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Are Chaotic Attractors just a Mathematical Curiosity or
Do They Contribute to the Advancement of Science?
René Lozi ID ∗,1

∗LJAD, CNRS, Université Côte d’Azur, F-06000 Nice, France.

ABSTRACT Since the seminal work of Henri Poincaré on the three-body problem, and more recent research
dating back to the second half of the 20th century on chaotic dynamical systems, many applications have
emerged in different domains (economics, electronic, cryptography, physics, etc). We try to describe the
evolution of the last 50 years on the subject and to find out whether applications have compromised the purity
and beauty of theoretical research.

KEYWORDS

Chaotic attrac-
tors
Optimization
Cryptography
Memristor
Economy

INTRODUCTION

Since the very beginning of their appearance in the history of
humanity, research in mathematics has been guided by two
different currents: theory and applications or in other words
by beauty and utility. Around 5,000 years ago people in the
Mesopotamia and Egypt began using arithmetic, algebra and
geometry for commerce, trade, taxation and social activities.
Later, in the 6th century BC, Greeks introduced mathematics as
a "demonstrative discipline" (Heath 1931) (see (Høyrup J. 2011)
for comparison between both approaches). This double current of
research still functions today in competition-cooperation mode.

I had the immense privilege of being student of Jean Alexandre
Dieudonné, one of the founding members of the Bourbaki group.
For him, the only need to research mathematics for humanity was
"for the honor of the human spirit" (as the great mathematician
Karl Gustav Jacobi 1804-1851 said before him).

As a young student, I was imbued with this idea, but I was also
attracted by research in physics and ultimately my university ca-
reer was that of professor of numerical analysis. The subject of my
doctoral thesis concerned the numerical analysis of bifurcations,
which quickly led me to study chaotic dynamic systems from
both aspects: theory and application. I was fortunate to see the
birth of a new field of research in mathematics in the mid-1970s,
that of chaotic attractors. I had the privilege of inventing one
that, surprisingly, is still the subject of intensive research 50 years

Manuscript received: 28 September 2023,
Accepted: 28 September 2023.

1Rene.LOZI@univ-cotedazur.fr (Corresponding author)

later. This is the reason why I often ask myself the question of the
place of these attractors not only in mathematics, but also for the
advancement of science.

It is widely accepted that the beginning of modern research on
nonlinear dynamical systems is due to the initial work of Henri
Poincaré on the three-body problem. Even if a real astronomical
problem (will the Earth continue to orbit around the sun forever?)
is at the origin of his reflection, no practical application of his
"Méthodes nouvelles de la mécanique céleste" has guided his mind.

The "butterfly effect" reveled by Edward Lorenz in 1963
(Lorenz, E. N. 1963) and the "sexier" word "chaos" coined by James
A. Yorke in 1975 (Li, T. Y. and Yorke, J. A. 1975) have brought
global awareness of these concepts often not actually understood
by the public. However, it is only at the beginning of 90’ that
the applications of chaotic properties of dynamical systems were
introduced with the pioneering idea of synchronization of two
chaotic attractors of Louis M. Pecora and Thomas L. Carroll
(Pecora, L. M. and Carroll, T. L. 1990). Such concept was soon
used (and improved) to transmit encrypted messages.

Since then, many applications have emerged in electronics
(Chua circuit and memristors), optimization for meta-heuristic
algorithms (particle swarm optimization (PSO), differential
evolution (DE), Self-Organizing Migrating Algorithm (SOMA),...),
cryptography based chaos, generation of pseudo-random number,
economy, etc.
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Have these applications compromised the purity and beauty of
theoretical research? We attempt to describe the evolution of the
last 50 years on the subject from the perspective of this question.

Figure 1 Example of Julia set.

THE DAWN OF CHAOTIC DYNAMICAL SYSTEMS

The study of the frighteningly complicated solutions discovered
by Poincaré continued quietly for almost 80 years in several
directions including conservative and dissipative dynamical
systems, differential equations and difference equations. We can
cite among many, the pioneer works of Pierre Fatou (1878-1929)
and Gaston Julia (1893-1978) related to one-dimensional maps
with a complex variable (see Figure 1), near a century ago; those of
Cristian Mira and Igor Gumowski, who began their mathematical
research in 1958 (the Gumowski-Mira map (1), see Figure 2), the
fractals introduced in 1967 by Benoît Mandelbrot (1924-2010)
(Mandelbrot 1967), and of course the continuous attractors of
Lorenz (1963) (2) (Figure 3) and Rössler (1976) (Rössler 1976)
(Rössler 2020), (3) (Figure 4); and the discrete attractors of Hénon
(1976), Belykh (1976) (Belykh, V. N. et al. 2023) and Lozi (1977),
among many others. xn+1 = f (xn) + byn with f (xn) = ax + 2(1 − a) x2

1+x2 ,

yn+1 = f (xn+1)− xn.
(1)

ẋ = σ(y − x),

ẏ = rx − y − xz,

ż = xy − bz.

(2)


ẋ1 = −x2 − x3,

ẋ2 = x1 + ax2,

ẋ3 = b + x3(x1 − c).

(3)

Figure 2 Gumowski-Mira attractor for a = 0.93333, b = 0.92768.

Figure 3 Lorenz attractor for σ = 10, b = 8/3 and r = 27.

Figure 4 Rössler attractor for a = 0.2, b = 0.2 and c = 5.7.
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The images produced by these fractal sets 40 years ago,
astonished not only mathematicians accustomed to geometric
figures drawn only with rulers and compas, but also the general
public. Heinz-Otto Peitgen published a book containing dozens of
figures generated by complex dynamic systems, coining the name
"computer art" (Peitgen, H.-O. and Richter, P. H. 2011). Today,
no one is surprised by the use of chaotic systems in cinema or
advertising.

FIRST APPLICATIONS OF CHAOTIC DYNAMICAL SYS-
TEMS

Electric circuits
In Japan the Hayashi’s School (with disciples like Ikeda, Ueda
and Kawakami) in the same period, were motivated by simulation
of chaotic dynamics by electric and electronic circuits. Chaotic
mappings were used as models of behavior of electric circuits (the
Ikeda map (4), see Figure 5).

xn+1 = 1 + u(xncos(tn)− ynsin(tn) with tn = 0.4 − 6
1+x2

n+y2
n

,

yn+1 = u(xnsin(tn) + yncos(tn).
(4)

In 1983, Leon Chua invented a very simple electric circuit
producing chaos (5). The advantage of this circuit (see Figure 6 a))
was that the variables of the mathematical equations corresponded
to voltage and current and could be viewed on the screen of an
oscilloscope (see Figure 6 (b)).


ẋ = α(y − Φ(x)),

ẏ2 = x − y + z,

ẋ3 = −βy.

(5)

with Φ(x) = m1x + 1
2 (m0 − m1) [|x + 1| − |x − 1|].

Figure 5 Ikeda attractor for u = 0.9.

Before 1990 computers were not as efficient as they are today.
It is why many experimenters still used analog electrical systems
to explore the behavior of chaotic maps. Rodriguez-Vasquez et

Figure 6 (a) Chua circuit. (b) Chua attractor on oscilloscope.

al. (Rodriguez-Vazquez, A. et al. 1987) in 1987 presented a special-
purpose analog computer made of switched-capacitor circuit for
analyzing chaos and bifurcation phenomena in nonlinear discrete
dynamical systems modeled by discrete maps. They published
results for four maps: the logistic map, a piece-wise linear map, the
Hénon map and the Lozi map (6). For this last map, they built a
rather complicated circuit realization (see Figure 25 of (Rodriguez-
Vazquez, A. et al. 1987)) and compared the attractor measured
from this circuit with the corresponding numerical simulation and
found good agreement between them. Even if this example is
not strictly speaking an application of the Lozi map for electric
purposes, it constitutes one of the first examples of solid realization.
However, these works cannot be considered as real applications.

La,b

 x

y

 =

 1 − a |x|+ y,

bx.

 (6)

Secure communications

It was the discovery of the synchronization of chaotic electrical
circuits by Pecora and Carroll (Pecora, L. M. and Carroll, T. L.
1990) in 1990 that sparked research into secure communications.

A first reported experimental secure communication system
via chaotic synchronization using two Chua’s circuits (one as
master and one as slave) was built two years after. However, the
signal recovered from this system which used the Chua circuit,
contained some inevitable noise that degraded the fidelity of the
original message. The system was soon improved in 1993, by
cascading the output of the receiver in the original system, into an
identical copy of this receiver (Lozi, R. and Chua, L. O. 1993) (see
Figure 7). This cascading process was extended to multiple copies
and analyzed using filtering theory (Lozi, R. 1995) in the case of a
multi-tone signal.

In 2000, Dmitriev et al. (Dmitriev, A .S. et al. 2000) discussed a
principle of multiple access, in satellite communication systems
or cellular telephony based on fine structure of chaotic attractors,
using control of special chaotic trajectories. They demonstrated
the experimental verification of the proposed approach for
asynchronous packet data transmission. In their approach they
considered that a chaotic attractor can be treated as a number
of countable sets of special trajectories: unstable periodic orbits
(UPO) and transitions between these orbits. Instability of the
periodic orbits and transient trajectories between them gives rise
to irregular chaotic behavior. They used the set of the unstable
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Figure 7 Cascade of Chua circuits.

"skeleton" periodic trajectories, constituting the structure of the
strange attractor (or a part of this set), as a "reservoir" of potential
codes for multi-user communication systems. They observed
that the multitude of the codes from a certain "reservoir" for
communications is practically infinite, i.e., the number of users
provided with individual code sets is unlimited.

As an example of the realization of their method, they consid-
ered twenty period-16 (UPO) of the Lozi map (6) for a = 1.7 and
b = 0.5. They displayed the switching between them in the Figure
2 of (Dmitriev, A .S. et al. 2000) and showed from this diagram that
the forming of all successive cycles (10-times repeating) is practi-
cally instantaneous. Improving their initial method, they remarked
that unstable periodic orbits can be utilized for not only encoding
the entire transmitted information, but also for attributing it to this
or that group of users, i.e., they play the role of "chaotic markers".
The idea to use the system of unstable periodic orbits as markers
was applied to the problem of asynchronous packet transmission
of data from several users through a single common communica-
tion channel. They concluded that the generating and controlling
of UPO may be realized in rather high frequency band, provided
in by modern digital methods.

Memristors

In 1971, L.O. Chua predicted the existence of a missing fourth
passive circuit element, in addition to the three classical ones:
resistor, inductor and capacitor (Chua 1971). He called this new
element "memristor" meaning it is a resistor with memory. It is
characterized by a nonlinear constitutive relationship between
the charge q and the flux φ. Such a physical device would not be
reported until 2008, when a physical model of a two-terminal hp
device behaving like a memristor was announced (Strukov, D. B.
et al. 2008) sparkling intense research with thousands of papers
published to date. A general Ohm’s law for theorizing this device
was published ten years ago (Abdelouahab, M.- S. et al. 2008).

Nowadays, discrete memristor model is known as a research
hotspot. Many researchers have devoted themselves to the
analysis of chaotic phenomena in discrete memristors. Recently,
hidden attractors have also been discovered in some discrete
memristors based maps (Zhang, L. P. et al. 2022). Wang et al.
(Wang, J. et al. 2022) included a discrete-time memristor to create a
memristive Lozi map. This new 3-D memristor-based Lozi map
was established by coupling a discrete memristor to the original
2-D Lozi map (6).


xn+1 = 1 − a |xn|+ yn,

yn+1 = bxn + kynsin(zn),

zn+1 = yn + zn,

(7)

where k is a real valued control parameter coupling gain between
the discrete-time memristor and the Lozi map. Since there are no
fixed points but hyperchaos can emerge, the memristor-based Lozi
map is a hidden hyperchaotic map.

For some specific control parameters, the 3-D memristor-based
Lozi map can show heterogeneous and homogeneous hidden
multistability. It should be noted that heterogeneous hidden
multistability implies the coexisting behavior of multiple hidden
attractors of different stability types, while homogeneous hidden
multistability indicates the coexisting behavior of multiple hidden
attractors of the same stability type but only in different dynamic
intervals. In addition to the coexistence of these heterogeneous
hidden attractors, the memristor-based Lozi map is very likely
to produce the coexistence of homogeneous hidden hyperchaotic
attractors, i.e., homogeneous hidden multistability. Therefore,
the homogeneous hidden hyperchaotic attractors from the 3-D
memristor based Lozi map can be robustly controlled by the
memristor’s initial conditions.

Additionally, Wang et al. implemented this memristor in a
digital circuit based on a high-performance micro-controller. They
physically obtained an image of the hyperchaotic hidden attractors
using a digital oscilloscope. Eventually, a digital platform was
exploited, and its experimental phase portraits were obtained to
confirm the numerical portraits.

APPLICATIONS IN OTHER DOMAINS

Optimization

Most engineering problems can be defined as optimization
problems, e.g. the finding of an optimal trajectory for a robot arm,
the optimal thickness of steel in pressure vessels, the optimal set of
parameters for controllers, optimal relations or fuzzy sets in fuzzy
models, etc. Solutions to such problems are usually difficult to
find their parameters which usually include variables of different
types, such as floating point or integer variables.

Applications of chaotic maps in the now flourishing field
of optimization took longer to appear than applications in
electrical devices. The main reason comes from a paradigm
shift in optimization algorithms: instead of using deterministic
algorithms like gradient method or the steepest descent which are
not efficient in high-dimensional problems optimization involving
hundred or thousand of variables, heuristic algorithms based
on an imitation of Darwin’s theory of the evolution of species,
were introduced a few decades ago. Such algorithms require easy
access to random or chaotic numbers. This is why interest has
only recently focused on chaotic attractors. It took three decades
for this paradigm shift in the study of the chaotic maps (logistic,
symmetric tent, Belykh, Hénon, Lozi, etc.). Instead of focusing on
the theoretical study of their mathematical properties or on finding
generalizations, Araujo and Coelho (Araujo and Coelho 2008) used
them as a core for particle swarm optimization (PSO) (see Figure 8).
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Figure 8 Geometric core of Particle Swarm Optimization (PSO) algorithm.

Optimization algorithms based on the chaos theory are
methodologies for searching optimal solutions that differ from any
of the existing traditional stochastic optimization techniques. Due
to the wandering of chaos, it can carry out overall searches in the
solution space at higher velocities when compared to stochastic
ergodic searches, which has its computing based on probabilities.
This remark has been done in the pioneering work of Caponetto et
al. (Caponetto, R. et al. 2003), who, four years before Araujo and
Coelho found that chaotic sequences improved the performance of
evolutionary algorithms.

PSO method was used for many purpose like the control
of the thermal-vacuum system used at the Brazilian National
Institute for Space Research (INPE). The original controller was
designed to control the temperature on the shroud (set of pipes)
of a chamber where satellites are tested (Marinke, R. et al. 2005).
This method was used by Pluhacek et al. (Pluhacek, M. et al. 2012)
who considered a Partial-Integral-Derivative (PID) controller for
a Direct-Current (DC) motor system in order to obtain optimal
settings. A DC motor is any of a class of rotary electrical motors
that converts direct current electrical energy into mechanical
energy. Proportional-Integral-Derivative (PID) control is the
most common control algorithm used in industry and has been
universally accepted in industrial control.

The optimization process involving PSO algorithm was applied
to minimize errors of the output transfer function that can indicate
the quality of regulation of such controller.

Another evolutionary optimization algorithm called Differen-
tial Evolution (DE) was used by Davendra et al. (Davendra, D.
et al. 2010) in the same goal, and by Senkerik et al. (Senkerik, R.
et al. 2013) in the task of optimization of batch chemical reactor
geometry.

In 2004, Zelinka in (Zelinka, I. 2004), introduced SOMA
(Self-Organizing Migrating Algorithm), a new class of stochastic
optimization algorithms. Evolutionary algorithms work on
populations of candidate solutions that are evolved in generations
(two parents create one new individual – the offspring) in
which only the best-suited – or fittest – individuals are likely to
survive. Instead SOMA which can also works on a population of
individuals, is based on the self-organizing behavior of groups
of individuals in a "social environment", e.g. a herd of animals
looking for food.

A group of animals such as wolves or other predators may
be a good example. If they are looking for food, they usually
cooperate and compete so that if one member of the group is
successful (it has found some food or shelter) then the other
animals of the group change their trajectories towards the
most successful member. If a member of this group is more
successful than the previous best one (is has found more food,
etc.) then again all members change their trajectories towards the
new successful member. It is repeated until all members meet
around one food source. This principle from the real world is of
course strongly simplified. Yet even so, it can be said it is that
competitive-cooperative behavior of intelligent agents that allows
SOMA to carry out very successful searches.

Recently Zelinka et al. used SOMA (Zelinka, I. et al. 2023) for
the design of quantum computing circuits for the future quantum
computers.

Of course, we cannot present, within the limited extend of this
editorial, all the dozens of algorithms using chaotic attractors (see
(Lozi, R. 2023) for a survey).
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Cryptography

Cryptography is the primary means of protecting communications
in the cyber world in which mankind lives today. Modern
technologies involve fast communication links between potentially
billions of devices via complex networks (satellite, mobile phone,
Internet, etc.). The primary concern posed by these complex
and tangled networks is their protection against passive and
active attacks that could compromise public safety and privacy.
Cryptography has been around for over two thousand years with
the famous Caesar code used by Emperor Julius Caesar. Today, the
properties of chaotic attractors are recognized as being the basis of
part of the methods of cryptography.

Among many algorithms based on chaotic dynamical systems,
we can mention the image encryption algorithms, like the optical
color image encryption scheme based on fingerprint key and three-
step phase-shifting digital holography which was proposed by Su
et al. (Su, Y. et al. 2021). In this scheme the fingerprint is served as
secret key directly. The random phase masks generated from the
fingerprint using secure hash algorithm (SHA-256) and the chaotic
Lozi map are just used as interim variables. The fingerprint is
served as secret key directly. With the help of the fingerprint-based
random phase masks located in the linear canonical transform
domain and the three-step phase-shifting digital holography, the
primary color image that is hidden into a grey-scale carrier image
can be encrypted into three noise-like holograms. In addition, the
parameters of the chaotic Lozi map and linear canonical transform
can also provide additional security to the proposed encryption
scheme. Other examples of cryptography-based chaos can be
found in (El Assad, S. et al. 2022).

Economy

Since twenty years, one can find application of chaotic dynamical
systems in economy. For example Tang et al. (Tang, T. W. et al.
2004) carried out an analysis of Parrondo’s games with different
chaotic switching strategies. The performance of Parrondo’s
games was compared with random and periodic switching
strategies. The main idea of Parrondo’s paradox, exposed in 1996,
is that two individually losing games can be combined to win via
deterministic or non-deterministic mixing of games (Harmer, G.
P. et al. 2001). In (Tang, T. W. et al. 2004) a fair way to compare
random and chaotic Parrondo’s games was generalized. The
logistic, tent, sinusoidal and Gaussian 1-D maps were considered
together with Hénon and Lozi maps.

To play chaotic Parrondo’s games, one of these chaotic genera-
tor being chosen, we consider a sequence that it generates from an
initial value. Then every n-th iterate of such sequence determines
whether Game A or B is played. Of course the outcomes of
Parrondo’s game are affected by the different switching strategies
applied and the initial value chosen. The proportion of Game A
and B played is equal for all switching strategies for a fair compari-
son. In conclusion, the authors found that chaotic Parondo’s games
can give a higher rate of winning compared to random switching
strategies. This result recalls the remark made by Caponetto et al.
(Caponetto, R. et al. 2003) that chaotic sequences can improve the
performance of evolutionary algorithms versus random sequences.

Another examples can be found in (Commendatore, P. et al.
2015) in which Commendatore et al. proposed a new economic
geography model which describes spatial distribution of industrial
activity in the long run across three identical regions depending

on the balancing of agglomeration and dispersion forces. It is
defined by a two-dimensional piecewise smooth map depending
on four parameters. They discussed the emergence of the Wada
basins of coexisting attractors leading to the so-called final state
sensitivity (see Figure 9). And also, in (Sushko, I. et al. 2023, in
progress) in which Sushko et al. studied the dynamics of a financial
market model with trend-followers and contrarians proposed a
2D-piecewise linear discontinuous map F given by (8) (see Figure
10).

 xn+1 = (1 − k1 − b) xn + k1xn−1 i f |xn − xn−1| < k,

xn+1 = (1 − k2 − b) xn + k2xn−1 + m i f |xn − xn−1| > k.
(8)

Figure 9 2D piecewise smooth map G governing dynamics of a
three region New Economic Geography model. Basins of attraction
of the fixed points (0, 0), (1, 0), (0, 1) (attracting in Milnor sense)
and of the three 2-piece chaotic attractors.

Figure 10 Periodicity regions (where different colors are related to
attracting cycles of different periods) in the (b; k2)-parameter plane
for k1 = −1, m = 1.9, k = 0.1.
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THEORETICAL RESULTS

We have shown that chaotic attractors have been used for more
than thirty years for applications in different fields. This does not
mean that they did not advance pure mathematics.

It is difficult to list all the improvements in chaotic dynamical
systems theory and bifurcation theory, so many have been made
over the last half century. We can only name a few, such as the
concepts of Smale’Axiom A and horseshoe, homoclinic bifurcation
and Shilnikov attractors, border-collision bifurcation, ergodicity,
hyperbolicity, symbolic dynamics and kneading sequences,
Sinai-Bowen-Ruelle measures, fractal dimensions, general usage
of fractional derivatives, fractional maps, topological entropy, etc.

I think the best example of a theory-practice-theory approach
is that of chimeras. Following the discovery of the synchronized
chaotic attractors (theory), research focused on network of
attractors with several topologies for multiple purposes like the
creation of Pseudo Random Number Generation for cryptography
(Garasym, O. et al. 2017) (practice).

Describing the dynamical properties of synchronization of such
networks, special solutions called "chimeras" and "solitary states"
were highlighted (theory).

Rybalova et al. (Rybalova, E. et al. 2018) considered a complex
system consisting of three coupled rings of nonlocally coupled
chaotic maps. This multilayer network is described by the follow-
ing equations:

xi
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n) +
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[
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The first system of equations in (9) specifies a ring network of
nonlocally coupled Hénon maps with f defined by (10)

f (xn, yn) = 1 − ax2
n + yn, (10)

with a = 1.4, b = 0.3, σ1 = 0.72 and and P = 320. The second pair
of equations corresponds to the ring of nonlocally coupled Lozi
maps with f defined by (11)

f (xn, yn) = 1 − a |xn|+ yn, (11)

and is analyzed for a = 1.4, b = 0.3, σ2 = 0.206 and R = 180.
The third pair of equations also determines the ring of nonlocally
coupled Hénon maps with a = 1.4, b = 0.3, σ1 = 0.295 and
T = 320.

The first two rings are coupled inertially via the coupling func-
tions Fi

n = −Gi
n = ui

n − xi
n with the coupling coefficients γ1 and

γ2. The third ring nodes is connected unidirectionally with the
first ring units by the coupling term γ3Hi

n where

Hi
n = f (xi

n, yi
n)− f (zi

n, si
n), (12)

defines the diffusive coupling with the coupling coefficient γ3. N
is the number of elements in the ensemble of coupled equations in
each ring. The coupling parameters σ1,2,3 characterize the coupling
strength, and 2P, 2R, 2T are the number of neighbors on each ring
(P (resp. R, T) neighbors on the either side of the ith element). The
initial conditions are chosen to be randomly distributed in the
interval [−0.5, 0] for all the variables of the network (9).

Using numerical simulation they have demonstrated that the
network of two symmetrically coupled ensembles of Hénon and
Lozi maps can show a novel type of chimera state, a solitary state
chimera (SSC), when the coupling between them is weak. This
special structure emerges in the case if the Lozi ensemble exhibits
a developed regime of solitary states. The SSC is fairly stable and
is observed within a finite range of parameter variation. If the two
layer network of nonlocally coupled Hénon and Lozi maps in the
solitary state chimera is unidirectionally coupled to the third ring
of nonlocally coupled Hénon maps, then the effect of external
synchronization can be observed in a finite range of the coupling
coefficient γ3.

CONCLUSION

The first research on chaotic dynamic systems marked the mind
of the public by the beauty of the images that these attractors
made it possible to draw. Nowadays applications of chaotic
attractors in several domains (see (Lozi, R. 2023) for a survey)
is a flourishing domain of research since three decades and can
nevertheless produce wonderful images (Figures 9, 10). In the
mean time, theoretical research is still very much alive and offers
new mathematical tools such as chimeras, fractional differential
equations and fractional mappings which in turn will allow the
development of new applications.

