B., W. Puech, and K. Bouallegue, 2022 Generation of
chaotic attractors using neurons with multidentrites. Interna-
tional Journal of Modelling, Identification and Control 40: 92–
104.

Mobayen, S., C. Volos, Ü. Çavuşoğlu, and S. S. Kaçar, 2020 A
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ABSTRACT In the last decade, there has been a notable increase in research focus on fractional calculus
and its applications. Fractional-order analysis shows promise in enriching the dynamic behavior of chaotic
systems. This paper focuses on the dynamic analysis of the Chen system with low fractional-order values and
its fractional-order electronic circuit. Notably, there is a lack of studies about chaotic electronic circuits in the
literature with a fractional-order parameter value equal to 0.8, which makes this study pioneering in this regard.
Moreover, necessary numerical analyses are presented to investigate the system’s dynamic characteristics
and complexity, such as chaotic phase planes, Lyapunov spectra, and bifurcation diagrams. As expected,
oscilloscope views of the electronic circuit realization align with the numerical analysis and PSpice simulation
results.
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INTRODUCTION

Fractional calculus offers greater dynamic richness for chaotic
systems. Even a small change in the fractional order of a chaotic
system can lead to entirely new bifurcation diagrams. Therefore, in
recent years, researchers have studied numerous implementations
of chaotic systems in both digital and analog domains, considering
different fractional-order values (Yang and Wang 2021; Wang et al.
2021; Li et al. 2020; Gokyildirim et al. 2023; Liu et al. 2021; Chen
et al. 2013; Pham et al. 2017). Gokyildirim presented an electronic
circuit for the Sprott K system using discrete circuit elements with
a fractional-order value of 0.8 (Gokyildirim 2023).

Altun presented research that involved studying numerical
computations of fractional-order Rössler and Sprott H systems, as
well as their hardware implementations using field-programmable
analog array (FPAA) technology (Altun 2021a). In reference (Silva-
Juárez et al. 2020), FPAA-based applications of fractional-order
chaotic systems were realized with active filters, particularly for
a fractional-order parameter q value equal to 0.9. Moreover, the
fractional-order Sprott H system was utilized to generate a multi-
scroll attractor exhibiting hyperchaotic behavior, and its implemen-
tation utilizing FPAA was illustrated in (Altun 2022). In another
study (Altun 2021b), a field-programmable gate array (FPGA) is
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used for the implementation of a fractional-order system. The
works of Dang focused on studying the fractional-order designs of
E (Dang 2014b) and N (Dang 2014a) systems presented by Julien
Sprott in 1994 (Sprott 1994). Digital designs of chaotic systems
present various benefits in terms of high performance and cost-
effectiveness. However, when integrating fractional-order chaotic
systems, the limited memory capacity of microcontrollers can po-
tentially impact their overall performance. This limitation arises
because the parameter of fractional-order serves as an indicator of
memory (Du et al. 2013).

Some researchers have focused their studies on the fractional-
order analysis of the Chen system and its engineering applications
(Li and Peng 2004; Lu and Chen 2006). In their research, Nuñez-
Perez et al. introduced the use of different optimization algorithms
to amplify the chaotic behavior of the fractional-order chaotic
Chen system (FOCHEN) (Nuñez-Perez et al. 2021). The outcomes
demonstrate that the optimized FOCHEN systems exhibit higher
maximum Lyapunov exponents compared to the non-optimized
system. Ozkaynak et al. designed a new since substitution box
(S-box) using the Fractional-order Chen system with a predictor-
corrector scheme (Özkaynak et al. 2017). The study indicates that
utilizing the FOCHEN system can enhance the performance of
the S-box. Zouad et al. designed a secure communication elec-
tronic circuit using the delayed FOCHEN system with the Multisim
simulation program (Zouad et al. 2019). Wang et al. present the
development of a nonstandard finite discretization scheme for the
FOCHEN system’s numerical solutions (Wang et al. 2020). All the
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studies mentioned above have successfully achieved analog or
digital implementations of chaotic systems with fractional orders.
However, a common characteristic observed in analog implemen-
tation studies is their focus on fractional-order parameters that
are greater than 0.8. The primary contribution of this paper is the
construction of the FOCHEN system’s electronic circuit for using
standard components. Notably, this study focuses on achieving
the lowest feasible value (q = 0.8) of fractional-order, which has
only had a few examples in the literature. For this purpose, the
fractional-order values of the FOCHEN system that exhibit chaotic
behavior are decided through bifurcation analyses.

