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Muğla Sıtkı Koçman University,
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TÜRKİYE
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Abstract

Multisets have many applications in a variety of fields today, including computer science,
medicine, banking, engineering, information storage, and information analysis. In this
paper, we present a new generalized multi-G-metric space, a multi-G-metric space. We
investigate some of its fundamental details, connections, and topological characteristics.

1. Introduction

Several branches of modern mathematics have developed that goes against a basic tenet of conventional mathematical theory. The underlying
premise of traditional mathematics is that all mathematical objects are unique. As a result, there are two options between two numbers: they
could be equal or dissimilar. In reality and in science, this is not the case. In the physical world, there seems to be a lot of repetition. For
instance, between numerous DNA strands, many water molecules, or many hydrogen atoms. Even though they are independent objects,
coins, electrons, and grains of sand with the same value and year appear to be the same.
Assuming that mathematical objects are not repeated, the classical set theory states that a particular element may only be written once in a
set. That is, there is only an equal or different relationship between any two mathematical objects.
In reality and in science, this is not the case. In the physical world, it has been noted that there is too much repetition. For instance, between
hydrogen atoms, water molecules, DNA strands, and so forth. Any two physical items can have one of three connections as a result: they can
be distinct, distinct but the same, or overlap and be the same. They are unambiguously the same or equal if they cannot be distinguished, and
they are the same and identical if they physically overlap. An organized collection of various items is referred to as a set in classical set
theory. A multi-set is one that permits any object to be repeated within it (mset or bag for short). A multi-set is so distinct from a set. To
describe this structure, it is appropriate to make the distinction between the sets a, b, and c and the collections a, a, a, b, c, and c. When
viewed as a set, the second is identical to the first. However, with the latter, some components are purposefully used more than once. A mset
is a group of components created with a specific multiplicity. {k1/x2,k2/x2, . . . ,kn/xn} can be written so that the multiple set xi is found ki
times. Here ki is an integer [1–7].
The metric idea, which is basic to mathematics and has a variety of diverse applications, plays a crucial role in topology and analysis. This
idea has been examined in relation to a number of generalizations, including G-metric spaces [8], fuzzy metric spaces [9] and cone metric
spaces [10].
Some of the key ideas and findings of cluster analysis can be extended to the arrangement of numerous clusters. Recently, research on many
sets in mathematics has begun. Das and Roy [11] described one of these research in 2021. They began by defining the idea of multi-real
numbers and studying their fundamental characteristics in this study. The idea of numerous metrics on different sets is introduced and its
fundamental characteristics are investigated in this study at the same time. The topological characteristics of other metric spaces were then
researched using the findings of this study [12]. Through this study, we also hope to contribute to this expansion. As a generalization of a
multi-metric space, multi-G-metric spaces are used to explore the fundamental characteristics of multiple G-metrics. The multi-G-metric
topology produced with the aid of multiple G-metrics will also be specified, and its fundamental characteristics have been investigated. After
that, the ideas of multi-G-convergence and multi-G-Cauchy are introduced, and a few of their characteristics are examined.
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2. Preliminaries

Definition 2.1 ( [13] ). The function CountM, often known as CM , is defined as CM : X → N, where N stands for the set of non-negative
integers. A mset M selected from the set X is represented by this function. The number of times the element x appears in the M mset is
represented here by CM(x). We write the mset M as M = {m1/x1,m2/x2, ...mn/xn}, where mi is the number of times the element xi appears
in the mset M denoted by xi ∈m

i M, i = 1,2,3, ...n. But, elements that are omitted from the M mset have zero counts.

Definition 2.2 ( [13]). Let M and N be two msets drawn from a set X. Then, the followings are defined:

(1) M = N if CM(x) =CN(x) for all x ∈ X,
(2) M ⊂ N if CM(x)≤CN(x) for all x ∈ X,
(3) P = M∪N if CP(x) = Max{CM(x),CN(x)} for all x ∈ X,
(4) P = M∩N if CP(x) = Min{CM(x),CN(x)} for all x ∈ X.

Definition 2.3 ( [13]). The power set of an mset is denoted by P∗(M) and it is an ordinary set whose members are sub msets of M.
An mset M is said to be an empty mset (multi-empty set) if for all x ∈ X, CM(x) = 0.

Definition 2.4 ( [13]). Let the mset space [X ]ω be the set of all msets whose elements are in X such that no element in the mset occurs more
than ω times. Let M ∈ [X ]ω and τ ⊆ P∗(M). Then τ is called a mset topology (M-topology) of M if τ satisfies the following properties,

(1) The mset M and multi empty set are in τ ,
(2) The mset union of the elements of any subcollection of τ is in τ ,
(3) The mset intersection of the element of any finite subcollection of τ is in τ , Mathematically an mset topological space is an ordered

pair (M,τ) consisting of an mset M ∈ [X ]ω and a mset topology τ ⊆ P∗(M) on M.

Definition 2.5 ( [11]). Let M be a mset over the universal set X. The mapping Pl
x : X → N such that Pl

x(x) = l where l ≤CM(x) defines a
multi-point of M, where x and l are the base and multiplicity of the multi-point Pl

x , respectively. Mpt denotes the collection of all multi-points
in a mset M.

Definition 2.6 ( [11]). The mset produced by a set N of multi-points is represented by the symbol MS(N), and its definition is given by the
formula CMS(N)(x) = sup{l : Pl

x ∈ N}. The collection of its multi-points can be used to create a mset. If Mpt stands for the collection of all
multi points of M, then CM(x) = sup{l : Pl

x ∈Mpt} and M = MS(Mpt) are obvious conclusions.

Definition 2.7 ( [11]). Let M be a mset over the universal set X.

(1) The elementary union between two collections of multi points C and D is denoted by C t D and is defined as
CtD = {Pk

x : Pl
x ∈C,Pm

x ∈ D and k = max{l,m}}.
(2) The elementary intersection between two collections of multi points C and D is denoted by C u D and is defined as

CuD = {Pk
x : Pl

x ∈C,Pm
x ∈ D and k = min{l,m}}.

(3) For two collection of multi points C and D, C is said to be an elementary subset of D, denoted by C @ D, iff Pl
x ∈C there exists m≥ l

such that Pm
x ∈ D.

Theorem 2.8 ( [11]). Let M be a mset over the universal set X.

(1) For two collections of multi-points C and D, C ∪ D ⊃ C t D.
(2) For a collection N of multi-points, [MS(N)]pt ⊃ N.
(3) For two msets A and B, A⊂ B iff Apt ⊂ Bpt .
(4) For two collections of multi-points C and D, MS(CuD) = MS(C)∩MS(D).

Definition 2.9 ( [11]). mR+ denotes the mset over R+ (set of non-negative real numbers) having a multiplicity of each element equal to
ω ∈ N. The members of (mR+)pt will be called non-negative multi-real points.

Definition 2.10 ( [11]). Let Pi
a and P j

b be two multi real points of (mR+)pt .

(1) Pi
a > P j

b if a > b or Pi
a > P j

b if i > j when a = b.
(2) Pi

a +P j
b = Pk

a+b where k = Max{i, j}.
(3)

Pi
a×P j

b =

{
P1

0 , i f either Pi
a or P j

b equal to P1
0 ,

Pk
ab, otherwise where k = Max{i, j}.

Definition 2.11 ( [12]). The subtraction of two multi real points in mR+ is defined as follows:

Pi
a−P j

b =

{
P1

0 , i f Pi
a = P j

b ,

Pk
a−b, i f Pi

a > P j
b where k = min{i, j}.

Definition 2.12. The division of two multi real points in mR+ is defined as follows:

Pi
a/P j

b =

{
P1

1 , i f Pi
a = P j

b ,

Pk
a/b, i f Pi

a 6= P j
b where k = Max{i, j}.
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Definition 2.13. We define maximum of two multi-real points in mR+ as follows:

max{Pi
a,P

j
b}=

{
Pi

a, i f Pi
a > P j

b ,

P j
b , otherwise.

Definition 2.14 ( [11]). Let’s say that d : Mpt ×Mpt → (mR+)pt (M being a multi set over a universal set X with multiplicity of any member
at most equal to ω) be a mapping that meets the following requirements:

(md1) md(Pl
x ,P

m
y )> P1

0 for all Pl
x ,P

m
y ∈Mpt and Pl

x 6= Pm
y ,

(md2) md(Pl
x ,P

m
y ) = P1

0 iff Pl
x = Pm

y ,
(md3) md(Pl

x ,P
m
y )= md(Pm

y ,Pl
x),

(md4) md(Pl
x ,P

m
y )+md(Pm

y ,Pn
z )≥ md(Pl

x ,P
n
z ), for all Pl

x ,P
m
y ,Pn

z ∈Mpt ,
(md5) For l 6= m, md(Pl

x ,P
m
y ) = Pk

0 iff x = y and k = Max{l,m}.

Then, (M,md) is referred to a multi-metric (or an M-metric) space and md is said to be a multi-metric on M.

Definition 2.15. Let (M,md) be a multi-metric space. Let {Pln
xn} be a sequence of multi-points in M. The sequence {Pln

xn}n is said to
convergence to Pl

x ∈Mpt , if for every ε > 0, there exists n0 ∈ N such that md(Pln
xn ,P

l
x) < P1

ε , ∀n≥ n0 i.e. n≥ n0 then the sequence {Pln
xn} is

multi convergent (md-convergent) to Pl
x and written as {Pln

xn} → Pl
x .

Definition 2.16. Let (M,md) be a multi-metric space. Let {Pln
xn}n be a sequence of multi-points in M. The sequence {Pln

xn}n is said to be
multi-Cauchy (md-Cauchy) if every P1

ε > P1
0 , there exists a n0 ∈ N such that md(Pln

xn ,P
lm
xm) < P1

ε for all m,n≥ n0.

Definition 2.17. A multi-metric space (M,md) is said to be md-complete if every md-Cauchy sequence in (M,md) is md-convergent in
(M,md).

Definition 2.18 ( [8]). Let U be a nonempty set, and let G : U×U×U → R+ be a function satisfying the following conditions:

(G1) G(x,y,z) = 0 if x = y = z,
(G2) 0 < G(x,x,y) for all x,y ∈ X with x 6= y,
(G3) G(x,x,y)≤ G(x,y,z) for all x,y,z ∈ X with z 6= y,
(G4) G(x,y,z) = G(x,z,y) = G(y,z,x) = . . .,
(G5) G(x,y,z)≤ G(x,a,a)+G(a,y,z), for all x,y,z,a ∈U,

then the function G is called a generalized metric, or, more specifically, a G-metric on U, and the pair (U,G) is a G-metric space.

3. Multi G-Metric Spaces

The concept of multi-G-metric space is defined and its fundamental characteristics are determined in this section. Also, we investigate any
relationships that may exist between multi-metric and multi-G-metric.

Definition 3.1. Assume that X is a non-empty set and that M is a multi-set over X with multiplicity of any element approximately equal to ω .
A mapping mG : Mpt ×Mpt ×Mpt → (mR+)pt is said to be a multi generalized metric or multi G-metric on M if mG satisfies the following
conditions:

(mG1) mG(Pl
x ,P

l
x ,P

m
y )> P1

0 for all Pl
x ,P

m
y ∈Mpt with Pl

x 6= Pm
y ,

(mG2) mG(Pl
x ,P

m
y ,Pn

z ) = P1
0 if Pl

x = Pm
y = Pn

z

(mG3) mG(Pl
x ,P

m
y ,Pn

z ) = mG(Pl
x ,P

n
z ,P

m
y )= mG(Pm

y ,Pn
z ,P

l
x) = . . .,

(mG4) mG(Pl
x ,P

l
x ,P

m
y ) ≤ mG(Pl

x ,P
m
y ,Pn

z ) for all Pl
x ,P

m
y ,Pn

z ∈Mpt with Pm
y 6= Pn

z ,
(mG5) mG(Pl

x ,P
m
y ,Pn

z ) ≤ mG(Pl
x ,P

k
a ,P

k
a )+ mG(Pk

a ,P
m
y ,Pn

z ) for all Pl
x ,P

m
y ,Pn

z ,P
k
a ∈Mpt ,

(mG6) For at least two of the l, m, n variables are different, mG(Pl
x ,P

m
y ,Pn

z ) = Pr
0 iff x = y = z and r = max{l,m,n}.

Then (M,mG) is said to be a multi G-metric (m-g-metric) space.

Example 3.2. Assume that X is a non-empty set and that M is a multi-set over X with multiplicity of any element approximately equal to ω .
A mapping mG : Mpt ×Mpt ×Mpt → (mR+)pt are defined by

mG(Pl
x ,P

m
y ,Pn

z ) =


P1

0 , i f all o f the variables Pl
x ,P

m
y ,Pn

z are equal,
Pk

2 , i f all o f the variables x,y,z are di f f erent,k = max{l,m,n},
Pk

1 , i f two o f the variables Pl
x ,P

m
y ,Pn

z are equal,and theremaining one is distinct and k = max{l,m,n},
Pk

0 , i f x= y = z and f or at least two o f the l,m,n variables are di f f erent, k = max{l,m,n}.

Then mG satisfies all the multi-G-metric axioms.

Example 3.3. Assume that (M,md) is multi-metric space. A mapping mG : Mpt × Mpt × Mpt → (mR+)pt is defined by
mG(Pl

x ,P
m
y ,Pn

z )= max{md(Pl
x ,P

m
y ), md(Pm

y ,Pz
n), md(Pl

x ,P
n
z )}. Then mG satisfies all the multi-G-metric axioms.

Definition 3.4. A multi G-metric space (M,mG) is said to be symmetric if mG(Pl
x ,P

m
y ,Pm

y ) = mG(Pl
x ,P

l
x ,P

m
y ) for any Pl

x ,P
m
y ∈Mpt .

Proposition 3.5. Assume that X is a non-empty set and that M is a mset over X with a multiplicity of any element approximately equal to ω .
Let mG be a multi-G-metric. Then, the following hold for all Pl

x ,P
m
y ,Pn

z ,P
r
a ∈Mpt .
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(1) If mG(Pl
x ,P

m
y ,Pn

z ) = P1
0 then Pl

x = Pm
y = Pn

z .
(2) mG(Pl

x ,P
m
y ,Pn

z )≤ mG(Pl
x ,P

l
x ,P

m
y )+mG(Pl

x ,P
l
x ,P

n
z ).

(3) mG(Pl
x ,P

m
y ,Pm

y )≤ P1
2 mG(Pm

y ,Pl
x ,P

l
x).

(4) mG(Pl
x ,P

m
y ,Pn

z )≤ mG(Pl
x ,P

r
a ,P

n
z )+mG(Pr

a ,P
m
y ,Pn

z ).
(5) mG(Pl

x ,P
m
y ,Pn

z )≤ P1
2/3(mG(Pl

x ,P
m
y ,Pr

a)+mG(Pl
x ,P

r
a ,P

n
z )+mG(Pr

a ,P
m
y ,Pn

z )).

(6) mG(Pl
x ,P

m
y ,Pn

z )≤ mG(Pl
x ,P

r
a ,P

r
a)+mG(Pm

y ,Pr
a ,P

r
a)+mG(Pn

z ,P
r
a ,P

r
a).

Proof. (1) By the definition of multi-G-metric, it is clear.
(2) Case 1: Let Pl

x 6= Pm
y 6= Pn

z . Then we have

mG(Pl
x ,P

l
x ,P

m
y )+mG(Pl

x ,P
l
x ,P

n
z )≥ mG(Pm

y ,Pl
x ,P

n
z ) = mG(Pl

x ,P
m
y ,Pn

z )

from (mG3) and (mG5).
Case 2: Let Pl

x = Pm
y 6= Pn

z . Then we have

mG(Pl
x ,P

l
x ,P

m
y )+mG(Pl

x ,P
l
x ,P

n
z ) = P1

0 +mG(Pl
x ,P

l
x ,P

n
z ) = P1

0 +mG(Pl
x ,P

m
y ,Pn

z )≥ mG(Pl
x ,P

m
y ,Pn

z )

from (mG2), (mG4).
Case 3: Let x = y = z. The proof is clear.
Other cases’ proofs are produced in a similar way.