Chaotic attractors are definitely not a mathematical curiosity.
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ABSTRACT It is known, that coherent chaotic communication systems are more vulnerable to noise in
the transmission channel than conventional communications. Among the various methods of reducing the
noise impact, such as extended symbol length and various digital filtering algorithms, the optimization of the
synchronization coefficient may appear as a very efficient and simple straightforward approach. However,
finding the optimal coefficient for the synchronization of two chaotic oscillators is a challenging task due to the
high sensitivity of chaos to any disturbances. In this paper, we propose an algorithm for finding the optimal
synchronization parameter Kopt for a coherent chaos-based communication system affected by various noises
with different signal-to-noise ratios (SNR). It is shown, that under certain conditions, optimal K provides the
lowest possible bit error rate (BER) during the data transmission. In addition, we show that various metrics
applied to the message analysis and demodulation task propose different noise immunity to the overall system.
In the experimental part of the study, we simulated and physically prototyped two chaotic communication
systems based on well-known Rössler and Lorenz chaotic oscillators. The microcontroller-based prototype
of a wire chaotic communication system was developed to investigate the influence of noise in the physical
data transmission channel. The experimental results obtained with the designed hardware testbench are in
good correspondence with the theoretical propositions of the study and preliminary simulation results. The
suggested evaluation metrics and optimization algorithms can be used in the design of advanced chaos-based
communication systems with increased performance.

KEYWORDS

Chaotic synchro-
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INTRODUCTION

Dynamical chaos and chaotic synchronization are essential phe-
nomena in nonlinear dynamics. Recently, many chaos applications
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such as chaotic encryption (Volos et al. 2013), chaos-based sensors
(Karimov et al. 2021a), and chaos-based communication systems
were proposed. One of the most promising applications of chaotic
synchronization is chaos-based communication systems, which
possess a broadband channel for concealed data transfer. Chaotic
communication systems (CCS) based on chaotic synchronization
are called coherent (Kaddoum 2016).

Recent works include studies on optical coherent chaotic com-
munication systems (Wang et al. 2020; Yang et al. 2020), digital data
transfer systems for Internet of Things (IoT) applications (Babajans
et al. 2023, 2022; Cirjulina et al. 2022), area- and power-efficient
implementation of chaotic oscillators for coherent secure systems
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(Hedayatipour et al. 2022).
Coherent chaos-based communication systems assume achiev-

ing chaotic synchronization on the receiver side, which has
prompted the development of various synchronization methods.
Initially, this phenomenon was discussed in studies (Fujisaka and
Yamada 1983) and (Afraimovich et al. 1986). However, the topic
of chaotic synchronization gained great attention after the intro-
duction of Pecora and Carroll’s method. In their famous paper,
these authors proposed to use a simple synchronization method
in secure communications (Pecora and Carroll 1990). The Pecora-
Carroll synchronization suggests a master-slave system architec-
ture, represented by two identical chaotic oscillators with the same
parameter set, where the signal from the master system is driving
the other system dynamics (Pecora and Carroll 1990).

To transform the meaningful signal into chaotic carrier changes,
various modulation and demodulation techniques were developed.
The most popular modulation methods used in chaos-based com-
munications are chaotic shift keying (CSK) (Dedieu et al. 1993;
Dmitriev and Panas 2002), parametric modulation (PM) (Yang and
Chua 1996; Koronovskii et al. 2009), and chaotic symbolic dynamics
(Kaddoum 2016). Although some other modulation techniques
have been proposed recently, they mainly involve variations or
combinations of the aforementioned approaches (Kharel 2011). In
the current study, we focus on parametric modulation (PM), as an
easy-to-implement and highly secure common approach.

In classical studies, such as (Carroll and Pecora 1995) and
(Willsey et al. 2011), as well as in more recent works, e.g. (Abib
and Eisencraft 2015), scholars proposed the application of ana-
log circuits to generate chaotic signals in communication systems.
However, this approach possesses some disadvantages, e.g. the
limited precision of the chaotic circuit components, conditional
parameter drift, etc. In addition, as is known from several recent
studies (Minati et al. 2017; Karimov et al. 2023; Emiroglu et al. 2022;
Alexander et al. 2023), the behavior of analog circuits may sig-
nificantly differ from the original mathematical models and vary
between different implementations, which in the field of coher-
ent chaotic communications may lead to difficulties in matching
between transmitter and receiver parameters. Therefore, one can
consider a completely digital communication system based on
direct digital synthesis (DDS) as a prospective technology.

The DDS is a method of generating an analog signal using a
digital-to-analog converter (DAC) and data from a digital process-
ing unit (Liu et al. 2007). DDS can generate highly precise and
stable waveforms, allowing one to use it in a wide variety of appli-
cations, such as telecommunications, signal processing, test, and
measurement equipment (Cordesses 2004a,b). The DDS was also
reported to be used for noise radar (Willsey et al. 2011), as well as
for covert messaging in noisy conditions (Lukin and Zemlyaniy
2016) - tasks that are very closely related to chaotic messaging.

Latest developments have shown the opportunity for chaotic
communication DDS systems to use modulation schemes where
the discretization operator is varied to obtain different finite-
difference equations. An example of such a technique is the sym-
metry coefficient modulation (SCM) (Karimov et al. 2021b). SCM
operates by manipulating the numerical method parameter, called
symmetry coefficient, and can be used to construct the digital
chaotic messaging signal. Several papers (Rybin et al. 2022a, 2023)
show that SCM may provide more covert messaging than tradi-
tional PM techniques.

As an alternative to coherent chaotic communication systems,
so-called non-coherent systems have been researched and devel-
oped. Such systems do not use synchronization but are based

on correlation or other matching methods. Recent works on the
subject include digital underwater communication systems (Bai
et al. 2019, 2018), systems based on chaotic oscillators with spe-
cial properties for general applications (Rajagopal et al. 2018), and
other techniques (Moysis et al. 2020; Lyu et al. 2015). Non-coherent
communication systems are considered more resistant to noise
while being also less resistant to attacks (Kaddoum et al. 2010; Kad-
doum 2016). It should be noted, that low resistivity to noise is
one of the key shortcomings of coherent CSS. Thus, considering
their high-security level, especially when using DDS technology,
it seems promising to develop some methods of improving their
noise immunity.

Such methods can include denoising techniques for chaotic sig-
nals (Voznesensky et al. 2022), as well as various techniques for
improving the reliability of communications with noisy input sig-
nals. One natural idea here is to find the optimal synchronization
coefficient K (the proportion, in which the transmitter signal is
mixed via the receiver signal to force its synchronization) for the
given channel conditions. Our previous studies have shown that
the synchronization coefficient value provides a noticeable impact
on the quality of messaging in coherent systems without noise in
the communication channel(Rybin et al. 2021, 2022b). Therefore,
the current study aims to investigate the possibility of finding opti-
mal K comprehensively. We consider different chaotic oscillators,
various signal-to-noise ratios in the channel, and symbol lengths
in order to experimentally validate the obtained results.

The main contributions of this study can be summarized as
follows:

1. A model of a coherent chaos-based communication system
with parameter modulation (PM) under various signal-to-
noise (SNR) levels is considered. We choose classical Lorenz
and Rössler systems for the CCS prototypes due to their well-
known chaotic properties, and Gaussian white noise as typical
interference noise.

2. Various metrics for synchronization error analysis were used
to distinguish binary characters ‘0’ and ‘1’ in demodulating
algorithms of the prototyped systems.

3. It was discovered that different metrics for synchronization
error analysis at the receiver side provide different noise im-
munity to the overall system. The most effective metrics were
found to be root-mean-square (RMS) and mean value calcula-
tion.

4. The suggestion that the optimal synchronization coefficients
K depend on the noise level in channel and symbol length,
and the form of this dependence is unique for a particular
chaotic oscillator, is confirmed experimentally. For practical
applications, the optimal K value can be approximated by a
simple expression with sufficient accuracy, and then dynami-
cally selected during communication based on an estimate of
the noise level and the data transfer rate, which advances the
architecture of the chaotic communication system.

5. A new algorithm for finding an array of optimal synchroniza-
tion coefficients for an arbitrary chaotic oscillator under given
parameters and certain conditions is proposed.

Summarizing, the reported research makes a significant step
toward solving the problem of finding the optimal synchroniza-
tion coefficient and further improving the design of coherent CCS.
Being a simple and efficient technique, this approach could be
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Figure 1 The scheme for a chaotic communication system based on parameter modulation.

considered alongside other noise-reducing methods to advance
the development of robust and reliable communication systems.

The rest of the paper is organized as follows: in Section 2, the
investigated chaotic systems and the architecture of the chaos-
based communication system are described. The experimental
setup, as well as the results of the experimental investigation, are
presented in Section 3. Section 4 discusses the obtained results
considering their practical applications, and Section 5 concludes
the paper.

MATERIALS AND METHODS

This section provides a brief description of the chosen chaotic
oscillators and the communication system under investigation, as
well as the methods of analyzing the synchronization error on the
receiver side.

Investigated chaotic systems
In previous works, we attempted to determine the optimal synchro-
nization coefficients for chaotic communication systems based on
Lorenz and Rössler systems (Rybin et al. 2021, 2022b). These canon-
ical systems are used as chaos generators in the current study as
well, providing a basis for chaotic communication systems under
investigation.

The well-known Lorenz chaotic system (Liao 1998) is described
by the following system of ordinary differential equations:

ẋ = σ(y − x),
ẏ = x(r − z)− y,

ż = xy − bz,

(1)

where σ = 10, r = 28, b = 8
3 .

Let us apply the Pecora-Carroll (Pecora and Carroll 1990) syn-
chronization to system (1) to obtain the slave (receiver) oscillator
system:

ẋ = σ(y − x),
ẏ = x(r − z)− y + K(yM − y),
ż = xy − bz,

(2)

where K is the coupling strength coefficient, and yM is the second
variable of the master system. It is known (Rybin et al. 2021, 2022b)
that the preferred synchronization variable for the Lorenz system is
y and the approximate value of coupling strength K ≈ 40 provides
the fastest synchronization.

The Rössler system (Gaspard 2005) is described by the following
system of ordinary differential equations:

ẋ = −y − z,

ẏ = x + ay,

ż = b + z(x − c),
(3)

where a = 0.2, b = 0.2 and c = 5.7. Applying the Pecora-Carroll
synchronization to system (3), one can obtain the equations of the
slave oscillator:

ẋ = −y − z,

ẏ = x + ay + K(yM − y),
ż = b + z(x − c),

(4)

where K is a synchronization coefficient and yM is the second vari-
able of the master system, which is also the optimal synchroniza-
tion variable for Rössler system. The value of coupling strength
K ≈ 1.93 provides the rapid synchronization process (Rybin et al.
2021, 2022b).

Chaotic communication system design

In the experimental part of the study, we considered a conven-
tional coherent chaotic communication system with parametric
modulation. It should be noted that all the methods used in this
research can be used for improving the chaotic communication
systems based on other modulation methods, for example, the
recently proposed symmetry coefficient modulation (Karimov et al.
2021b; Tutueva et al. 2022). The investigated scheme for a chaotic
communication system based on parameter modulation is shown
in Figure 1.

The operating principle of the CCS based on parametric modu-
lation can be described as follows. The desired digital signal m(t)
modulates parameter a of the chaotic oscillator on the transceiver
side. Next, the signal passes through the simulated communica-
tion channel, where white Gaussian noise is added along with the
noise of the DAC (digital-to-analog converter) and ADC (analog-
to-digital converter) units. In our experiments, the bit depth of the
DAC and ADC was 12 bits. One can observe that the generalized
chaotic synchronization occurs on the receiver side, depending on
the transmitted bit of the message. The message recovery m∗(t) is
performed by determining the lowest value of the synchronization
error. The example of message transmission is shown in Figure 2.
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Lorenz system Rössler system

Figure 2 Transmission of message "1010110010" by chaotic communication system with parameter modulation based on Rössler and
Lorenz system.

Figure 3 Scheme of an algorithm for the synchronization coeffi-
cient investigation.

As one can see from the Figure 2, the chaotic signal possesses no
visible correlation with the transmitted message in both cases, es-
pecially being compared with the behavior of the synchronization
error.

In some studies, the transmission of certain informational bits
is determined by threshold (Rybin et al. 2023; Kaddoum 2016) and
assumed post-processing of the resulting synchronization error.
However, in the presence of noise in the communication channel,
threshold detection can be inefficient. Thus, in the current paper,
we have chosen and evaluated several comparative methods for
estimating the difference in synchronization error.

Finding the optimal synchronization coefficient
To determine the optimal values of K for an arbitrary SNR range,
one should set the optimization criterion first. Let us call the syn-
chronization coefficient K optimal if the bit error rate (BER) of
the communication system is minimal. The following algorithm
was developed (see Figure 3) to solve the optimization task. First,
the SNR range and the synchronization coefficient K are initial-
ized. Then, an iterative enumeration of the SNR is performed,
and K values for which the transmission process takes place are
determined. Finally, the received message is demodulated and
analyzed. The number of errors in the message at a chosen K and
SNR is calculated, and the BER for a chosen K is compared to the
minimum error value for a given SNR. The smallest of these two
values is selected. Then the K value is iteratively increased, and
all the abovementioned steps are repeated until the investigation
range ends. Then, the SNR is iteratively increased, and the same
process continues until all K values are determined for all SNR
values. One can find optimal values of Kopt = f (SNR) when BER
= f (K) is minimal. The final goal, namely, to get the minimal BER
for the given SNR, can be achieved via selected K = Kopt.

RESULTS

Experimental setup
All numerical experiments were performed using the National
Instruments LabVIEW 2021 environment. In all numerical ex-
periments, the explicit Runge-Kutta method of accuracy order 2
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Figure 4 The dependence between BER, synchronization coefficient K, and SNR for Lorenz system. The black-and-white line corre-
sponds to the synchronization coefficient value where BER is minimal for certain SNR values.

Figure 5 The dependence between BER, synchronization coefficient K, and SNR for Rössler system. The black-and-white line corre-
sponds to the synchronization coefficient value where BER is minimal for certain SNR values.

(RK2) was used to solve the ODEs of the investigated system. The
choice of the RK2 method can be explained by the fact, that obtain-
ing the highly accurate solution of ODE is not required for CCS
construction purposes. In fact, one can use almost an arbitrary
finite-difference model of the chosen continuous chaotic system
because both sample systems are dissipative and do not require
special geometrical integration procedures for long-term simula-
tion. The benefit of choosing an explicit second-order integration
method is the simplicity of its hardware implementation. To sum-
marize, the RK2 method ensures the stable long-term generation of
the chaotic signal, and switching the bifurcation parameters does
not cause a stability loss.

The integration stepsize for the Lorenz system was chosen as

h = 0.005 and for Rössler system was set as h = 0.025. The initial
conditions for both systems were set as (0.1, 0.1, 0.1). One should
note, that in a real CCS, the initial conditions may be a part of the
security key.

In this study, we use relative time units to characterize the
length of the transmitted symbol for the Lorenz and Rössler sys-
tems. The reason is that these systems have different dynamics
and variable change speeds when presented in a natural timescale
given in seconds. The Lorenz system dynamics is faster than
Rössler systems. Therefore, let us introduce pseudo-periods NT̃ as
time units for this study:

NT̃ = ϑ · Ts, (5)
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Figure 6 The dependence between BER, synchronization coefficient K, and symbol transmission length for various SNR values of
Lorenz-based CCS system. The black-and-white line corresponds to the synchronization coefficient value where BER is minimal for
certain SNR values.

Figure 7 The dependence between BER, synchronization coefficient K and symbol transmission length with various SNR values for
Rössler system. The black-and-white line corresponds to the synchronization coefficient value where BER is minimal for certain SNR
values.

where ϑ is the median frequency of the chaotic signal (Hz), and Ts
is the symbol transmission time in seconds.

Obtaining the optimal synchronization coefficient using BER and
SNR metrics
Let us vary the synchronization coefficient under different noise
conditions and calculate the corresponding bit-error rate. Figure 4
shows the experimental results for the CCS based on the Lorenz
system with parameter σ (σ1 = 9.5 and σ2 = 10.5) modulation.

Figure 5 shows the experimental results for the investigated
CCS based on Rössler system with parameter a (a1 = 0.18 and
a2 = 0.22) modulation.

Following the experimental results, one can conclude that the
most efficient metric for estimating the synchronization error in
coherent communication systems is root-mean-square (RMS) as it
provides the lowest BER for a given SNR value in comparison to

other metrics, which makes it a perfect candidate for optimization
function. Thus, our further experiments on the chaotic communi-
cation systems’ optimization will be performed using this metric
as a key evaluator of the design quality.

Investigating the dependence between K and NT̃
Let us estimate the dependence of BER on the synchronization
coefficient and the length of the transmitted symbol for different
levels of noise present in the communication channel. Figures
6 and 7 show the experimental results for Lorenz and Rössler
systems, respectively.

One can see from Figures 6 and 7, that while the SNR in the
communication channel increases, the symbol transmission time
may be reduced by preserving the same BER level using the proper
choice of the synchronization coefficient. Thus, it can be concluded,
that it also can be used for increasing the data transfer rate while
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Lorenz system Rössler system

Figure 8 The behavior of optimal synchronization coefficient K while varying the symbol transmission length with various values of
SNR for Lorenz and Rössler

Lorenz system Rössler system

Figure 9 The dependence between BER, symbol transmission length, and SNR with variable synchronization coefficient K for Lorenz
and Rössler systems.

preserving the same level of BER.

Approximation of optimal synchronization coefficient K
Using the results obtained in the previous subsection, let us obtain
the equations for calculating the optimal synchronization coeffi-
cient depending on the symbol length and SNR.

The equation for optimal synchronization coefficient calculation
for the Lorenz system is as follows:

KL(NT̃ , ς) = a + bNT̃ + cς + dς2 + e/NT̃ ; (6)

where NT̃ is a length of transmitted symbol in pseudo-periods, ς
is a signal-to-noise ratio in dB, a = 12.61, b = 0.1665, c = 3.141,
d = −0.1753, e = −9.892.

The equation for calculating the optimal synchronization coeffi-
cient for Rössler system is as follows:

KR(NT̃ , ς) = a + bNT̃ + cς + d/(NT̃)
g; (7)

where NT̃ is a length of transmitted symbol in pseudoperiods, ς is

signal-to-noise ratio in dB, a = −0.273, b = 0.06711, c = 0.04534,
d = 0.886, g = 1.018.

Figure 9 shows the estimation of BER in the proposed CCS
with various symbol transmission lengths and SNR values, while
K varies being obtained by equation 6 and 7. Experimental re-
sults confirm the linear dependence of the symbol’s transmitted
length on the various SNRs while maintaining the same BER value.
Generally, this dependence is in direct correspondence with the
Shannon theorem: when increasing the data transfer rate, the BER
level will also increase (Shannon 1984).

Influence of the different CCS parameters on K
Table 1 shows the experimental results for the prototype chaotic
communication systems based on Rössler and Lorenz systems,
where modulated parameters are a0 = 0.18 and a1 = 0.22 for
Rössler system, and σ0 = 9.5 and σ1 = 10.5 for Lorenz system.

Table 2 shows the experimental results for the CCS based on
Lorenz and Rössler system with short symbol transmission length
and parameter σ and a modulation, where a0 = 0.18 and a1 = 0.22,
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■ Table 1 The optimal synchronization coefficient K value which provides a minimum SNR for BER = 0%

System Rössler Lorenz

Method Var RMS Med Mean StdDev Var RMS Med Mean StdDev

Optimal K 0.6384 0.6816 0.5933 0.6394 0.6369 16.0754 22.1078 9.5615 19.1313 15.3134

Min SNR 12.7108 9.2169 17.0482 10.7831 12.8313 16.2371 10.5155 19.0206 13.7629 16.3918

■ Table 2 The optimal synchronization coefficient K value, providing a minimum SNR for BER = 0% for Rössler and Lorenz system for
a short message.

System Rössler Lorenz

Method Var RMS Med Mean StdDev Var RMS Med Mean StdDev

Optimal K 0.7541 0.8296 0.7148 0.7719 0.7694 14.4131 17.7306 7.8008 15.3437 14.1714

Min SNR 18.8285 14.5607 22.8452 16.318 18.7029 20.3614 14.4578 23.9759 17.4699 20.3614

■ Table 3 The optimal synchronization coefficient K value which provides the minimum SNR for BER = 0% while modulating a third
parameter.

System Rössler Lorenz

Method Var RMS Med Mean StdDev Var RMS Med Mean StdDev

Optimal K 0.5454 0.612 0.5104 0.552 0.5772 13.5907 19.0163 7.17294 15.3663 13.8238

Min SNR 11.2651 8.9759 15.4819 9.9398 11.506 10.7831 5.8434 13.5542 8.3735 10.6627

and σ0 = 9.5 and σ1 = 10.5.

Table 3 shows the experimental results for CCS based on Rössler
and Lorenz system with parameter c modulation, where c0 = 5.7
and c1 = 6.2 for Rössler, and b0 = 2.3 and b1 = 2.7 for Lorenz
system.

Note that in all experiments the RMS showed the highest perfor-
mance, and the arithmetic mean performed slightly worse. How-
ever, the arithmetic mean can also be a potential candidate for
coherent CCS implementation because of its computational sim-
plicity, which is vital for such hardware as microcontrollers and
FPGAs.

Another important conclusion from the repo experiments is that
the value of optimal coefficient K depends also on the choice of
parameters used for transmitting binary symbols ‘0’ and ‘1’. Thus,
the algorithm 3 should be executed for each parameter set in the
CCS design.

Experiments with hardware prototype

BER values obtained by numerical simulation were validated using
a physical prototype of a Lorenz-based chaotic communication
system. We performed this experiment using the experimental
CCS testbench developed by our team for research purposes (Rybin
et al. 2023). The appearance of the experimental bench is shown in
Figure 10.

Figure 10 Experimental bench implementing MCU-operating
chaotic communication system with a noisy channel based on
Lorenz chaotic oscillator.

The suggested testbench consists of two microcontrollers (Ar-
duino DUE) serving as transmitter and receiver, a wired communi-
cation channel with additive noise provided by a signal generator
and op-amp-based mixer, a couple of oscilloscopes for acquiring
and visualizing the signals, and a simple keyboard to input mes-
sages. In this experimental study, we used SNR levels of 5, 10, and
15 dB, and symbol lengths 2, 3, and 4 NT̃ . The optimal K values
were calculated using the equation (6). The obtained results show
that the numerical simulation allows us to predict most of the ef-
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fects observed in the real CCS with high accuracy. The difference
between the simulation and experiments using BER metrics ap-
peared not to exceed 5%. This slight difference can be explained by
statistical errors. For example, considering a data transfer rate of
6 bps, we transmitted only approximately 1000 symbols (bits) for
each set of parameters. In addition, the experimental study is chal-
lenging in setting the required SNR level, as the noise admixing
was performed in an analog way.

DISCUSSION

One may ask, is there a possibility that several optimal values of
K exist? The Figures 4 and 5 clearly indicate that for all metrics
for synchronization error analysis, the value of the optimal syn-
chronization coefficient is unique in mathematical terms (note: this
stands if the value of BER is greater than zero). In other words, if
we consider K as a function of SNR, it is unimodal. For the cases
with zero BER, one may find and choose the optimal synchroniza-
tion coefficient which will provide the maximal transfer rate in the
designed CCS.

Equations (6) and (7) may be combined with other noise esti-
mation algorithms. Being a critical performance parameter that
affects the reliability and throughput of both wire and wireless
communications, the level of SNR is often estimated to dynami-
cally adjust transmitter and receiver parameters. Many classical
and recent works on the SNR estimation algorithms for communi-
cation systems indicate the high importance of the subject (Arslan
and Reddy 2003; Hasan and Shongwe 2017; Khan et al. 2017; Türk-
ben and Al-Akraa 2022). Having information about the current
SNR level, the expression for calculating Kopt may be used for
both selecting the symbol length at the transmitter side and for
adjusting K at the receiver side.

CONCLUSION

The application of coherent chaotic communication systems is cur-
rently hampered by their insufficient performance when noise
is present in the transmission channel. In the current study, we
stepped towards solving this problem by analyzing test chaotic
communication systems and finding an approach to estimating
the optimal synchronization parameter K that allows researchers
to significantly improve the noise immunity of CCS. We explicitly
show that it is possible to find the optimal synchronization coef-
ficient for an arbitrary coherent chaotic communication system
when the minimum bit error rate (BER) will be achieved at the
desired SNR level ς. This procedure requires taking into account
other CCS parameters, such as the pair of modulation parameters
for binary ’0’ and ’1’ representation (p0 and p1) and length of the
symbol transmission NT̃ . Reducing the NT̃ , as expected, leads to a
decrease in noise resistivity, and influences the value of the optimal
synchronization coefficient as well.