The organization of this study is as follows: Section 2 presents
the dynamical equations of the FOCHEN system and provides
a concise introduction to fractional calculus. In Section 3, some
dynamics of the fractional-order system are presented, such as
phase planes, Lyapunov spectra, and bifurcation diagrams. Sec-
tion 4 presents the construction of an electronic circuit for the
fractional-order system on a breadboard, along with a comparison
between oscilloscope outputs and PSpice simulation results. The
final section contains the conclusion.

CHEN CHAOTIC SYSTEM WITH LINEAR SCALING AND
FRACTIONAL CALCULUS

In 1999, Chen and Ueta presented a chaotic attractor that is a
special case of the Lorenz system (Chen and Ueta 1999). The
system has seven terms and three constant parameters, as shown
in the following equation:

ẋ = a(y − x)
ẏ = (c − a)x − xz + cy
ż = xy − bz

(1)

To enable the implementation of an electronic circuit, linear
scaling is required in the original Chen system, as the output values
of state variables x, y, and z exceed the necessary limitations. If
the system is linearly scaled to maintain the output voltages of the
electronic circuit between -5V and +5V, the differential equations
of the system (1) are rewritten as follows:

ẋ = a(y − x)
ẏ = (c − a)x − 10xz + cy
ż = 10xy − bz

(2)

In this form, the variables are rescaled as x = 10vx/V, y =
10vy/V, and z = 10vz/V. The system (2) produces chaotic sig-
nals when a, b and c are 35, 3 and, 28, respectively, with initial
conditions x(0) = 0, y(0) = 1, and z(0) = 0.

In fractional calculus, the concept of non-integer differentia-
tion and integration is introduced, allowing us to analyse and
model complex phenomena with non-integer dynamics. The
fractional-order derivatives and integrals are represented using
The fractional-order elementary operator aDq

t , where t and a are
the limits of the operation, and q is a real number representing
the fractional-order. Depending on the value of q, these operators
can act as fractional-order differentiators (fractional derivatives)
or fractional-order integrators (fractional integrals). Fractional
calculus provides a powerful mathematical tool to describe com-
plex processes that cannot be fully captured by classical integer-
order calculus. The continuous-time fractional-order operator is
expressed as follows:

aDq
t =


dq

dtq ; Re(q) > 0,

1; Re(q) = 0,∫ t
a (dτ)−q; Re(q) < 0.

(3)

Equivalent definitions for the fractional operator aDq
t are vari-

ous mathematical representations used to describe the behavior of
fractional calculus. Some of these definitions include Grünwald-
Letnikov, Riemann-Liouville, Caputo, Grünwald-Letnikov Matrix,
Marchaud, and Weyl definitions. Among these, the initial condi-
tions of the Caputo fractional definition resemble those of differen-
tial equations with integer order. As a result, Caputo’s definition
is selected for the fractional derivative calculations of bifurcation
diagrams and phase portraits in this study. The Caputo method is
defined as follows:

aDq
t f (t) =

{
1

Γ(n − q)

(
d
dt

)n ∫ t

a
(t − τ)n−q−1 f n(τ)dτ (4)

where n − 1 < q < 1. The Laplace transform of the Caputo
definition is represented as follows:

H(s) = L
{

dq f (t)
dtq

}
= sqL{ f (t)} (5)

Under the assumption of zero initial conditions, the transfer
function H(s) is established as a linear fractional-order integrator
with H(s) = 1/sq. Moreover, eq. (6) provides fractional deriva-
tives’ generalized Laplace transform with order q > 0.