(3) We know that mG(Pl
x ,P

m
y ,Pm

y )≤ mG(Pl
x ,P

l
x ,P

m
y )+mG(Pl

x ,P
l
x ,P

m
y ) = P1

2 mG(Pl
x ,P

l
x ,P

m
y ) by (2). Then we obtain

mG(Pl
x ,P

m
y ,Pm

y )≤ P1
2 mG(Pm

y ,Pl
x ,P

l
x)

from (mG3).
(4) Case 1: Let Pl

x 6= Pn
z . Thus we have

mG(Pl
x ,P

m
y ,Pn

z )≤ mG(Pr
a ,P

r
a ,P

l
x)+mG(Pr

a ,P
m
y ,Pn

z )≤ mG(Pr
a ,P

l
x ,P

n
z )+mG(Pr

a ,P
m
y ,Pn

z )

from (mG5),(mG3),(mG4) respectively. So, we get

mG(Pl
x ,P

m
y ,Pn

z )≤ mG(Pl
x ,P

r
a ,P

n
z )+mG(Pr

a ,P
m
y ,Pn

z )

by (mG3).
Case 2: Let Pl

x = Pn
z and Pm

y 6= Pr
a . Then, we have

mG(Pl
x ,P

m
y ,Pn

z ) = mG(Pl
x ,P

m
y ,Pl

x) = mG(Pl
x ,P

l
x ,P

m
y )≤ mG(Pl

x ,P
m
y ,Pr

a)

from (mG3), (mG4). Therefore we obtain

mG(Pl
x ,P

m
y ,Pn

z )≤ mG(Pr
a ,P

m
y ,Pl

x)+mG(Pl
x ,P

r
a ,P

l
x) = mG(Pr

a ,P
m
y ,Pn

z )+mG(Pl
x ,P

r
a ,P

n
z )

by (mG3).
Case 3: Let x = y = z and Pm

y = Pr
a . Then it is obvious.

Case4: Let x = y = z = a,then we have

mG(Pl
x ,P

m
y ,Pn

z )≤ mG(Pl
x ,P

r
a ,P

r
a)+mG(Pr

a ,P
m
y ,Pn

z ) = mG(Pl
x ,P

r
a ,P

n
z )+mG(Pr

a ,P
m
y ,Pn

z ).

(5) By using (4) and (mG3), we get

mG(Pl
x ,P

m
y ,Pn

z )≤ mG(Pl
x ,P

r
a ,P

n
z +mG(Pr

a ,P
m
y ,Pn

z )

and

mG(Pl
x ,P

m
y ,Pn

z )≤ mG(Pl
x ,P

r
a ,P

m
y )+mG(Pn

z ,P
r
a ,P

l
x)

and

mG(Pl
x ,P

m
y ,Pn

z )≤ mG(Pm
y ,Pr

a ,P
l
x)+mG(Pn

z ,P
r
a ,P

l
x).

Thus we get

P1
3 mG(Pl

x ,P
m
y ,Pn

z )≤ P1
2 (mG(pl

x,P
r
a ,P

n
z )+mG(Pr

a ,P
m
y ,Pn

z )+mG(Pr
a ,P

l
x ,P

m
y ))

from (mG3). So, we obtain mG(Pl
x ,P

m
y ,Pn

z ) ≤ P1
2/3(mG(Pl

x ,P
r
a ,P

n
z )+ mG(Pr

a ,P
m
y ,Pn

z )+ mG(Pr
a ,P

l
x ,P

n
z )).
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(6) From (mG5), (2) and (mG3), we have

mG(Pl
x ,P

m
y ,Pn

z )≤ mG(Pl
x ,P

r
a ,P

r
a)+mG(Pr

a ,P
m
y ,Pn

z )≤ mG(Pl
x ,P

r
a ,P

r
a)+mG(Pm

y ,Pr
a ,P

r
a)+mG(Pn

z ,P
r
a ,P

r
a)

and

mG(Pl
x ,P

m
y ,Pn

z )≤ mG(Pm
y ,Pr

a ,P
r
a)+mG(Pr

a ,P
l
x ,P

n
z )≤ mG(Pm

y ,Pr
a ,P

r
a)+mG(Pl

x ,P
r
a ,P

r
a)+mG(Pn

z ,P
r
a ,P

r
a)

and

mG(Pl
x ,P

m
y ,Pn

z )≤ mG(Pn
z ,P

r
a ,P

r
a)+mG(Pr

a ,P
l
x ,P

m
y )≤ mG(Pn

z ,P
r
a ,P

r
a)+mG(Pm

y ,Pr
a ,P

r
a)+mG(Pl

x ,P
r
a ,P

r
a).

So we obtain

mG(Pl
x ,P

m
y ,Pn

z )≤ mG(Pl
x ,P

r
a ,P

r
a)+mG(Pm

y ,Pr
a ,P

r
a)+mG(Pn

z ,P
r
a ,P

r
a).

Proposition 3.6. Assume that X is a non-empty set and that M is a multi-set over X with multiplicity of any element approximately equal to
ω . Let (M,mG) be a multi G-metric space; then the followings are equivalent:

(1) (M,mG) is symmetric,
(2) mG(Pl

x ,P
m
y ,Pm

y )≤ mG(Pl
x ,P

m
y ,Pr

a) for all Pl
x ,P

m
y ,Pr

a ∈Mpt ,
(3) mG(Pl

x ,P
m
y ,Pn

z )≤ mG(Pl
x ,P

m
y ,Pr

a) + mG(Pn
z ,P

l
y ,P

s
b) for all Pl

x ,P
m
y ,Pn

z ,P
r
a ,P

s
b ∈Mpt .

Proof. It is obvious from (mG3), (mG4) and Proposition 3.5.

Example 3.7. Let X be a nonempty set and M be a mset over X having multiplicity of any element almost equal to ω . (M,mG) is an
multi-G-metric space. Then mG1 is multi G-metric on M where mG1(Pl

x ,P
m
y ,Pn

z ) = min{Pt
k ,mG(Pl

x ,P
m
y ,Pn

z )} such that Pt
k > P0

1 .

Proposition 3.8. Let (M,md) be a multi-metric space. Then mGs(d) and mGm(d) expressed as follows define multi G-metrics on X.

(1) mGs(d)(Pl
x ,P

m
y ,Pn

z ) = P1
1/3(md(Pl

x ,P
m
y )+md(Pm

y ,Pn
z )+md(Pl

x ,P
n
z )).

(2) mGm(d)(Pl
x ,P

m
y ,Pn

z ) = max{md(Pl
x ,P

m
y ),md(Pm

y ,Pn
z ),md(Pl

x ,P
n
z )}.

Proof.(mG1) -(mG3) It is obvious.
(mG4) Case 1: Pl

x = Pm
y . Thus mGs(d)(Pl

x ,P
l
x ,P

m
y )=P1

0 ≤ mGs(d)(Pl
x ,P

m
y ,Pn

z ).
Case 2:

(a) x = y, y 6= z and l 6= m. Then

mGs(d)(Pl
x ,P

l
x ,P

m
x ) =P1

1/3(md(Pl
x ,P

l
x)+md(Pl

x ,P
m
x )+md(Pl

x ,P
m
x )) =P1

1/3(P
1
0 +P1

2 md(Pl
x ,P

m
x ))≤mGs(d)(Pl

x ,P
m
x ,Pn

z ).

(b) x = y = z,m 6= n and l 6= m. Then

mGs(d)(Pl
x ,P

l
x ,P

m
x ) =P1

1/3(md(Pl
x ,P

l
x)+md(Pl

x ,P
m
x )+md(Pl

x ,P
m
x )) =P1

1/3(P
1
0 +P1

2 md(Pl
x ,P

m
x )) =P1

1/3Pk
0 ≤mGs(d)(Pl

x ,P
m
x ,Pn

x )

where k = max{l,m}.
Case 3:

(a) x 6= y, y 6= z and x 6= z. By using (md4), we have

P1
2 md(Pl

x ,P
m
y )≤ md(Pl

x ,P
m
y )+md(Pl

x ,P
n
z )+md(Pn

z ,P
m
y ).

Then

mGs(d)(Pl
x ,P

l
x ,P

m
y )=P1

1/3(md(Pl
x ,P

l
x)+md(Pl

x ,P
m
y )+md(Pl

x ,P
m
y ))≤P1

1/3(md(Pl
x ,P

l
x)+md(Pl

x ,P
m
y )+md(Pn

z ,P
m
y )+md(Pl

x ,P
m
y )).

(b) x 6= y,y 6= z and Pl
x = Pn

z . By using (mG4), we have mGs(d)(Pl
x ,P

l
x ,P

m
y )= mGs(d)(Pl

x ,P
m
y ,Pl

x).
(c) x 6= y,y 6= z,x = z and l 6= n. By using (md4), we have

md(Pl
x ,P

m
y )≤ md(Pl

x ,P
n
x )+md(Pn

x ,P
m
y ).

Then

mGs(d)(Pl
x ,P

l
x ,P

m
y ) =P1

1/3(md(Pl
x ,P

l
x)+md(Pl

x ,P
m
y )+md(Pl

x ,P
m
y )) =P1

1/3(P
1
0 +P1

2 md(Pl
x ,P

m
x ))≤mGs(d)(Pl

x ,P
m
x ,Pn

x ).

The proofs of other cases are done in a similar way.
(mG5) From (md4) we get md(Pl

x ,P
m
y )≤ md(Pl

x ,P
r
a)+md(Pr

a ,P
m
y ) and md(Pl

x ,P
n
z )≤ md(Pl

x ,P
r
a)+md(Pr

a ,P
n
z ). Therefore

mGs(d)(Pl
z ,P

m
y ,Pn

z ) = P1
1/3(md(Pl

x ,P
m
y )+md(Pl

x ,P
n
z )+md(Pn

z ,P
m
y ))

≤ P1
1/3(md(Pl

x ,P
r
a)+md(Pr

a ,P
m
y )+md(Pl

x ,P
r
a)+md(Pl

x ,P
r
a)+md(Pr

a ,P
n
z )+md(Pm

y ,Pn
z ))

= mGs(d)(Pl
x ,P

r
a ,P

r
a)+mGs(d)(Pr

a ,P
m
y ,Pn

z ).

(mG6) It is obvious from md6.
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Proposition 3.9. Let (M,mG) be a multi-G-metric space.Then mdG defined a multi-metric on M following holds:

mdG(Pl
x ,P

m
y ) = mG(Pl

x ,P
m
y ,Pm

y )+mG(Pl
x ,P

l
x ,P

m
y ).

Proof. The proofs of (md1), (md3) and (md4) obviously follow from (mG1), (mG3), (mG4) respectively.

(md2) Let mdG(Pl
z ,P

m
y ) = P1

0 . Assume that Pl
x 6= Pm

y . Since mG(Pl
x ,P

m
y ,Pm

y )+mG(Pl
x ,P

l
x ,P

m
y ) = P1

0 . We would have mG(Pl
x ,P

m
y ,Pm

y )≤ P1
0

by Proposition 3.5. This contradicts to (mG1). Hence our assumption is not true. That is Pl
x = Pm

y . The converse is clear.
(md5) Let mdG(Pl

x ,P
m
y ) = P1

0 for l 6= m. Thus we get mG(Pl
x ,P

m
y ,Pn

z )+mG(Pl
x ,P

l
x ,P

m
y )=Pk

0 . Then, we get

mG(Pl
x ,P

m
y ,Pm

y ) = mG(Pl
x ,P

l
x ,P

m
y ) = Pk

0 and x = y, k = max{l,m}.

Conversely, let x = y and k = max{l,m}. Thus we have

mdG(Pl
x ,P

m
y ) = mG(Pl

x ,P
m
y ,Pm

y )+mG(Pl
x ,P

l
x ,P

m
y ) = mG(Pl

x ,P
m
x ,Pm

x )+mG(Pl
x ,P

l
x ,P

m
x ) = Pk

0 .

Proposition 3.10. Let (M,mG) be a multi-G-metric space.The function md : Mpt×Mpt→ (mR+)pt defined by mdG(Pl
x ,P

m
y )=mG(Pl

x ,P
m
y ,Pm

y )
satisfies the following properties.

(1) If mdG(Pl
x ,P

m
y ) = P1

0 if and only if Pl
x = Pm

y .
(2) mdG(Pl

x ,P
m
y ) ≤ mdG(Pl

x ,P
n
z )+ mdG(Pm

y ,Pn
z ) for all Pl

x ,P
m
y ,Pn

z ∈Mpt .
(3) For at least two of the l, m variables are different, mdG(Pl

x ,P
m
y ) = Pk

0 iff x = y and k = max{l,m}.

Proof. (1) Let mdG(Pl
z ,P

m
y ) = P1

0 . By hypothesis, mG(Pl
x ,P

m
y ,Pm

y )=P1
0 . From Proposition 3.5, we get Pl

x = Pm
y . The converse is clear.

(2) From (mG5), we get mdG(Pl
x ,P

m
y ) = mG(Pl

x ,P
m
y ,Pm

y ) ≤ mG(Pl
x ,P

n
z ,P

n
z )+ mG(Pn

z ,P
m
x ,Pm

y )=mdG(Pl
x ,P

n
z ) +mdG(Pn

z ,P
m
y ).

(3) Let mdG(Pl
x ,P

m
y ) = Pk

0 . Then, we have mG(Pl
x ,P

m
y ,Pm

y ) = Pk
0 . By (mG6), we have x = y and k = max{l,m}. Conversely, let x = y and

k = max{l,m}. Thus, we have mG(Pl
x ,P

m
y ,Pm

y ) =mdG(Pl
x ,P

m
y ) = Pk

0 .

4. Some topological properties of multi-G-metric spaces

In this section, we establish a few topological concepts on multi-G-metric spaces and explore a few of their associated characteristics.

Definition 4.1. Let (M,mG) be a multi-G- metric space. For Pl
a ∈Mpt and P1

r > P1
0 the mG-open ball with centre Pl

a and radius P1
r is

defined by

BmG(Pl
a,P

1
r ) = {Pm

y ∈Mpt : mG(Pl
x ,P

m
y ,Pm

y )< P1
r }.

The mset MS[BmG(Pl
a,P

1
r )] will be called a multi-open ball with centre Pl

a and radius P1
r > P1

0 .

Proposition 4.2. Let (M,mG) be a multi-G- metric space. Let Pl
x ∈Mpt and P1

r > P1
0 . If mG(Pl

x ,P
m
y ,Pn

z )< P1
r then Pl

x ,P
m
y ∈ BmG(Pl

x ,P
1
r ).

Proof. It is obvious from (mGm4).

Example 4.3. Consider the multi-G-metric space. (M,mG) given in Example 3.2. Then we have

BmG(Pl
a,P

1
r ) =

{
Mpt , i f P1

r > P1
1 ,

{Pn
a : 1≤ n≤ ω}, i f P1

r ≤ P1
1 ,

for any Pl
a ∈Mpt .

Definition 4.4. Let (M,mG) be a multi-G-metric space. For Pl
a ∈Mpt and P1

r > P1
0 the mG-closed ball with Pl

a and radius Pr
1 is defined by

BmG[Pl
a,P

1
r ] = {Pm

y ∈Mpt : mG(Pl
x ,P

m
y ,Pm

y )< P1
r }.

MS[BmG[Pl
a,P

1
r ]] will be called a multi-closed ball with center Pl

a and radius P1
r > P1

0 . The empty mset /0 is separately considered as
multi-G-open in (M,mG).

Definition 4.5. Let (M,mG) be a multi-G- metric space. Then, OM , a collection of multi-points of M, is said to be mG-open if for
each Pl

x ∈ OM there exists an mG-open ball BmG(Pl
a,P

1
r ) with center at Pl

a and radius P1
r > P1

0 such that BmG(Pl
a,P

1
r ) ⊆ OM . N ⊂M is

multi-mG-open iff there exists a collection O of multi points of N such that O is mG-open and MS(O) = N.

Proposition 4.6. Every mG-open ball is mG-open in a multi-G-metric space.
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Proof. Let Pm
y ∈ BmG(Pl

x ,P
1
r ). Suppose Pn

z ∈ BmG(Pm
y ,P1

s ). Then, we have mG(Pn
z ,P

n
z ,P

m
y )< P1

s . By (mG5) we get

mG(Pn
z ,P

n
z ,P

l
x)≤ mG(Pl

x ,P
m
y ,Pm

y )+mG(Pm
y ,Pn

z ,P
n
z )< mG(Pl

x ,P
m
y ,Pm

y )+P1
s .

Let P1
s = P1

r −mG(Pl
x ,P

m
y ,Pm

y ). We obtain

mG(Pn
z ,P

n
z ,P

l
x)< P1

r .