In this study, we proposed the practically applicable algorithm
for finding the optimal value of K, which takes into account all of
the abovementioned factors, and constructed an empirical equa-
tion for the calculation of Kopt = f (NT̃ , ς) for a given modulation
parameter set in a practical system.

We also investigated the efficiency of different techniques for
analyzing synchronization errors that are commonly used in CCS
design for distinguishing ’0’ and ’1’ symbols at the receiver side.
We discovered that using arithmetic means and RMS allows us
to achieve the lowest BER values. Besides, the arithmetic mean is
easier to implement in microcontrollers and FPGAs, while the RMS
makes it possible to choose a larger value of the synchronization
coefficient, which potentially provides a higher data transfer rate.

As a practical result, we managed to increase the noise immu-
nity of the test coherent communication system without changing
its communication structure and without using any denoising or
filtering algorithms. It is shown, that by choosing the proper K
values and NT̃ , it is possible to achieve zero BER at a certain SNR
value, while the non-optimal choice of K leads to bit errors at
higher SNR levels. For both considered chaotic communication
systems, we achieved nearly zero BER using Kopt at an SNR level
of 3-5 dB, which is significantly lower in comparison to the CCS
architectures with fixed synchronization coefficient values known
from the literature.

As the direction of future research, we will consider noise level
and noise color estimation algorithms for practical CCS implemen-
tation in FPGA, as well as combine the suggested approach with
digital signal processing techniques.
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APPENDICES

Methods for synchronization errors analysis during messaging
The presence of noise in the communication channel makes it
difficult to use coherent chaotic communication systems (Rybin
et al. 2023). Therefore, it is of interest to determine the most efficient
way to analyze the synchronization error. In this study, we evaluate
the effectiveness of variance, root mean square, median mean, and
standard deviation values.

Variance The variance is a measure of the spread of numbers in
a data set relative to the mean. Using variance, we can evaluate
how stretched or squeezed a distribution is. If the variance value
is small then the values are close to each other, if the values are
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large then it means the values are far away. The variance (σ2) is
quantified as:

σ2 =
∑N

i=1(xi − x)2

N
, (8)

where x stands for mean and xi is the ith data point.

Root mean square (RMS) the RMS (σ) is a measure of the disper-
sion of numbers in a data set relative to the mean value. It usually
means the square root of the variance. It is calculates as follows:

σ =

√
x2

1 + x2
2 + x2

3 + · · ·+ x2
n

N
, (9)

where N represents the number of data points.

Median value The median (x̃) of a finite list of numbers is the
“middle" number when those numbers are listed in order from
smallest to greatest. In general, with this convention, the median
can be defined as follows: for a data set x of n elements, ordered
from smallest to greatest, if n is odd:

x̃ = x(n+1)/2, (10)

if n is even:

x̃ =
x(n/2) + x((n/2)+1)

2
. (11)

Arithmetic mean The arithmetic mean (x) is the simplest and most
widely used measure of a mean or average. It simply involves
taking the sum of a group of numbers, then dividing that sum by
the count of the numbers used in the series. The equation for a
data set x of n elements is

x =
1
n

n

∑
i=1

xi =
x1 + x2 + · · ·+ xn

n
. (12)

Standard deviation Standard deviation (S) is a statistic that mea-
sures the dispersion of a data set relative to its mean and is calcu-
lated as the square root of the variance by determining each data
point’s deviation relative to the mean. The equation for a data set
x of n elements is

S =

√
∑n

i=1(xi − x)2

n − 1
. (13)

Experimental results for parameter b and c for Lorenz and Rössler
system, respectively;

Figure 11 The dependence between BER, synchronization coeffi-
cient K, and SNR for Lorenz system with parameter b (b1 = 2.3
and b2 = 2.7). The black-white line corresponds to the synchro-
nization coefficient value where BER is minimal for certain SNRs.

Figure 12 The dependence between BER, synchronization coeffi-
cient K, and SNR for Rössler system with parameter c (c1 = 5.7
and c2 = 6.2). The black-white line corresponds to the synchro-
nization coefficient value where BER is minimal for certain SNRs.
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et al., 2022 A new hyperchaotic system from t chaotic system:
dynamical analysis, circuit implementation, control and synchro-
nization. Circuit World 48: 265–277.

Fujisaka, H. and T. Yamada, 1983 Stability theory of synchronized
motion in coupled-oscillator systems. Progress of theoretical
physics 69: 32–47.

Gaspard, P., 2005 Rössler systems. Encyclopedia of nonlinear sci-
ence 231: 808–811.

Hasan, A. N. and T. Shongwe, 2017 Impulse noise detection in
ofdm communication system using machine learning ensemble
algorithms. In International Joint Conference SOCO’16-CISIS’16-
ICEUTE’16: San Sebastián, Spain, October 19th-21st, 2016 Proceed-
ings 11, pp. 85–91, Springer.

Hedayatipour, A., R. Monani, A. Rezaei, M. Aliasgari, and
H. Sayadi, 2022 A comprehensive analysis of chaos-based secure
systems. In Silicon Valley Cybersecurity Conference: Second Confer-
ence, SVCC 2021, San Jose, CA, USA, December 2–3, 2021, Revised
Selected Papers, pp. 90–105, Springer.

Kaddoum, G., 2016 Wireless chaos-based communication systems:
A comprehensive survey. IEEE Access 4: 2621–2648.

Kaddoum, G., M. Coulon, D. Roviras, and P. Chargé, 2010 Theo-
retical performance for asynchronous multi-user chaos-based
communication systems on fading channels. Signal Processing
90: 2923–2933.

Karimov, A., V. Rybin, E. Kopets, T. Karimov, E. Nepomuceno,
et al., 2023 Identifying empirical equations of chaotic circuit from
data. Nonlinear Dynamics 111: 871–886.

Karimov, T., O. Druzhina, A. Karimov, A. Tutueva, V. Ostrovskii,
et al., 2021a Single-coil metal detector based on spiking chaotic
oscillator. Nonlinear Dynamics pp. 1–18.

Karimov, T., V. Rybin, G. Kolev, E. Rodionova, and D. Butusov,
2021b Chaotic communication system with symmetry-based
modulation. Applied Sciences 11: 3698.

Khan, A. M., V. Jeoti, M. Rehman, and M. Jilani, 2017 Noise
power estimation for broadcasting ofdm systems. In 2017 IEEE
30th Canadian Conference on Electrical and Computer Engineering
(CCECE), pp. 1–6.

Kharel, R., 2011 Design and implementation of secure chaotic communi-
cation systems. Ph.D. thesis, Northumbria University.

Koronovskii, A. A., O. I. Moskalenko, and A. E. Hramov, 2009 On
the use of chaotic synchronization for secure communication.
Physics-Uspekhi 52: 1213.

Liao, T.-l., 1998 Adaptive synchronization of two lorenz systems.
Chaos, Solitons & Fractals 9: 1555–1561.

Liu, S.-H., D.-S. Wang, and L. Chen, 2007 Analysis of the ambiguity
characteristic of digital synthesis signals with chaotic frequency
modulation. ACTA ELECTONICA SINICA 35: 1784.

Lukin, K. A. and O. V. Zemlyaniy, 2016 Digital generation of wide-
band chaotic signal with the comb-shaped spectrum for commu-
nication systems based on spectral manipulation. Radioelectron-
ics and Communications Systems 59: 417–422.

Lyu, Y., L. Wang, G. Cai, and G. Chen, 2015 Iterative receiver for
m-ary dcsk systems. IEEE Transactions on Communications 63:
3929–3936.
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ABSTRACT Digital data is increasing rapidly in the world day by day. Information security is important during
data exchange over the Internet. The way to securely transmit images over the network is through the image
encryption technique. In the proposed cryptography system, the hybridization of Lorenz-Rossler chaotic
systems is used, and a random number sequence is generated. The security analyses such as histogram,
correlation, differential attack, information entropy, and duration analysis of the study are performed. It is seen
that the proposed system performs well, especially in terms of correlation. Additionally, the performance of the
developed embedded system platforms is compared after testing on Nvidia Jetson Nano and Xilinx PYNQ Z1
boards. The Nvidia Jetson Nano board is more performant than the Xilinx PYNQ Z1 board. The safety and
feasibility of the proposed system have been demonstrated.

KEYWORDS

Chaotic systems
Image encryption
Security analysis
Embedded sys-
tems

INTRODUCTION

With the development of technology and science, there has been an
increase in the number of audio, video and other multimedia files in
recent years. Data is mostly transferred to each other by people via the
internet. This situation brings along information security (Ahmed et al.
2007). Especially military or health image data used in fields contain
significant private information. The preservation of such images is very
important in terms of information security. Therefore, the pixel values
are changed to make the image incomprehensible before transferring the
image. This is known as image encryption and is done with the help of a
key.

Classical algorithms such as AES, RSA DES, and IDEA (Daemen
and Rijmen 2020) have been recommended in the literature for image
encryption. However, its use is often not considered appropriate due to its
low speed. Many image encryption algorithms have been suggested as a
way to solve the problem in the literature (Zhang and Karim 1999; Sinha
and Singh 2003; Wang et al. 2020). Another method of image encryption
is diffusion and confusion. During the confusion phase, the pixels are
displaced.

During the diffusion process, the values of the pixels are changed.
Usually, chaotic functions are used for this. Chaotic systems, on the other
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hand, are often used in image encryption operations due to their advan-
tages such as unpredictability, pseudo-randomness, parameter sensitivity
and initial value sensitivity (Zhang et al. 2016). When the literature in
this field is examined, Al-Khasawneh and colleagues presented a new
Chaos-based encryption technique using Henon, Logistic and Gaussian
iterative maps and an external secret key. They applied this technique
to images detected remotely (Al-Khasawneh et al. 2021). Akgül et al.
designed a random number generator using a microcomputer-based, non-
linear chaotic system and implemented an image encryption application
(Akgul et al. 2021). In the study, Wang et al. used the chaotic cat map for
image encryption (Wang et al. 2009).

In this study, Lorenz-Rossler chaotic system and encryption-
decryption algorithm are examined. The study’s main purpose is to
perform chaotic system-based RGB image encryption and decryption
operations on embedded board platforms. Histogram, correlation, dif-
ferential attack, information entropy and time analysis results and the
obtained data are presented in the literature. It is expected that the en-
cryption application applied on an embedded board basis will provide
portability and usability due to its cost-effectiveness.
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MATERIAL AND METHODS

Lorenz-Rossler Chaotic System
The Lorenz-Rossler chaotic system was obtained by hybridizing two
chaotic systems, Lorenz and Rossler, by Alsafasfeh and Al-Arni (Alsafas-
feh and Al-Arni 2011). In this case, the control parameter has increased
to six. The formula for the Lorenz-Rossler chaotic system is given in
Equation 1.

ẋ = (δ − 1)y − δx − z,

ẏ = (r + 1)x − (1 − a)y − 20xz,

ż = 5xy − βz + b + xz − cx,

(1)

Where delta,r,a,b,beta and c are the fixed control arguments and x,y,z
are the system state variables. The researchers found the value delta = 20,
r = 20, a = 9, beta = 8.5, b = 0 and c = 8 for the system to show chaotic
properties. Differential equations are solved in the Google Colaboratory
environment using the Runge-Kutta method with initial conditions x =
0.001, y = 0.001, z = 0.1 Figure 1 shows the chaotic behaviors of the
Lorenz Rossler system.

Figure 1 Attractors of Lorenz-Rossler System

Encryption and Decryption Algorithm
In the encryption process, the pixel positions of the image will be changed
first. This process is called confusion. During the confusion phase, the
positions of the pixels in the original image are mixed with controlled
randomness. For this, a chaotic sequence is created using Equation 1.
These arrays are used to encrypt the red, green and blue channels of the
original view. The generated chaotic sequences are ordered from small to
large and the sequences are obtained.

At the same time, the index of the values in the chaotic array is
assigned to the array by sorting. Then, using these indexes, the picture is
mixed. the confusion matrix is obtained separately for the three channels.
The correlation coefficient between the blending process and adjacent
pixels Decays, but the blended image continues to contain the statistical
values of the original image. This indicates that the encryption process
is not secure. In this case, the diffusion process is performed to increase
encryption security.

At the propagation stage, the values of pixels are changed, the posi-
tions of which change in the process of confusion. Thus, the statistical
values of the original image do not remain in the encrypted image. In
the encrypted image, both pixel positions and pixel values are given in
a different format from the original image. The pseudo-code for image
encryption is given in Algorithm 1. The decryption algorithm, on the
other hand, is the opposite of the image encryption algorithm.

Algorithm 1 Pseudo code of Image Encryption Algorithm

Input : Chaotic sequence and Image
Output : Encrypted Image
1: START
2: x,y,z chaotic sequence and image data
3: Split the image into R,G,B channels (imageR,imageG,imageB)
4: Get the dimensions of the image (m,n)
5: Normalize x,y,z chaotic arrays (x’,y’,z’)
6: Sort the sequences x’, y’ and z’ and mix the image R,G,B channels
using the obtained index values. (shfR,shfG,shfB)
7:

for i = 0; m × n do
encimgR[i] = x′[i] XOR sh f R[i]
encimgG[i] = y′[i] XOR sh f G[i]
encimgB[i] = z′[i] XORsh f B[i]

8: Merge encrypted R,G,B channels
9: EXIT

Image Encryption on NVIDIA Jetson Nano and Xilinx Pynq Z1
Embedded Boards
The proposed encryption and decryption algorithm was implemented
on Nvidia Jetson Nano and Xilinx PYNQ Z1 platforms. General spec-
ifications of embedded boards are given in Table 1. Linux is installed
as the operating system on both embedded system boards and the code
written in Python on the Linux operating system is run on the system.The
structure of the application of the proposed method to embedded boards
is given in Figure 2. 256×256×3 peppers and 512×512×3 baboon images
were used for encryption in both embedded boards.

Figure 2 Application of the Proposed Method in Hardware
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■ Table 1 The General Features of Embedded Boards

Xilinx Pynq Z1 Nvidia Jetson
Nano

GPU ZYNQ XC7Z020-
1CLG400C

NVIDIA Maxwell,
128 CUDA cores

CPU 650MHz dual-core
Cortex-A9

Quad-core ARM
Cortex-A57 MP-
Core

Memory 512MB DDR3 4 GB 64-bit
LPDDR4

Data storage MicroSD card MicroSD card

Power 7W-15W 5W-10W

Network Gigabit Ethernet Gigabit Ethernet

Other 16-pin GPIO 40-pin GPIO

Programmable
logic

Artix-7 FPGA
13,300 logic seg-
ments, each with
four 6-input LUTs
and 8 flip-flops

-

RESULTS AND DISCUSSION

Histogram Analysis

The dispersion of pixel values in an image is revealed by histogram anal-
ysis. Color distribution in the original image According to the colors
contained in the image, the histogram graph concentrates on a particular
region and shows an uneven distribution. In the encryption process, the
color distributions of the channels are equalized. Therefore, the histogram
distributions of the original and encoded images must be different. All
pixels of the encrypted image must be equally distributed in space. There-
fore, the histogram distribution of the encrypted image should be uniform.
In this direction, histogram analysis of the encrypted treat was performed.

Histogram graphics of the RGB channels of the original baboon image
in Figure 3 (a-d) and the original peppers image in Figure 3 (i-l) are shown.
When Figure 3 (a-d) and Figure 3 (i-j) are examined, it is seen that the
color distributions in the original painting are uneven. The histogram
graph of the RGB channels of the encrypted baboon image in Figure
3 (e-h) and the encrypted peppers image in Figure 3 (m-p) are shown.
When Figure 3 (e-h) and Figure 3 (m-p) are examined, it is seen that
the color distributions of the RGB channels are evenly distributed. This
shows that the histogram of the encrypted image cannot be inferred and
that the proposed encryption is secure.

Correlation Analysis
Correlation analysis (Cohen 1988) Decodes the linear relationship be-
tween two random variables. As a result of this analysis, the correlation
coefficient was determined. Equation 2 using it, the correlation coefficient
of a sequence with “n” elements is calculated, where x and y are two
random variables.

rxy =
cov(x, y)√
D(x)D(y)

(2)

Hence;

cov(x, y) =
1
n

n

∑
i=1

[xi − E(x)][yi − E(y)]

D(x) =
1
n

n

∑
i=1

[xi − E(x)]2

E(x) =
1
n

n

∑
i=1

xi

The x and y values in the equation symbolize the two contiguous pixels
in the image, and N indicates the number of pairs of pixels chosen. In
our study, horizontal, vertical and diagonal pixel values were taken into
account to calculate the pixel correlation in the original and encrypted
images. Correlation analysis was performed for each R, G and B channel
of peppers and baboon images. The horizontal correlation maps of the R,
G, B channels of the peppers and baboon images are respectively shown
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(a) (e) (i) (m)

(b) (f) (j) (n)

(c) (g) (k) (o)

(d) (h) (l) (p)

Figure 3 Histogram Graph of the Original and Encrypted Baboon-Peppers Image

in Figure 4 and Figure 5. The obtained correlation coefficient values and
their comparison with the literature are given in Table 2.

The correlation cannot be less than -1 and greater than +1. The fact
that the correlation coefficient is very close to -1 and +1 means that the
relationship between pixel values is strong and that it is close to zero
means the relationship between pixel values is weak. When Table 2 is
examined, it is seen that the correlation coefficients to the original image
are close to one. On the other hand, it is observed that the correlation
coefficients of encrypted images for RGB channels are approximately
zero. The results obtained are in harmony with recent studies in the
literature. According to the results of correlation analysis, it can be said
that the image encryption method performed successfully performs the
encryption process.

Differential Attack Analysis (NPCR-UACI)

NPCR (“Number of Pixels Change Rate”) and UACI (“Unified Average
Changing Intensity”) analyzes Differential cryptanalysis developed by
Biham and Shamir (Biham and Shamir 1990) to examine how minor
changes in the original image affect the encrypted images. NPCR is a
metric that measures the rate of pixel change in an image. The NPCR
value is calculated as given in Equation 3. The matrix D(i,j) in Equation
3 is calculated from Equation 4. Here, A and B represent the pixel value
of the original and encrypted images, respectively. M × N represents the
size of the encrypted image.

NPCR =
∑i,j D(i, j)

M × N
× 100 (3)

156 | Emin et al. CHAOS Theory and Applications



R G B

Original
Horizontal

Encrypted
Horizontal

Figure 4 The horizontal correlation coefficient maps of the R, G, B channels of peppers

R G B

Original
Horizontal

Encrypted
Horizontal

Figure 5 The horizontal correlation coefficient maps of the R, G, B channels of baboon
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■ Table 2 Correlation Coefficients Values Comparison

Original Encrypted

Channel Horizontal Vertical Diagonal Horizontal Vertical Diagonal

R 0.9515 0.9463 0.9153 0.0181 -0.0007 -0.0011

proposed method (peppers) G 0.9759 0.9680 0.9487 0.0012 0.0157 -0.0079

B 0.9472 0.9365 0.9050 -0.0019 0.0073 -0.0035

R 0.8512 0.9198 0.8449 0.0102 -0.0099 -0.0029

proposed method (baboon) G 0.7844 0.7599 0.9304 0.0025 0.0011 0.0026

B 0.8736 0.9228 0.8529 0.0026 0.0024 -0.0153

R 0.9621 0.9646 0.9513 -0.0005 0.0004 0.0007

(Xin et al. 2023)

(512×512×3)
G 0.9789 0.9774 0.9599 -0.0004 0.0002 0.0004

B 0.9616 0.9628 0.9401 -0.0006 0.0003 0.0006

R 0.9904 0.9796 0.9701 0.0080 -0.0060 0.0026

(Yan et al. 2023)

(256×256×3)
G 0.9820 0.9659 0.9547 -0.0092 -0.0090 0.00009

B 0.9555 0.9324 0.9144 0.0060 -0.0069 0.0036

R 0.9643 0.9635 0.9598 -0.0051 -0.0092 0.0012

Demirtaş (2022)

(512×512×3)
G 0.9808 0.9821 0.9695 0.0007 0.0068 -0.0034

B 0.9645 0.9659 0.9455 0.0080 0.0014 -0.0052

D(i, j) =

1 if A(i, j) ̸= B(i, j)

0 if A(i, j) = B(i, j)
(4)

UACI is a metric that measures the average intensity of change in an
image, calculated as given in Equation 5. The L value is the number of
bits that express the pixel of the image.

UACI =
1

M × N

∑
i,j

|A(i, j)− B(i, j)|
2L − 1

× 100 (5)

In the literature, the most appropriate NPCR and UACI values are stated as
NPCRopt = 99.61% and UACIopt =33.46% (Girdhar and Kumar 2018).
In addition, NPCR, UACI values greater than 99.6% and close to or
greater than 30%, respectively, is accepted as an indication of successful
encryption (Praveenkumar et al. 2015).NPCR and UACI results are shown
in Table 3. It is seen that the NPCR value is greater than 99.6% and the
UACI value is close to 30% for both images used in the study. In addition,
it was observed that the results were compatible with similar studies in the
literature. Based on these results, it is clear that the developed encryption
algorithm is strong against differential attacks.

Information Entropy Analysis
The encrypted data must be in such a way that no guesses can be made
about the original data. Information entropy analysis measures the ran-
domness in the encrypted image and demonstrates the average amount
of information that the image carries. The entropy coefficient Equation
6 calculated by the given formula. Here, H (s) is the entropy value of
the source, while N represents the bit value. In the literature, the ideal
entropy value of the encrypted image is expected to be eight. The entropy
test is applied to each of the RGB channels separately.

H(s) =
2N−1

∑
i=0

P(Si)log2
1

P(Si)
(6)

The entropy values of the information obtained in the study and its
comparison with the literature are given in Table ??. It is seen that the

■ Table 3 NPCR and UACI Results and Comparison

NPCR UACI

Proposed method
(peppers)

99.6154 28.8371

Proposed method
(baboon)

99.6067 29.9783

(Ali and Ali 2020) 99.6094 33.4635

(Yu et al. 2022) 99.6069 33.4422

(Sheela et al. 2018) 99.5865 28.6372

■ Table 4 Time Analysis of Embedded System (Unit: s)

Embedded
Board

Encryption
Time

Decryption
Time

Google Colabo-
ratory Environ-
ment

0.6133 0.3978

proposed
method
(peppers)

Xilinx PYNQ
Z1

2.8670 6.6832

Nvidia Jetson
Nano

1.480 1.719

Google Colabo-
ratory Environ-
ment

0.8842 1.3358

proposed
method
(baboon)

Xilinx PYNQ
Z1

11.4452 25.9610

Nvidia Jetson
Nano

5.8907 6.8535

entropy values of the RGB channels of the encrypted images are close to
8. Therefore, it can be said that the proposed method is quite resistant to
attacks.

Time Analysis
Operations performed on Google Colaboratory Environment were also
performed on Xilinx PYNQ Z1 and Nvidia Jetson Nano embedded boards.
Thus, the performances of different embedded boards in encryption and
decryption processes were compared. In the table 4, the times obtained
during the test phase are given in seconds. According to the results
obtained, it is seen that the time in the software environment is more
advantageous. In embedded platforms, it has been observed that the
Nvidia Jetson Nano board is faster in encryption and decryption processes
than the other boards.
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CONCLUSION

In this study, an encryption algorithm is developed using Lorenz-Rossler
chaotic systems. To measure the reliability of the designed system, his-
togram, correlation, differential attack, and information entropy analysis
are performed. According to the results of the analysis, it has been de-
termined that the developed encryption algorithm is resistant to attacks.
Considering the experimental results, it has been observed that the pro-
posed method allows the original image to be obtained again without any
data loss. The application results obtained on embedded system boards
are presented according to encryption and decryption duration compar-
atively. When the results are inspected, it is seen that the Nvidia Jetson
Nano board is faster in encryption and decryption than the Xilinx PYNQ
Z1. The authors are hopeful that a better, the mutually beneficial dia-
logue will gradually be established between the chaos and cryptography
communities.
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ABSTRACT This paper presents a novel approach for secure communication utilizing a chaotic hybrid optical
bistable system and chaotic modulation. The proposed crypto system encrypts the message at the transmitter
using the chaotic hybrid optical bistable system with decorrelation operation to improve the chaotic sequence’s
performance. The encoded message is then injected into the dynamics of the chaotic memristor system.
At the receiver, the synchronization of the two chaotic systems with passive control and predictive control
allows for the recovery of the message through chaotic demodulation. The effectiveness of this approach is
demonstrated through numerical simulation using medical images.
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INTRODUCTION

The idea of using chaos in communication systems was inspired by
the discovery of Pecora-Carroll (Pecora and Carroll 1990) in 1990.
They showed that two identical chaotic systems with different
initial conditions can possibly synchronize if they are suitably
coupled, that is, under certain conditions.