L
{

0Dq
t f (t)

}
= sqF(s) (6)

Thus, the differential equations of the FOCHEN system are
written as follows:

Dq1
t x = a(y − x)

Dq2
t y = (c − a)x − 10xz + cy

Dq3

t z = 10xy − bz

(7)

THE FOCHEN SYSTEM’S DYNAMICAL ANALYSES

In this Section, the required dynamical analyses of the FOCHEN
system, including Lyapunov spectra, bifurcation diagrams, and
phase planes, are thoroughly investigated. In this manner, the
chaotic behavior and dynamic properties of the system (7) can
be observed. However, solving a nonlinear fractional-order sys-
tem analytically presents challenges. As a consequence, various
methods have emerged to address these systems, including the
utilization of MATLAB-based tools such as FOMCON (Tepljakov
and Tepljakov 2017), fde12 (Garrappa 2018), and ninteger (Valerio
and Da Costa 2004). In this section, the fde12 toolbox is used to
perform all dynamical analyses and simulations, excluding the
Lyapunov spectra analysis.

Bifurcation diagrams are used to understand and analyze the
behaviors of complex systems. Especially in chaotic systems, bi-
furcation diagrams are essential tools to explore and analyze the
system’s different behaviors. On the other hand, Lyapunov expo-
nents are valuable analysis tools used to understand and predict
the nature of chaotic systems and the transitions between order
and disorder. Figures 1, 2, and 3 illustrate the Lyapunov Exponents
and corresponding bifurcation diagrams for both the fractional-
order and integer-order versions of Chen system for b = 3 and
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c = 28. In the figures, initial conditions are x(0) = 0, y(0) = 1,
and z(0) = 0. Additionally, Figure 4 displays the phase planes
of the Chen system (2) and the FOCHEN system (7) based on
the bifurcation diagrams. In contrast to other numerical analyses
in this study, the Lyapunov exponents are calculated using the
Grünwald-Letnikow method (Li et al. 2023; Hosny et al. 2022).

    

Figure 1 Integer-order Chen system’s Bifurcation diagram and Lya-
punov spectra.

    

Figure 2 Bifurcation diagram and Lyapunov spectra of FOCHEN
system for q = 0.9.

    

Figure 3 Bifurcation diagram and Lyapunov spectra of FOCHEN
system for q = 0.8.

ELECTRONIC CIRCUIT IMPLEMENTATION OF THE
FOCHEN SYSTEM

The implementation of fractional-order chaotic systems in elec-
tronic circuits is important for analyzing system behaviors and
controlling complex dynamics. The electronic circuits of fractional-
order chaotic systems refer to the electronic implementations of
systems with complex dynamics represented by differential equa-
tions with fractional degrees (q). These systems offer more versatil-
ity and diversity compared to traditional integer-order differential
equations. The realization of electronic circuits for fractional-order
chaotic systems provides significant advantages in various engi-
neering applications. These systems exhibit nonlinear and random
behaviors, making them suitable for randomization and security-
based applications. Additionally, fractional-order chaotic systems

 
    (a) 

 
    (b) 

Figure 4 Phase planes of integer-order and fractional-order chaotic
systems for t(s) ∈ [0.1, 20]: (a) q = 1, a=35, b = 3, c = 28, and t(s)
∈ [0.6, 20], (b) q = 0.8, a = 30, b = 3, c = 28, and t(s) ∈ [0.1, 20].

can be used as functions that randomly mix signals and increase
entropy.

In electronic circuits, the basic elements of fractional-order
chaotic systems are fractional-order circuit components. These
components have different mathematical properties compared to
traditional resistors, capacitors, and inductors and are expressed by
the fractional degree (q). Fractional-order circuit elements are used
for the electronic implementations of fractional-order differential
equations.