Hence Pn
z ∈ BmG(Pl

x ,P
1
r ).

Theorem 4.7. Every multi-G-metric space generates a multi-G-topology as follows:

τmG = {N : f or every Pl
a ∈ Npt , there exists aP1

r such that BmG(Pl
a,P

1
r )⊆ ON and MS(ON) = N}.

This topology is said to be multi-topology produced by multi-G-metric.

Proof. (1) Let Mpt be the collection of for all multi-points in (M,mG) multi-G-metric space. Then Mpt is mG-open. Hence, M =MS(Mpt)
is multi-G-open.

(2) Let Ni i = 1,2 be two multi-G-open sets in (M,mG). Then there exists ONi such that Ni = MS(ONi) and ONi is mG-open set of
multi-points in (M,mG). Let Pl

x∈ ON1 ∩ON2 . Then, there exist P1
r ,P

1
s > P1

0 such that BmG(Pl
x ,P

1
r ) ⊂ ON1 and BmG(Pl

x ,P
1
s ) ⊂ ON2 .

Let t = min{r,s}. Then, we have BmG(Pl
x ,P

t
1)⊂ BmG(Pl

x ,P
r
1) ⊂ ON1 and BmG(Pl

x ,P
1
t )⊂ BmG(Pl

x ,P
1
s )⊂ ON2 . Therefore, we have

BmG(Pl
x ,P

1
t ) ⊂ ON1 uON2 and ON1 u ON2 is mG-open. Since from Theorem 2.8, N1∩N2=MS(ON1)∩ MS(ON2) = MS(ON1 uON2).

Hence, N1∩N2 is multi-G-open.
(3) The proof can be done in a similar way (2).

Definition 4.8. Let (M,mG) be a multi-G- metric space. and NmG be a mset in this G-multi metric space. Then NmG is said to be multi-closed
if its complement Nc

mG is multi-open in this multi-G-metric space.

Theorem 4.9. Let (M,mG) be a multi-G- metric space. The followings are held:

(1) The multi-empty set is multi-closed,
(2) The absolute mset M is multi closed,
(3) Arbitrary intersection of multi-closed sets is multi-closed,
(4) Finite union of multi-closed sets is multi-closed.

Proof. The proofs are obvious from Theorem 4.7 and Definition 4.8.

Definition 4.10. Let (M,mG) be a multi-G-metric space. Let {Pln
xn} be a sequence of multi-points in M. The sequence {Pln

xn}n is said to multi
G-convergent ( mG-convergent ) to Pl

x ∈Mpt , if for every P1
ε > P1

0 , there exists n0 ∈ N such that mG(Pln
xn ,P

ln
xn ,P

l
x) < P1

ε , ∀n≥ n0 i.e. n≥ n0

implies {Pln
xn} ∈MS(BmG(Pl

x ,P
1
ε )). We denote the sequence {Pln

xn} is multi G-convergent to Pl
x and written as {Pln

xn} → Pl
x .

Proposition 4.11. In a multi-G- metric space, a sequence of multi-points multi G-converges at most one multi-point of the space.

Proof. The proof is easily obtained from Definition 4.10.

Proposition 4.12. Let (M,mG) be a multi-G- metric space. For the sequence {Pln
xn}n ⊂ Mpt and a point Pl

x ∈ Mpt the followings are
equivalent:

(1) {Pln
xn} is mG-convergent to Pl

x ,
(2) mdG(P

ln
xn ,P

l
x)→ P1

0 as n→ ∞,
(3) mG(Pln

xn ,P
ln
xn ,P

l
x)→ P1

0 as n→ ∞,
(4) mG(Pln

xn ,P
l
x ,P

l
x)→ P1

0 as as n→ ∞,
(5) mG(Plm

xm ,P
ln
xn ,P

l
x)→ P1

0 as m, n→ ∞.

Proof. (1) ⇒(2) It is obvious from Proposition 3.5.
(2) ⇒(3) Let mdG(P

ln
xn ,P

l
x)→ P1

0 . Then, for each P1
ε > P1

0 , there exists a natural number n0 such that md(Pln
xn ,P

l
x) < P1

ε whenever n≥ n0.
By Proposition 3.9, we have mG(Pln

xn ,P
l
x ,P

l
x)+mG(Pln

xn ,P
ln
xn ,P

l
x) = mdG(P

ln
xn ,P

l
x) < P1

ε . Thus, we obtain mG(Pln
xn ,P

ln
xn ,P

l
x)→ P1

0 .
(3) ⇒(4) It is clear since mG(Pln

xn ,P
l
x ,P

l
x)≤ P1

2 mG(Pln
xn ,P

ln
xn ,P

l
x) by Proposition 3.5.

(4) ⇒(5) It is follows from Proposition 3.5 since mG((Plm
xm ,P

ln
xn ,P

l
x)≤ mG(Plm

xm ,P
lm
xm ,P

ln
xn)+mG(Plm

xm ,P
lm
xm ,P

l
x).

(5) ⇒(2) Let mG(Plm
xm ,P

ln
xn ,P

l
x)→ P1

0 as m, n→ ∞. Since

mdG(Pln
xn
,Pl

x) = mG(Pln
xn
,Pl

x ,P
l
x)+mG(Pln

xn
,Pln

xn
,Pl

x)≤ P1
2 mG(Pln

xn
,Pln

xn
,Pl

x)+mG(Pln
xn
,Pln

xn
,Pl

x) = P1
3 mG(Pln

xn
,Pln

xn
,Pl

x)

from Proposition 3.9 and Proposition 3.5, we have mdG(P
ln
xn ,P

l
x)→ P1

0 as n→ ∞.
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Definition 4.13. Let (M,mG) be a multi-G-metric space. Let {Pln
xn}n be a sequence of multi points in M. Then the sequences {Pln

xn}n is said
to be multi G-bounded if there exists a positive multi real point P1

a > P1
0 such that

mG(Pln
xn
,Pln

xn
,Plm

xm
)≤ P1

a

for each m, n ∈ N.

Definition 4.14. Let (M,mG) be a multi-G- metric space. Let {Pln
xn}n be a sequence of multi-points in M. Then the sequence {Pln

xn}n is said

to be multi-G-Cauchy (mG-Cauchy) if every P1
ε > P1

0 , there exists a n0 ∈ N such that mG(Pln
xn ,P

lm
xm ,P

lp
xp)< P1

ε whenever m,n, p ≥ n0.

Proposition 4.15. Let (M,mG) be a multi-G- metric space. Then the followings are equivalent:

(1) The sequence {Pln
xn}n is mG-Cauchy.

(2) For every P1
ε > P1

0 , there exists a natural number n0 such that mG(Pln
xn ,P

lm
xm ,P

lm
xm)< P1

ε for all n,m≥ n0.
(3) {Pln

xn}n is a mG-Cauchy sequence in the multi-metric space (M,mdG).

Proof. (1) ⇒(2) It is obvious by (mG4),
(2) ⇔(3) It is clear from Proposition 3.9,
(2) ⇒(1) It is obvious by (mG5) if it set a = xm.

Corollary 4.16. Every mG-convergent sequence in any multi-G-metric space is mG-Cauchy.

Proof. It is obvious by (mG5) and Proposition 4.12.

Corollary 4.17. Every mG-Cauchy sequence is multi-G-bounded.

Proof. It is obvious by Definition 4.13 and Proposition 4.12.

Definition 4.18. A mG-multi metric space (M,mG) is said to be mG- complete if every mG-Cauchy sequence in (M,mG) is mG-convergent
in (M,mG).

Proposition 4.19. A multi G-metric space (M,mG) is mG- complete if and only if (M,mdG) is a complete multi-metric space.

Proof. It is obvious from Proposition 3.9 and Proposition 4.15

Proposition 4.20. Let (M,mG) be a multi-G-metric space. Let md : Mpt × Mpt → (mR+)pt be the function defined by
mδG(Pl

x ,P
m
y ) = max{mG(Pl

x ,P
m
y ,Pm

y ), mG(Pm
y ,Pl

x ,P
l
x)}. Thus the followings hold:

(1) (M,mδG) is multi-metric space,
(2) {Pln

xn}n is a mG-convergent to Pl
x ∈Mpt if and only if {Pln

xn}n is a convergent to Pl
x ∈Mpt in (M,mδG),

(3) {Pln
xn}n is a mG-Cauchy if and only if {Pln

xn}n is Cauchy in (M,mδG),
(4) (M,mG) is a mG-complete if and only if (M,mδG) is multi-complete.

Proof. The proofs are clear from the definition of multi-G-metric and Proposition 4.12.

5. Conclusion

We introduced and studied multi-G-metric spaces as generalizations of G-metric spaces and multi-metric spaces. We think this research will
advance and increase future investigations into multi-topology and multi-metric systems by providing a broad framework for their practical
applications.
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Abstract

In this paper, some properties of locally antisymmetrically connected spaces which are the
localized version of the antisymmetrically connected T0-quasi-metric spaces constructed
as the natural counterparts of connected complementary graphs, are presented in terms of
asymmetric norms.

According to that, we investigated some different aspects and examples of local antisym-
metric connectedness in the framework of asymmetrically normed real vector spaces.

Specifically, it is proved that the structures of antisymmetric connectedness and local
antisymmetric connectedness coincide for the T0-quasi-metrics induced by the asymmetric
norms which associate the theory of quasi-metrics with functional analysis.

1. Introduction and Preliminaries

The structure of antisymmetric connectedness of a T0-quasi-metric space was first described in [1]. This theory was especially discussed in
terms of graph theory [2, 3] as a suitable counterpart of the connectedness for complementary graph. It is also observed that there were
natural relationships between the theory of antisymmetrically connected T0-quasi-metric spaces and the theory of connected complementary
graphs, with the help of symmetry graphs introduced in [1].

On the other hand, it is useful to localize some topological properties (see [4]) as is well-known from topology. In the light of these
considerations; following the structure of antisymmetric connectedness constructed lately, the “locality” status of antisymmetric connectedness
was investigated in [5] under the name local antisymmetric connectedness.

As for this paper, many interesting properties of locally antisymmetrically connected spaces will be presented in the context of asymmetrically
normed real vector spaces.

Therefore, the paper is organized in the following format:

Some necessary background material for the remaining of paper is first given in Section 1 via some references. Particularly, Section 1 mostly
consists of the information about the antisymmetrically connected T0-quasi-metric spaces, besides the other types of spaces peculiar to
asymmetric topology.

In Section 2, the required propositions and examples about the locally antisymmetrically connected T0-quasi-metric spaces are reminded
via [5], in detail.

After recalling all preliminary information, as the main purpose of paper; in Section 3, we studied some properties of the theory of local
antisymmetric connectedness in the framework of asymmetric norms. Indeed, it is known from [1] that the problem to determine the
antisymmetry components of points in X turns out to be easier when it is formulated for a T0-quasi-metric induced by the asymmetric norm
of an asymmetrically normed real vector space which is introduced by Cobzaş [6] in Functional Analysis. In the light of this idea, locally
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antisymmetrically connected T0-quasi-metric spaces are investigated first time in the context of asymmetrically normed real vector spaces in
detail.

Specifically, in Section 3 it is proved that the antisymmetric connectedness and local antisymmetric connectedness coincide for the
T0-quasi-metrics induced by the asymmetric norms.

Finally, a conclusion part together with the two questions that could be the subject of a future work is presented as the last section of paper.

Now let us recall some required notions and also examples from [1].

Definition 1.1. Let X be a set. Then the function ρ : X×X → [0,∞) is called a quasi-pseudometric on X if

(a) ρ(x,x) = 0 whenever x ∈ X ,
(b) ρ(x,z)≤ ρ(x,y)+ρ(y,z) whenever x,y,z ∈ X .

We will say that ρ is a T0-quasi-metric provided that ρ also satisfies the following condition:

For each x,y ∈ X ,

ρ(x,y) = 0 = ρ(y,x) implies that x = y.

Remark 1.2. If ρ is a T0-quasi-metric on a set X then the function ρ−1 : X×X→ [0,∞) defined by ρ−1(x,y) = ρ(y,x) whenever x,y∈ X, is
also a T0-quasi-metric, called the conjugate T0-quasi-metric of ρ. If ρ = ρ−1 then ρ is a metric. In line with the usual notational conventions,
we write

ρ
s = sup{ρ,ρ−1}= ρ ∨ρ

−1

for the symmetrization metric of ρ .

The notation τρs denotes the topology generated by the (symmetrization) metric ρs and it is called symmetrization topology of ρ .

An adequate background for the T0-quasi-metric spaces can be obtained in the works [7–12]. Now, as for the main structures required for the
paper:

Definition 1.3. If (X ,ρ) is a T0-quasi-metric space then the pair (x,y) ∈ X×X is called

(i) antisymmetric pair whenever the condition ρ(x,y) 6= ρ(y,x) is satisfied.
(ii) symmetric pair if it satisfies the condition ρ(x,y) = ρ(y,x).

Definition 1.4. If (X ,ρ) is a T0-quasi-metric space then a finite sequence of the elements in X is called an antisymmetric path (symmetric
path) Qx,y = (x = x0,x1, . . . ,xn−1,xn = y), n ∈ N, from the starting point x to the ending point y provided that all the pairs (xi,xi+1) are
antisymmetric pairs (symmetric pairs) for i ∈ {0,1, . . . ,n−1}.

Now, let us recall the antisymmetric connectedness from [1]:

Definition 1.5. (i) In a T0-quasi-metric space (X ,ρ), two points x,y ∈ X will be called antisymmetrically connected if we have an
antisymmetric path Qx,y starting at x and ending with y, or x = y.

Obviously, the relation“antisymmetric connectedness” is an equivalence relation on the set X .
(ii) The equivalence class of x ∈ X according to the antisymmetric connectedness relation Tρ is called the antisymmetry component of x,

and the notation

Tρ (x) = {y ∈ X : there is an antisymmetric path Qx,y from x to y}

will be used for it.
It is clear that Tρ (x) is the largest antisymmetrically connected subspace of X containing x ∈ X.

(iii) If Tρ = X×X, that is Tρ (x) = X whenever x ∈ X, then (X ,ρ) is called antisymmetrically connected space.

Now, let us present a well-known antisymmetrically connected T0-quasi-metric space as follows:

Example 1.6. On the set R of the reals, take µ(x,y) = max{x− y,0} whenever x,y ∈ R. It is easy to verify that µ is a T0-quasi-metric,
called the standard T0-quasi-metric on R. Moreover, the space (R,µ) is antisymmetrically connected since Tµ (x) = R for each x ∈ R.

From now on, we can turn our attention to some other notions and details, required for the paper. Then an opposite notion to that of “metric”
can be recalled from [1]:

Definition 1.7. A T0-quasi-metric space (X ,ρ) is called antisymmetric if

ρ(x,y) 6= ρ(y,x) whenever x 6= y

for all x,y ∈ X.

Therefore, by Definition 1.5 (iii) we have:

Proposition 1.8. Each antisymmetric T0-quasi-metric space will be antisymmetrically connected.

Additionally, the dual notion of the antisymmetric connectedness can be recalled from [1], in the framework of T0-quasi-metrics.

Definition 1.9. (i) If (X ,ρ) is a T0-quasi-metric space then x ∈ X is called symmetrically connected to y ∈ X whenever there exists a
symmetric path (see Definition 1.4) Qx,y, from x to y.

Trivially, the relation “symmetric connectedness” will be an equivalence relation on the points in X .
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(ii) The equivalence class of x ∈ X according to the symmetric connectedness relation Cρ is called symmetry component of x, and the
notation

Cρ (x) = {y ∈ X : there is a symmetric path Qx,y from x to y}

will be used for it. Obviously Cρ (x) is the largest symmetrically connected subspace of X containing x ∈ X.
(iii) If Cρ = X×X, that is Cρ (x) = X whenever x ∈ X, then (X ,ρ) is called symmetrically connected space.

In the light of above considerations, the next proposition was established in [1] as Corollary 25, by using the following crucial result
well-known from graph theory.

For any graph G, G is connected or G the complement of G is connected in terms of graph theory. (See [2, 3])

Proposition 1.10. If (X ,ρ) is a T0-quasi-metric space then (X ,ρ) is antisymmetrically connected or symmetrically connected.

Note here that even though we will not be interested in this theory for the remainder of Section 1, the detailed background on the theory of
“symmetric connectedness” can be found in [1].