In communication systems, synchronization is a very important
key for successful transmission Halimi et al. (2014); Takhi et al.
(2021); Zouad et al. (2019). The role of synchronization is to try to
estimate some of the states of the dynamic system or sometimes
unknown inputs. This means that two chaotic signals will be said
to be synchronized if they are asymptotically identical when time
tends to infinity. Sensitivity to initial conditions is a fundamental
characteristic of chaotic systems, which makes chaotic synchroniza-
tion seem difficult to achieve and presents more constraints. In the
literature, there are several synchronization methods, synchroniza-
tion by impulsive control Hamiche et al. (2011), observer-based
synchronization Bouraoui and Kemih (2013); Kemih et al. (2011);
Hamiche et al. (2021) and many other approaches Nestor et al.
(2022); Tutueva et al. (2022); Kemih et al. (2014b); Roldán-Caballero
et al. (2023).

One of the most important engineering applications of chaos
synchronization is secure communication because of the properties
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of random behaviors and their sensitivity to initial conditions. For
the purpose of establishing secure communication, the first step is
to encrypt the signal that is intended to be transmitted. Encryption
refers to the process of transforming the plain text signal into
an unintelligible form so that unauthorized individuals cannot
decipher the message content. Once the signal has been encrypted,
it is sent to the receiver through a public channel. However, due to
the open nature of the channel, it is possible for hackers to intercept
and steal some information. This is where various encryption and
decryption mechanisms come into play.

The receiver will utilize specific decryption mechanisms to re-
verse the encryption process and recover the original signal Chang
et al. (2015). In the medical field, digital images consist of multi-
media data that may contain confidential information. However,
the development of a secure crypto system to safeguard the med-
ical image content is a challenging task. In reference Bouhous
and Kemih (2018), a new encryption approach is suggested uti-
lizing optical time-delay chaotic systems and wavelets for data
transmission. In Mohadeszadeh and Pariz (2022), to enhance the
unpredictability of the information signal, the transmitted signals
to the channel are deemed to be the fractional-order derivative of
the product of the information signal and the chaotic system states.

To synchronize the master and slave systems, a proper adap-
tive fractional-order control law is derived on the receiver side
using the Lyapunov stability theorem. Similarly, in Hashemi et al.
(2020), the authors proposed a chaotic secure communication sys-
tem between the base transmitter station and mobile equipment.
By applying the Lyapunov stability theory and the finite-time
synchronization concept, they designed a robust terminal sliding
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mode controller. Furthermore, in Liao et al. (2021), the application
of the Lu system to generate chaotic signals is proposed, which are
then used to encrypt the biomedical information. Finally, using one
of the states of the chaotic system, a simple proportional-derivative
(PD) controller is designed to synchronize the master-slave chaotic
systems for decrypting the biomedical information.

Motivated by the extent of previous work and on the other
hand, adopting a combination-based transmission method can
strengthen the security and complexity of the information transmis-
sion. In this work, we propose a novel encryption method based
on a chaotic hybrid optical bistable system and chaotic modulation.
In the existing results of chaos-based secure communication in
literature, the transmitters are constructed with only one single
chaotic system. In this paper, in order to enhance the security of
the communication, we use two chaotic systems to construct the
transmitter.

Our algorithm is composed of three steps: (1) encryption, (2)
synchronization, and (3) extraction-decryption. The message is
recovered by chaotic demodulation after synchronization of the
two chaotic systems with passive control and predictive control. A
numerical simulation with a medical image is provided to show
the performance of the proposed approach.

The present work is structured as follows: Section 2 presents
the proposed secure communications scheme, providing a brief
description of the passive and predictive controllers. Section 3 de-
tails the design of the transmitter and receiver. Section 4 presents
numerical simulations aimed at demonstrating the effectiveness of
the proposed approach. Finally, Section 5 provides some conclud-
ing remarks.

THE PROPOSED SECURE COMMUNICATIONS SCHEME

Figure 1 summarizes the proposed secure communication scheme.

Figure 1 Proposed secure communication block diagram

Design of the Transmitter
The encryption sequence is generated using the hybrid optical
bistable system Abdelouahab and Hamri (2012) at the transmitter:

ẋ1 = x2

ẋ2 =x3

ẋ3 = −ax3 − x2 + bx1(1 − x2
1)

(1)

Where :x1, x2 and x3 are the three states of the system and a
and b the real constants. When system parameters a = 0.5 and
b = 0.65,then, the system (1) exhibits a chaotic attractor as shown
in Fig.2(a)-(b).
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Figure 2 The phase portraits of system (1)

To optimize the performance of the chaotic sequence and its
random statistical properties, the decorrelation operation was im-
plemented using the following equations Liu et al. (2018):

S1 = x1 ∗ 104 − f loor
(

x1
∗104

)
, (2)

S1 is the output sequence.
Fig. 3 represents an understanding between a chaotic sequence

and the decorrelation result of a chaotic sequence. As we can see,
this operation allows use to enhance the performance of the chaotic
sequence and the random statistical properties.

The nonlinear encryption function is as follows:

G = 0.1 ∗ (S2
1 + S1mt(t)) (3)

Subsequently, the coded message is incorporated into the be-
havior of the chaotic memristor system for transmission and is
governed by the subsequent equation Bao et al. (2011):
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Figure 3 The chaotic sequence and the decorrelation result of
chaotic sequence

ẋx1 = xx2 + G

ẋx2 = α(xx3 − (3bxx1
2 − a)xx2)

ẋx3 = x2 − γxx3 + xx4

ẋx4 = βxx3

(4)

where α, β, γ, a and b the real constants. When system param-
eters α = 21, β = 48, γ = 0.6, a = 1/7, and b = 2/7, system (4)
Manifests a chaotic attractor, as demonstrated in Fig.3(a)-(b).

Design of the receiver

The receiver is comprised of two chaotic systems that are exactly
the same as the ones used in the transmitter. The primary purpose
of these systems is to synchronize the signals between the trans-
mitter and the receiver. This synchronization is crucial in order to
demodulate and decrypt the received signal.

Synchronization of the chaotic The hybrid optical bistable system
with passive control

Passivity based control : Considering the nonlinear system pre-
sented in the following:

ẋ (t) = f (x (t) , u (t))

y (t) =h (x (t))
(5)

u(t) is the input vector and y(t) is the output vector.

Definition 1 ( Kemih et al. (2007); Yu (1999)). System (5) is said
to be at " phase minimum" if the dynamic zero is asymptotically
stable.

Definition 2 ( Kemih et al. (2007); Yu (1999)). System (5) is consid-
ered passive if there exists a real constant β such that the following
inequality is satisfied for all ∀t ≥ 0 :∫ t

0 uT (τ) y (τ) ≥ β and

∫ t

0
uT (τ) y (τ) dt + β ≥

∫ t

0
ρyT (τ) y (τ) dτ (6)
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Figure 4 The phase portraits of system (4)

The definition implies that in a passive nonlinear system, the
rise in stored energy is solely attributable to an external source.

System (5) in the ordinary form Yu (1999) :

ż = f (z) + g (z, y) y

ẏ = l (z, y) + k (z, y) u
(7)

If System (5) is in the minimum phase, then the nonlinear sys-
tem (7) could be treated as a passive system and stabilized asymp-
totically at equilibrium points through the use of closed-loop con-
trol in the form presented in references [23-24]:

u = k(z, y)−1
[
−l (z, y)− ∂W (z)

∂z
g (z)− γy + η

]
(8)

Where W(z) is Lyapunov’s function of f0 (z), γ is a positive value
and η is an external signal connected to the reference input.
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Synchronization of the chaotic hybrid optical bistable system by passive
control: In this section, we will utilize the passive command
to synchronize the chaotic hybrid optical bistable system. The
equation (1) represents the master system, and the slave system is
described as:

ṗ1 = p2 + u1

ṗ2 =p3 + u2

ṗ3 = −ap3 − p2 + bp1(1 − p2
1)

(9)

we assume that the error is:

e = (e1, e2, e3)
T = (p1 − x1, p2 − x2, p3 − x3)

T (10)

We get the equations for the synchronization error, as follows:

ė1 = e2 + u1

ė2 =e3 + u2

ė3 = −ae3 − e2 + bp1(1 − p2
1)− bx1(1 − x2

1)

(11)

after simplification, we get:

ė1 = e2 + u1

ė2 =e3 + u2

ė3 = −ae3 − e2 + be1 − be3
1 − 3be2

1x1 − 3be1x2
1

(12)

We start by rewriting the system in the form of a passive system
(7), for that, we choose: z1 = e3, y1 = e1, y2 = e2.

Which allows us to get: [ f (z) = [−az1],g(z, y) = [b − by2
1 −

3by1x1 − 3by2
1,−1], l(z, y) = [y2, z1]

T ,k(z, y) =

 1 0

0 1


We take:

V(z, y) =W(z)+ 1
2 y2

1 +
1
2 y2

2
(13)

Where W(z) is a Lyapunov function, with W(0) = 0:

W (z) = 1
2 z2

1
(14)

The calculation of the derivative of the Lyapunov function as a
function of time is as follows:

dW(z)
dt

= −az2
1 ≤ 0.

The dynamic zero of the synchronization error is stable in the sense
of Lyapunov. The derivative dW(z)

dt along the dynamics of the error
system (12) is given as follows :

dV(z, y)
dt

=
∂W(z)

∂z
× ż + y × ẏ

= ∂W(z)
∂z f (z) + ∂W(z)

∂z g(z, y)y + l(z, y)y + k(z, y)uy (15)

Since :
dW(z)

dz f (z) ≤ 0 (16)

Then equation (15) becomes:

dV(z,y)
dt ≤ ∂W(z)

∂z g(z, g)y + (l(z, y) + k(z, y)u)y (17)

Closed-loop control is selected in the form :

u = k−1(z, y)
[
−l(z, y)− ∂W(z)

∂z
g(z, y)− γy + υ

]
(18)

If we consider (18), we find :

u =

 −e2 − be3 + by2
1e3 + 3by1x1e3 + 3by2

1e3 − γe1

−γe2

 (19)

Where γ is a positive constant. When substituting (18) into (17),
we get:

∂V(z, y)
∂t

≤ −γy2 + υy (20)

Integrating (20) gives us:

V(z, y)− V(z0, y0) ≤
∫ t

0
−γy2(τ)dτ +

∫ t

0
υ(τ)y(τ)dτ (21)

V(z, y) ≥ 0 and ρ = V(z0, y0)∫ t

0
υ(τ)y(τ)dτ + ρ ≥ V(z, y) +

∫ t

0
γy2(τ)dτ ≥ V(z, y) (22)

The relation (22) satisfies the definition of passivity given by the
equation (6), so the synchronization error system (12) is strictly
passive.

The error synchronization for all states is plotted in Fig. 5. We
see that the state estimation effect is satisfactory.
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Figure 5 The synchronization error results between the chaotic
hybrid optical bistable system transmitter/receiver
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Predictive control: The controlled nonlinear system, in which
chaos is to be suppressed, is represented as:

ẋ(t) = f1(x(t)) + u1(t) (23)

The aim of predictive feedback control is to achieve asymptotic
convergence of the system to either a stable fixed point or an
unstable periodic orbit x f

The fixed point or equilibrium point of the system (23) is the
point x f such as:

dx
dt

= ẋ = f1

(
x f

)
= 0 (24)

As part of predictive control, the command form u1(t) is chosen
as the following form Messadi et al. (2015); Boukabou et al. (2008);
Messadi and Mellit (2017); Wang and Wang (2003) :

u1(t) = K(xp(t)− x(t)) (25)

Where : K represents the gain and xp(t) Represents the predicted
state.

By making a one-step prediction ahead, we get:

u1(t) = K(ẋ(t)− x(t)) (26)

Synchronization of the chaotic memristor system by the predictive con-
trol We will apply predictive control to synchronize the chaotic
memristor system. The master system is described by equation (4)
and the slave system is:

ẏy1 = yy2 + u1

ẏy2 = α(yy3 − [yy3 − (3byy1
2 − a)yy2] + u2

ẏy3 = yy2 − γyy3 + yy4 + u3

ẏy4 = −βyy3 + u4

(27)

The system is asymptotically synchronized in the sense that:
limt→∞ e(t) → 0

First of all, we start by calculating the error between the trans-
mitter / receiver systems :

[ee1 ee2 ee3 ee4]
T = [yy1 − xx1 yy2 − xx2 yy3 − xx3 yy4 − xx4]

T

ėe1 = ee2 + u1

ėe2 = α[ee3 − (3byy1
2 − a)yy2 + (3bxx1

2 − a)xx2] + u2

ėe3 = ee2 − γee3 + ee4 + u3

ėe4 = −βee3 + u4

(28)

Based on equations (26), (28) and applying the LMIs we obtain
the value of the matrix K as follows:

K =



4.7238 −1 −1 −2.3619

0 0 0 0

0 0 0 0

0 0 0 9


(29)

And the command will have the following formula:

u1 (t) = K (ėe (t)− ee (t))
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Figure 6 The synchronization results between the chaotic mem-
ristor transmitter/receiver

The chaotic 4D Memristor synchronization for all states is plot-
ted in Fig. 5. We see that the state estimation effect is satisfactory.

To restore the message transmitted by inclusion at the receiver,
we will use chaotic demodulation Wang and Wang (2003).

dQ
dt = −ξK

(
yy1 + ξ

∧
G (t)

)
∧
G (t) = ξKxx1 (t) + Q

(30)

Ĝ (t) the reconstructed signal
to decrypt the reconstructed signal, we use the following non-

linear function : m̂r(t) = (Ĝ(t) − ŜS
2
(t))/ŜS(t) where SS(t) =

y1(t) ∗ 104 − f loor
(

y1(t)
∗104

)
To show the effectiveness of the proposed encryption system.

we will first transmit a square signal of frequency f = 30 Hz. The
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Figure 7 The transmitted message and the reconstructed mes-
sage

performance of the proposed approach is shown in Fig. 6. As it can
be seen in Fig 7, the original and recovered messages are nearly
the same.

In the field of medicine, digital images are considered multime-
dia data that often contains confidential and sensitive information.
Due to the highly sensitive nature of such information, it is im-
perative to protect digital medical images with a robust crypto
system that can prevent unauthorized access or misuse. However,
designing an effective crypto system that can safeguard medical
image content poses a significant challenge due to the complexity
and variety of medical imaging modalities. One of the alternatives
to solving this problem is the approach proposed in this article.
Fig. 8.a shows the original version of the medical image. Fig. 8.b
shows the encrypted image, and Fig. 8.c shows the received and
decrypted images. These simulation results demonstrate the feasi-
bility of a secure communication strategy for the transmission of
medical images.

CONCLUSION

In this study, we have put forward a new method for secure
communication that relies on hybrid chaotic synchronization and
chaotic modulation. The fundamental principle of the suggested
method is straightforward: at the transmitter end, two chaotic
systems are utilized to boost the security of communication. Specif-
ically, the message is encrypted using the chaotic hybrid optical
bistable system, and then the encoded message is incorporated into
the dynamics of the chaotic memristor system. At the receiver end,
the message is retrieved by means of chaotic demodulation after
synchronization of the two chaotic systems with passive control
and predictive control. To illustrate the efficacy of this approach,
two examples have been presented, one based on a square signal
and the other on medical imagery.
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ABSTRACT Synchronization capability of two identical chaotic systems can be used for constructing the
secure communication systems where the chaotic signal is used as the information carrier. In this paper, a
secure communication system is designed by using the bi-directionally synchronized identical Chua’s circuits
in LC parallel coupling. LC parallel circuit is used as the new coupling element instead of using a single
resistor or capacitor or inductor as the coupling element. This makes the complete synchronization of Chua’s
circuits possible for many different sets of coupling inductance and capacitance values so that the flexibility
of constructing the secure communication systems is realized. Both the synchronized Chua’s circuits in LC
parallel coupling and the corresponding secure communication system are constructed by using the LTspice
software. The simulation results show that the secure communication system proposed in the present paper is
very efficient for the message transmission for different pairs of coupling inductance and coupling capacitance
values where the complete synchronization of Chua’s circuits is observed occur. The two essential properties
of an ideal secure communication system - perfect message masking and recovery are observed when
compared to other secure communication systems already proposed and constructed previously. So, the
simulation results of the present study can be used for practically constructing the efficient communication
systems in future.

KEYWORDS

Chua’s circuit
Chaotic masking
Secure communi-
cation system
LC parallel cou-
pling
Complete syn-
chronization
LTspice.

INTRODUCTION

Chaotic systems in nature are very important because of their
unusual properties. The Chua’s circuit is an example of chaotic sys-
tems with rich chaotic properties (Zhong and Ayrom 1985; Chua
1992) .This circuit consists of three linear energy storage elements -
one inductor, two capacitors, one linear resistor and one non-linear
resistor. The nonlinear resistor can be constructed in several ways.
However, for the practical implementation, this can be conve-
niently constructed in Kennedy’s implementation by using the two
identical op-amps like TL082 and six resistors. The synchronization
of chaotic systems is an important property as it shows some coop-
erative nature within the chaotic realm of the system.Furthermore,
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the synchronized chaotic systems can be used for some important
applications in the secure communication systems.

The synchronization of two Chua’s circuits in linear coupling
with a resistor, capacitor and inductor is already studied by the
number of researchers (Leon O.Chua and Itoh 1992; V.V.Astakhov
and V.S.Anishchenko 1997; Zhilong Liu and Zhang 2019; Yao et al.
2019; Zhang and Wang 2023) . So, there is the scope for using some
combinations of such simple coupling devices as the coupling ele-
ments between the two Chua’s circuits. This is very important not
only to observe the nature of chaos in the synchronization transi-
tion but also to know the possibility of complete synchronization
for the various sets of parameter values. Such flexibility of using
various sets of parameter values for the complete synchronization
is observed in the simulations when compared to the results of
previous studies with any single coupling element.

There are several methods for design and construction of the
chaos based communication systems. The important methods
are chaotic masking, chaotic modulation and chaotic switching
(H.Dedieu and M.Hasler 1993; Ogorzalek 1993; Koh and Ushio
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1997) . In the chaotic masking method,the analogue message signal
is added to a strong chaotic signal (L. Kocarev and Parlitz 1992;
Cuomo and Oppenheim 1993; K.M. Cuomo and Strogatz 1993; Wu
and Chua 1993; I.P. Marino and Grebogi 1999; Adel Ouannas and
Luong 2021; Bonny T. et al. 2023) .In chaotic modulation method,
the analogue message signal is modulated by the chaotic signal
whereas in chaotic switching method, the digital message signals
are modulated by the chaotic attractors.

The main problem of the study is to construct a secure com-
munication system based on the chaotic masking method where
the two completely synchronized chaotic systems are necessary.
The chaotic masking is the very fundamental method for building
any secure communication system.The masking of the message
signals can be realized by using the two completely synchronized
chaotic systems -with one system acting as a transmitter while
the other system acting as a receiver. The required complete syn-
chronization can be realized by using either the uni-directionally
or bi-directionally coupled chaotic systems. In bi-directional or
mutual coupling, the two chaotic systems will influence each other
whereas in uni-directional coupling only one system will influence
the other. In this study, a bi-directional coupling of two identical
Chua’s circuits is used for achieving the complete synchronization.

Trejo-Guerra et al. experimentally implemented the secure
chaotic communication system by using the uni-directionally
coupled Chua’s oscillators built with the commercially available
positive-type second generation current conveyor CCII+ (Trejo-
Guerra and Sanchez-Lopez 2009) .The uni-directionally synchro-
nized Chua’s circuits in secure communication systems is also
studied by Mustafa Mamat et al. by using Matlab® and MultiSIM®
softwares (Mustafa Mamat and Maulana 2013) .The difference be-
tween the two studies is that - the first one is the experimental
study whereas the second one is a simulation study.

The secure communication systems with bi-directionally syn-
chronized chaotic systems are also studied and constructed by
many researchers over the time.Shuh-Chuan Tsay et al. are pro-
posed and tested the feasibility of constructing the secure commu-
nication systems with the bi-directionally synchronized Lorentz
and Chua’s circuits (Shuh-Chuan Tsay and Chen 2004; Shuh-
Chuan Tsay and Wu 2005) .A hardware demonstrator for chaotic
cryptography and secure communications is also constructed by
Emiliia Nazarenko et al. by using the synchronized Chua’s circuits
in a bi-directional line coupling (Emiliia Nazarenko and Katzen-
beisser 2023)

So, now the two bi-directionally synchronized directly coupled
identical Chua’s circuits with a different coupling element called
LC parallel circuit are proposed to construct a flexible and secure
communication system.

In the present study, a secure communication system based on
the chaotic masking method is proposed. The circuit construc-
tion, masking and recovery of the message signals are performed
by using the LTspice software(LinearTechnology 2020, 2011) . A
communication system is designed with the two bi-directionally
synchronized identical Chua’s circuits in direct LC parallel cou-
pling. The values of the parameters L and C are chosen such
that the complete synchronization is possible. Then, the message
signal masking and recovery- the two key parameters of the ef-
ficient secure communication system are studied. The proposed
system is proved to be flexible in construction and efficient in both
signal masking and recovery when compared to the previously
constructed secure communication systems.

METHODOLOGY

Mathematical Model of Coupled Chua’s Circuits
Consider two Chua’s circuits each one as shown in Fig.1. Let
C1, C2 are the two capacitors, R is the linear resistor and L1 is
the inductor of the first Chua’s circuit. Similarly, let C3, C4 are the
two capacitors, R

′
is the linear resistor and L2 is the inductor of

second Chua’s circuit. Suppose that these two Chua’s circuits are
coupled with a parallel combination of inductor L3 and capacitor
C5 between the two positive ends of the capacitor C1 of the first
Chua’s circuit and capacitor C3 of the second Chua’s circuit respec-
tively. Non-linear resistor NR of each Chua’s circuit consists of two
op-amps TL082 and six resistors in Kennedy’s implementation.

Figure 1 Basic schematic diagram of Chua’s Circuit

The theory of coupled Chua’s circuits can be obtained by apply-
ing the Kirchhoff’s laws at the two ends of the resistance R and R

′

of the two Chua’s circuits in the coupling:
Applying Kirchhoff’s current laws at the two ends of the resistor

R:

C2

(
dVC2

dt

)
= IL1 +

(
VC1 − VC2

R

)
(1)

where VC1 is the voltage across the capacitor C1
VC2 is the voltage across the capacitor C2
and IL1 is the current passing through the inductor L1
Similarly:(

VC2 − VC1

R

)
= C1

(
dVC1

dt

)
+ f (VC1 )− (IL3 − IC5 ) (2)

where f (VC1 ) is a function giving the characteristics of Chua’s
diode

IL3 is the current passing through the coupling inductor L3
and IC5 is the current passing through the coupling capacitor C5
Here the piecewise-linear function f (VC1 ) of the Chua’s diode

is given by:

f (VC1 ) = GbVC1 + 0.5(Ga − Gb)(
∣∣VC1 + E

∣∣− |VC1 − E|) (3)

where Ga and Gb are the conductance values and E is the break-
ing point of the voltage

Since the voltage developed between the two ends of the capac-
itor with capacitance C2 is equal to the voltage across the inductor
L1 :

−L1
dIL1

dt
= VC2 (4)

where IL1 is the current passing through the inductor L1
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Similarly:

−L3
dIL3

dt
= VC3 − VC1 (5)

where IL3 is the current passing through the inductor L3
and VC3 is the voltage across the capacitor C3

Applying the scale transformation of the variables, the dy-
namical equations in the dimensionless form are given by:

ẋ = α[y − x − f (x) + ρ − ϵ] (6)

(or) using Eq.(5):

ẋ = α[y − x − f (x) + γ(1 − δ)
∫

(x
′ − x)dτ] (7)

ẏ = x − y + z (8)

ż = −βy (9)

where

α =
C2
C1

, β =
C2R2

L1
, γ =

C2R2

L3
andδ =

IC5

IL3

(10)

x = VC1 /E , y = VC2 /E , z = IL1 R /E
τ = t/R C2 , ρ = (IL3 R /E), ϵ = (IC5 R /E)

and ẋ =
(

dx
dτ

)
etc.

Similarly, another set of equations are given by:

ẋ′ = α
′
[y

′ − x
′ − f (x

′
)− ρ

′
+ ϵ

′
] (11)

(or)

ẋ′ = α
′
[y

′ − x
′ − f (x

′
)− γ

′
(1 − δ

′
)
∫

(x
′ − x)dτ

′
] (12)

ẏ′ = x
′ − y

′
+ z

′
(13)

ż′ = −β
′
y
′

(14)

where

α
′
=

C4
C3

, β
′
=

C4R
′ 2

L2
, γ

′
=

C4R
′2

L3
andδ

′
=

IC5

IL3

(15)

x
′

=
VC3
E , y

′
=

VC4
E and z

′
=

R′ IL2
E

τ
′

= t/R
′
C4 , ρ

′
= (R

′
IL3 /E) and ϵ

′
= (R

′
Ic5 /E)

and ẋ
′

=
(

dx
′
/dτ

′
)

etc.