An electronic circuit of the FOCHEN for (q)=0.8 is implemented
with standard components, in this section. According to circuit the-
ory (Podlubny 1999), an electronic circuit that exhibits dynamics of
non-integer order is referred to as a "fractance". To realize a chaotic
system’s electronic circuit implementation, resistor-capacitor (RC)
circuits obtained from the approximate transfer function are uti-
lized. Researchers commonly use three approaches, namely chain
fractance, domino ladder, and binary tree in their studies. In this
research, the chain fractance approach is employed for fractional-
order circuits. In this approach, there are N serial RC pairs, where
N denotes the number of layers. The transfer function of the chain
fractance in the Laplace domain is expressed as following equation,
based on the two-port network theory (Yao et al. 2020; Ahmad and
Sprott 2003):

HRC(s) =
1

C1s + 1
R1

+
1

C2s + 1
R2

+ . . . +
1

CNs + 1
RN

(8)

By utilizing eq. (5), the transfer function of the chain fractance
for q = 0.8 is written as follows:

1
s0.8 ≈ 5.3088(s + 0.1333)(s + 2.371)(s + 42.17)(s + 750)

(s + 0.01333)(s + 0.2371)(s + 4.217)(s + 75)(s + 1333)
(9)

Considering eq. (9), Table 1 depicts the values of passive circuit
elements for the fractional-order module with q = 0.8
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■ Table 1 The values of passive circuit elements required for
the fractional-order module of the FOCHEN system

Component Value

Ra 17.9 kΩ

Rb 17.075 kΩ

Rc 170.6 kΩ

Rd 1.756 MΩ

Re 37.865 MΩ

Ca 418.83 pF

Cb 780.955 pF

Cc 1.39 nF

Cd 2.4 nF

Ce 1.98 nF

Taking into account Table 1, the fractional-order module’s elec-
tronic circuit is constructed as shown in Figure 5.
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Figure 5 The electronic circuit of integrator for q = 0.8.

The circuit schematic of the integer-order Chen system for a =
35 is illustrated in Figure 6, with initial conditions x(0) = 0, y(0) =
1, and z(0) = 0.

Referring to Figure 6, the dimensionless equations of the system
(2) can be expressed as follows:

RC1
dvx

dt
=

Rvy

10R2
− Rvx

R1
,

RC2
dvy

dt
=

Rvx

R4
− Rvxvz

10R5
+

Rvy

R3
,

RC3
dvz

dt
=

Rvxvy

10R6
− Rvz

R7
,

(10)

where the component values are C1,2,3 = 2.5nF, R1,2 = 11.4kΩ,
R3 = 14.286kΩ, R4 = 51.14kΩ, R5,6 = 4kΩ, R7 = 133kΩ, and R8,9
= 10kΩ. RC is the time scale factor and is set to 1ms. DC voltage
sources are also VP = −VN = 15V. The plot in Figure 7 displays
the voltage values on the X, Y, and Z terminals in relation to one
another.

As shown in Figure 8, the electronic circuit realization of the
integer-order Chen system is constructed on a breadboard. When
considered together with Figure 7, the oscilloscope outputs of the
PSpice simulation and electronic circuit realization of the integer-
order Chen system are similar.
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Figure 6 The circuit of the original Chen system (2) with linear scal-
ing in PSpice program.
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Figure 7 Phase portraits of integer-order Chen chaotic system in
PSpice simulation.

 

                      (a)                                          (b)                                          (c) 

Figure 8 Integer-order Chen chaotic system’s oscilloscope
views: (a)vx(0.5V/div)-vy(1V/div), (b) vx(0.5V/div)-vz(0.5V/div),(c)
vy(0.5V/div)-vz(1V/div).
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The primary challenge in implementing an electronic circuit lies
in modeling a fractional-order system using standard components.
Considering Figure 3, it is observed that the suitable parameter
values for q = 0.8 are a = 30, b = 3, and c = 28. The electronic
circuit implementation of the FOCHEN system employing the
chain fractances for q = 0.8 is shown in Figure 9.