The next notions will be required for the remainder of paper.

Definition 1.11. Let ρ be a T0-quasi-metric on X and x ∈ X. In this case,

(i) The point x is called antisymmetric whenever (x,y) is antisymmetric pair for y ∈ X \{x},
(ii) The point x is called symmetric whenever (x,y) is symmetric pair for y ∈ X.

Hence, the next proposition which completes Section 1 can be seen easily via Definition 1.11.

Proposition 1.12. If (X ,ρ) is a T0-quasi-metric space then all points of X are antisymmetric if and only if the space (X ,ρ) is antisymmetric.

After giving the required information above, now we are in the position to recall from [5] the localized version of antisymmetrically connected
spaces.

2. Local Antisymmetric Connectedness

The following notions and the all propositions are presented in [5].

Definition 2.1. Let (X ,ρ) be a T0-quasi-metric space and x0 ∈ X. Thus (X ,ρ) is called locally antisymmetrically connected at x0 ∈ X if
Tρ (x0) ∈ τρs .

As mentioned in Section 1, τρs denotes the symmetrization topology generated by the metric ρs = ρ ∨ρ−1.

Definition 2.2. A T0-quasi-metric space (X ,ρ) is called locally antisymmetrically connected if (X ,ρ) is locally antisymmetrically connected
at each point of X.

Hence, we have obviously the next crucial characterization because of Definition 2.1 and Definition 2.2.

Proposition 2.3. A T0-quasi-metric space (X ,ρ) is locally antisymmetrically connected if and only if Tρ (x) (the antisymmetry component of
x) is τρs -open for each x ∈ X.

Example 2.4. Consider the (bounded) Sorgenfrey T0-quasi-metric space (R,υ) where υ(x,y) = min{x− y,1} if x≥ y and υ(x,y) = 1 if
x < y. It is easy to show that the space (R,υ) is antisymmetrically connected, but not antisymmetric. Also, all antisymmetry components
Tυ (x) (x ∈R) in the space (R,υ) are R, and so they are open w.r.t. the discrete topology τυ s generated by the symmetrization metric (which
is discrete metric) of υ . That is, the space (R,υ) is locally antisymmetrically connected by Proposition 2.3.

The following propositions and the last result were proved in [5] by taking into account Proposition 2.3:

Proposition 2.5. Let (X ,ρ) be a T0-quasi-metric space. If (X ,ρ) is antisymmetrically connected then (X ,ρ) is locally antisymmetrically
connected.

The converse of Proposition 2.5 is not true by virtue of the next example:

Example 2.6. Consider a T0-quasi-metric on the set X = {1,2,3,4} by the matrix

W =


0 8 4 1
9 0 6 7
4 6 0 5
3 7 5 0


That is, W = (wi j) where w(i, j) = wi j for i, j ∈ X. Clearly, w is a T0-quasi-metric on X. Indeed, it satisfies the other conditions
of Definition 1.1, so we just prove the triangle inequality as follows: w(1,2) = 8 ≤ 4+ 6 = w(1,3)+w(3,2), w(1,2) = 8 ≤ 1+ 7 =

w(1,4)+w(4,2),
w(1,3) = 4≤ 8+6 = w(1,2)+w(2,3), w(1,3) = 4≤ 1+5 = w(1,4)+w(4,3),
w(1,4) = 1≤ 8+7 = w(1,2)+w(2,4), w(1,4) = 1≤ 4+5 = w(1,3)+w(3,4),
w(2,3) = 6≤ 9+4 = w(2,1)+w(1,3), w(2,3) = 6≤ 7+5 = w(2,4)+w(4,3),
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w(2,4) = 7≤ 9+1 = w(2,1)+w(1,4), w(2,4) = 7≤ 6+5 = w(2,3)+w(3,4),
...
Also, note that (X ,w) is not antisymmetric since w(4,3) = w(3,4), and moreover it is not antisymmetrically connected since there is no any
antisymmetric path from 1 to 3. Despite these, it is locally antisymmetrically connected: Note that (X ,w) is a finite T0-quasi-metric space.
Thus, the symmetrized topological space (X ,τws) will be discrete since the unique topology which is T1 on a finite set is discrete. Hence,
(X ,w) will be locally antisymmetrically connected by Proposition 2.3 as the antisymmetry components of all points in X are open w.r.t. the
symmetrization topology τws .

Proposition 2.7. If (X ,ρ) is locally antisymmetrically connected T0-quasi-metric space and the topological space (X ,τρs) is connected
then (X ,ρ) is antisymmetrically connected.

Proposition 2.8. If (X ,ρ) is a T0-quasi-metric space then (X ,ρ) is symmetrically connected or locally antisymmetrically connected.

Corollary 2.9. If (X ,ρ) is an antisymmetric space then (X ,ρ) is locally antisymmetrically connected.

3. Locally Antisymmetrically Connected Spaces in the Context of Asymmetric Norms

Asymmetrically normed real vector spaces in the sense of [6] are also investigated in [1] as a new approach to the theory of asymmetry
measurement for T0-quasi-metrics.

First of all, let us recall the notion of asymmetric norm from [6]:

Definition 3.1. Let X be a real vector space equipped with a given map ‖ · | : X → [0,∞) satisfying the conditions:

(a) ‖x|= ‖− x|= 0 if and only if x = 0.
(b) ‖λx|= λ‖x| whenever λ ≥ 0 and x ∈ X .
(c) ‖x+ y| ≤ ‖x|+‖y| whenever x,y ∈ X .

Then ‖ · | is called an asymmetric norm and (X ,‖ · |) an asymmetrically normed real vector space. ( In (a), 0 denotes the zero vector of the
vector space X .)

Obviously, an asymmetric norm induces a T0-quasi-metric on X with the equality ρ‖·|(x,y) = ‖x− y| for each x,y ∈ X , where (X ,‖ · |) is an
asymmetrically normed real vector space. But, naturally some T0-quasi-metrics may not be induced by an asymmetric norm:

Example 3.2. Consider the function υ on R as follows:

υ (x,y) =
{

min{x− y,1} ; x≥ y
1 ; x < y

for each x,y ∈ R. It is easy to show that υ is a T0-quasi-metric, but it cannot be induced by an

asymmetric norm.

Incidentally, the notation ρ‖·| will be used for the T0-quasi-metric induced by the asymmetric norm ‖ · |.

Moreover, the function ‖ · |s = ‖ · |∨‖ · |−1 = ‖ · ‖ describes the standard (symmetrization) norm on X , where ‖a|−1 = ‖−a| for a ∈ X , and
so ρs

‖·| = ρ‖·|s = ρ‖·‖.

Note also that each norm is an asymmetric norm. However we have:

Example 3.3. (i) If we take the function ‖x|= x∨0 on R, then ‖ · | satisfies the above conditions and gives an asymmetric norm, not
norm on R.

(ii) The function ‖ · | described by the equality ‖(x,y)|= x∨ y∨0 on R2, where x,y ∈ R, satisfies the above conditions and thus, it is an
asymmetric norm which is not norm on R2.

Now we are in the position to present some new considerations peculiar to asymmetrically normed real vector spaces.

Lemma 3.4. Let (X ,‖ · |) be an asymmetrically normed real vector space. If (X ,ρ‖·|) has an antisymmetric point, then 0 is an antisymmetric
point.

Proof. Let a ∈ X be an antisymmetric point, and b ∈ X . Thus a−b ∈ X and so by assumption, we have ρ‖·|(a,a−b) 6= ρ‖·|(a−b,a) by
Definition 1.11 (i). This means that ‖b| 6= ‖−b| by the definition of induced T0-quasi-metric ρ‖·|. That is, ρ‖·|(b,0) 6= ρ‖·|(0,b), and so 0 is
an antisymmetric point.

Proposition 3.5. Let (X ,‖ · |) be an asymmetrically normed real vector space. If 0 is antisymmetric point then each point in X is an
antisymmetric point in (X ,ρ‖·|).

Proof. Suppose that 0 is antisymmetric point and a ∈ X . In order to show that a is antisymmetric, let us take b ∈ X . In this case, a−b ∈ X
and so, ρ‖·|(0,a−b) 6= ρ‖·|(a−b,0) since 0 is antisymmetric point. That is, ‖b−a| 6= ‖a−b|. Thus, ρ‖·|(a,b) 6= ρ‖·|(b,a), and the point a
will be antisymmetric.

Therefore, with Lemma 3.4 and Proposition 3.5 the following characterization will be clear taking into account Proposition 1.12.

Corollary 3.6. Let (X ,‖ · |) be an asymmetrically normed real vector space. The T0-quasi-metric space (X ,ρ‖·|) has an antisymmetric point
if and only if (X ,ρ‖·|) is antisymmetric space.

Finally, by virtue of Corollary 2.9 and Corollary 3.6 we have the next result, trivially.

Corollary 3.7. If the T0-quasi-metric space (X ,ρ‖·|) has an antisymmetric point then (X ,ρ‖·|) is locally antisymmetrically connected.
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The following equality will be very useful for the remaining of paper.

Lemma 3.8. Let (X ,‖ · |) be an asymmetrically normed real vector space. Then Tρ‖·|(x) = Tρ‖·|(0)+ x, whenever x ∈ X.

Proof. First of all, let us take ρ = ρ‖·| for the simplicity in the proof.

Assume that y ∈ Tρ (x). Then there exists an antisymmetric path Qx,y = (x0,x1, . . . ,xn) from x to y, where x0 = x, xn = y. Define the path
Q0,y−x as (x0− x,x1− x, . . . ,xn−x). Then Q0,y−x is an antisymmetric path from 0 to y−x. Thus y− x ∈ Tρ (0). Therefore y ∈ Tρ (0)+ x and
Tρ (x)⊆ Tρ (0)+ x.

For the converse part, let y ∈ Tρ (0)+ x. Then there exists t ∈ Tρ (0) with y = t + x. Furthermore, for some n ∈ N there is an antisymmetric
path Q0,t = (0,x1 . . . , t) from 0 to t. Then define Qx,x+t as the path (x,x+ x1, . . . ,x+ t). Obviously Qx,x+t is an antisymmetric path from x to
x+ t. Therefore y = t + x ∈ Tρ (x) and we established that Tρ (0)+ x⊆ Tρ (x).

At this stage, we have the following characterizations with the help of Lemma 3.8:

Proposition 3.9. Let (X ,‖ · |) be an asymmetrically normed real vector space. In this case, Tρ‖·|(0) is τρs -open if and only if for each x ∈ X,
the component Tρ‖·|(x) is τρs -open.

Proof. If z ∈ Tρ‖·|(x) then z− x ∈ Tρ‖·|(0) by Lemma 3.8. In addition, since Tρ‖·|(0) is τρs -open, there exists ε > 0 such that
Bρs
‖·|
(z− x,ε) ⊆ Tρ‖·|(0). Therefore, in a similar manner it is easy to verify that Bρs

‖·|
(z,ε) ⊆ Tρ‖·|(x) with the help of the fact that

ρs
‖·|(x,y) = ‖x− y‖= ρ‖·|s(x,y). Finally, Tρ‖·|(x) will be τρs -open.

The converse part is clear.

Proposition 3.10. For an asymmetrically normed real vector space (X ,‖ · |), Tρ‖·|(0) = X if and only if Tρ‖·|(x) = X for each x ∈ X.

Proof. Straightforward.

Incidentally, the following characterization will also be obvious via Proposition 2.3 and Proposition 3.9.

Corollary 3.11. Let (X ,‖ · |) be an asymmetrically normed real vector space. In this case, Tρ‖·|(0) is τρs -open that is (X ,ρ‖·|) is locally
antisymmetrically connected at the point 0 if and only if (X ,ρ‖·|) is locally antisymmetrically connected.

Now, let us present the main theorem related to local antisymmetric connectedness, in the context of asymmetrically normed real vector
spaces.

Theorem 3.12. For an asymmetrically normed real vector space (X ,‖ · |), the T0-quasi-metric space (X ,ρ‖·|) is locally antisymmetrically
connected if and only if (X ,ρ‖·|) is antisymmetrically connected.

Proof. Suppose that (X ,ρ‖·|) is locally antisymmetrically connected. Now, let us note that for any asymmetric norm ‖ · |, the topology
τ‖·|s = τρs

‖·|
= τ‖·‖ generated by the symmetrization norm ‖ · |s = ‖ · |∨‖ · |−1 = ‖ · ‖, will be path-connected.

That is, the (normed) topological space (X ,τ‖·|s) is path-connected, and so the same topological space (X ,τρs
‖·|
) is connected. In this case, by

Proposition 2.7, the T0-quasi-metric space (X ,ρ‖·|) will be antisymmetrically connected.

Conversely, the assertion is clear due to Proposition 2.5.

Let us also recall a crucial proposition proved in [1, Proposition 58], as follows:

Proposition 3.13. Each asymmetrically normed real vector space that is not normed is antisymmetrically connected.

Consequently, we may state the next result by Theorem 3.12 and Proposition 3.13:

Corollary 3.14. Each asymmetrically normed real vector space that is not normed is locally antisymmetrically connected.

Even if a space with the T0-quasi-metric induced by an asymmetric norm is locally antisymmetrically connected, its subspace need not be
locally antisymmetrically connected in the context of asymmetrically normed real vector spaces. Indeed, we have the following example for
this fact, moreover even when the subspace is dense w.r.t. the symmetrization topology on the space.

Example 3.15. Consider the plane R2 with the T0-quasi metric ρ induced by the maximum asymmetric norm ‖(x,y)| = x∨ y∨ 0 (see
Example 3.3 (ii)). It is easy to see that the space (R2,ρ), where ρ = ρ‖·|, is locally antisymmetrically connected from Corollary 3.14 since
‖ · | is not a norm.

Now take the subset C = {(x,−x) | x ∈ R} ⊆ R2. It is easy to show that this set is not dense w.r.t. the topology τρs generated by
symmetrization metric ρs = ρs

‖·|, which is the Euclidean topology on R2. Moreover, the subspace (C,ρC) is a metric space, and so
Tρ ((a,b)) = {(a,b)} for all (a,b) ∈C since all points of the subset C are symmetric. In addition, the topology τρs

C
generated by the restricted

symmetrization metric ρs
C = (ρs)C on C, is homeomorphic to the usual real line topology. Thus, the sets Tρ ((a,b)) = {(a,b)} are not open

w.r.t. the restricted topology (τρs)C = τρs
C
.

Finally, the subspace (C,ρC) cannot be locally antisymmetrically connected.
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4. Conclusion

After the theory of antisymmetrically connected T0-quasi-metric spaces has been constructed as the suitable counterpart of connected
complementary graphs in graph theory, the authors defined and studied in [5] the localized form of antisymmetric connectedness, in the
context of quasi-metrics. According to that various topological characterizations of local antisymmetric connectedness for T0-quasi-metric
spaces are mentioned with the help of metrics, particularly.

Following these ideas, in this paper the theory of local antisymmetric connectedness is investigated first-time in the context of asymmetric
norms, as a different approach to the asymmetric structure of a T0-quasi-metric not metric. Thus, some relationships between the theories of
antisymmetric connectedness and local antisymmetric connectedness are discussed through various propositions, results and examples in the
environment of asymmetrically normed real vector spaces.

As the future work; it is very natural to observe the following questions.

How does the local antisymmetric connectedness behaves for subspaces, superspaces, products and unions in the context of T0-quasi-metrics?

Is the image of locally antisymmetrically connected spaces preserved under an isometric isomorphism ?
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Abstract

In this paper, we introduce hybrid numbers with Fibonacci and Lucas hybrid number
coefficients. We give the Binet formulas, generating functions, exponential generating
functions for these numbers. Then we define an associate matrix for these numbers. In
addition, using this matrix, we present two different versions of Cassini identity of these
numbers.

1. Introduction

Recently, in [1], Özdemir defined the set of hybrid numbers which contains complex, dual and hyperbolic numbers as

K=
{

a+bi+ cε +dh : a,b,c,d ∈ R, i2 =−1,ε2 = 0,h2 = 1, ih =−hi = ε + i
}
.

This number system is a generalization of complex
(
i2 =−1

)
, hyperbolic

(
h2 = 1

)
and dual number

(
ε2 = 0

)
systems. Here, i is complex

unit, ε is dual unit and h is hyperbolic unit. We call these units as hybrid units. In the last few years, researchers from many different fields
have taken this number system and used it in various fields of applied sciences. For some applications of hybrid numbers we refer the reader
to [2, 3]. There is no doubt that this number system will be studied by other applied science researchers in the near future.
The conjugate of a hybrid number K = a+bi+ cε +dh is defined by

K = a−bi− cε−dh.