For two identical Chua’s circuits:

α = α
′
, β = β

′
and γ = γ

′
.

The difference equations are given by the differences p (τ),
q (τ) and r (τ) defined by:

p (τ) = x (τ) - x
′

(τ)
q (τ) = y (τ) - y

′
(τ)

r (τ) = z (τ) - z
′

(τ)

From Eqs.(7), (8), (9) and Eqs.(12), (13), (14), the difference
equations are given by:

ṗ = αq − αp − α[ f (x)− f (x
′
)]− 2[γ(1 − δ)]

∫
pdτ (16)

q̇ = p − q + r (17)

ṙ = −βq (18)

From the Eq. (16), it is clear that for δ = 1, the difference
equations decouple from each other.

Since, the non-linear part is given by: f(x) - f(x
′
) = f

′
(η)(x-

x
′
) ; a< f

′
(η)< 0, the equations assume the linear form:

ξ̇ = A ξ

whereξ̇ =


ṗ

q̇

ṙ

 , ξ =


p

q

r

 and

A =


−α − f

′
(η)α α 0

1 −1 1

0 −β 0

 (19)

When real parts of eigen values of the matrix A given by
Eq.(19) are all negative, then the solutions of the system are
stable. This is possible only when f

′
(η)α > 0. This makes the

synchronization globally stable(Liao Xiao-Xin LUE Hai-Geng and
XUBing-Ji 2005).

Scheme of Secure Communication System
There are four essential components in the secure communication
system based on the two LC parallel coupled identical Chua’s
circuits, as shown in Fig.2.In this system, the masked signal s(t)
which is transmitted from the transmitter is the sum of chaotic
signal x(t) and the message signal m(t).When the two identical
Chua’s circuits are completely synchronized through LC parallel
circuit, the chaotic signal produced at the receiver is identical to
the chaotic signal produced at the transmitter. Then, this chaotic
signal x(t) is subtracted from the masked signal s(t) by the using
the difference amplifier at the receiver and the message signal m(t)
is extracted.

Transmitter: Transmitter is mainly a Chua’s circuit. It is used for
producing the chaotic signal.

Summing amplifier: Summing amplifier is an integral part of the
transmitter. It is used to mix the message signal with the chaotic
signal produced by the transmitter.

Receiver: Receiver is mainly another Chua’s circuit and it is used
to produce an identical chaotic signal through the process of syn-
chronization.

Difference amplifier: This circuit is an integral part of the receiver
and it is used to subtract chaotic signal from the masked signal.
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Figure 2 Schematic diagram of the secure communication system
with two identical Chua’s circuits in LC parallel coupling(at complete
synchronization: x

′
(t) = x(t) and m

′
(t) = m(t))

Implementation in LTspice

LTspice is the Linear Technology’s Simulation Programme with
Integrated Circuit Emphasis. The basic version of this software
was first developed at California University in the year 1972. The
important feature of this software is that it is inexpensive and
also consists of very extensive set of electronic component models.
Apart from this, it facilitates the incorporation of some third party
electronic device models like TL082 op-amp etc.

The two identical Chua’s circuits in LC parallel coupling are
constructed by using LTspice software, as shown in Fig.3. The
components suggested in the Kennedy’s paper are used, as shown
in Table1(Kennedy 1992) . The synchronization is achieved by
running the simulations for different values of the coupling induc-
tance and coupling capacitance. The particular values for which
the complete synchronization is observed to occur are used to con-
struct the LC parallel coupled identical Chua’s circuits to be used
in constructing the secure communication systems.

The other supplementary sections of the communication sys-
tem called summing amplifier and difference amplifier are also
constructed by using the same LTspice software. Then, the se-
cure communication system based on the two Chua’s circuits in
synchronization through LC parallel coupling is constructed, as
shown Fig.4. The coupling used between two identical Chua’s
circuits is bi-directional as one Chua’s circuit influences the other
circuit and vice versa.

RESULTS AND DISCUSSION

Synchronization in LC parallel Coupling

Two Chua’s circuits in LC parallel coupling are constructed with
the components shown in Table1. Varying the inductance value
L3 for a fixed value of coupling capacitance of C5=10 nF, the com-
plete synchronization of the outputs of uncoupled capacitors in
each Chua circuit is observed at the inductance values of L3= 62
mH and 310 mH. This appears in Fig.5 and Fig.8 for the first and
second cases respectively.

The synchronization errors up to 150 mV and 9 mV are ob-
served in the first and second cases as shown in Fig.6 and Fig.9
respectively. The Lissajous figures confirming the complete syn-
chronization in the first and second cases are given by the straight
lines as shown in Fig.7 and Fig.10 respectively. Similarly, the com-

Figure 3 Chua’s circuits in LC parallel coupling implemented with LT
spice software for coupling parameters L3 = 310 mH and C5=10 nF.

Figure 4 Chua’s circuit based secure communication system im-
plemented with LTspice software for coupling parameters L2 =
310 mH and C3= 10 nF

plete synchronization of Chua’s circuits is also observed at the
coupling capacitance values of C5= 2nF and 28nF at a fixed cou-
pling inductance of L3= 100mH. This can be seen in the first and
second cases as shown in Fig.11 and Fig.14 respectively.

The synchronization errors up to 2 mV and 6 mV are observed
in the first and second cases as shown in Fig.12 and Fig.15 respec-
tively. The complete synchronization in the first and second cases
is confirmed by the straight lines shown in Lissajous figures of
Fig.13 and Fig.16 respectively. So, with these four sets of coupling
inductance L3 and coupling capacitance C5values, the synchro-
nized Chua’s circuits in LC parallel coupling can be constructed
for the use in the secure communication systems.
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■ Table 1 Components in Chua’s circuit in Kennedy’s implementation

Sl. No Component Symbol Value Tolerance

1 Capacitor C1 10 nF 5%

2 Capacitor C2 100 nF 5%

3 Inductor L1 18 mH 5%

4 Resistance R1 220 Ω 5%

5 Resistance R2 220 Ω 5%

6 Resistance R3 2.2 kΩ 5%

7 Resistance R4 22 kΩ 5%

8 Resistance R5 22 kΩ 5%

9 Resistance R6 3.3 kΩ 5%

10 Battery V1 9 V -

11 Battery V2 9 V -

12 Op-amp(TL082) A1 - -

13 Op-amp(TL082) A2 - -

14 Potentiometer R 2.0 kΩ -

Figure 5 Time series graph of voltages across the capacitors C2 and C4 showing the synchronization at L3 = 62 mH

Figure 6 Error - time graph showing the synchronization error at L3 = 62 mH

Secure Communication System with LC Parallel Coupling
A secure communication system is constructed with the synchro-
nized Chua’s circuits in LC parallel coupling with L2= 62 mH and
310 mH with a fixed value capacitance C3= 10 nF. A rectangular
wave with amplitude of 0.5 V is used as the message signal. This
message signal is recovered at the receiver in these two cases. The

input and recovered message signals in the first and second cases
are shown in Fig.17 and Fig.20 respectively.

The recovery of the message signal in the first and second cases
is confirmed by the Lissajous figures shown in Fig.18 and Fig.21 re-
spectively. This is because of the synchronization of chaotic signals
at transmitter and receiver circuits due to LC parallel coupling. The
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Figure 7 Lissajous figure of two chaotic signals at L3 = 62 mH (X-axis: Vc4 and Y-axis: VC2 )

Figure 8 Time series graph of voltages across the capacitors C2 and C4 showing the synchronization at L3 = 310 mH

Figure 9 Error - time graph showing the synchronization error atL3 = 310 mH (Error on Y- axis and time on X-axis)

Figure 10 Lissajous figure of two chaotic signals at L3 = 310 mH (X-axis: Vc4 and Y-axis: VC2 )

Figure 11 Time series graph of voltages across the capacitors C2 and C4 showing the synchronization at C5 = 2 nF
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Figure 12 Error - time graph showing the synchronization error at C5 = 2 nF (Error on Y- axis and time on X-axis)

Figure 13 Lissajous figure of two chaotic signals atC5 = 2 nF (X-axis: Vc4 and Y-axis: VC2 )

Figure 14 Time series graph of voltages across the capacitors C2 and C4 showing the synchronization at C5 = 28 nF

Figure 15 Error - time graph showing the synchronization error atC5 = 28 nF (Error on Y- axis and time on X-axis)

Figure 16 Lissajous figure of two chaotic signals at C5 = 28 nF (X-axis: Vc4 and Y-axis: VC2 )
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Figure 17 Time series graph of the input message and recovered signal at L2 = 62 mH and C3= 10 nF

Figure 18 Lissajous figure of input and recovered message signals for L2 = 62 mH and C3= 10 nF.

Figure 19 Masked signal at the transmitter for L2 = 62 mH and C3= 10 nF

Figure 20 Time series graph of input and recovered message signals for L2 = 310 mH and C3= 10 nF.

Figure 21 Lissajous figure of input and recovered message signals for L2 = 310 mH and C3= 10 nF.
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Figure 22 Masked message signal at the transmitter for L2 = 310 mH and C3= 10 nF

Figure 23 Time series graph of input and recovered message signals for L2 = 100 mH and C3= 2 nF

Figure 24 Lissajous figure of input and recovered message signals for L2 = 100 mH and C3= 2 nF.

Figure 25 Masked message signal at the transmitter for L2 = 100 mH and C3= 2 nF.

Figure 26 Time series graph of input and recovered message signals for L2 = 100 mH and C3= 28 nF.
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Figure 27 Lissajous figure of input and recovered message signals for L2 = 100 mH and C3= 28 nF.

Figure 28 Masked message signal at transmitter for L2 = 100 mH and C3= 28 nF.

recovered signals are identical to those of input rectangular waves
except small fluctuations about the horizontal portions. This is the
result of small synchronization error in the respective cases. The
masked signals in the first and second cases are shown in Fig.19
and Fig.22 respectively. The masked signals are concealing the
identity of the original message signal, so that the actual message
signal cannot be identified, except after the recovery at the receiver.

Similarly, a secure communication systems is constructed with
the coupling capacitance values of C3= 2 nF and 28 nF for a fixed
coupling inductance value of L2 = 100 mH. The message signals
are recovered in this case also for the same input signal as before as
the complete synchronization is achieved in this case as well. The
input and recovered signals in first and second cases are shown
in Fig.23 and Fig.26 respectively. The complete synchronization is
confirmed in first and second cases by the Lissajous figures shown
in Fig.24 and Fig.27 respectively. The input rectangular waves are
completely recovered here except for very few small deviations
just below and above the horizontal portions. The reason for this
is again a small synchronization error in the respective cases. The
masked signals in the first and second cases are shown in Fig.25
and Fig.28 respectively.

The message delivery is secure in this case also as the message
signals are completely masked by the input chaotic signals.So,
the proposed secure communication system constructed with syn-
chronized Chua’s circuits in LC parallel coupling can be used for
efficient signal masking and delivery at all the four sets of cou-
pling inductance and capacitance values. So, there is the greater
flexibility in the construction and the efficiency in the working of
the proposed communication system compared to the previous
studies (Mustafa Mamat and Maulana 2013; Emiliia Nazarenko
and Katzenbeisser 2023).

CONCLUSION

A new secure communication system is constructed by using the
chaotic masking method. For this purpose, two identical syn-
chronized Chua’s circuits in a new LC parallel coupling are used.
The advantage of this LC parallel coupling is that the complete

synchronization can be achieved for various sets of coupling in-
ductance and capacitance values.This provides some flexibility
in constructing the secure communication systems with perfect
masking and recovery of the message signals as observed through
the time series graphs and Lissajous figures generated in LTspice
simulations. These results are also good compared to the previous
studies of using the same bi-directional coupling of two Chua’s
circuits but with some different coupling elements. So, the efficient
secure communication systems can be practically constructed by
using the synchronized Chua’s circuits in the direct LC parallel
coupling.

Furthermore, the bi-directional nature of coupling used here
also provides some additional security in the message transmis-
sion, even if the coupling elements of the system are known to the
intruder. A few limitations of such LC coupled based communica-
tion systems are mainly - the complexity in the construction due
to the complexity in constructing the coupling element and the
mathematical analysis of the problem.
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Lossless Image Encryption using Robust Chaos-based
Dynamic DNA Coding, XORing and Complementing
Vinod Patidar ID ∗,1 and Gurpreet Kaur ID α,2

∗School of Computer Science, University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun-284007, India, αAmity Institute of Information
Technology, Amity University, Noida-201303, UP, India.

ABSTRACT In this paper, we present a lossless image encryption algorithm utilizing robust chaos-based
dynamic DNA coding and DNA operations (DNA XOR and DNA Complement). The entire process of
encryption is controlled by the pseudo-random number sequences generated through a 1D robust chaos map
that exhibits chaotic behaviour in a very large region of parameter space with no apparent periodic window
and therefore possesses a fairly large key space. Due to peculiar feed-forward and feedback mechanisms,
which modify the synthetic image (created to initiate the encryption process) at the encryption of each pixel,
the proposed algorithm possesses extreme sensitivity to the plain image, cipher image and secret key. The
performance analysis proves that the proposed algorithm exhibits excellent features (as expected from ideal
image encryption algorithms) and is robust against various statistical and cryptanalytic attacks.

KEYWORDS

Image encryption
DNA encryption
DNA comple-
menting
DNA XORing
Robust chaos

INTRODUCTION

The transmission of images/videos over the networks, and stor-
age of such visual media in the cloud has become increasingly
popular due to the proliferation of fast and efficient network tech-
nologies as well as the advancement, and miniaturization of com-
puting devices and storage media. It has inevitably posed security
threats/concerns for the image/visual media. Images can be se-
curely transmitted and stored in encrypted form to safeguard them
from unauthorized access. Since images have different character-
istics (bulk data, high spatial correlation, redundancies) than text
data, therefore, require special attention and algorithms to encrypt
them or hide them from unauthorized uses.

In recent years a variety of image encryption technologies like
image encryption based on optical transforms (Hennelly and Sheri-
dan 2003; Kaur et al. 2022a,b), based on chaos theory(Patidar et al.
2011), DNA-based image encryption (Adleman 1994; Xiao et al.
2006; Gehani et al. 2004) and algorithms based on the amalgama-
tion of these technologies have been developed. Amongst them,
the chaos-based image encryption algorithms have been most suc-
cessful due to effective confusion and diffusion as recommended
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by Shannon(Shannon 1949). However, chaos-based image encryp-
tions do suffer from some limitations like floating number-based
operations, the existence of periodic windows in parameter space
and smaller key space etc. (Teh et al. 2020). In recent years DNA
computing has also gained popularity due to its huge information-
carrying capacity, parallelism and ultra-low energy consumption.
Rather than implementing DNA computing at the molecular level
(Adleman 1994) which requires highly restricted laboratory condi-
tions, it has been frequently used to carry the digital information
(through representing it in DNA sequences) and manipulate it
using feasible DNA operations like addition, subtraction, DNA
XOR, DNA XNOR, DNA Complement etc.(Xiao et al. 2006; Gehani
et al. 2004).

The sole use of DNA coding and operations does not introduce
nonlinearity in the process of information manipulation (scram-
bling and altering) since these operations are primarily linear there-
fore have not been very successful in fulfilling Shannon’s (Shannon
1949) criteria for developing perfect secrecy in image encryption
or steganography algorithms. However, the DNA encoding and
corresponding operations are found to be successful when used in
combination with the dynamical chaos, which is bounded, aperi-
odic behaviour having sensitivity to initial conditions/parameters
and exhibited by deterministic nonlinear dynamical systems. Such
techniques have been termed hybrid DNA-chaos-based image
encryption.
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In DNA-chaos-based image encryption, the images to be en-
crypted are transformed into DNA sequences and then the scram-
bling of DNA bases is executed with the help of dynamical chaos.
These scrambled sequences are then encoded with the help of
DNA operations under the influence of the chaotic dynamical sys-
tem(s). Broadly classifying, there are two ways to design a hybrid
DNA-Chaos-based encryption algorithm: fixed DNA and dynamic
DNA coding (Xue et al. 2020). A fixed rule is used for encoding,
decoding and DNA operations in a fixed DNA scheme (Zhang et al.
2014; Wang et al. 2015) whereas rules are dynamically selected for
encoding, decoding and DNA operations in dynamic DNA coding
(Chai et al. 2019; Dagadu et al. 2019; Wang et al. 2020). For a detailed
review and comparison of various existing hybrid DNA-Chaos-
based encryption algorithms, we refer the readers to a recent work
by Patidar and Kaur (Patidar and Kaur 2023).

In this paper, we propose a novel dynamic DNA coding algo-
rithm for image encryption. All the operations (DNA encoding,
DNA-based-XOR, DNA-based-complement and DNA decoding)
are used under the control of a robust chaos map whose dynamical
behaviour is chaotic in very large parameter space (2 parameter
space) with no apparent periodic window. All of the above fac-
tors contribute towards a larger key space, thereby eliminating the
possibility of brute force attack. The robust chaos map is mainly
used in the algorithm to generate some pseudo-random number se-
quences and the various DNA-based operations in encryption (en-
coding, XORing, Complementing and decoding) are dynamically
selected with the help of these pseudo-random number sequences
for each pixel.

All the pseudorandom number sequences are interdependent
(as generated sequentially) as well as dependent on the secret
keys therefore the algorithm possesses extreme key sensitivity. To
start the encryption process, we create a synthetic image (of the
same size as the plain image) with the help of the same robust
chaos map and the pixels of the synthetic image are modified and
used in the encryption of the corresponding pixel of the plain
image. The process of modification of each pixel of the synthetic
image involves the information from the plain image as well as
the cipher image pixels generated till now and hence, is different
for each pixel. This interdependency leads to extreme sensitivity
concerning plain and cipher images and makes the entire process
of encryption super complex.

The subsequent sections of this paper are structured as: In
Section 2, we briefly introduce the robust chaos map, in Section 3,
the DNA coding, XORing and Complementing. In Section 4 all the
steps of the proposed image encryption algorithm are described, in
Section 5, the results of the performance analysis of the proposed
algorithm are presented and finally, in Section 6 the conclusions
are drawn.

THE ROBUST CHAOS MAP

The robust chaos is defined as the absence of periodic windows
and co-existing attractors in some neighbourhoods within the pa-
rameter space (Zeraoulia 2012). We use the following form of an
iterative one-dimensional map in the proposed image encryption
algorithm as the source of robust chaos (Andrecut and Ali 2001;
Patidar 2022).

xn+1 = F(xn, a, v), (F(x, a, v) =
1 − v−ax(1−x)

1 − v−( a
4 )

∀v ̸= 1, v > 0, a > 0)

(1)
Here x is the state variable, a and v are the parameters. This

iterative map is an S-unimodal map and has a negative Schwarzian

derivative. The function has a unique maximum at x = 0.5 (Figure
1), hence there can be at most one attracting periodic orbit with
the critical point in its basin of attraction. The orbit with initial
condition x = 0.5 will approach to x = 0 in two iterates. Since the
point x = 0 will be unstable if

(F′(0, a, v) = | ln(v)a
1 − v−( a

4 )
| > 1∀v ̸= 1, v > 0, a > 0) (2)

Figure 1 Function plots of robust chaos map maps (Eq.(1))

Figure 2 Derivative of the function F’(0,a,v), (Eq.2) red correspond
to the positive value and blue corresponds to the negative value

In such a case, the map does not possess any stable periodic
orbit hence a chaotic attractor/orbit prevails. In Figure 2, we
have depicted the regions of the parameter space (a, v) where the
derivative F′(0, a, v) is positive and negative respectively through
the red and blue colours. In the red region, the point x = 0 is
unstable therefore the chaotic orbit may exist here. We have also
plotted the bifurcation diagram for the robust chaotic map (Eq.1)
by iterating the map for 5000 iterations and skipping the initial 500
iterations for (i) a fixed value of parameter a = 7.1 and varying v
from 0 to 10 in the step of 0.01 and (ii) a fixed value of parameter
v = 4.3 and varying a from 0 to 10 in the step of 0.01. The results
have been depicted in Figure 3. We observe from the top frame
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(for a = 7.1 ) that point x = 0 is stable up to v = 0.25 and then
it becomes unstable and a chaotic orbit prevails. This fact may
be verified with the quantitative results of the stability condition
(Eq.2) depicted in Figure 2 and the Lyapunov exponent results
depicted in Figure 4. In the bottom frame (for v = 4.3 ) of Figure 3,
we observe that chaos is present for the entire range of parameter
a which is also confirmed from the quantitative results of stability
condition (Eq.2) depicted in Figure 2 and the Lyapunov exponent
results depicted in Figure 4.

Figure 3 Bifurcation plot for the robust chaos map (Eq.(1)): Top
frame for a=7.1 and bottom frame for v=4.3.

To confirm the existence of chaotic orbit and robust chaos, we
have numerically computed the Lyapunov exponent for the above
iterative map and the results are shown in Figure 4. It is clear that
the Lyapunov exponent is positive in the entire parameter space
(without any periodic window) defined by v > 0, a > 0 except for
v = 1 and a very small region near v = 0. In the proposed image
encryption algorithm, we use the above-mentioned iterated func-

Figure 4 Lyapunov Exponent for the robust chaos map (1)

tion in the parameter space defined by v > 1, a > 1 for generating
the pseudorandom sequences.

DNA CODING, XORING AND COMPLEMENTING

In DNA computing 4 nucleic acid bases: Adenine, Thymine, Cyto-
sine and Guanine (A, T, C and G) are encoded as 00, 01, 10 and 11.
There can be a total of 24 different possibilities for such coding out
of them only eight comply with both the binary and DNA com-
plement rules. In Table 1, we have summarized these eight rules
(Wang et al. 2020). For each DNA rule, addition, subtraction and
XOR operations can be formulated by following the conventional
binary operations. Since in the present algorithm we are using
XOR operation on DNA sequences therefore we are giving one
such operation table (Table 2) for the XOR operation on DNA bases
corresponding to the DNA encoding rule 3 (Wang et al. 2020).

The complement rules for the DNA sequences are defined based
on the double helix structure of the DNA strand. If the complement
operation is defined by the function fc(bi) where bi is one of the
nucleic bases of DNA, then the following relation is satisfied:

bi ̸= fc(bi) ̸= fc ( fc (bi)) ̸= fc ( fc ( fc (bi)))

bi = fc ( fc ( fc ( fc (bi))))

According to the above-mentioned relation, there are six dif-
ferent complement base-pair relations (rules) possible. These are
listed in Table 3 (Wang et al. 2020).

Rule 1, in Table 3, may be interpreted as follows:

fc(A) = T;

fc( fc(A)) = fc(T) = C

fc ( fc ( fc(A))) = fc ( fc(T)) = fc(C) = G

The fC( fc(A)) is the Level 2 complement of A that is equal to
C as per the complement rule 1.

The recovery of the complement, for Rule 1, in Table 3, may be
done in the following way:
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■ Table 1 The Eight DNA Encoding Rules

Rule 1 2 3 4 5 6 7 8

00 A A T T C C G G

01 G C G C A T A T

10 C G C G T A T A

11 T T A A G G C C

■ Table 2 The XOR Operation (for DNA Encoding Rule 3)

⊕DNA A T C G

A T A G C

T A T C G

C G C T A

G C G A T

■ Table 3 Six DNA Complement Rules

Rule Complement base pairs

1 AT TC CG GA

2 AT TG GC CA

3 AC CG GT TA

4 AC CT TG GA

5 AG GC CT TA

6 AG GT TC CA

fcr(A) = G;

fcr( fcr(A)) = fcr(G) = C

fcr ( fcr ( fcr(A))) = fcr ( fcr(G)) = fcr(C) = T

The fcr ( fcr ( fcr(A))) is the Level 3 complement recovery of A
that is equal to T as per the complement rule 1.

THE PROPOSED ALGORITHM

Encryption Algorithm
In the proposed image encryption algorithm, the plain im-
age is a grey image of dimension H × W and the secret
key is a set of 15 floating-point numbers and one integer
(x0, a1, v1, N, a2, v2, a3, v3, a4, v4, a5, v5, a6, v6, a7, v7). Here
0 < x0 < 1 and all a > 1, v > 1 and N is an integer preferably
between 100 to 999.

1. Iterate the robust chaos map N times with the initial condition
x0 and parameters a1, v1 and throw the iterates and record
the last value xN for further use.