The initial conditions are chosen as x(0) = 0, y(0) = 1, and
z(0) = 0. Note that the fractional integral operator is transformed
into a chain fractance with N=5. The circuits depicted in Figures
6 and 9 consist of passive and active circuit elements, including
TL081 (operational amplifiers) and AD633 (multipliers), which are
readily available in the market. Component values of the fractional-
order electronic circuit are as follows: C1,6,11 = 418.83pF, C2,7,12 =
780, 955pF, C3,8,13 = 1.39nF, C4,9,14 = 2.4nF, C5,10,15 = 1.98nF,
R1 = 13.3kΩ, R2 = 13.3kΩ, R3 = 14.286kΩ R5,6 = 4kΩ, R7 =
133kΩ, R8,9 = 10kΩ, R10,15,20 = 17.9kΩ, R11,16,21 = 17.075kΩ,
R12,17,22 = 170.6kΩ, R13,18,23 = 1.756MΩ, R14,19,24 = 37.865MΩ.
The DC voltage sources are VP = −VN = 15V. The oscilloscope
views of the voltages on the terminals (X, Y, and Z) of the FOCHEN
system’s electronic circuit, plotted against each other, are shown in
Figure 10.
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Figure 9 Circuit schematic of FOCHEN system for q = 0.8.
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Figure 10 Phase planes of FOCHEN system in PSpice simulation
for q = 0.8.

As presented in Figure 11, the electronic circuit realization of
the FOCHEN system is constructed on a breadboard. When con-
sidered together with Figure 10, the oscilloscope views of PSpice

simulation and electronic circuit realization of the fractional-order
system are very similar.

 

                     (a)                                           (b)                                          (c) 

Figure 11 The FOCHEN system’s oscilloscope views: (a)
vx(0.5V/div)-vy(0.5V/div), (b) vx(0.5V/div)-vz(0.5V/div),(c)
vy(0.5V/div)-vz(0.5V/div).

Finally, it is observed that the results of PSpice simulations
and electronic circuit implementations are consistent with the nu-
merical analysis results conducted in the previous section. This
confirms the applicability and consistency of the fractional-order
modules. The electronic circuit of the FOCHEN system, along
with the fractional-order modules, constructed on a breadboard, is
shown in Figure 12.

 

Figure 12 The electronic circuit of the FOCHEN system with the
fractional-order modules.

CONCLUSION

Fractional-order analysis offers a means to enhance the diversity
of dynamics in chaotic systems. This study presents an electronic
circuit realization for the Chen system, incorporating a low-value
fractional order and utilizing standard electronic components. The
dynamic characteristics of the FOCHEN system are examined by
conducting various analyses, such as phase portraits, Lyapunov
spectra, and calculations of bifurcation diagrams. Additionally, the
system’s chaotic behavior for different fractional-order values is
revealed through bifurcation diagrams and Lyapunov exponents
analyses. Based on the numerical analyses and PSpice simulations,
the minimum applicable fractional-order value (q) for the elec-
tronic circuit implementation of the FOCHEN system is found to
be 0.8. The electronic circuit of the fractional-order system is con-
structed on a breadboard using discrete circuit elements, which are
easily available in the market. The electronic circuit realization’s
voltage outputs, as observed in oscilloscope images, align with

CHAOS Theory and Applications 131



numerical analyses and PSpice simulation program results. As a
result, through fractional-order calculus, the dynamic diversity of
the Chen system is enhanced. Thus, the FOCHEN system is a po-
tentially chaotic system for use in data security applications where
applicability and complexity are crucial. As expected, oscilloscope
views of the electronic circuit realization align with the numerical
analysis and PSpice simulation results.
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