From the definition of hybrid numbers, the multiplication table of the hybrid units is given by the following table:

• 1 i ε h
1 1 i ε h
i i −1 1−h ε + i
ε ε h+1 0 −ε

h h −ε− i ε 1

Table 1: The Multiplication Table for Hybrid Units

This table shows that the multiplication of hybrid numbers is not commutative. Using the above datas, Özdemir [1] investigated various
algebraic and geometric properties of hybrid numbers. For instance, he defined a ring isomorphism between the hybrid number ring K and
the ring of real 2×2 matrices M2×2. This map is ϕ : K→M2×2 where

ϕ (a+bi+ cε +dh) =
[

a+ c b− c+d
c−b+d a− c

]
. (1.1)
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We refer the reader to [1] for more details and properties about hybrid numbers.
The well-known Fibonacci and Lucas sequences are defined as (for n≥ 0)

Fn+2 = Fn+1 +Fn

and

Ln+2 = Ln+1 +Ln

where F0 = 0, F1 = 1, L0 = 2 and L1 = 1. Note that for n≥ 1, Fn−1Fn+1−F2
n = (−1)n and Ln−1Ln+1−L2

n = 5(−1)n+1.
In [4], the authors introduced the Fibonacci hybrid numbers and derived some combinatorial properties of these numbers. For n≥ 0, they
defined the nth Fibonacci hybrid and nth Lucas hybrid numbers as

FHn = Fn +Fn+1i+Fn+2ε +Fn+3h

and

LHn = Ln +Ln+1i+Ln+2ε +Ln+3h

where FH0 = i+ ε +2h, FH1 = 1+ i+2ε +3h, LH0 = 2+ i+3ε +4h and LH1 = 1+3i+4ε +7h. They also gave the Binet formulas of
these hybrid numbers as

FHn =
ααn−ββ n

α−β

and

LHn = αα
n +ββ

n,

respectively, where α = 1+αi+α2ε +α3h, β = 1+β i+β 2ε +β 3h, α =
(

1+
√

5
)
/2 and β =

(
1−
√

5
)
/2.

Hybrid number sequences have been studied by many researchers. For instance, in [5], Cerda-Morales studied generalized hybrid Fibonacci
numbers and their properties. In [6], using an associate matrix, Irmak gave various identities about Fibonacci and Lucas quaternions by
matrix methods. In [7], Kızılateş investigated the q-Fibonacci and the q-Lucas hybrid numbers and gave some algebraic properties of
these numbers. In [8], the same author introduced the Horadam hybrid polynomials called Horadam hybrinomials. Liana et al. studied
Pell hybrinomials in [9]. In [10–15], Liana and Wloch introduced several hybrid number sequences and polynomials and gave various
properties of them. In [16], Şentürk et al. studied Horadam hybrid numbers and obtained various properties. In [17], the author examined
the ratios of Fibonacci hybrid and Lucas hybrid numbers. Karaca and Yılmaz [18] gave some fundamental definitions and theorems about
harmonic complex numbers and harmonic hybrid Fibonacci numbers in detail. Moreover, they examined some algebraic properties such as
Binet-like-formula, partial sums related to these sequences.
In this paper, motivated by the above papers, we introduce hybrid numbers with Fibonacci and Lucas hybrid number coefficients. We give
the Binet formulas, generating functions, exponential generating functions for these numbers. Then we define an associate matrix for these
numbers. Finally, using this matrix, we present two different versions of Cassini identity of these numbers.

2. Main Results

In this section, we define hybrid numbers with Fibonacci and Lucas hybrid number coefficients. Then we give Binet formulas, generating
functions, exponential generating functions, and some summation formulas for these numbers.

Definition 2.1. For n≥ 0, the nth term of hybrid number with Fibonacci hybrid number coefficients is given by

Fn = FHn +FHn+1i+FHn+2ε +FHn+3h. (2.1)

Definition 2.2. For n≥ 0, the nth term of hybrid numbers with Lucas hybrid number coefficients is given by

Ln = LHn +LHn+1i+LHn+2ε +LHn+3h. (2.2)

Remark 2.3. If we expand the definitions of Fn and Ln, we get

Fn = Fn−Fn+2 +2Fn+3 +Fn+6 +2Fn+1i+2Fn+2ε +2Fn+3h

and

Ln = Ln−Ln+2 +2Ln+3 +Ln+6 +2Ln+1i+2Ln+2ε +2Ln+3h,

respectively.

For n≥ 0, it is clear that

Fn+2 = Fn+1 +Fn (2.3)

and

Ln+2 = Ln+1 +Ln. (2.4)
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Theorem 2.4. For n≥ 0, Binet formulas of hybrid numbers with Fibonacci and Lucas hybrid number coefficients are given by

Fn =
(α)2

αn−
(

β

)2
β n

α−β
(2.5)

and

Ln = (α)2
α

n +
(

β

)2
β

n, (2.6)

respectively, where α = 1+αi+α2ε +α3h, β = 1+β i+β 2ε +β 3h, α =
(

1+
√

5
)
/2 and β =

(
1−
√

5
)
/2 .

Proof. Using the Binet formula of hybrid Fibonacci numbers, we have

Fn =
ααn−ββ n

α−β
+

ααn+1−ββ n+1

α−β
i+

ααn+2−ββ n+2

α−β
ε +

ααn+3−ββ n+3

α−β
h

=
ααn (1+αi+α2ε +α3h

)
−ββ n (1+β i+β 2ε +β 3 h

)
α−β

=
(α)2

αn−
(

β

)2
β n

α−β
.

By a similar calculation, we obtain

Ln = (α)2
α

n +
(

β

)2
β

n

Theorem 2.5. The generating functions of hybrid numbers with Fibonacci and Lucas hybrid number coefficients are

F(x) = ∑
n≥0

Fnxn =
11+7x+2i+2(1+ x)ε +(4+2x)h

1− x− x2

and

L(x) = ∑
n≥0

Lnxn =
25+15x+2(1+2x) i+2(3+ x)ε +2(4+3x) h

1− x− x2 ,

recpectively.

Proof. By taking the generating function of both sides of equation (2.1), we directly have

∑
n≥0

Fnxn = ∑
n≥0

FHnxn +

(
∑
n≥0

FHn+1xn

)
i+

(
∑
n≥0

FHn+2xn

)
ε +

(
∑
n≥0

FHn+3xn

)
h

=
11+7x+2i+2(1+ x)ε +(4+2x)h

1− x− x2 .

Similarly, we obtain

∑
n≥0

Lnxn = ∑
n≥0

LHnxn +

(
∑
n≥0

LHn+1xn

)
i+

(
∑
n≥0

LHn+2xn

)
ε +

(
∑
n≥0

LHn+3xn

)
h

=
25+15x+2(1+2x) i+2(3+ x) ε +2(4+3x)h

1− x− x2 .

Theorem 2.6. For m,n ∈ Z, generating functions of Fn+m and Ln+m are

∑
n≥0

Fn+mxn =
FHm +FHm−1x

1− x− x2 +

(
FHm+1 +FHmx

1− x− x2

)
i+
(

FHm+2 +FHm+1x
1− x− x2

)
ε +

(
FHm+3 +FHm+2x

1− x− x2

)
h

and

∑
n≥0

Ln+mxn =
LHm +LHm−1x

1− x− x2 +

(
LHm+1 +LHmx

1− x− x2

)
i+
(

LHm+2 +LHm+1x
1− x− x2

)
ε +

(
LHm+3 +LHm+2x

1− x− x2

)
h,

respectively.
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Proof. By the virtue of generating function of Fibonacci hybrid sequence given in [4], we have

∑
n≥0

Fn+mxn = ∑
n≥0

FHn+mxn +

(
∑
n≥0

FHn+m+1xn

)
i+

(
∑
n≥0

FHn+m+2xn

)
ε +

(
∑
n≥0

FHn+m+3xn

)
h

=
FHm +FHm−1x

1− x− x2 +

(
FHm+1 +FHmx

1− x− x2

)
i+
(

FHm+2 +FHm+1x
1− x− x2

)
ε +

(
FHm+3 +FHm+2x

1− x− x2

)
h.

Theorem 2.7. Exponential generating functions of Fn and Ln are given by

∑
n≥0

Fn
xn

n!
=

(α)2 eαx−
(

β

)2
eβx

α−β

and

∑
n≥0

Ln
xn

n!
= (α)2 eαx +

(
β

)2
eβx,

respectively.

Proof. Using equation (2.5) and equation (2.6), we get

∑
n≥0

Fn
xn

n!
= ∑

n≥0

 (α)2
αn−

(
β

)2
β n

α−β

 xn

n!

=
(α)2

α−β
∑
n≥0

(αx)n

n!
−

(
β

)2

α−β
∑
n≥0

(βx)n

n!

=
(α)2

α−β
eαx−

(
β

)2

α−β
eβx

=
(α)2 eαx−

(
β

)2
eβx

α−β

and

∑
n≥0

Ln
xn

n!
= ∑

n≥0

(
(α)2

α
n +
(

β

)2
β

n
)

xn

n!

= (α)2
∑
n≥0

(αx)n

n!
+
(

β

)2
∑
n≥0

(βx)n

n!

= (α)2 eαx +
(

β

)2
eβx

as desired.

Now we give some summation formulas containing Fn and Ln.

Proposition 2.8. The following formulas containing Fn and Ln are hold:

(i) ∑
n
k=0Fk = Fn+2− (18+2i+4 ε +6h) ,

(ii) ∑
n
k=0Lk = Ln+2− (40+6i+8 ε +14h) ,

(iii) ∑
n
k=0

(
n
k

)
Fk = F2n,

(iv) ∑
n
k=0

(
n
k

)
Lk = L2n.

Proof. We give only the proofs of (i) and (iii). The others can be done in a similar way.

(i) From the equation (2.3), we can write the following equations:

F0 = F2−F1,

F1 = F3−F2,

F2 = F4−F3,

...

Fn−1 = Fn+1−Fn,

Fn = Fn+2−Fn+1.
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If we add the above equations side by side, then we obtain

n

∑
k=0

Fk = Fn+2−F1

= Fn+2− (18+2i+4 ε +6h) .

(iii) With the help of the equation (2.5) and binomial theorem, we have

n

∑
k=0

(
n
k

)
Fk =

n

∑
k=0

(
n
k

) (α)2
αk−

(
β

)2
β k

α−β


=

(α)2

α−β

n

∑
k=0

(
n
k

)
α

k−

(
β

)2

α−β

n

∑
k=0

(
n
k

)
β

k

=
(α)2

α−β
(1+α)n−

(
β

)2

α−β
(1+β )n

=
(α)2

α2n−
(

β

)2
β 2n

α−β
(since 1+α = α

2 and 1+β = β
2)

= F2n.

3. A Matrix Approach For Hybrid Numbers with Fibonacci and Lucas Hybrid Number Coeffi-
cients

Firstly, let us consider the following matrix:

Q =

(
1 1
1 0

)
.

This Q-matrix was studied by Charles H. King [19] in 1960 for his Master’s thesis. It is well-known that

Qn =

(
Fn+1 Fn
Fn Fn−1

)
.

In 1963, Hoggatt and Ruggles [20] introduced the following R-matrix:

R =

(
1 2
2 −1

)
.

It is easily seen that

RQn =

(
1 2
2 −1

)(
Fn+1 Fn
Fn Fn−1

)
=

(
Ln+1 Ln
Ln Ln−1

)
.

Now, motivated by [6], we define an associate matrix as

A =

(
18+2i+4ε +6h 11+2i+2 ε +4h
11+2i+2ε +4h 7+2ε +2h

)
.

Then we can easily see that

QnA =

(
Fn+1 Fn
Fn Fn−1

)
(3.1)

and

RQnA =

(
Ln+1 Ln
Ln Ln−1

)
. (3.2)

Theorem 3.1 (First Type of Cassini Identity). For n≥ 1, we have

Fn−1Fn+1−F2
n = (−1)n (1−34i+12ε−6h)

and

Ln−1Ln+1−L2
n = 5(−1)n+1 (1−34i+12ε−6h) ,

respectively.
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Proof. By using matrices (3.1) and (3.2), we have

Fn−1Fn+1−F2
n =

∣∣∣∣Fn+1 Fn
Fn Fn−1

∣∣∣∣
= |QnA|

= (−1)n
[
(7+2ε +2h)(18+2i+4ε +6h)− (11+2i+2ε +4h)2

]
= (−1)n (1−34i+12ε−6h)

and

Ln−1Ln+1−L2
n =

∣∣∣∣Ln+1 Ln
Ln Ln−1

∣∣∣∣
= |RQnA|

= 5(−1)n+1
[
(7+2ε +2h)(18+2i+4ε +6h)− (11+2i+2ε +4h)2

]
= 5(−1)n+1 (1−34i+12ε−6h) .

Theorem 3.2 (Second Type of Cassini Identity). For n≥ 1, we have

Fn+1Fn−1−F2
n = (−1)n (1−26i+28ε−14h)

and

Ln+1Ln−1−L2
n = 5(−1)n+1 (1−26i+28ε−14h) .

Proof. Again, by using matrices (3.1) and (3.2), we obtain

Fn+1Fn−1−F2
n = (−1)n

[
(18+2i+4ε +6h)(7+2ε +2h)− (11+2i+2 ε +4h)2

]
= (−1)n (1−26i+28ε−14 h)

and

Ln+1Ln−1−L2
n = 5(−1)n+1

[
(18+2i+4ε +6h)(7+2ε +2h)− (11+2i+2ε +4h)2

]
= 5(−1)n+1 (1−26i+28ε−14h) ,

respectively.

Now, let us define the conjugate matrix of A as

A =

(
18−2i−4ε−6h 11−2i−2 ε−4h
11−2i−2ε−4h 7−2ε−2h

)
. (3.3)

Thus, using the matrix A, we can give two types of Cassini identity for the conjugate hybrid numbers with Fibonacci and Lucas hybrid
number coefficient respectively. Note that

AQn =

(
18−2i−4ε−6h 11−2i−2 ε−4h
11−2i−2ε−4h 7−2ε−2h

)(
Fn+1 Fn
Fn Fn−1

)
=

(
Fn+1 Fn
Fn Fn−1

) (3.4)

and

ARQn =

(
18−2i−4ε−6h 11−2i−2 ε−4h
11−2i−2ε−4h 7−2ε−2h

)(
1 2
2 −1

)(
Fn+1 Fn
Fn Fn−1

)
=

(
Ln+1 Ln
Ln Ln−1

)
.

(3.5)

Theorem 3.3. For n≥ 1, we have

(i) Fn−1Fn+1−
(
Fn
)2

= (−1)n (1+26i−28ε +14h) ,

(ii) Fn+1Fn−1−
(
Fn
)2

= (−1)n (1+34i−12ε +6h) ,

(iii) Ln−1Ln+1−
(
Ln
)2

= 5(−1)n+1 (1+26i−28ε +14h) ,

(iv) Ln+1Ln−1−
(
Ln
)2

= 5(−1)n+1 (1+34i−12ε +6h) .

Proof. We give only the proofs of (i) and (iii). The others can be done in a similar way.
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(i) By using (3.4), we have

Fn−1Fn+1−
(
Fn
)2

=

∣∣∣∣Fn+1 Fn
Fn Fn−1

∣∣∣∣
=
∣∣AQn∣∣

= (−1)n
[
(7−2ε−2h)(18−2i−4ε−6h)− (11−2i−2ε−4h)2

]
= (−1)n (1+26i−28ε +14h) .

(iii) With the help of the (3.5), we obtain

Ln−1Ln+1−
(
Ln
)2

=

∣∣∣∣Ln+1 Ln
Ln Ln−1

∣∣∣∣
=
∣∣ARQn∣∣

= 5(−1)n+1
[
(7−2ε−2h)(18−2i−4ε−6h)− (11−2i−2ε−4h)2

]
= 5(−1)n+1 (1+26i−28ε +14h) .

Remark 3.4. This paper is revised version of the preprint [21].