2. Iterate the robust chaos map HW times with the initial con-
dition xN and parameters a1, v1. These iterates are used to
create a synthetic image (SI) of dimension H × W

SI(k) = ⌊xk × 256⌋, k=1 to HW

3. A pseudo-random number sequence (PRS1) is generated hav-
ing numbers 1 to 8 by iterating the robust chaos map with the
initial condition xN+HW and parameters a2, v2

PRS1i = ⌊xi × 8⌋+ 1; i = 1 to HW

4. Step 3 is repeated with xN+2HW and parameters a3, v3 to
generate PRS2i

5. Step 3 is repeated with xN+3HW and parameters a4, v4 to
generate PRS3i
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6. A pseudo-random number sequence (PRS4) is generated hav-
ing numbers 1 to 6 by iterating the robust chaos map 4HW
times with the initial condition xN+4HW and parameters a5, v5

PRS4i = ⌊xi × 6⌋+ 1; i = 1 to 4HW

7. A pseudo-random number sequence (PRS5) is generated hav-
ing numbers 0 to 3 by iterating the robust chaos map 4HW
times with the initial condition xN+8HW and parameters a6, v6

PRS5i = ⌊xi × 4⌋ ; i = 1 to 4HW

8. Step 3 is repeated with xN+12HW and parameters a7, v7 to
generate PRS6i

Now the process of encryption of ith pixel of the plain
image is done in the following way:

9. Calculate the two terms PIS and CIS dependent on the plain
and cipher images

PIS(i) = mod(sum (PI(i + 1 : HW)) , 256)

CIS(i) = mod(sum(CI(1 : i − 1)), 256)
For i = 1 the value of the previous cipher image pixel CI(i − 1)

is 0.

10. Using PIS and CIS calculated above, the ith pixel of the syn-
thetic image is modified

SI(i) = (SI(i)⊕ PIS(i))⊕ CIS(i)

11. Convert the SI(i) into the DNA sequence (SIDNA(i)) using
the PRS1th

i DNA encoding rule

12. Convert the PI(i) into the DNA sequence (PIDNA(i)) using
the PRS2th

i DNA encoding rule

13. (i)DNA XORing using the PRS3th
i XORing

CIDNA1(i) = (PIDNA(i) ⊕DNASIDNA(i)) ⊕DNA
CIDNA1(i − 1).

For i = 1 the DNA sequence for the previous cipher image pixel
CIDNA1(i − 1) is ‘ATCG’.

(ii) DNA Complement using PRS4th
i DNA Complement rule at

the PRS5th
i level

CIDNA(i) = fc(CIDNA1(i))

14. Convert the CIDNA(i) into the binary form using the PRS6th
i

DNA decoding rule.

The process from Steps 9 to 14 is repeated for all the
pixels of the plain image.

For a complete reference of the proposed image encryption
algorithm and flow of operations, please refer to the block diagram
given in Figure 5.

Decryption Algorithm
In the proposed image encryption method, the decryption process
is identical to the encryption algorithm discussed earlier, except
for the fact that it is executed in reverse order. This means that
the last pixel of the cipher image is decrypted first, followed by
the decryption of each pixel in reverse order until the first pixel is
reached. If the same secret key is used, the original plain image
can be fully recovered.

The decryption starts with the same secret key
(x0, a1, v1, N, a2, v2, a3, v3, a4, v4, a5, v5, a6, v6, a7, v7)
followed by execution of Steps 1 to 8 of the encryption algorithm
(as explained in subsection 4.1) to generate the synthetic image SI
and pseudo-random sequences PRS1 to PRS6.

Now the process of decryption of ith pixel (starting from the
last pixel) of the cipher image is done in the following way:

9. Calculate the two terms CIS and PIS dependent on the cipher
and plain images

CIS(i) = mod(sum(CI(1 : i − 1)), 256)

PIS(i) = mod(sum (PI(i + 1 : HW)) , 256)

For i = 1 (i.e., the last pixel to decrypt) the value of the previous
cipher image pixel CI(i − 1) is 0.

10. Using PIS and CIS calculated above, the ith pixel of the syn-
thetic image is modified

SI(i) = (SI(i)⊕ PIS(i))⊕ CIS(i)

11. Convert the SI(i) into the DNA sequence (SIDNA(i)) using
the PRS1th

i DNA encoding rule

12. Convert the CI(i) into the DNA sequence (CIDNA(i)) using
the PRS6th

i DNA encoding rule

13. (i) DNA Complement recovery using PRS4th
i DNA Comple-

ment rule at the PRS5th
i level

CIDNA1(i) = fcr(CIDNA(i))

(ii)DNA XORing using the PRS3th
i XORing

PIDNA(i) = (CIDNA1(i) ⊕DNACIDNA1(i − 1)) ⊕DNA
SIDNA1(i).

For i = 1 (i.e., the last pixel to decrypt) the DNA sequence for
the previous cipher image pixel CIDNA1(i − 1) is ‘ATCG’.

14. Convert the PIDNA(i) into the binary form using the PRS2th
i

DNA decoding rule.

The process from Steps 9 to 14 is repeated for all the
pixels of the cipher image in reverse order i.e. from the
last pixel to the first pixel.

NIST testing of pseudorandom sequences
To verify the pseudorandomness of the sequences generated
through the robust chaotic map and used in the proposed image
encryption scheme, we have used the NIST test suite. For testing
purpose we have generated 100 sequences of 106 bits each starting
with the randomly chosen initial conditions and parameters within
the allowed robust chaos range as specified above (i.e. 0 < x0 < 1
and all a > 1, v > 1).
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Figure 5 The image encryption algorithm

We have then run the entire NIST test suite comprising 15 para-
metric and nonparametric tests that generate a total of 188 p-values
for each test statistic (there are multiple numbers of variants corre-
sponding to some of the tests). Considering the significance level
of 0.01, a p-value greater than 0.01 indicates that a particular test is
passed by the sequence. We also find the total number of sequences
passing the test out of the total sequences i.e. proportion for each
test statistics and as per the chosen significance level 0.01, if it
falls within the range (0.9833245, 0.9966745), the pseudorandom
sequence generator qualifies for the cryptographic applications.
For each test statistic, we may also observe the uniformity of all 100
p-values in the entire range [0,1] through the Chi-square test on the
100 p-values for each test statistic and generating the p-value of p-
values i.e p − valueT . If p − valueT > 0.0001 then the distribution
of the p-values for that particular test is declared uniform.

We have depicted the results of proportions and the p-valueT
obtained through the NIST test suite for each test statistic in Figure
6 that shows the pseudorandom sequence generator qualifies the
NIST test suite criteria for the cryptographic applications.

PERFORMANCE AND ANALYSIS RESULTS

The performance of the proposed image encryption method is ana-
lyzed through various perceptual quality metrics, statistical mea-
sures, information entropy, plaintext sensitivity measures (NPCR,
UACI), and measures based on DNA sequences (Hamming dis-
tance, base ratio) etc. The details and results of the analysis are
presented below.

We have used two images ‘Peppers’ and ‘Lena’ and encrypted
them with the secret key (x0=0.787; a1=1.65; v1=4.57; N=123;
a2=6.73; v2=5.46; a3=2.57; v3=7.35; a4=6.54; v4=9.83; a5=6.27;
v5=4.76; a6=3.52; v6=2.43; a7=8.53; v7=5.32).

In Figure 7, we have shown the plain images and corresponding
cipher images generated with the help of the proposed image
encryption algorithm. The cipher images look random. In Figure
8, we have depicted the histograms of the plain and cipher images
shown in Figure 7. Visually, the histograms of the cipher images
appear uniform. To confirm the uniformity of the histograms of
cipher images quantitatively, we have calculated two statistical
measures: Chi-square and variance of the histograms for the plain
and cipher images. The results are given in Table 4. It can be
observed that Chi-square and histogram variance are very small
for the cipher images (almost 1% of plain images) which confirms
the uniformity of the cipher image histograms.

The deviations of the cipher image histogram from the ideal
(perfect uniform distribution) histogram are computed using the
metric ‘Deviation from Ideality’. The results are shown in Table
5. As is evident from the values thus obtained, the deviation from
the ideality is negligible. This substantiates that the cipher image
pixel distributions are nearly ideal/uniform.

Also, the deviations between the plain and cipher image his-
tograms are computed using two metrics ‘Maximum Deviation’
and ‘Irregular Deviation’. Observations are listed in Table 5. As is
evident from the values, the deviations are quite large. This sub-
stantiates the fact that the proposed image encryption algorithm
generates the cipher images with histograms significantly different
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■ Table 4 Chi-Square and Histogram Variance

Peppers Lena

Chi-Square
Plain Image 1.9280e+04 2.5400e+04

Cipher Image 218.3680 245.5680

Histogram Variance
Plain Image 1.1768e+04 1.5503e+04

Cipher Image 133.2813 149.8828

■ Table 5 Deviation from Ideality, Maximum Deviation and Irregular Deviation

Peppers Lena

Deviation from ideality 0.0587 0.0618

Maximum Deviation 0.5676 0.6620

Irregular Deviation 0.6446 0.6908

■ Table 6 Correlation Coefficients

Peppers Lena

Horizontal Adjacent Pixels Plain Image 0.9544 0.9322

Horizontal Adjacent Pixels Cipher Image 0.0020 7.5469e-04

Vertical Adjacent Pixels Plain Image 0.9646 0.9684

Vertical Adjacent Pixels Cipher Image 0.0038 -8.3144e-04

2D Correlation Coefficients be-
tween plain image and cipher
image

-0.0045 -0.0077

■ Table 7 Perceptual Quality Metrics

Peppers Lena

MAE 75.3073 72.9944

MSE 8.3264e+03 7.7428e+03

PSNR 8.9262 9.2418

SD 1.4226e+04 1.4087e+04

SSIM 0.0093 0.0066

FSIM 0.3689 0.3614

than the histograms of corresponding plain images.
2D correlation coefficients for various pairs of plain and cipher

images as well as the correlation between the adjacent pixels (hori-
zontally as well as vertically) in the plain and cipher images are
evaluated. The results for correlation coefficients are summarized

in Table 6. The correlation of two similar images in an ideal case is
unity. As the values obtained for the proposed scheme are negli-
gible as compared to the ideal value which clearly shows that the
proposed image encryption algorithm is capable of removing the
high correlation that exist in the plain image pixels.
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■ Table 8 Hamming Distance (DNA)

Peppers Lena

Hamming Distance 119900 119682

■ Table 9 DNA Base Ratio (%)

DNA Base Peppers Lena

Plain Image

A 25.6631 25.7550

T 25.7494 25.0525

C 24.1581 24.4994

G 24.4294 24.6931

Cipher Image

A 25.1038 25.0575

T 25.1713 25.1025

C 24.8988 25.1438

G 24.8263 24.6962

■ Table 10 Global and Local Information Entropy

Block Size Peppers Lena

Global Information Entropy
Plain Image

200 X 200
7.5820 7.4351

Cipher Image 7.9960 7.9956

Local Information Entropy

Plain Image
50 X 50

6.9406 6.6886

Cipher Image 7.9230 7.9260

Plain Image
40X 40

6.7164 6.5113

Cipher Image 7.8806 7.8800

Plain Image
25 X 25

6.2370 6.0016

Cipher Image 7.6697 7.6724

■ Table 11 Plaintext Sensitivity

Peppers Lena Theoretical Value/Range (Wu
et al. 2011) (Significance Level
0.01)

NPCR 99.6450 99.7000 99.5527

UACI 33.4561 33.4321 [33.2255, 33.7016]

The perceptual quality analysis results for the cipher images
produced by the proposed image encryption algorithm are summa-
rized in Table 7. Ideally, the image encryption algorithm should be

able to have significant quality degradation in the images so that
no pattern/feature remains present in the cipher images leading to
a clue for analysing and decoding the information about plaintext
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Figure 6 NIST Testing of pseudorandom sequences

images. The results of our computation of various perceptual qual-
ity metrics are given in Table 7. We may observe that the encrypted
images possess very low perceptual quality.

As the proposed image encryption is based on the conversion
of image pixels into DNA sequences followed by operations like
XORing and complementing of the DNA bases in the DNA se-
quences of the image pixels, we have also done some analysis on
the DNA sequences of the plain images and the cipher images gen-
erated through the proposed image encryption technique. We have
computed the ‘Hamming distance’ between the DNA sequences of
plain and cipher images, it measures the dissimilarity between the
sequences in terms of DNA bases. The results have been shown
in Table 8 which shows that the hamming distance is very large
(almost 120K) which indicates the 75% dissimilarity in the DNA
sequences of cipher and plain images. We have also computed
the ‘Base Ratio’ for all the four DNA bases (A, T, C and G) in the
DNA sequences of plain and cipher images. The base ratio is the
percentage of occurrence of a particular base in the given sequence.
The results have been summarized in Table 9. It is clear that all the
bases have almost 25% occurrence in the plain as well as cipher
images. It also conveys that while encoding the plain image into
the DNA sequence in the proposed image encryption algorithm,
sufficient randomness has been introduced so that the base distri-
bution is almost uniform even in the DNA sequence of the plain
image.

The information entropy is the measure of disorder. We have
computed the information entropy for the whole of plain and
cipher images (i.e., global information entropy) as well as the

Figure 7 Plain images ‘Peppers’ and ‘Lena’ (first column) along with
corresponding cipher images (second column) obtained with the
proposed image encryption algorithm.

Figure 8 Histograms of ‘Peppers’ and ‘Lena’ (first column) and cor-
responding encrypted images (the second column).

average of information entropy by dividing it into a finite number
of non-overlapping blocks (i.e., local information entropy). The
results have been shown in Table 10 which confirms that for the
encrypted images, the global information entropy is very near to
8-bits and the local information entropy is also close to the global
entropy and well above the desired thresholds.

To check the robustness of the proposed image encryption al-
gorithm against the known-plaintext attack, we have also done a
differential analysis of the proposed image encryption. For this
purpose, we make a small change in the plain image (usually only
one pixel) and compare the cipher images corresponding to two
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plain images with only a one-pixel difference and encrypted with
the same secret key. We compute two metrics Net Pixel Change
Rate (NPCR) and Unified Average Change Intensity (UACI) and
the results are shown in Table 11. It shows that these computed
values of NPCR are higher than the theoretical/ideal critical value
and computed values of UACI lie within the theoretical/ideal
range obtained for a pair of random images, therefore, the two
encrypted images, produced for the two plain images differing
by only one-pixel value, are random like. Hence, the proposed
image encryption algorithm is sensitive to the plaintext and robust
against any differential attack.

For brevity, we have not provided the mathematical de-
tails/statistics of all the metrics used in the performance analysis.
We refer the readers to (Kaur et al. 2022a; Patidar et al. 2011; Xue
et al. 2020; Patidar and Kaur 2023; Wu et al. 2011) for complete
details.

CONCLUSION

A novel image encryption algorithm utilizing the robust chaos-
based dynamic DNA coding, DNA XORing and DNA Comple-
menting is proposed. Though there are other DNA-Chaos-based
schemes already available in literature but to the best of our knowl-
edge, the proposed scheme is novel in its approach towards utiliz-
ing the dynamical behaviour of chaos for random selection of one
of the DNA rules. Secondly, the chaotic map is carefully selected
for its robustness due to the absence of periodic windows over
the entire key space. The proposed algorithm possesses all the
essential features of a practical image encryption algorithm. Vari-
ous statistical measures, perceptual quality metrics, information
entropy, plaintext sensitivity measures (NPCR, UACI), measures
based on DNA sequences (Hamming distance, base ratio) etc. have
been used to analyze the performance of the proposed image en-
cryption algorithm and the results show the robustness of the
proposed image encryption algorithm against any statistical or
cryptanalytic attacks. In future, we will present different combi-
nations of chaos/hyperchaos and DNA rules for a comparative
analysis of our proposed work with the existing schemes in terms
of speed and complexity as well.
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ABSTRACT Intrusion detection systems utilize the analysis of log data to effectively detect anomalies.
However, detecting anomalies quickly and effectively in large and heterogeneous log data can be challenging.
To address this difficulty, this study proposes the GLSTM (Graph-based Long Short-Term Memory) framework,
a graph-based deep learning model that analyzes log data to detect cyber-attacks rapidly and effectively. The
framework involves standardizing the complex and diverse log data, training this data on an artificial intelligence
model, and detecting anomalies. Initially, the complex and diverse log data is transformed into graph data
using Node2Vec, enabling efficient and rapid analysis on the artificial intelligence model. Subsequently, these
graph data are trained using LSTM (Long Short-Term Memory), Bi-LSTM, and GRU(Gated Recurrent Unit)
deep learning algorithms. The proposed framework is tested using Hadoop’s HDFS dataset, collected from
different systems and heterogeneous sources, as well as the BGL and IMDB datasets. Experimental results
on the selected datasets demonstrate high levels of success.
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INTRODUCTION

Logging is the process of collecting numerical and textual data
that captures the behavior of software, including events like low
memory conditions or attempts to access files. The current focus
of logging practices primarily revolves around the storage and or-
ganization of logs (Wang et al. 2019). Logging mechanisms consist
of extensive datasets of log statements and their corresponding
activation codes, which are implemented either by developers or
specific software platforms.

In large internet networks, analyzing event and system-based
logs using a combination of multiple systems, software, and hard-
ware is crucial. Since log records are collected from devices and
software responsible for system security, they often contain traces
of attacks carried out by malicious actors during or after an attack.
Therefore, it is essential to analyze log records and detect anoma-
lies resulting from these traces in order to identify cyber-attacks
(Elbasani and Kim 2021).
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Numerous techniques have been developed to address the chal-
lenges associated with log analysis and anomaly detection. These
techniques include frequent pattern mining, heuristics, clustering,
evolutionary algorithms, and deep learning (He et al. 2020). How-
ever, it has been observed that these techniques are not as effective
and efficient in detecting log anomalies as our proposed method.

To overcome these challenges, comprehensive log data collected
from various devices and software in different structures needs to
be converted into a standardized format for analysis. Addition-
ally, it is necessary to analyze standardized data effectively and
efficiently in order to detect attacks (Li and Li 2020).

In this study, we propose a framework that converts diverse
log data into graphs and detects anomalies using deep learning
methods. Our framework utilizes the node2vec algorithm, which
is a semi-supervised and heuristic approach, to convert different
log data into graphs. By leveraging node2vec, we can scale fea-
ture learning and select adjacent nodes through a random walk
approach between nodes. This algorithm offers flexibility due to
its adjustable parameters (Grover and Leskovec 2016).

For the deep learning component of our framework, we employ
the LSTM algorithm, which is a type of recurrent neural network
(RNN). Unlike traditional RNNs, LSTM networks address issues
such as gradient weakening or gradient bursting that can occur in
redundant neural networks (Hochreiter and Schmidhuber 1997).
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LSTM networks also utilize feedback connections instead of solely
relying on feed-forward connections. In this study, the data is first
transformed using the node2vec algorithm and then inputted into
the LSTM algorithm. Our experiments have demonstrated that
this approach achieves high accuracy in detecting anomalies.

When examining the literature, four different methods have
been employed in studies on log anomaly detection. These meth-
ods are as follows: 1. Stencil removal, 2. Document management,
3. System monitoring, and 4. Learning-based anomaly detection.
Several studies have focused on template extraction within these
methods.

The template extraction method aims to extract word frequen-
cies from log files, identify abnormal words, and detect anoma-
lies. To be considered a template, terms must surpass a certain
threshold. IPLoM, for instance, is a study that employs this
method, recursively splitting log records assuming equal line
lengths (Makanju et al. 2009).

Another study utilizing the template extraction technique ap-
plies deep learning to sequentially stored log records, using natural
language processing to detect anomalies. Anomalies are detected
when the sequential order is disrupted or when log records deviate
from the expected flow. Meaningful words are extracted from log
records and organized into templates. These templates are then
converted into vectors, a method referred to as template2vector
(Meng et al. 2019a). LSTM, a deep learning algorithm, is utilized
in this study, with HDFS and BGL datasets employed for testing
purposes(Alaca and Çelik 2023).

Document management, particularly using the Word2Vec
method, is also prominent in log anomaly detection. Word groups
are created, dividing words into different categories such as sen-
tences and paragraphs based on the dataset size (Church 2017). In
another study employing this method, natural language process-
ing techniques are applied to detect anomalies in Thunderbird logs
and system log records. Word2Vec and TF-IDF feature extraction
algorithms are used, and the LSTM deep learning algorithm is
employed for classification analysis (Wang et al. 2018).

System monitoring is another method used for anomaly detec-
tion. Log records from various systems can be monitored, and an
exemplary tool in this context is Google’s Dapper tool. This tool
has demonstrated high success in complex, large-scale distributed
systems (Sigelman et al. 2010).

In the literature, numerous studies are based on learning ap-
proaches, utilizing various machine learning techniques. DeepLog
is a prominent study for log anomaly detection. The proposed
approach consists of two main parts: defining the log key and
establishing a workflow that includes anomaly parameters. The
anomaly parameters are converted into vectors based on the log
key, and the LSTM algorithm from artificial neural networks is
employed to detect anomalies corresponding to the log key. The
algorithm also incorporates manual feedback to improve accuracy
(Du et al. 2017).

In another study, the CNN algorithm, a deep learning tech-
nique, is employed for anomaly detection from log records (Lu
et al. 2018). This study identifies keywords in log records and de-
tects anomalies based on these keywords. The identified keywords
are digitized, normalized, and transformed into a 29x128 vector.
This method is referred to as logkey2vector.

Deep learning is further explored in a study where different
models are developed using datasets such as BGL (BlueGene/L),
Thunderbird, Openstack, and IMDB (Internet Movie Database).
The IMDB dataset is used to demonstrate the generalizability of
the proposed model for other text classification problems. Positive

and negative labeled data are fed into two distinct Autoencoders
to enhance understanding of the original data, and the output is
used as input for deep learning algorithms such as LSTM, BLSTM,
and GRU (Farzad and Gulliver 2019).

An alternative approach to log anomaly detection aims to detect
subsets of the original data space by making multiple passes over
the entire dataset using frequent pattern mining. This approach in-
volves three steps: summarizing the data by traversing the dataset,
generating cluster candidates through another pass, and selecting
suitable clusters from the candidates (Vaarandi 2003).

Graph structures have been employed in multiple studies for
anomaly detection from log records. In one study, authentication
logs are analyzed using graph structures to prevent unauthorized
access to the operating system. A graph clustering method is
developed specifically for forensic computing (Studiawan et al.
2017).

Another study utilizing graph structures detects anomalies
from log data using time series and kill chain mechanisms. This ad-
vanced method creates attack profiles and simulates daily attacks
on computer networks (Schindler 2017).

Graph structures have also been utilized in a study aiming to
detect software errors in cloud computing (Yan et al. 2015). This
method converts the complex relationships between log records
into a graph and assigns importance scores to each log. The log
anomaly detection method developed through this approach effec-
tively identifies software errors.

In conclusion, various methods have been explored in the liter-
ature for log anomaly detection. These methods include stencil re-
moval, document management, system monitoring, and learning-
based approaches. Template extraction, deep learning algorithms
like LSTM and CNN, as well as graph structures, have been uti-
lized to detect anomalies in log records. Each method has its
strengths and limitations, and further research is needed to en-
hance the accuracy and efficiency of log anomaly detection tech-
niques.

It is crucial to continue advancing the field of log anomaly detec-
tion as it plays a vital role in ensuring the security and reliability of
systems and networks. By detecting anomalies and potential cyber-
attacks, these techniques contribute to early threat identification
and mitigation. Future research should focus on refining exist-
ing methods, exploring new algorithms, and leveraging emerging
technologies to improve the effectiveness and scalability of log
anomaly detection systems.

The aim of this study is to transform raw log data into mean-
ingful and analyzable information that can effectively identify
log anomalies. We achieve this by combining the node2vec and
LSTM algorithms and applying them to the Hadoop HDFS dataset
collected from multiple sources.

MATERIALS AND METHODS

The architecture of this study is based on the use of two algorithms
together. First, the data converted to templates was vectorized
using the Node2Vec algorithm to analyze it in deep learning algo-
rithms. Then, this vectorial data was given as input to the LSTM
algorithm, and models were created for anomaly detection; thus,
anomaly detection was performed.

There are three types of anomalies in anomaly detection from
log data. The first of these anomalies is the point anomaly. A
point anomaly is data that deviates significantly from the mean
or normal distribution of the remaining data (Gogoi et al. 2011).
The second is the contextual anomaly. Contextual abnormality is
an abnormal behavior confined to a specific context and standard
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in other contexts (Ahmed et al. 2016). The third is the collective
anomaly. Unlike contextual and point anomalies, aggregate anoma-
lies appear in the data as abnormal values. Aggregate anomalies
are the abnormal behavior of a collection of data samples relative
to the entire dataset (Li et al. 2015).

Log anomaly detection identifies abnormal system patterns in
log data that do not conform to expected behavior. This section
discusses our work based on the algorithms adopted here. The
outline of our study is shown in Fig. 1. First, raw log data were
taken from different log groups and made meaningful by removing
unnecessary and noisy data. Templates were created from this log
data and given input to the Node2Vec algorithm to generate the
feature vector. Model training was done with the LSTM algorithm,
and anomaly detection was made with these trained models.

Figure 1 Flow chart of the proposed model algorithm.

Log parsing
Analysis of log data takes numerical and categorical data as in-
put. This requires cleaning, sorting, and normalizing the raw log
data. Log records consist of two main parts. Head part and text
part. The head part usually consists of several features such as
timestamps, hostnames, and severity of events. The developers
manually predefine text message input. This can vary significantly
between systems, even within one. These messages also consist of
two parts: fixed messages and variable messages.

Each raw log data consists of two parts. One of them is the
timestamp, and the other is the log complement part. The times-
tamp records the time of each log occurrence. Timestamps in
different formats can be easily extracted from raw log data during
log parsing, as they are regular expressions. A log identifier is a
token that identifies multiple processes or message exchanges of
the system(Du et al. 2017).

Log data X1,X2,X3,X4. . . .Xn let be created. These log data are
T1,T2,T3,T4. . . .Tn corresponds to log templates. TK is log parsing
method, date(t), time(z), pid(p), type(r), component(b), content(i),
templateid(j), template(l), and anomaly(k) performs the separation
process.

t, z, p, r, b, i, j, l, k = TK(X) (1)

As a result of the log parsing method;

k =

0 Normal

1 Abnormal

 (2)

After creating the log templates in Eq.(1), they are transferred
to the Node2Vec algorithm. With the embedding vector resulting
from this algorithm, training and test data are created from the
labeled abnormal data in Eq.(2).

As seen in Table 1, the first part is seen as a timestamp, the other
part as a log complement. Thus, some of the log data contains
numerical data, and the other part contains verbal data. Each

word in the log data can be used as a log keyword or parameter.
Log parameters usually consist of IP addresses, MAC information,
or user information. Log anomaly detection is generally detecting
that the log data is not abnormal. The presence of "INFO" in the
log data does not mean that the log data is normal. It is unknown
if parsing log data for this is abnormal or not. The purpose of log
parsing is to extract meaningful data from raw log data. Thus,
using these data, analyzes are made, and models are created.

To automatically analyze the logs, it is necessary to convert
them into appropriate formats that can fit textual and machine
learning algorithms. To analyze the log data, its unique parts
must be determined. As shown in Fig. 2, unique templates were
produced by labeling the parts with different similarity ratios in
the log records.

Figure 2 Log parsing steps for each log row.

Logs are preprocessed during log parsing. The values in the
timestamp in Table 2 are also separated as date, time, and PID.
Since each log template is different from the other, each template
is labeled as TemplateID. Component and content parts were also
subjected to separation under a different column.

Architecture of the Proposed Model Algorithm
It is challenging to detect anomalies in log analysis. Because log
data consists of both numerical and categorical data. To be able
to analyze these data, certain preprocesses are required. Different
preprocessing techniques are applied to each study dataset men-
tioned in Section 2. Thus, the feature is extracted from the data set
and made into a vector. Later, this vectorial data set was analyzed
with deep learning algorithms, and anomaly detection was made.

In this study, the GLSTM algorithm is proposed. This algorithm
consists of two stages. In the first stage, the data was transferred to
a graph after converting the data into templates without making
attributes from the data set. For this study, the Node2Vec algorithm,
one of the graph algorithms, was used. Because it is the most
effective algorithm for obtaining a vectorial data set for analyzing
data. Experimental tests have proven that this algorithm is suitable
and adequate for this study. The second stage is the analysis and
classification process. At this stage, LSTM, one of the deep learning
algorithms, was used. This algorithm is an iterative deep learning
algorithm. It is one of the most preferred algorithms for detecting
anomalies in log analysis. As a result of the experimental tests,
a high success rate was obtained using Node2Vec and LSTM in
anomaly detection.

The structure of the GLSTM architecture is shown in Fig. 3.
When the structure is examined, log data from multiple heteroge-
neous sources is taken, and templates are created. Since the graph
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■ Table 1 Raw log data structure.

Raw Log Data

081109 203615 148 INFO dfs.DataNode$PacketResponder: PacketResponder 1 for block blk_38865049064139660 terminating

081109 204005 35 INFO dfs.FSNamesystem: BLOCK* NameSystem.addStoredBlock: blockMap updated: 10.251.73.220:50010 is added to
blk_7128370237687728475 size 67108864

081109 214529 2747 WARN dfs.DataNode$DataXceiver: 10.251.123.132:50010: Got exception while serving blk_3763728533434719668 to
/10.251.38.214:

081109 220032 3137 WARN dfs.DataNode$DataXceiver: 10.250.14.196:50010: Got exception while serving blk_-305633040016166849 to
/10.251.38.53:

■ Table 2 Assigning log preprocessing parameters.

NoID 1,2,3,. . . ..

Date 081109 , 081110, . . . .

Time 203615, 203807, 204005

PID 148, 222, 35, 308, 329, . . . .

Level INFO, WARN

Component dfs.DataNodePacketResponder, d f s.FSNamesystem, d f s.DataNodeDataXceiver

Figure 3 Proposed Model Architecture structure.

algorithm accepts the data set as numerical, the categorical part
of the data set of these templates was digitized. Digitization was
done by two methods used in the literature. One of them is Label
Encoding, and the other is One Hot Encoding. The graph struc-
ture was created by giving the digitized data set to the Node2Vec
algorithm as an edge and a node. A vectorial result was obtained
from this graph structure. By providing this result as an input to
the LSTM algorithm, log anomaly detection was made.

Exporting data to graph

The Node2Vec algorithm, one of the graph algorithms, has been
developed as an alternative to the word2vec algorithm, a natural
language processing algorithm. Although it was designed with
natural language processing in mind, this algorithm has been used
in more than one area. The approach of this algorithm uses proba-
bility to maximize the neighborhood of each node in the network
in a d-dimensional feature space. A random walk approach is used
to obtain the network neighborhood of the nodes.

The classical search algorithms in the graph are shown in Fig. 4.
One of these algorithms is Breadth Priority Sampling (BFS), and the
other is Depth Priority Sampling (DFS). It seems that BFS can detect
close quarters, whereas DFS can detect distant neighborhoods.
With its flexible structure, Node2Vec uses these two approaches
together. Probability was used to find neighborhoods by taking
a random walk. Semi-supervised operation in unweighted and
undirected networks achieved better results than classical search
approaches BFS and DFS(Grover and Leskovec 2016).

The structure of the Node2Vec algorithm differs from other
algorithms. This algorithm takes four parameters. These are p,
q, random walk, and walk length parameters. It is an algorithm
that works as a semi-control as optimum results are obtained by
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Figure 4 Classical search graph algorithms(Grover and Leskovec
2016)

changing these parameters. Of these parameters, p is the return
parameter. It reduces the probability of sampling the previously
visited node. The other parameter q is the input-output parameter.
With this parameter, previously unvisited nodes are visited. If
q > 1, the random walk is performed around the more visited
node. In this respect, it is similar to the BFS algorithm. If q < 1, the
random walk visits previously unvisited nodes. In this respect, it
is similar to the DFS algorithm.

To get vector data from the Node2Vec algorithm, it needs to be
exported to a Graf. In this study, StellarGraph was used because
machine learning and deep learning structures are easy to use
(CSIRO’s Data61 2018). The main reasons for using this graphic
structure are; 1. It can be used for visualization and various ma-
chine learning, 2. Ability to extract features from nodes and edges,
3. Applicable in big data, 4. Classification of nodes, It can perform
many operations, such as easy and applicable. Multiple studies
have been conducted on deep learning and machine learning using
this graph structure(Rong 2014; Demeester et al. 2016; Kipf and
Welling 2016).

The following procedure was followed for transferring the data
to Graph. Graphs are made up of edges and nodes. Nodes, on the
other hand, need to go from a specific source to the destination.
TemplateID, which is different for each template, was chosen as
the source, and anomaly or normal column was chosen for the
target. The remaining columns are used for nodes. In Fig. 5, the
edges and nodes of the data transferred to the Graph are shown.

Figure 5 Data exported to graph.

Anomaly Detection

LSTMs are members of repetitive RNNs. RNNs are self-repetitive
models, taking sequential data one item at a time. Compared to
Markov models, although state-space sets increase, they give better
results in the long run due to dependency(Specht 1990; Werbos
1988). LSTMs were developed to eliminate the disadvantages of
RNNs. LSTMs work recursively like RNNs, the difference being
that they run on different cells with their hidden display.

Fig. 6 shows the use of the LSTM algorithm in this study. Input
data is used HDFS verse which Hadoop collects from multiple
sources. These data were digitized with 1-hot encoding and label
encoding methods. Then, these data are given to the Node2Vec al-
gorithm as an input parameter, and an embedding vector is created
as an output. Anomalous log data labeled with this embedding
vector is provided as input parameters to the LSTM algorithm.
Thus, models that detect abnormal values are created.

Figure 6 Anomaly detection in the proposed model.

RESULTS AND DISCUSSION

This study proposes a model to analyze log records to detect
cyberattacks and to detect the anomalies created by the traces
left by the attackers in the log records. HDFS dataset was used
to test this model. The HDFS log dataset consists of 11,175,629
logs collected from more than 200 Amazon heterogeneous sources.
HDFS log data records operations such as allocation, duplication,
and deletion in a specific block using block_id. This dataset com-
prises 575,061 log blocks and has been labeled 16,838 abnormal by
Hadoop’s experts. Table 3 gives information about the HDFS data
set.

The BGL dataset consists of a comprehensive collection of
4,747,963 logs, meticulously labeled as either anomalous or normal.
Among these logs, 348,460 instances have been classified as anoma-
lous. The BGL dataset was obtained from the Blue Gene/L super-
computer, a highly sophisticated computing system employed at
Lawrence Livermore National Laboratory (LLNL). With its exten-
sive infrastructure consisting of 128K processors, the Blue Gene/L
supercomputer has played a crucial role in generating the BGL
dataset for research and academic endeavors (Guo et al. 2021).

The IMDb dataset is a collection of film reviews. It comprises
50,000 reviews written by users on the IMDb website for various
movies. The dataset includes reviews that have been labeled as
positive or negative. The reviews are rated using a rating scale
ranging from 1 to 10. Ratings between 1 and 4 are labeled as
negative, while ratings between 7 and 10 are labeled as positive.
Ratings of 5 and 6 are not included in the dataset. Each film has
a maximum of 30 reviews. The IMDb dataset consists of 25,000
positive and 25,000 negative reviews (Tripathi et al. 2020).
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■ Table 3 Detail of the datasets.

Dataset Time Log Line Anomaly

HDFS 38,7 hours 11,175,629 16,838(block)

BGL 7 months 4,447,963 348,460(logs)

IMDB - 50,000 25,000(negative)

Research Questions
Logging collects numerical and textual data of software behavior,
such as low memory conditions or attempts to access a file. Log
anomaly in modern software engineering is still challenging for
three main reasons.

The main reasons for this are;
• Great effort is required for large volumes of logs and thus

manual regular expression generation,
• The complexity of the software and, therefore, the variety of

event templates,
• Frequency of software updates and hence frequent updating

of logging statements.
In this study, templates were created for each row of log records,

and these large-volume logs were made regularly by reducing
their size using templates. Then, the embedding vector was cre-
ated by establishing a relationship between these templates with
the Node2Vec algorithm. The model was trained with LSTM, and
anomaly detection was performed in the newly created log tem-
plate.

Evaluation Metrics
A confusion matrix was used for the performance evaluation of
experimental studies conducted to classify HDFS, BGL and IMDB
datasets. In these experimental studies, the data was randomly
partitioned into training, validation, and test sets, with 70% of
the dataset allocated for training and 15% each for testing and
validation. This data splitting strategy was employed to ensure
reliable outcomes in the experiments. Performance metrics such
as accuracy, sensitivity, specificity, precision, and F-score of the
model were calculated using the confusion matrix. The calculation
of these metrics is given in Eq. 3, 4, 5 and 6 mathematically.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
(6)

In the experimental studies, in the first stage, large volumes of
log data were transformed into templates to reduce their size and
make them regular. The Node2Vec algorithm was used to establish
a relationship between these templates and to train the model with
the deep learning algorithm. Then, model training was performed
with the LSTM algorithm for anomaly detection. In the model
created with this dataset, the LSTM input layer consists of 128, the
hidden layer 64, and the output layer consists of 1 neuron to obtain
the normal or abnormal result. As a result of the experimental

study, an accuracy rate of 97.01% was obtained with the proposed
model.

The performance results obtained with the proposed model
are given in Table 4. The results vary depending on the datasets.
In the tests conducted on the HDFS dataset, the LSTM method
achieved an accuracy rate of 97.01%. The Bi-LSTM method fol-
lowed closely with an accuracy rate of 96.98%. The GRU method
demonstrated the highest performance with an accuracy rate of
98.15%. In the tests conducted on the BGL dataset, the LSTM
method had an accuracy rate of 81.56%. The Bi-LSTM method
performed slightly better with an accuracy rate of 84.21%. The
GRU method exhibited the best performance with an accuracy rate
of 86.44%. In the tests conducted on the IMDB dataset, the LSTM
method achieved an accuracy rate of 97.40%, while the Bi-LSTM
method outperformed with an accuracy rate of 98.54%. The GRU
method showed the highest performance with an accuracy rate of
98.89%. Based on these experimental results, it can be observed
that the GRU, Bi-LSTM, and LSTM methods perform differently
on different datasets.

The Fig. 7 illustrates the progression of accuracy rates during
the training and validation processes. The training accuracy curve
represents the accuracy rate achieved on the training dataset, while
the validation accuracy curve reflects the accuracy rate on the
validation dataset. At the beginning of the graph, both the training
and validation accuracy rates are low. However, as the training
process progresses, the accuracy rates increase and eventually
converge. This indicates that the model performs well on the
training dataset and also provides good results on the validation
dataset. Analyzing this graph is important to evaluate the model’s
performance during the training process and demonstrate the
absence of issues such as overfitting or underfitting.

Figure 7 Training and Validation Accuracy Performance Curves.

CHAOS Theory and Applications 193



■ Table 4 Performance results of the proposed model.

Datasets Algorithm Accuracy Precision Recall F1_score Average train time (second)

HDFS LSTM 97.01 97.23 96.06 84.25 6.60

Bi-LSTM 96.98 97.40 97.18 86.89

GRU 98.15 98.10 98.55 88.42

BGL LSTM 81.56 81.76 88.31 81.54 5.46

Bi-LSTM 84.21 86.89 85.18 85.79

GRU 86.44 87.34 88.29 91.52

IMDB LSTM 97.40 95.99 98.18 95.89 7.21

Bi-LSTM 98.54 97.44 97.39 96.22

GRU 98.89 97.49 98.28 97.36

Fig. 8 illustrates the changes in training loss and validation loss
during the training process. The training loss curve represents
the loss on the training dataset, while the validation loss curve
reflects the loss on the validation dataset. The graph shows that
the training loss decreases over time, indicating that the model is
learning and improving its performance. Initially, the validation
loss also decreases, but at a certain point, it starts to increase again.
This situation indicates that the model is not overfitting to the
training data.

Figure 8 Training and Validation Loss Performance Curves.

The Confusion Matrix is given in Fig. 9, which shows the suc-
cess status due to the tests performed in this study. This graph
calculates the efficiency of the actual and predicted values. The
important thing is that the estimated values obtained after training
our model were compared with the actual values, and their accu-
racy was determined. This graph shows how many anomalies the
actual anomaly detected after the model was trained. Thus, this
graph shows that our model has achieved high success.

Two useful tools, AUC curves, are used to measure the outcome
of experiments performed accurately. These curves are used to

Figure 9 The confusion matrix of the experimental results of the
proposed model.

Figure 10 The graph of the AUC Curve.
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eliminate two different errors. One of them is HPs. This error gives
results as if there is an event when there is no event. The other is
FN. This error also produces erroneous results because it does not
detect the event when there is an event. Due to these two errors,
the results of the experiments are not clearly understood. To avoid
this, AUC curves are used.

TruePositiveRate =
TP

TP + FN
(7)

TrueNegativeRate =
TN

FN + TN
(8)

Two important ratios are calculated in the AUC curve. One
of them is the True Positive Ratio shown in Eq. 7. The other is
the True Negative Ratio shown in Eq. 8. Fig. 10 shows the graph
of the AUC Curve. Smaller values on the graph’s x-axis indicate
lower false positives and higher true negatives. The graph’s y-axis
also shows larger values, i.e., higher true positives and lower false
negatives. This shows that a good model shows a value higher
than 0.5; the part is shown with dashed lines in the graph, that is,
the threshold value. This shows that the model gives good results.

Another graph that measures the model accurately is the Pre-
cision – Accuracy graph. These curves are also called Sensitive
Recall Curves. The precision shows how well the positive part of
the model predicts, as shown in Eq. 8. The accuracy is shown in
Eq. 3. This allows for a more accurate estimation of true positives.
Fig. 11 shows the Precision vs. Accuracy graph. The integral of
the area under the curve shows how accurately and accurately the
model works.

Figure 11 Precision-Accuracy Plot of the proposed model.

Competing Models
This study was carried out according to the method used, the
dataset used, and the comparisons’ accuracy with the previous
run. Considering these criteria, comparisons for this use with other
businesses are given in Table 5. LogAnomaly (Rodriguez et al. 1999)
uses the same dataset as our proposed study and the same deep
learning methods in the developed method. With LogAnomaly,
primarily synonyms and antonyms were detected in the log data
with Word2Vec. One sample for each log information is incorrect.
These templates were then transferred to a vector and analyzed
with LSTM. LogAnomaly faces significant challenges as log records
consist of numeric and textual structures. Since the method we pro-
pose converts both numeric and textual data into graphs, it turned

out to be in the size of such dimensions, and in fact, a better result
was obtained than LogAnomay. DeepLog (Du et al. 2017) generates
a key for each log information with a natural language processing
method, and a vector result is obtained with the corresponding
key. Anomaly data were made using this vectored LSTM. This
method has difficulties analyzing numerical parts of log data at a
certain level. Since the method we proposed analyzes using each
feature of the whole data set, it achieved a more successful result
despite using the same dataset and using this method. To reduce
log anomaly, Bi-LSTM and PCA retentions (Meng et al. 2019b) were
used with a dataset similar to our proposed work. With this work,
the dataset was first separated and then made into templates. Then,
it was converted into vectorial form with digitization and normal-
ization processes. Although the examples we suggested used the
same dataset, the model we did not particularly recommend was
more successful than the results obtained with PCA. As a result,
our proposed method has obtained more successful results than
many previously applied models and evaluates that it can be used
more effectively in daily anomalies.

In this study, graph structure was used instead of the NLP tech-
nique used in many studies. Node2vec from the graph algorithm is
used. This algorithm was developed as an alternative to word2vec
algorithms. In this study, it has been shown by tests that it achieves
a better result than other algorithms in terms of decomposing logs
and feature extraction.

To train deep learning network models and achieve high success
in log anomaly detection, it should be brought to the level to be
given as input to the model, especially after the log parsing process.
In this study, the node2vec output vector was given to LSTM as
input data, and 97.01% success was achieved. A better result was
obtained than the methods using the NLP technique.

CONCLUSION

This study aims to make a large number of logs obtained from
different sources in complex networks and uniformly contain dif-
ferent features and detect anomalies from them. The fact that
the logs consist of huge and different data makes detecting fast
and effective anomalies very difficult. For this reason, to process
these different log data effectively and quickly, in this study, logs
in different structures were turned into a template and then con-
verted into a graph structure to obtain the relationships between
these templates. Node2Vec, a graph algorithm, was used for graph
transformation. The embedding vector of the log templates is ob-
tained from this transformation. The obtained data containing
these vector anomaly tags are divided into 70% training and 30%
test data for the deep learning algorithm. These data were trained
and tested using the LSTM algorithm, one of the deep learning
methods. As a result of the tests, our Graf-based LSTM model,
which we recommend, has achieved successful results with an
accuracy of 97.01%.

Intrusion detection systems utilize the analysis of log data
to effectively detect anomalies. However, detecting anomalies
quickly and effectively in large and heterogeneous log data can
be challenging. To address this difficulty, this study proposes the
GLSTM (Graph-based Long Short-Term Memory) framework, a
graph-based deep learning model that analyzes log data to detect
cyber-attacks rapidly and effectively. The framework involves
standardizing the complex and diverse log data, training this data
on an artificial intelligence model, and detecting anomalies. Ini-
tially, the complex and diverse log data is transformed into graph
data using Node2Vec, enabling efficient and rapid analysis on the
artificial intelligence model. Subsequently, these graph data are
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■ Table 5 Comparison of the proposed model with other payments.

Authors Method Datasets Acc(%)

2019, Weibin Meng et al.(Rodriguez et al. 1999) LSTM,Word2Vec BGL,HDFS 96.00

2017,Min Du et al. (Du et al. 2017) LSTM,tamplate2Vec BGL,HDFS 92.00

2022, Zhang Yue et al.(Meng et al. 2019b) Bi-LSTM,PCA HDFS 95.60

2023, Proposed Method LSTM,BGL,IMDB,Node2Vec HDFS 97.01

trained using LSTM (Long Short-Term Memory), Bi-LSTM, and
GRU (Gated Recurrent Unit) deep learning algorithms. The pro-
posed framework is tested using Hadoop’s HDFS dataset, collected
from different systems and heterogeneous sources, as well as the
BGL and IMDB datasets. Experimental results on the selected
datasets demonstrate high levels of success.

Limitations of this study should be considered:
Data Diversity: Although this study was tested with Hadoop’s

HDFS dataset, its ability to generalize to datasets with greater
diversity from various networks and systems may be limited. Spe-
cific anomalies based on different data types or sources could pose
challenges. Data Size: Working with large datasets can be lim-
ited by computational resources and memory requirements. This
study may provide limited insights into handling larger datasets.
Feature Engineering: Data transformations and representation
may pose challenges in feature engineering. Ensuring that data is
accurately and meaningfully represented may not always be guar-
anteed. Training Data: The success of this study may be dependent
on the specific datasets used and the training data. Results may
vary with different datasets or data splitting strategies. Model
Selection: This study employed specific deep learning algorithms
like LSTM, Bi-LSTM, and GRU. The impact of these algorithms on
model performance should be taken into account. Exploration of
other deep learning methods may be warranted. Real-World Ap-
plications: The extent to which the study’s results can be applied to
real-world applications, generalize to specific network structures
or systems, may require further investigation. These limitations
should be considered for a better understanding of the study’s
findings and the real-world applicability of the model.
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ABSTRACT Medical imaging, the process of visual representation of different organs and tissues of the human body, is

employed for monitoring the normal as well as abnormal anatomy and physiology of the body. Imaging which can provide

healthcare solutions ensuring a regular measurement of various complex diseases plays a critical role in the diagnosis

and management of many complex diseases and medical conditions, and the quality of a medical image, which is not a

single factor but a composite of contrast, artifacts, distortion, noise, blur, and so forth, depends on several factors such

as the characteristics of the equipment, the imaging method in question as well as the imaging variables chosen by the

operator. The medical images (ultrasound image, X-rays, CT scans, MRIs, etc.) may lose significant features and become

degraded due to the emergence of noise as a result of which the process of improvement pertaining to medical images

has become a thought-provoking area of inquiry with challenges related to detecting the speckle noise in the images

and finding the applicable solution in a timely manner. The partial differential equations (PDEs), in this sense, can be

used extensively in different aspects with regard to image processing ranging from filtering to restoration, segmentation to

edge enhancement and detection, denoising in particular, among the other ones. In this research paper, we present a

conformable fractional derivative-based anisotropic diffusion model for removing speckle noise in ultrasound images. The

proposed model providing to be efficient in reducing noise by preserving the essential image features like edges, corners

and other sharp structures for ultrasound images in comparison to the classical anisotropic diffusion model. Furthermore,

we aim at proving the viscosity solution of the fractional diffusion model. The finite difference method is used to discretize

the fractional diffusion model and classical diffusion models. The peak signal-to-noise ratio (PSNR) is used for the quality

of the smooth images. The comparative experimental results corroborate that the proposed, developed and extended

mathematical model is capable of denoising and preserving the significant features in ultrasound towards better accuracy,

precision and examination within the framework of biomedical imaging and other related medical, clinical, and image-signal

related applied as well as computational processes.
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INTRODUCTION

Nonlinear anisotropic diffusion equations ensure the enhancement
of the image quality through the removal of noise while retaining
the subtle details and edges (Gilboa et al. 2006). Image denoising is
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observed to be of utmost importance in image processing as well
as in computer vision in order that images can be prepared with
better resolutions. Given this, partial differential equations (PDEs)
can extensively be employed in different aspects related to image
processing rangining from filtering to restoration, segmentation to
edge enhancement and detection, denoising in particular, amongst
the other ones (Mazloum and Siahkal-Mahalle 2022). Chaos, as
a ubiquitous phenomenon in nature, reveals that the observed
chaotic and noisy signals are often disrupted by external interfer-
ences. Edge, as one of the most remarkable features for images,
requires denoising via nonlinear means and wavelet transform to
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attain optimal outcomes. When it comes to the image quality, if the
additive degrades the quality of the images, it could be possible to
end up with diagnostic failures. Ultrasonography, as a biomedical
technique, produces the internal structure of the body and gives a
great amount of information for clinical diagnosis and treatment.
Considering these, detecting the additive noise in the images and
finding the solution to such matters becomes a formidable chal-
lenge for researchers, clinicians, pharmaceutical authorities and
related practitioners.