4. Conclusion

In this paper, we have introduced hybrid numbers with Fibonacci and Lucas hybrid number coefficients. We have given the Binet formulas,
generating functions, exponential generating functions, some summation formulas for these numbers. Then we have defined an associate
matrix for these numbers. Using this matrix, we have given two different versions of Cassini identitiy of these numbers. For the interest of
the readers of our paper, the results given here have the potential to motivate further researchers of the subject of the higher order hybrid
numbers with Fibonacci and Lucas hybrid number coefficients.
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Abstract

In this paper, we study the conchodial surfaces in 3-dimensional Euclidean space with
the condition ∆xi = λixi where ∆ denotes the Laplace operator with respect to the first
fundamental form. We obtain the classification theorem for these surfaces satisfying under
this condition. Furthermore, we have give some special cases for the classification theorem
by given the radius function r(u,v) with respect to the parameter u and v.

1. Introduction

The invention of the conchoid was attributed to Greek mathematician Nicomedes by Pappus and other classical authors in the second century
BC. Based on the oldest data, the conchoid curve was designed by Nicomedes as a result of the problem of dividing an angle into three equal
parts, which has been a problem for many mathematicians for many years. The word conchoid is derived from the Greek word ”conch”,
which means crustacean, and is also referred to as mussel shell shape in the literature.
This curve became a favourite of many mathematicians in the 17th century as an example of new methods in analytical geometry and
calculus. For this reason, Newton suggested that it should be treated as a ‘standard’ curve [1]. In 1837, Pierre Wantzel showed that an
arbitrary angle is not divisible by three in the classical way, and therefore conchoid curves were obtained, which can be examples of many
curves. The best known of these curves are Hippias’ quadratrix curve, Nicomedes’ conchoid, Pascal’s limachon and cycloid curves.
The conchoid structure is usually best applied to curves in the Euclidean plane E2 [2]. A conchoid curve is obtained by using a planar curve,
a fixed point and a fixed distance. The set of points on the line at a fixed distance from a moving point on a planar curve gives the conchoid
of this planar curve [3]. In [2], the concept of a conchoidal curve is generalized to the concept of a conchoidal transformation of two curves,
and when one of the two curves is a circle, the conchoidal transformation becomes a classical conchoidal curve. It is known that conchoid
curves have many applications. In particular, they have been used in the construction of buildings and structures and are also used in physics,
astronomy, optics, electromagnetic research, biology and medical engineering applications(see, [3]- [5]).
The conchoid transformation has been applied to surfaces in Euclidean 3-space in ( [6]- [11]) in order to construct new classes of surfaces
and making them accessible to the algorithms implemented in CAGD systems. The concept of conchoid surface is also based on the concept
of curve and studies on conchoid surfaces of quadrics, conchoid surfaces of sphere, conchoid surfaces of ruled surfaces have been carried out.
In addition, in [12] conchoid curves and surfaces in 3-dimensional Euclidean space are considered and the curvatures that determine the
geometric properties of these curves and surfaces are calculated. Also in ( [13]) the authors computed the types of spacelike conchoid curves
in the Minkowski plane and in ( [14]) the authors examined the condition which is the conchoidal surface and the surface of revolution given
with a conchoid curve to be a Bonnet surface in Euclidean 3-space. The latest studies in Euclidean 3-space is conchoidal twisted surface
which isformed by the synchronized anti-symmetric rotation matrix of a planar conchoidal curve ( [15]).
This paper is organised as follows: In section 2 we give some basic concepts of the surfaces in E3 and also surfaces satisfying the condition
∆xi = λixi. In section 3 we consider conchoidal surfaces in E3and we gave the results of Gaussian and mean curvature of these surfaces
with respect to the given paper in [12]. In the final section we consider conchoidal surfaces in E3 satisfying the condition ∆xi = λixi. We
obtain the classification theorem for these surfaces satisfying under this condition. Furthermore, we have give some special cases for the
classification theorem by given the radius function r(u,v) with respect to the parameter u and v.
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2. Basic Concepts

2.1. Surfaces in E3

Let M be a smooth surface in E3 given with the patch X(u,v) : (u,v) ∈ D⊂ E2. The tangent space to M at an arbitrary point p = X(u,v) of
M span {Xu,Xv}. The unit normal vector field or surface normal N is defined by

N(u,v) =
Xu×Xv

‖Xu×Xv‖
(u,v)

at those points (u,v) ∈ D at which Xu×Xv does not vanish, i.e., X is regular.
Let X : D⊂ E2→ E3 be a regular patch. Then the Gaussian curvature and mean curvature of the surface are given by the formulas

K =
eg− f 2

EG−F2

and

H =
eG+gE−2 f F

2(EG−F2)

where

E = 〈Xu,Xu〉 ,
F = 〈Xu,Xv〉 ,
G = 〈Xv,Xv〉

and

e = 〈Xuu,N〉 ,
f = 〈Xuv,N〉 ,
g = 〈Xvv,N〉

are the coefficients of first and second fundamental form of the surface respectively. Recall that a surface M is said to be flat and minimal if
its Gaussian curvature and mean curvature vanishes respectively [22, 23].

2.2. Surfaces satisfying ∆xi = λixi

The definition of submanifolds of finite type was introduced by B.Y. Chen in the late 1970s in order to understand the total mean mean
curvature for general Euclidean submanifolds. So, the author introduced the notions of order and type for Euclidean submanifolds. By
applying such notions, he introduced the notions of finite type submanifolds an finite type maps. The family of finite-type submanifolds is
quite large. The most important and widely known; minimal submanifolds in Euclidean space, minimal submanifolds on hyperspheres and
all parallel submanifolds [24].
Let ui,u j be a local coordinate system of M. For the array gi j (i, j = 1,2) consisting of components of the induced metric on M, we denote
by gi j = (gi j)

−1 the inverse matrix of the array gi j. Then the Laplacian operator ∆ of the induced metric on M is given

∆ =− 1√
det(gi j)

∑
i, j

∂

∂ui

(√
det(gi j)gi j ∂

∂ui

)
.

An isometric immersion x : M→ Em of a submanifold M in Euclidean m-space Em is said to be of finite type if x identified with the position
vector field of M in Em can be expressed as a finite sum of eigenvectors of the Laplacian ∆ of M, that is;

x = x0 +
k

∑xi
i=1

where x0 is a constant map, x1, x2, ..., xk non-constant maps such that ∆xi = λixi, λi ∈ R, 1≤ i≤ k. If λ1, λ2, ..., λk are different, then M is
said to be of k-type.
Similarly, a smooth map ϕ of an n-dimensional Riemannian manifold M of Em is said to be of finite type if ϕ is a finite sum of Em-valued
eigenfunctions of ∆ (see, [24], [25]).
It is well known the Beltrami formula [24] ;

∆
−→x =−2

−→
H

which shows, in particular, that M is minimal surface in R3 if and only if its coordinate functions are harmonic. Moreover, T. Takahashi [26]
states that minimal surfaces and spheres are the only surfaces in R3 satisfying the condition

∆
−→x = λ

−→x , λ ∈ R.

On the other hand Garay [16] determined the complete surfaces of revolution in R3 whose component functions are eigenfunctions of their
Laplace operator i.e.

∆xi = λixi λi ∈ R (2.1)
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Later Lopez [17] studied the hypersurfaces in Rn+1, Bekkar and Zoubir [18] classified the surfaces of revolution with non zero Gaussian
curvature in the 3-dimensional Euclidean space E3 and Lorentzian-Minkowski spaces and Bekkar and Senoussi [19] studied the factorable
surfaces in the 3-dimensional Euclidean and Minkowski space under the condition (2.1). Also Difi et al. [20] studied the translation-factorable
surfaces in 3-dimensional Euclidean and Lorentzian spaces satisfying the condition ∆xi = λixi. Zoubi et al. [21] gave a classification of
surfaces of coordinate finite type in the Lorentz–Minkowski 3-Space.
In this paper we classify the conchoidal surfaces in the 3-dimensional Euclidean space E3 satisfying the condition ∆xi = λixi where λi ∈ R.

3. Conchoidal Surfaces in E3

In this section some results on conchoid surfaces are given. Gaussian and mean curvatures of conchoid surfaces given in 3-dimensional
Euclidean space have been investigated in the paper Bulca et al. [12].
The conchoid surface Md of a given surface M with respect to a point O is roughly speaking the surface obtained by increasing the radius
function of M with respect to O by a constant d. Consider M ⊂ R3 be a regular surface, distance d ∈ R, with respect to a given fixed point
O = (0,0,0) ∈ R3. Let M be represented by polar representation

x(u,v) = r(u,v)ρ(u,v) (3.1)

with ‖ρ(u,v)‖ = 1. Taking into account parametrization ρ(u,v) = (cosucosv,sinucosv,sinv) of the unit sphere S2, so ρ(u,v) is called
spherical part of x(u,v) and r(u,v) its radius function. The conchoidal surface Md of M at distance d parametrized by

xd(u,v) = (r(u,v)±d)ρ(u,v) (3.2)

(see, [9]).

Theorem 3.1. ( [12])Let M be a regular surface given with the parametrization (3.1). Then the Gaussian and mean curvature of M becomes

K =−δ 2(u,v)−ψ(u,v)ξ (u,v)cos2 v

r2
(
(r2 + r2

v )cos2 v+ r2
u
)2 (3.3)

and

H =−cosv(r2 + r2
v )ψ(u,v)+ cosv(r2 cos2 v+ r2

u)ξ (u,v)+2rurvδ (u,v)

2r2
(
(r2 + r2

v )cos2 v+ r2
u
)3/2

(3.4)

respectively,where

δ (u,v) = rruv cosv−2rurv cosv+ rru sinv,

ψ(u,v) = 2r2
u + rrv sinvcosv+ r2 cos2 v− rruu,

ξ (u,v) = 2r2
v + r2− rrvv

are the differentiable functions.

Corollary 3.2. ( [12])Let M be a regular surface given with the parametrization (3.1).
i) If the radius function r(u,v) be an u-parameter function then the Gaussian and mean curvature of M

K =
cos2 v

(
2r2

u + r2 cos2 v− rruu
)
− r2

u sin2 v
(r2 cos2 v+ r2

u)
2 ,

H =−
cosv

(
3r2

u +2r2 cos2 v− rruu
)

2
(
r2 cos2 v+ r2

u
)3/2

ii) If the radius function r(u,v) be a v-parameter function then the Gaussian and mean curvature of M

K =
(rv sinv+ r cosv)

(
2r2

v + r2− rrvv
)

r cosv(r2 + r2
v )

2 ,

H =−
(rv sinv+ r cosv)

(
r2 + r2

v
)
+ r cosv

(
2r2

v + r2− rrvv
)

2r cosv
(
r2 + r2

v
)3/2

Theorem 3.3. ( [12])Let Md be a conchoidal surface of M given with the parametrization (3.2). Then the Gaussian and mean curvature of
Md becomes

K̃ =− δ̃ 2(u,v)− ψ̃(u,v)ξ̃ (u,v)cos2 v

(r±d)2
(
((r±d)2 + r2

v )cos2 v+ r2
u
)2

and

H̃ =−
ξ̃ (u,v)cosv

(
(r±d)2 cos2 v+ r2

u
)
+ ψ̃(u,v)cosv

(
(r±d)2 + r2

v
)
+2rurvδ̃ (u,v)

2(r±d)2
(
((r±d)2 + r2

v )cos2 v+ r2
u
)3/2
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respectively, where

δ̃ (u,v) = rruv cosv−2rurv cosv+ rru sinv,

ψ̃(u,v) = 2r2
u + rrv sinvcosv+ r2 cos2 v− rruu,

ξ̃ (u,v) = 2r2
v + r2− rrvv

are the differentiable functions.

Corollary 3.4. ( [12])Let Md be a regular surface given with the parametrization (3.2).
i) If the radius function r(u,v) be an u-parameter function then the Gaussian and mean curvature of Md

K̃ =
cos2 v

(
2r2

u +(r±d)2 cos2 v− (r±d)ruu
)
− r2

u sin2 v
((r±d)2 cos2 v+ r2

u)
2 ,

H̃ =−
cosv

(
3r2

u +2(r±d)2 cos2 v− (r±d)2ruu
)

2
(
(r±d)2 cos2 v+ r2

u
)3/2

ii) If the radius function r(u,v) be a v-parameter function then the Gaussian and mean curvature of Md

K̃ =
(rv sinv+(r±d)cosv)

(
2r2

v +(r±d)2− (r±d)rvv
)

(r±d)cosv((r±d)2 + r2
v )

2 ,

H̃ =−
(rv sinv+(r±d)cosv)

(
(r±d)2 + r2

v
)
+(r±d)cosv

(
2r2

v +(r±d)2− (r±d)rvv
)

2(r±d)cosv
(
(r±d)2 + r2

v
)3/2

.

4. Conchoidal Surfaces in Euclidean 3-space Satisfying ∆xi = λixi

In this section we consider a conchoidal surfaces given with the parametrization (3.2) which is satisfying the condition ∆xi = λixi. Firstly we
consider the polar representation of the surfaces M given with the parametrization (3.1). The coefficients of the first fundamental form and
the unit normal vector field of the surface M are:

E = r2 cos2 v+ r2
u,

F = rurv,

G = r2 + r2
v ,

and

N =
(rv cosucosvsinv+ r cosucos2 v+ ru sinu,rv sinucosvsinv+ r sinucos2 v− ru cosu,−rv cos2 v+ r cosvsinv)√

(r2 + r2
v )cos2 v+ r2

u
. (4.1)

Further, the coefficients of the second fundamental form as follows;

e =−
cosv

(
2r2

u + rrv sinvcosv+ r2 cos2 v− rruu
)√

(r2 + r2
v )cos2 v+ r2

u
,

f =
rruv cosv−2rurv cosv+ rru sinv√

(r2 + r2
v )cos2 v+ r2

u
,

g =−
cosv

(
2r2

v + r2− rrvv
)√

(r2 + r2
v )cos2 v+ r2

u
.

The Laplacian ∆ of M is given by with respect to the Beltrami formula is ∆x =−2
−→
H . So if we use this formula we can obtain,

∆x1 =−2Hn1

∆x2 =−2Hn2 (4.2)

∆x3 =−2Hn3

where H and ni are defined in (3.4) and (4.1) respectively. If the the polar representation of the surfaces M given with the parametrization
(3.1) is constructed with component functions which are eigenfunctions of its Laplacian, we shall have that

∆(r(u,v)cosucosv) = λ1r(u,v)cosucosv

∆(r(u,v)sinucosv) = λ2r(u,v)sinucosv (4.3)

∆r(u,v)sinv = λ3r(u,v)sinv

where λ1,λ2,λ3 ∈ R. Using the equations (4.1),(4.2) and (4.3) we obtain

−2H(rv cosucosvsinv+ r cosucos2 v+ ru sinu) = λ1W cosucosv,

−2H(rv sinucosvsinv+ r sinucos2 v− ru cosu) = λ2W sinucosv, (4.4)

−2H(−rv cos2 v+ r sinvcosv) = λ3W sinv,
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where

W = r
√
(r2 + r2

v )cos2 v+ r2
u

We distinguish two special cases according to whether this surface satisfying the condition given by (4.4)
Case 1. For the first case we suppose that the radius function r(u,v) given with the parameter u. So, if the function r = r(u) then the mean
curvature of the surface M and the conditions of ∆xi = λixi are

H =−
cosv

(
3r2

u +2r2 cos2 v− rruu
)

2
(
r2 cos2 v+ r2

u
)3/2

,

and

−2H(r cosucos2 v+ ru sinu) = λ1W cosucosv, (4.5)

−2H(r sinucos2 v− ru cosu) = λ2W sinucosv, (4.6)

−2H(r cosv) = λ3W. (4.7)

Furthermore, we explore the classification of the surface M given with the parametrization (3.1) satisfying the equation (2.1);

1) Let λ3 = 0 then the equation (4.5) gives rise to H = 0 which means that the surface is minimal. We get also by the equations (4.5) and
(4.6) λ1 = λ2 = 0.

2) Let λ3 6= 0, so H 6= 0. We get four cases for these condition.

i) If λ1 = 0 and λ2 6= 0 then H 6= 0. So, from (4.5) we have

r cosucos2 v+ ru sinu = 0. (4.8)

The solution of the differential equation (4.8) we obtain the radius function

r(u) =
C1√

(sinu)cos2v+1
,

where C1 is a real constant.
ii) If λ1 6= 0 and λ2 = 0 then H 6= 0. So, from (4.6) we have

r sinucos2 v− ru cosu = 0. (4.9)

The solution of the differential equation (4.9) we obtain the radius function

r(u) =
C2√

cos(u)cos2v+1

where C2 is a real constant.
iii) If λ1 6= 0 and λ2 6= 0. Equations (4.5) and (4.6) imply that:

r cosucos2 v+ ru sinu 6= 0,

r sinucos2 v− ru cosu 6= 0.

Also, the Equations (4.5) and (4.7) imply that,

(r cosucos2 v+ ru sinu)λ3 = λ1r cosucos2 v, (4.10)

and the Equations (4.6) and (4.7) imply that;

(r sinucos2 v− ru cosu)λ3 = λ2r sinucos2 v. (4.11)

So, the solution of the differential equations (4.10) and (4.11) we obtain the radius function

r(u) =C3

√
cos(u)

(cos(2v)+1)(λ2−λ3)

λ3

or

r(u) =C4

√
sin(u)

(cos(2v)+1)(λ1−λ3)

λ3

where C3, C4 are real constants.
iv) If λ1 = 0 and λ2 = 0 then from the equations (4.5) and (4.6) we get,

r cosucos2 v+ ru sinu = 0,

r sinucos2 v− ru cosu = 0

The solution of these differential equations we obtain H = 0. So this is a contradiction.
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Case 2. For the second case we suppose that the radius function r(u,v) given with the parameter v. So, if the function r = r(v) then the mean
curvature of the surface M and the conditions of ∆xi = λixi are

H =−
(rv sinv+ r cosv)

(
r2 + r2

v
)
+ r cosv

(
2r2

v + r2− rrvv
)

2r cosv
(
r2 + r2

v
)3/2

and

−2H(rv sinv+ r cosv) = λ1W (4.12)

−2H(rv sinv+ r cosv) = λ2W (4.13)

−2H(−rv cos2 v+ r sinvcosv) = λ3W sinv (4.14)

Furthermore, we explore the classification of the surface M given with the parametrization (3.1) satisfying (2.1);

1) Let λ3 = 0. We get two cases for these condition. i) If λ3 = 0 then the equation (4.12) gives rise to H = 0 which means that the surface
is minimal. We get also by the equations (4.12) and (4.13) λ1 = λ2 = 0.
ii) If −rv cos2 v+ r sinvcosv = 0 then the solution of this differential equation we obtain the radius function

r(v) =
C5

cosv
(4.15)

where C5 is a real constant. For the radius function given with (4.15) one can get H 6= 0, so we obtain λ1 = λ2 =
1

C2
5

.

2) Let λ3 6= 0, so H 6= 0 and (−rv cos2 v+ r sinvcosv) 6= 0. For the equations (4.12) and (4.13) we get λ1 = λ2 three cases for these
condition.
i) If λ1 = 0 and λ2 6= 0 (or λ1 6= 0 and λ2 = 0). So, from (4.12) and (4.13) we have

rv sinv+ r cosv = 0. (4.16)

The solution of the differential equation (4.16) we obtain the radius function

r(v) =
C6

sinv
,

where C6 is a real constant. For this radius function we get H = 0, so this is a contradiction.
ii)If λ1 = λ2 6= 0 Then the Equations (4.12) and (4.14) imply that,

λ3 sinv(rv sinv+ r cosv) = λ1 cosv(−rv cosv+ r sinv), (4.17)

So, the solution of the differential equation (4.17) we obtain the radius function

r(v) =

√
2C7√

λ3(1− cos(2v))+λ1(1+ cos(2v))
.

iii) If λ1 = λ2 = 0 then from the equations (4.12) we get H = 0 or rv sinv+ r cosv = 0.So this is a contradiction.

Theorem 4.1. Let M be surface given with the parametrization (3.1) in E3. If the radius function r(u,v) given with the parameter u, then M
satisfies ∆ri = λiri, (i = 1,2,3) if and only if the following statements hold:
i) M has zero mean curvature,
ii) The radius function r = r(u) is

r(u) =
C1√

(sinu)cos2v+1
or r(u) =

C2√
cos(u)cos2v+1

,

iii) The radius function r = r(u) is

r(u) =C3

√
cos(u)

(cos(2v)+1)(λ2−λ3)

λ3 or r(u) =C4

√
sin(u)

(cos(2v)+1)(λ1−λ3)

λ3 .

Theorem 4.2. Let M be surface given with the parametrization (3.1) in E3. If the radius function r(u,v) given with the parameter v, then M
satisfies ∆ri = λiri, (i = 1,2,3) if and only if the following statements hold:
i) M has zero mean curvature,
ii) The radius function r = r(v) is

r(v) =
C5

cosv
or r(v) =

C6

sinv
,

iii) The radius function r = r(v) is

r(v) =

√
2C7√

λ3(1− cos(2v))+λ1(1+ cos(2v))
.
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Using the similar way we obtain the conchoidal surface Md of M at distance d given with the parametrization (3.2) satisfying the condition
∆xi = λixi.

Theorem 4.3. Let Md be conchodial surface given with the parametrization (3.2) in E3. If the radius function r(u,v) given with the
parameter u, then Md satisfies ∆ri = λiri, (i = 1,2,3) if and only if the following statements hold:
i) Md has zero mean curvature,
ii) The radius function r = r(u) is

r(u) =±d +
C1√

(sinu)cos2v+1
or r(u) =±d +

C2√
cos(u)cos2v+1

,

iii) The radius function r = r(u) is

r(u) =±d +C3

√
cos(u)

(cos(2v)+1)(λ2−λ3)

λ3 or r(u) =±d +C4

√
sin(u)

(cos(2v)+1)(λ1−λ3)

λ3 .

Theorem 4.4. Let Md be conchodial surface given with the parametrization (3.2) in E3. If the radius function r(u,v) given with the
parameter v, then Md satisfies ∆ri = λiri, (i = 1,2,3) if and only if the following statements hold:
i) Md has zero mean curvature,
ii) The radius function r = r(v) is

r(v) =±d +
C5

cosv
or r(v) =±d +

C6

sinv
,

iii) The radius function r = r(v) is

r(v) =±d +

√
2C7√

λ3(1− cos(2v))+λ1(1+ cos(2v))
.

5. Conclusion

In this study, we study the conchodial surfaces in 3-dimensional Euclidean space with the condition ∆xi = λixi where ∆ denotes the Laplace
operator with respect to the first fundamental form. We give a result for this condition for the special cases of radius function r(u,v). In
future studies, this problem can be done for the general solution for radius function. It is possible to consider these kind of surfaces in the
other spaces or higher dimensional Euclidean spaces.
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Abstract

This work aims to study the existing results of mild solutions for a semi-linear Atangana-
Baleanu-Caputo fractional differential equation with order 0 < θ < 1 in an arbitrary Banach
space. We rely on some arguments to present the mild solution to our problem in terms
of an θ -resolvent family. Then we study the existence of this mild solution by using
Krasnoselskii’s fixed point theorem. Finally, we give an example to prove our results.

1. Introduction

Fractional calculus has been developed intensively since the first conference on this area in 1974 [1]. Then, it gained popularity and
significant consideration mainly due to the numerous applications in various fields of applied sciences and engineering. Its purpose is to
extend fractional order derivation or integration using non-integer orders. the fractional calculus has been used in mechanics since 1930
and in electrochemistry since 1960. There are some examples of current applications of fractional calculus: fluid circulation, chemical
physics, probability and statistics, viscoelasticity, dynamic processes in structures, optics and processing of signals, etc. See [2]- [5]. several
mathematicians and physicists studied differential operators and fractional order systems. In [6], the authors studied the existence and
uniqueness results to the linear and nonlinear proposed fractional differential equations involving the Atangana–Baleanu fractional derivative.
In [7], optimal control for a fractional-order nonlinear mathematical model of cancer treatment is presented and the fractional derivative is
defined in the Atangana–Baleanu Caputo sense. The advantage of the ABC-fractional derivative is that it is non-local and has a non-singular
kernel. Therefore, it has many applications to demonstrate different problems including the fractional epidemiological model [8], such
as, free motion of a coupled oscillator [9], coronavirus and smoking models [10, 11], etc. For more details on the theory of nonlinear
ABC-fractional derivative. See [12]- [16].
In what follows, we discuss the existence of the mild solution of the following Atangana-Baleanu-Caputo fractional semi-linear differential
equation


ABCDθ

0+

(
w(t)−Q(t,AB Iθ

0+w(t))
)
= A

(
w(t)−Q(t,AB Iθ

0+w(t))
)
+Y (t,AB Iθ

0+w(t), t ∈ [0,T ]

w(0) = w0, w0 ∈ R,
(1.1)

where 0 < θ < 1, ABCDθ
0+(.) is the Atangana-Baleanu-Caputo fractional derivative of order θ , A : D(A) ⊂ X → X is the infinitesimal

generator of an θ -resolvent family {Tθ (t)}t≥0, {Sθ (t)}t≥0 is solution operator defined on the Banach space (X ,‖ . ‖), Q ∈C(J×X ,X), and
Y ∈C(J×X ,X).
To the best of our knowledge, this is the first time that the problem (1.1) is being studied.
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2. Preliminaries

This section will be devoted to some definitions and lemmas on which we base ourselves to study our problem.
Let J = [0,T ] be a finite interval of R. We denote by C(J,R) the Banach space of continuous functions with the norm ‖Ψ‖= max{|Ψ(t)| :
t ∈ J}.

Definition 2.1. [16]. Let m ∈ [1,∞) and B be an open subset of R, the Sobolev space Hm(B) is defined as

Hm(B) =
{

Φ ∈ L2(B) : Dδ
Φ ∈ L2(B),∀|δ | ≤ m

}
.

Lemma 2.2. (Holder Inequality). Let Λ⊂ R and p,q≥ 1 with 1
p +

1
q = 1. If Φ ∈ Lp(Λ,R), ϕ ∈ Lq(Λ,R), then Φϕ ∈ L1(Λ,R), and

‖Φϕ ‖L1(Λ,R)≤‖Φ ‖Lp(Λ,R)‖ ϕ ‖Lq(Λ,R) .

Definition 2.3. [17]. The left-sided Riemann-Liouville fractional integral of order n−1 < θ < n of a function Φ, such that n = [θ ]+1 is
given by

Iθ

0+Φ(t) =
1

Γ(θ)

∫ t

0
(t− s)θ−1

Φ(s)ds,

where Γ(.) is the Euler gamma function defined by

Γ(z) =
∫ +∞

0
e−t tz−1dt,z > 0.

Definition 2.4. [6]. We define the left-sided Atangana-Baleanu fractional integral of order 0 < θ < 1 of a function Φ, as follows

ABIθ

0+Φ(t) =
1−θ

B(θ)
Φ(t)+

θ

B(θ)Γ(θ)

∫ t

0
(t− s)θ−1

Φ(s)ds,

where B(β ) = 1−β + β

Γ(β )
is a normalization function such that B(0) = B(1) = 1.

Definition 2.5. [6]. Let 0 < θ < 1 and Φ ∈ H1(0,T ). We define the left-sided Atangana-Baleanu fractional derivative of Φ of order θ in
Riemann-Liouville sense as follows

ABRDθ
0+Φ(t) =

B(θ)
1−θ

d
dt

∫ t

0
Eθ

[
−γ(t− s)θ

]
Φ(s)ds,

where γ = θ

1−θ
and Eθ is one parameter Mittag-Leffler function defined by [18].

Eθ (λ ) =
n=∞

∑
n=0

λ n

Γ(nθ +1)
.

Definition 2.6. [19]. Let 0 < θ < 1 and Φ ∈ H1(0,T ). We define the left-sided Atangana-Baleanu-Caputo fractional derivative of the
function Φ of order θ as follows

ABCDθ
0+Φ(t) =

B(θ)
1−θ

∫ t

0
Eθ (−γ(t− s)θ )Φ

′
(s)ds.

Lemma 2.7. [19]. Let 0 < θ < 1, then we have
ABIθ

0+(
ABCDθ

0+Φ(t)) = Φ(t)−Φ(0).

Definition 2.8. [20]. We denote by ρ(A) = {β ∈ C;(β −A) : D(A)→ X is bi jective} the resolvent set. The resolvent R(β ,A) :=
(β −A)−1, β ∈ ρ(A), is a bounded operator on X.

Definition 2.9. [20]. We say that A is a sectorial operator if the following conditions satisfies

i) A is linear and closed operator.
ii) there exist constants M > 0, v ∈ R, and β ∈ [ π

2 ,π], such that
Σ(β ,v) = {λ ∈ C;λ 6= v, |λ − v|< β} ⊂ ρ(A)

iii) ‖ R(λ ,A) ‖≤ M
|λ−v| , λ ∈ Σ(β ,v).

Theorem 2.10. [21]. Let S be a convex, closed, and nonempty subset of the Banach algebra X. Suppose that P,F : S→ X are two operators
such that:

a) Pw+Fv ∈ S for all w,v ∈ S.
b) P is a contraction on S.
c) F completely continuous on S.

Then, the operator w = Pw+Fw has a solution in S.
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3. Main Results

In this section, we give and prove an existence theorem of the mild solution to the ABC fractional semi-linear differential equation (1.1).
The first, we give the following remark on which we will rely to prove our major results.

Remark 3.1. To give the mild solution of the problem (1.1), we rely on the same arguments that the authors used in [22], [23] to determine
the solution to the following Cauchy problem

ABCDθ
t u(t) = Au(t)+g(t), t ∈ [0,T ],0 < θ < 1

u(0) = u0 ∈ X .
(3.1)

The problem (3.1) has a mild solution given by

u(t) = χTθ (t)u0 +
χϕ(1−θ)

B(θ)Γ(θ)

∫ t

0
(t− s)θ−1g(s)ds+

θ χ2

B(θ)

∫ t

0
Sθ (t− s)g(s)ds,

where χ and ϕ are linear operators such that:
χ = ζ (ζ I−A)−1 and ϕ =−γA(ζ I−A)−1 with ζ =

B(θ)
1−θ

, γ = θ

1−θ
, and

Tθ (t) = Eθ (−ϕtθ ) =
1

2πi

∫
Γ

etτ
τ
(θ−1)(τθ I−ϕ)−1dτ

Sθ (t) = tθ−1Eθ ,θ (−ϕtθ ) =
1

2πi

∫
Γ

etτ (τθ I−ϕ)−1dτ,

where Γ is a certain path lying on Σ(β ,v) and g ∈C(J,X). See [24].

Based on the above arguments, we give the following definition

Definition 3.2. Let Q ∈C(J×X ,X), J = [0,T ] and Y ∈C(J×X ,X). Then the problem (1.1) admits a mild solution given by

w(t) = χTθ (t)(w0−Q(0,AB Iθ w0))+
χϕ(1−θ)

B(θ)Γ(θ)

∫ t

0
(t− s)θ−1Y (s,AB Iθ w(s))ds

+
θ χ2

B(θ)

∫ t

0
Sθ (t− s)Y (s,AB Iθ w(s))ds,

where χ = ζ (ζ I−A)−1 and ϕ =−γA(ζ I−A)−1 with ζ =
B(θ)
1−θ

and γ = θ

1−θ
.

Lemma 3.3. [22]. If A ∈ Aθ (β0,v0) then ‖ Tθ (t) ‖≤Metv and ‖ Sθ (t) ‖≤Cetv(1+ tθ−1), for all t > 0, v > v0.

According to the Lemma above if we set L1 = supt≥0 ‖ Tθ (t) ‖ and L2 = supt≥0 Cetv(1+tθ−1). We get ‖ Tθ (t) ‖≤ L1 and ‖ Sθ (t) ‖≤ tθ−1L2.
For more details see [22].
Next, we introduce the following assumptions:
(A1) Both operators Tθ (t) and Sθ (t) are compact operators, ∀t ∈ J.
(A2) There is a constant δ such that for each p,q ∈ X , and t ∈ J we have: |Y (t, p)−Y (t,q)| ≤ δ |p−q|.
(A3) The function Y (t, .) : X → X is continuous, for all t ∈ J and the function Y (., p) : X → X is strongly measurable, ∀p ∈ X .
(A4) There exists a constant α ∈ (0,θ ] and h ∈ L

1
α (J,R+), for all p ∈ X , and t ∈ J we have

|Y (t, p)| ≤ h(t).

Define S = {v ∈ X ,‖v‖ ≤ R}, such that:

R =‖ χ ‖

(
L1(|w0|+ |Q(0,AB Iθ w0)|)+(

‖ ϕ ‖ (1−θ)

|Γ(θ)|
+L2 ‖ χ ‖) T (1+C)(1−α)

|B(θ)|(1+C)1−α
‖ h ‖

L
1
α [0,t]

)
,

where C = θ−1
1−α
∈ (−1,0).

It is easy to see that S is a convex, closed, and nonempty subset of the Banach algebra X. Define the operators P : S→ X and F : S→ X , for
each t ∈ J by:

Pw(t) = χTθ (t)(w0−Q(0,AB Iθ w0))+
χϕ(1−θ)

B(θ)Γ(θ)

∫ t

0
(t− s)θ−1Y (s,AB Iθ w(s))ds.

Fw(t) =
θ χ2

B(θ)

∫ t

0
Sθ (t− s)Y (s,AB Iθ w(s))ds.

We consider the mapping G : S→ X defined by

Gw(t) = Pw(t)+Fw(t), t ∈ J.
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Theorem 3.4. If assumptions (A1)-(A4) hold. Then, the fractional semi-linear differential equation (1.1) admits a mild solution w ∈ X
provided:

‖ χ ‖‖ ϕ ‖ (1−θ)T θ

|B(θ)||Γ(θ +1)|
δΘ < 1, (3.2)

where

Θ =
(1−θ)

B(θ)
+

T θ

Γ(θ +1)B(θ)
. (3.3)

Proof. To prove the Theorem 3.4 is equivalent to proving that the mapping G has a fixed point, we show that the operators P and F satisfy
the conditions of the Theorem 2.10.
Before proceeding to the proof of the Theorem 3.4, we will need the following lemma

Lemma 3.5. If there exists a constant α ∈ (0,θ ] and h ∈ L
1
α ([0,T ],R+) such that |Y (t, p)| ≤ h(t) for all p ∈ X, and almost all t ∈ [0,T ],

we have the following inequality∫ t

0
|(t− s)θ−1Y (s,AB Iθ w(s))|ds≤ T (1+C)(1−α)

(1+C)1−α
‖ h ‖

L
1
α [0,t]

.

Proof. Assuming that all the conditions of the above lemma are satisfied. By a direct calculation, we get (t− s)θ−1 ∈ L
1

1−α [0, t] for t ∈ J and
α ∈ (0,θ ]. Then by using Lemma 2.2, we have∫ t

0
|(t− s)θ−1Y (s,AB Iθ w(s))|ds≤

∫ t

0
|(t− s)θ−1||h(s)|ds

≤
(∫ t

0
(t− s)

θ−1
1−α ds

)1−α (∫ t

0
|h(s)|

1
α ds
)α

≤ T (1+C)(1−α)

(1+C)1−α
‖ h ‖

L
1
α [0,t]

,

where C = θ−1
1−α
∈ (−1,0).

We now move on to continue the proof of the theorem, then the proof is as follows:
Step 1:
Let w,v ∈ S, then for all t ∈ [0,T ] according to the assumptions A1, A4, Lemma 3.3, and the Lemma 3.5, we have:

|(Pw(t)+Fv(t))|

=

∣∣∣∣χTθ (t)(w0−Q(0,AB Iθ w0))+
χϕ(1−θ)

B(θ)Γ(θ)

∫ t

0
(t− s)θ−1Y (s,AB Iθ w(s))ds+

θ χ2

B(θ)

∫ t

0
Sθ (t− s)Y (s,AB Iθ v(s))ds

∣∣∣∣
≤‖ χ ‖‖ Tθ (t) ‖ (|w0|+ |Q(0,AB Iθ w0)|)+

‖ χ ‖‖ ϕ ‖ (1−θ)

|B(θ)||Γ(θ)|

∫ t

0
|(t− s)θ−1||Y (s,AB Iθ w(s))|ds

+
θ ‖ χ2 ‖
|B(θ)|

∫ t

0
‖ Sθ (t− s) ‖ |Y (s,AB Iθ v(s))|ds

≤‖ χ ‖ L1(|w0|+ |Q(0,AB Iθ w0)|)+
‖ χ ‖‖ ϕ ‖ (1−θ)

|B(θ)||Γ(θ)|

∫ t

0
|(t− s)θ−1||Y (s,AB Iθ w(s))|ds+

‖ χ2 ‖
|B(θ)|

L2

∫ t

0
|(t− s)θ−1||Y (s,AB Iθ v(s))|ds

≤‖ χ ‖ L1(|w0|+ |Q(0,AB Iθ w0)|)+
(
‖ χ ‖‖ ϕ ‖ (1−θ)

|B(θ)||Γ(θ)|
+

L2 ‖ χ ‖2

|B(θ)|

)
T (1+C)(1−α)

(1+C)1−α
‖ h ‖

L
1
α [0,t]

≤‖ χ ‖

{
L1(|w0|+ |Q(0,AB Iθ w0)|)+

(
‖ ϕ ‖ (1−θ)

|Γ(θ)|
+L2 ‖ χ ‖

)
T (1+C)(1−α)

|B(θ)|(1+C)1−α
‖ h ‖

L
1
α [0,t]

}
,

this gives:

‖ (Pw(t)+Fv(t)) ‖≤ R,

this implies, (Pw(t)+Fv(t)) ∈ S for all w,v ∈ S.
Step 2: P is a contraction on S:
Let w,v ∈ S, then from assumption (A2), we have

|Pw(t)−Pv(t))|=
∣∣∣∣χϕ(1−θ)

B(θ)Γ(θ)

∫ t

0
(t− s)θ−1Y (s,AB Iθ w(s))ds− χϕ(1−θ)

B(θ)Γ(θ)

∫ t

0
(t− s)θ−1Y (s,AB Iθ v(s))ds

∣∣∣∣
≤ ‖ χ ‖‖ ϕ ‖ (1−θ)

|B(θ)||Γ(θ)|

∫ t

0
(t− s)θ−1|Y (s,AB Iθ w(s))−Y (s,AB Iθ v(s))|ds

≤ ‖ χ ‖‖ ϕ ‖ (1−θ)

|B(θ)||Γ(θ)|
δ

∫ t

0
(t− s)θ−1|ABIθ w(s))−AB Iθ v(s))|ds. (3.4)
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We have

∣∣∣ABIθ w(s))−AB Iθ v(s))
∣∣∣= (1−θ)

B(θ)
|w(s)− v(s)|+ θ

B(θ)

RL
Iθ |w(s)− v(s)|

≤ (1−θ)

B(θ)
|w(s)− v(s)|+ 1

Γ(θ)B(θ)

∫ s

0
(s− τ)θ−1|w(τ)− v(τ)|dτ

≤‖ w− v ‖
(
(1−θ)

B(θ)
+

1
Γ(θ)B(θ)

∫ s

0
(s− τ)θ−1dτ

)
≤‖ w− v ‖

(
(1−θ)

B(θ)
+

T θ

Γ(θ +1)B(θ)

)
≤‖ w− v ‖Θ,

where Θ is given by (3.3).
Therefore

(3.4)≤ ‖ χ ‖‖ ϕ ‖ (1−θ)

|B(θ)||Γ(θ)|
δΘ ‖ w− v ‖

∫ t

0
(t− s)θ−1

≤ ‖ χ ‖‖ ϕ ‖ (1−θ)T θ

|B(θ)||Γ(θ +1)|
δΘ ‖ w− v ‖,

this implies that

‖ Pw(t)−Pv(t)) ‖≤ ‖ χ ‖‖ ϕ ‖ (1−θ)T θ

|B(θ)||Γ(θ +1)|
δΘ ‖ w− v ‖ .

Then, according to the condition (3.2) the operator P is a contraction on S.
Step 3: F is completely continuous:
i) F is continuous.
Let (wn)n∈N be a sequence of S such that wn→ w as n→ ∞ in S. We prove that Fwn→ Fw as n→ ∞ in S. By using Lemma 3.3, we get

|Fwn(t)−Fw(t)|=
∣∣∣∣ θ χ2

B(θ)

∫ t

0
Sθ (t− s)Y (s,AB Iθ wn(s))ds− θ χ2

B(θ)

∫ t

0
Sθ (t− s)Y (s,AB Iθ w(s))ds

∣∣∣∣
≤ θ ‖ χ2 ‖
|B(θ)|

∫ t

0
‖ Sθ (t− s) ‖ |Y (s,AB Iθ wn(s))−Y (s,AB Iθ w(s))|ds

≤ θ ‖ χ2 ‖
|B(θ)|

L2

∫ t

0
(t− s)θ−1|Y (s,AB Iθ wn(s))−Y (s,AB Iθ w(s))|ds

≤ ‖ χ2 ‖
|B(θ)|

T θ L2 sup
s∈[0,T ]

|Y (s,AB Iθ wn(s))−Y (s,AB Iθ w(s))|ds.

By using the assumption A3 and Lebesgue dominated convergence theorem, we get:
‖Fwn−Fw‖→ 0 as n→ ∞.
This implies that the operator F : S→ X is continuous.
ii) F(S) = {Fw : w ∈ S} is uniformly bounded.
Using assumptions (A1) and (A4), Lemma 3.3, and the Lemma 3.5, for any w ∈ S and t ∈ [0,T ], we have:

|Fw(t)|=
∣∣∣∣ θ χ2

B(θ)

∫ t

0
Sθ (t− s)Y (s,AB Iθ w(s))ds

∣∣∣∣
≤ ‖ χ2 ‖
|B(θ)|

L2

∫ t

0
|(t− s)θ−1||Y (s,AB Iθ v(s))|ds

≤ L2 ‖ χ ‖2 T (1+C)(1−α)

|B(θ)|(1+C)1−α
‖ h ‖

L
1
α [0,t]

.

Therefore,

‖ Fw(t) ‖≤ L2 ‖ χ ‖2 T (1+C)(1−α)

|B(θ)|(1+C)1−α
‖ h ‖

L
1
α [0,t]

,

this proves that F(S) = {Fw : w ∈ S} is uniformly bounded.
iii) F(S) is equicontinuous
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Let t1, t2 ∈ J such that t1 < t2 and w ∈ S, then using assumptions (A1) and (A2), we have

|Fw(t2)−Fw(t1)|

=

∣∣∣∣ θ χ2

B(θ)

∫ t2

0
Sθ (t2− s)Y (s,AB Iθ w(s))ds− θ χ2

B(θ)

∫ t1

0
Sθ (t1− s)Y (s,AB Iθ w(s))ds

∣∣∣∣
≤ ‖ χ2 ‖
|B(θ)|

∣∣∣∣∫ t2

0
|Sθ (t2− s)||Y (s,AB Iθ w(s))|ds−

∫ t1

0
|Sθ (t1− s)||Y (s,AB Iθ w(s))|ds

∣∣∣∣
≤ ‖ χ2 ‖
|B(θ)|

L2

∣∣∣∣∫ t1

0
(t2− s)θ−1|Y (s,AB Iθ w(s))|ds+

∫ t2

t1
(t2− s)θ−1|Y (s,AB Iθ w(s))|ds−

∫ t1

0
(t1− s)θ−1|Y (s,AB Iθ w(s))|ds

∣∣∣∣
≤ ‖ χ2 ‖
|B(θ)|

L2

∣∣∣∣∫ t2

t1
(t2− s)θ−1|Y (s,AB Iθ w(s))|ds

∣∣∣∣+ ‖ χ2 ‖
|B(θ)|

L2
∣∣∫ t1

0 ((t2− s)θ−1− (t1− s)θ−1)|Y (s,AB Iθ w(s))|ds
∣∣

If we set

I =
∣∣∣∣∫ t2

t1
(t2− s)θ−1|Y (s,AB Iθ w(s))|ds

∣∣∣∣ ,

J =

∣∣∣∣∫ t1

0
((t2− s)θ−1− (t1− s)θ−1)|Y (s,AB Iθ w(s))|ds

∣∣∣∣ ,
and by using the arguments of lemma 3.5 we get

I =
∣∣∣∣∫ t2

t1
(t2− s)θ−1|Y (s,AB Iθ w(s))|ds

∣∣∣∣
≤ (t2− t1)(1+C)(1−α)

(1+C)1−α
‖ h ‖

L
1
α [0,t]

,

and

J =

∣∣∣∣∫ t1

0
((t2− s)θ−1− (t1− s)θ−1)|Y (s,AB Iθ w(s))|ds

∣∣∣∣
≤
∫ t1

0
((t1− s)θ−1− (t2− s)θ−1)|h(s)|ds

≤
(∫ t1

0
((t1− s)θ−1− (t2− s)θ−1)

1
1−α ds

)1−α (∫ t1

0
|h(s)|

1
α ds
)α

≤
(∫ t1

0
((t1− s)C− (t2− s)C)ds

)1−α

‖ h ‖
L

1
α1 [0,t]

≤

(
t1+C
1 − t1+C

2 +(t2− t1)1+C
)1−α1

(1+C)1−α1
‖ h ‖

L
1
α [0,t]

≤ (t2− t1)(1+C)(1−α)

(1+C)1−α
‖ h ‖

L
1
α [0,t]

.

Then, we have

|Fw(t2)−Fw(t1)| ≤
‖ χ2 ‖
|B(θ)|

L2(I + J)

≤ 2L2 ‖ χ2 ‖ (t2− t1)(1+C)(1−α)

|B(θ)|(1+C)1−α
‖ h ‖

L
1
α [0,t]

.

Therefore, if |t1− t2| → 0 then |Fw(t2)−Fw(t1)| → 0, this implies that F(S) is equicontinuous.
According to parts (ii), (iii), and Arzela-Ascoli theorem, it is deduced that F(S) is relatively compact. And according to the part (i) deduce
that it is completely continuous.
According to steps 1, 2, and 3, we notice that all the conditions of Theorem 2.10 hold. Then operator G admits a fixed point in S. This proves
that the problem (1.1) admits a mild solution in C(J,X).

4. Example

This section is devoted to an illustrative example that shows the results of this work.

Let X = L2([0,1]), w(t) = w(., t), Y (t,AB I
1
2

0+w(., t)) = 1
19 (1+ cos(ABI

1
2

0+w(., t)), Q(t,AB I
1
2

0+w(., t)) = 1+ tABI
1
2

0+w(., t)), J = [0,1].
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We Consider the following problem

ABC∂
1
2

t

(
w(x, t)− (1+ tABI

1
2

0+w(x, t))
)
= ∆

(
w(x, t)− (1+ tABI

1
2

0+w(x, t))
)

+ 1
19 (1+ cos(ABI

1
2

0+w(x, t)), t ∈ [0,1],x ∈ [0,1]

w(0, t) = w(1, t) = 0, t ∈ [0,1]

w(x,0) = w0(x), x ∈ [0,1],

(4.1)

where ABC∂
1
2

t is the ABC-fractional partial derivative of order 1
2 , and A : D(A)⊂ X −→ X be an operator defined by

D(A) := H2(0,1)∩H1(0,1) and Au = ∆u.

The operator A generates a uniformly bounded semi-group T (t)t≥0 in X. See [20].

Let v(t) =AB I
1
2

0+w(., t), then Y (t,v(t)) = 1
19 (1+ cos(v(t)). It is clear that

|Y (t,u(t))−Y (t,v(t))| ≤ 1
19 |u− v| and |Y (t,u(t))| ≤ 1. We take h(t) = 1, (‖ χ ‖,‖ ϕ ‖≤ 1), and δ = 1

19 . then the assumptions A2, A3 and
A4 are satisfied.
Now we check for condition (3.2). We have T = 1, θ = 1

2 , then after some calculations, we find

‖ χ ‖‖ ϕ ‖ (1−θ)T θ

|B(θ)||Γ(θ1 +1)|
δΘ≤

1− 1
2

19B( 1
2 )Γ(

1
2 +1)

(
1− 1

2

B( 1
2 )

+
1

B( 1
2 )Γ(

1
2 +1)

)

≤ 1
19B( 1

2 )Γ(
3
2 )

(
1

B( 1
2 )

+
1

B( 1
2 )Γ(

3
2 )

)
' 0,114 < 1.

Then from the results above, deduce that the ABC-fractional semi-linear differential problem (4.1) has a mild solution w in C([0,1]× [0,1],X).

5. Conclusion

In this paper, we have studied the existence of the mild solutions of a fractional semi-linear differential equation involving Atangana-Baleanu-
Caputo fractional derivative with order 0 < θ < 1 by using the Krasnoselskii fixed point theorem. In the end, an illustrative example is
presented to demonstrate our results.
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