Speckle noise is the multiplicative noise, and the distorted
image is the product of the original image and speckle noise. The
Speckle noise can be expressed as:

u0(i, j) = u(i, j)× Sn(i, j),

where u0(i, j) denotes the noisy image, and let u(i, j) denote the
corresponding noiseless image and Sn(i, j) represent the speckle
noise.

Manifesting itself in the digital image in a randomly uncorre-
lated way, noise makes it unavoidable to degrade the visual quality
of the images which restricts the accuracy and precision related
to interpretation and examination processes. Imaging techniques
ensure the generation of novel accurate imaging tools which have
sensitivity, specificity and resolution at improving levels. Accord-
ingly, image denoising employs advanced algorithms to remove
noise from graphics, which makes an impact on the quality of
the images. The impact of the environment, channels related to
transmission as well as related factors cause contamination by
noise, which brings about loss of image information and distortion.
The recovery of the meaningful information from noisy images to
obtain high quality in images is challenging, as noted above. In
view of a perspective based on mathematical foundation, image
denoising is stated to be an inverse problem whose solution is not
unique (Fan et al. 2019). Image noise reduction and feature preserv-
ing stand to be other challenges as image noise removal shows a
relevant matter in different image analyses and computer vision-
related matters where retaining the essential image features like
the edges, corners and other sharp structures during smoothing
and other related processes (Barbu 2014).

Fractional calculus is capable of attaining a satisfactory denois-
ing effect, and the application of its theory provides important
inputs in image denoising. Thus, fractional calculus can weaken
high-frequency signal and preserving low-frequency signal in a
nonlinear way, which means high-frequency noise can be removed
while the information of low-frequency image itself can be re-
tained (Wang et al. 2020). Concerning fractional calculus, in im-
age denoising and image restoration, fractional derivatives have
been employed in different studies (Bai and Feng 2007; Chen et al.
2013; Hilfer 2000; Herrmann 2011). (Abirami et al. 2021) consid-
ered the classical anisotropic diffusion model under the Caputo
fractional derivative with a variable order of derivative function
and achieved better performance for biomedical images like ultra-
sound, CT scans, x-rays and so forth. (Fang et al. 2020) presented
a time-fractional model under the Caputo fractional derivative
to remove additive noise and applied binary block partition to
discretize their model. Another work (Janev et al. 2011) introduced
a new fractional anisotropic diffusion equation for the aim of noise
removal which contained spatial and time fractional derivatives.
To construct a numerical scheme, the proposed partial differential
equation (PDE) was used to preserve the edges (Janev et al. 2011).

One other paper introduces a new class of fractional-order
anisotropic diffusion equations to remove noise. The authors em-
ploy the discrete Fourier transform for the implementation of the

numerical algorithm. Besides outlining the various numerical re-
sults regarding the denoising of real images, the experiments of
the study demonstrate the proposed fractional-order anisotropic
diffusion equations capacity to yield good visual effects and bet-
ter signal-to-noise ratio (Bai and Feng 2007). A novel class of
fractional-order nonlinear anisotropic diffusion equations based
image restoration model is established employing the p-Laplace
norm of fractional-order gradient of an image intensity function
is introduced in another paper where fractional-order gradient
helps to better accommodate the images texture details. Thus, the
proposed method removed noise and kept high-frequency edge
of images in an efficient way nonlinearly (Yin et al. 2015). An-
other research provides a novel fast fractional order anisotropic
diffusion algorithm to remove noise removal. The authors im-
prove the algorithms efficiency by implementing the fast explicit
format iteration algorithm with periodic change of time step size.
Showing numerical results on denoising tasks and presenting of
the experimental results corroborate that the algorithm can obtain
satisfactory denoising results more quickly (Zhang et al. 2021).

Regarding multiplicative noise removal, a paper uses a maxi-
mum a posteriori (MAP) estimator and the authors derive a func-
tional with a minimizer corresponding to the denoised image de-
sired to be recovered (Aubert and Aujol 2008). Concerning image
segmentation, hybrid methods are said to provide benefits com-
pared to conventional means in inhomogeneous image segmenta-
tion. Accordingly, (Chen et al. 2019) presents a new hybrid method
to integrate image gradient, local environment and global infor-
mation into a specific framework. Image segmentation method
based on PDE reveals strong vitality terms of image processing
and computer vision. A new simple well-behaved definition of
the fractional derivative which is named conformable fractional
derivative is handled in (Othman and Shaw 2021), where a geomet-
rical approach of fractional derivatives was introduced. For the
purpose of obtaining the solution of fractional order differential
equation (FDE) with the integer-order initial condition, certain new
criteria regarding fractional derivatives are proposed in the study.
Finally, reducing denoise in images multiplicatively (DIM) is mod-
ified in (Ibrahim 2020) with the aim of presenting a new technique
based on a new fractional calculus to solve the problem termed as
conformable fractional calculus (CFC) which provides benefits due
it its formula involving a controller to be implemented for com-
plex problems like DIM. Another study (Karaca and Baleanu 2022)
aims to construct a robust and accurate model, which is based
on fractional-order calculus (FOC) and Artificial Neural Network
(ANN) integration, concerned with differentiability prediction and
diagnosis of stroke and breast cancer, which pose complex prob-
lems considering the diseases highly complex neurological and
biological properties.

Furthermore, (Khalil et al. 2014) propose a definition of a con-
formable fractional derivative and provide some properties of a
fractional derivative. The conformable fractional- order deriva-
tive is an extended version of the classical fractional derivative,
and it is very efficient in terms of obtaining the solution of the
fractional-order PDEs. Consequently, the conformable fractional
derivative encompasses diverse applications in science, engineer-
ing, and so forth. (Zhao and kang Luo 2017) proposed the physical
interpretation and application of the general conformable frac-
tional derivative. Many applications of fractional derivatives and
fractional integrals are discussed by (Butera and Paola 2014; Contr-
eras et al. 2018; Cresson 2010; Zhao and kang Luo 2017; Zhou et al.
2018), and the analytic solution of the time-fractional heat equation
is also pointed out, which may be further resorted to in (Hammad
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and Khalil 2014a,b).
Considering these ends, the model presented by (Catté et al.

1992), concerned with edge detection and image selective smooth-
ing by nonliear diffusion, has been extended and developed to
remove the additive noise for the ultrasound image. The im-
proved model in the scheme of our study as proposed includes the
time-fractional derivative with smoothness diffusivity, and subse-
quently, the viscosity solution of the fractional diffusion model is
proven through the scheme in question as compared to other rele-
vant and parallel stuies existing in the literature, the first approach
to remove noise and preserve edges by partial differential equa-
tions based anisotropic diffusion model is proposed by (Perona
and Malik 1990). The improved (Perona and Malik 1990) model
for image restoration and edge detection is introduced by (Catté
et al. 1992). They have used the smoothing diffusivity i.e. Gσ ∗ u,
Gσ is the Gaussian smoothing kernel. The diffusion tensor based
anisotropic diffusion model is proposed by (Weickert 1997). The
additive Gaussian white noise based anisotropic diffusion model
for image denoising and deblurring is given by (Welk et al. 2005)
They have proposed the forward-backward diffusivity to discretize
diffusion model.

The weighted and well balanced based anisotropic diffusion
model is given by (Prasath and Vorotnikov 2014). The smooth
Gaussian kernel based diffusion model for image restoration is
proposed by (Kumar and Ahmad 2014; Kumar et al. 2016). Accord-
ingly, a fractional derivative-based nonlinear anisotropic diffusion
model for biomedical imaging has been presented to reduce ad-
ditive Gaussian white noise in this study. The fractional order a
appears in the time derivative and finds the results with differ-
ent fractional order α. The performance of the ultrasound images
is measured by the PSNR values. The experimental results of
the fractional and classical diffusion models are computed by the
finite-difference explicit scheme. The results demonstrate that the
proposed model (5) has larger PSNR values corresponding to (3) at
the different iteration numbers. This study has been conducted to
attain better results for ultrasound images based on the novel and
extended scheme based on the motivational aspect that reducing
noise in images is an essential task in image processing.

The rest of the paper is structured in the following manner: Sec-
tion 2 introduces the definition of Conformable Fractional Deriva-
tives. Denoising Based Time Fractional Diffusion Algorithm is
given in Section 3 and Theoretical Considerations for the Diffusion
Model are introduced in Section 4. In Section 5, Discretized Scheme
for the Anisotropic Diffusion and Fractional Anisotropic Diffusion
Model is provided and depicted. Section 6 addresses Experimental
Results of the Diffusion Model and Fractional Diffusion Model.
Finally, Section 6 provides Conclusion, Discussions and Future
Directions.

CONFORMABLE FRACTIONAL DERIVATIVES

The conformable fractional derivative which contains many appli-
cations and the conformable fractional derivative is implemented
to anomalous diffusion by (Zhao and kang Luo 2017; Zhou et al.
2018). The fractional derivative function with the order α is as
h : (0, ∞) → R and it is defined in the following way:

Fα(h)(t) = Fαh(t) = lim
ϵ→0

h(t + ϵ t1−α)− h(t)
ϵ

,

provided the limit exists for all values t > 0 and α ∈ (0, 1).
The function h represented α- differentiable in (0, a) for some

a > 0 and also can be written as:

hα(0) = lim
t→0+

hα(t). (1)

If h is α- differentiable in the conformable sense at t > 0, then it
must be differentiable in the classical sense at t and

Fαh(t) = t1−αh′(t). (2)

DENOISING BASED TIME FRACTIONAL DIFFUSION ALGO-
RITHM

The nonlinear anisotropic diffusion models obtained remarkable
success in the reduction of Gaussian noise, multiplicative noise etc.,
and this scheme depends on the parabolic partial differential equa-
tion introduced by (Perona and Malik 1990). By this scheme, edges
can be preserved during the noise reduction and diffusion acts in
an inhomogeneous way; it is maximum over the flat areas and has
the lowest value over the edges. (Catté et al. 1992) introduced the
Perona and Malik model improved for image restoration model
and it can be denoted as below:

∂u
∂t

= ∇ · (ζ(|∇Gσ ∗ u|)∇u), (3)

with homogeneous Neumann boundary conditions ∂u
∂⃗n = 0 on the

boundary of ∂Ω and Ω is a bounded domain of Rn, n⃗ the unit outer
normal to Ω.

where Gσ is the Gaussian kernel and it is depends on scale
parameter (Bai and Feng 2007), ∗ represents the notation for con-
volution i.e. Gσ ∗ u. The solution of heat equation is equivalent to
the convolution of the signal with Gaussian discussed by (Witkin
1983). Therefore, Gσ can be consider to be any smoothing kernel
or low pass filter (Álvarez et al. 1992; Catté et al. 1992).

As indicated, the classical diffusion model is intended to be con-
verted into (3) to the time-fractional diffusion model for biomedical
imaging, which can be denoted as:

∂αu
∂tα

= ∇ · (ζ(|∇Gσ ∗ u|)∇u). (4)

After applying the definition of the conformable fractional deriva-
tive as provided in section 2., equation (4) can be written as:

t1−α ∂u
∂t

= ∇ · (ζ(|∇Gσ ∗ u|)∇u). (5)

This is a PDE-based time-fractional diffusion model and α is the
fractional order derivative and the diffusivity ζ, the diffusion
threshold parameter K, s is the gradient of the image, and ζ(s)
is a nonnegative function. The parameter K is used to the control-
ling the even enhancement of edges preserved. The Charbonnier
diffusivity ζ(s) = 1√

1+(|s|2/K2)
, related to the convex regularizer

ψ(s2) =
√

K4 + K2s2 − K2, can be resorted to in (Charbonnier
et al. 1994; Weickert 1997) as used in the numerical experiments
conducted in this study.

(Barbu et al. 2009) and (Strong 1997) have introduced the class
of functions for the diffusion model and which can be defined as:

ζ(x, |∇u|) = δζg(|∇u|). (6)

The function ζg relies upon the magnitude of the gradient u
and it can be similar to ζ(s) and δ is the adaptive parameter. We
choose the values of δ(x) = 1, ζg = ζ(s), Gσ ∗ u as u. Then the
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fractional diffusion model (4) it can be presented in another form
as follows:

∂αu
∂tα

= ∇ · (ζ(x, |∇u|)∇u). (7)

Motivated by (Álvarez et al. 1992; Prasath and Vorotnikov 2014)
and (Giga et al. 2022), we want to show the theoretical considera-
tions and viscosity solution of the fractional diffusion model in the
next section.

THEORETICAL CONSIDERATIONS FOR THE FRACTIONAL
DIFFUSION MODEL

This section provides the viscosity solution and some theoretical
considerations for the diffusion model (7):

∂αu
∂tα

= ∇ · (ζ(x, |∇u|)∇u), (8)

Let x and q be two auxiliary functions that are defined from Rn.
A vector χ, symmetric matrix c then, the following equations are
to be noted

cij(x, q) = ζ(x, |q|)δij + ζy(x, |q|)
qiqj

|q| , (9)

χi(x, q) =
∂ζ(x, |q|)

∂xi
. (10)

In this part, δij is the Kronecker’s delta and ζy is the partial deriva-
tive w.r.to y of the function ζ(x, y). (Alvarez and Esclarin 1997)
have proposed the spatially periodic boundary conditions; thus
may we assume that the orthogonal basis bi in Rn is defined as

u(., x + bi) = u(., x), x ∈ Rn, i = 1, 2, ....n. (11)

The functions c and χ are bounded continuously differentiable
in x, periodic and x-derivatives are uniformly bounded w.r.t. q.
The function u0 Lipschitz and satisfy equation (11). ζ and (c and χ)
satisfy periodicity restriction w.r.to x but not to y or q.

cij(x, q)ξiξ j ≥ K
[

mod
(

∂c(x, q)
∂xk

)]
ij

ξiξ j, k = 1, .......n, ξ, x, q ∈ Rn.

(12)
The generic positive constant number K for different values in
different lines.

The viscosity subsolution and super solution is known as the
viscosity solution for equation (8), if Ψ ∈ K2([0, T]× Rn) is any
function and (x0, t0) ∈ (0, T]× Rn is any point then u − ϕ attains
local maximum/minimum (Evans and Spruck 1991) and the equiv-
alence of the viscosity solution (Giga et al. 2022) as follows:

∂Ψα(x0, t0)

∂tα
−∇ · (ζ(x0, |∇Ψ(x0, t0)|)∇Ψ(x0, t0)) ≤ 0/ ≥ 0 (13)

Lemma. The quadratic matrices of order n × n are P and Q.
Let Q is symmetric matrix then a constant number N ≥ 0 can be
defined as

NPijξiξ j ≥ mod (Q)ijξiξ j, ∀ ξ ∈ Rn. (14)

For every matrix U is not necessarily symmetric of order n × n has

Tr2(QU⊤) ≤ N||Q||Tr(UPU⊤). (15)

Here the norm operator of a matrix is denoted by ||.|| and Q is the
matrix whose pixel values are positive.

Proof. From equations (14) and (15) are invariant w.r.to to
orthogonal changes of bases. We can therefore assume that Q has

already been diagonalized by an axial transform without losing
generality. Then

Tr2(QU⊤) = (QiiUii)
2 ≤ ||Q|||QiiU2

ii

= ||Q||(mod(Q)iiU2
ii ≤ ||Q||(mod(Q)iiUkiUkj

= ||Q||(mod(Q)ijUkiUkj ≤ N||Q||PijUkiUkj = N||Q||Tr(UPU⊤).

Theorem. A function u ∈ K([0, T]× Rn) ∩ L∞(0, T, W1,∞(Rn))
is a viscosity solution (8) for any T ∈ [0, ∞), if v ∈ K(Rn × [0, T))
is a viscosity solution of (8) then a periodic function u0 is Lipschitz
continuous on Rn is replaced by Lipschitz continuous function v0
for any T ∈ [0, ∞), then there exist a positive number K, which
depends on T, u0 and v0 as below:

sup
0≤t≤T

||u(x, t)− v(x, t)||L∞(Rn) ≤ K||u0 − v0||L∞(Rn). (16)

Furthermore, inf
Rn

u0 ≤ u(x, t) ≤ sup
Rn

u0.

The diffusion model (8) which contains the viscosity sub/super
solution. i.e. a unique viscosity solution u.

Proof. The viscosity solution u of (8) on Rn × R+ satisfy the
inequality:

inf
Rn

u0 ≤ u(x, t) ≤ sup
Rn

u0, on Rn × R+. (17)

Let Ψ(x, t) = δt at the point (x0, t0), t0 > 0, of the global
maximum of u(x, t)− δt, the equation (13) gives δ + λ(u(t0, x0)−
u0(x0)) ≤ 0, when u(x0, t0) < u0(x0), it is contradiction because
u(x0, t0)− δt0 ≥ u0(x0), then u(x, t)− δt achieves a global maxi-
mum at t = 0, and let δ → 0+ and (x0, t0) is the global maximum
point thus we get (17).

The formal a priori estimate for sup
Rn

|∇u| is established. It

should be noted that (8) is identical to such that:

∂αu
∂tα

= [cij(x,∇u)uxi xj + χi(x,∇u)uxi ]. (18)

The equation (18) differentiate in relation to each xk, k = 1, ..., n,
and through the multiplication by 2uxk and taking a summation
with respect to k, we obtain

β(|∇u|2) :=
∂α|∇u|2

∂tα
− cij(x,∇u)

∂2

∂xi∂xj
|∇u|2−

∂cij(x,∇u)
∂pl

uxi xj

∂

∂xl
|∇u|2 − χi(x,∇u)

∂

∂i
|∇u|2−

∂χi(x,∇u)
∂pl

uxi

∂

∂xl
|∇u|2

= −2cij(x,∇u)uxk xi uxk xj + 2
∂cij(x,∇u)

∂xk
uxi xj uxk

+ 2
∂χij(x,∇u)

∂xk
uxi uxk .

(19)
The option to eliminate the second term’s undesirable influence

from the right side of (19) and using Cauchy’s inequality for the
second term and Lemma 3.1, we obtain

∣∣∣∣∣2 ∂cij(x,∇u)
∂xk

uxi xj uxk

∣∣∣∣∣ ≤ K|uxk |
√

cij(x,∇u)uxk xi uxk xj

≤ cij(x,∇)uxk xi uxk xj + K|∇u|2.

(20)

CHAOS Theory and Applications 201



From the equation (19), the sum of the terms does not exceed
K(1 + |∇u|2). Hence,

β(|∇u|2) ≤ K(1 + |∇u|2), (21)

β(e−Kt(1 + |∇u|2)) ≤ 0. (22)

Using the definition of the weak maximum principle, the oper-
ator β can be yield

|∇u|2 ≤ K. (23)

The uniform Hölder estimate by equation (17) and (23) (Alvarez
and Esclarin 1997). we can denote the following:

|u(x, t)− u(x, r)|2 ≤ K|t − r|. (24)

The solution of these equations (17), (23) and (24) are uniformly
bounded and equicontinuous on Rn × [0, T] and also satisfy the
stability results (Crandall et al. 1992). The uniqueness solutions
exist by the stability estimate of the equation (16) and proof of a
similar bound and the matrix τ, the following work can be referred
to (Shi and Chang 2006) by replaced by

τ =

 M1
√

M1
√

M2

√
M1

√
M2 M2

 , (25)

where

M1 = d
(

x0,
|x0 − y0|2(x0 − y0)

δ

)
, M2 = d

(
y0,

|x0 − y0|2(x0 − y0)

δ

)
.

DISCRETIZED SCHEME FOR THE ANISOTROPIC DIF-
FUSION AND FRACTIONAL ANISOTROPIC DIFFUSION
MODEL

The discretized scheme for both anisotropic diffusion and frac-
tional anisotropic diffusion model is discussed herein. Let xi =
i∆x, yj = j∆x, i, j=1,2,3.......N, N∆x = 1, (∆x is spatial step size)
and tn = n∆t, n ≥ 1 (∆t is the time step size).

It is possible to denote the explicit scheme of (5) as follows:

ut
ij = tα−1 1

2∆x
[(ζn

i+1,j + ζn
i,j)(u

n
i+1,j −ui,j)− (ζn

i,j + ζn
i−1,j)(u

n
i,j −un

i−1,j)]

+tα−1 1
2∆x

[(ζn
i,j+1 + ζn

i,j)(u
n
i,j+1 −ui,j)− (ζn

i,j + ζn
i,j−1)(u

n
i,j −un

i,j−1)]).

It is similar to the discrete scheme for the diffusion model (3) if
α = 1.

The diffusivity ζ(|∇u|2) is discretized by,

ζn
ij = ψ

′

(un
i+1,j − un

i−1,j

∆x

)2

+

(
un

i,j+1 − un
i,j−1

∆x

)2
 ,

The explicit method is stable and convergent for ∆t/∆x2 < 0.5,
see (Lapidus and Pinder 1983). The numerical explicit scheme (5)
is stable and consistent with the diffusion based fractional model.
It is then used in our numerical experiments which are given in
the next section.

EXPERIMENTAL RESULTS OF THE DIFFUSION MODEL
AND FRACTIONAL DIFFUSION MODEL

In this section, we want to give experimental results of the diffu-
sion model and proposed fractional diffusion model for original
ultrasound images are taken (Al-Dhabyani et al. 2020). The original
images size 256 × 256 contain the pixel value [0, 255]. To perform
the experiments, we reduce the pixel value of all images in be-
tween [0, 1]. Speckle noise can be added by the function imnoise(u,
’speckle’, σ) in Matlab [MATLAB, 2022 version 9.12.0 (R2022a). The
Math-Works Inc., Natick, Massachusetts]. In our all experiment,
we have taken the parameters ∆t/∆x2 = 0.45, diffusivity param-
eter K = 5, time parameter t = 0.02 and λ = 0.85, see reference
(Hammad and Khalil 2014b; Chan et al. 1999; Chang and Chern
2003).

The experimental results for different fractional orders signifi-
cantly reduce the iteration step and better PSNR value provided
herein. The fractional-order α proves to be very important in the
experiment. This is because a small fractional-order α will get
more clarity denoising the image at a smaller number of iterations.
We check the clarity of the denoising image by the PSNR value.
The larger PSNR value of the images has a satisfactory level of re-
sult, while the fractional model provides fast process images when
image denoising and edge-preserving are conducted together. To
check the quality of the denoised image, the following denotation
is to be referred to:

PSNR = 10log10

(
S2

1
MN ∑n

i,j(u1(i, j)− u(i, j))2

)
. (26)

Here u1(i, j) and u(i, j) are the restored and original image respec-
tively, S is the maximum pixel value of the image and MN is the
order of the matrix.

Ultrasound image and breast cancer benign ultrasound images
are provided in Figure 1 (a) and (b). In addition, Figure 2 provides
the speckle noisy image (σ = 0.1) and related denoised images,
whereas Figure 3 presents the speckle noisy image (σ = 0.3) and
related denoised images. Figure 4 shows the speckle noisy image
(σ = 0.5) and related denoised images, while Figure 5 depicts the
speckle noisy image (σ= 0.06) and related denoised images. Figure
6 provides the speckle noisy image (σ = 0.08) and related denoised
images, whereas Figure 7 presents the speckle noisy image (σ=
0.10) and related denoised images.

Figure 1 (a) Ultrasound image and (b) breast cancer benign ultra-
sound image.

The experimental results provided in terms of PSNR values
with different levels of speckle noise (σ = 0.1, 0.3, 0.5) by using
models (3) and (5) can be seen in Table 1.

The experimental results provided in terms of PSNR values
with different levels of speckle noise (σ = 0.06, 0.08, 0.10) by using
models (3) and (5) can be seen in Table 2.
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■ Table 1 The experimental results in terms of PSNR values with different levels of speckle noise (σ = 0.1, 0.3, 0.5) by using models
(3) and (5).

Images PSNR for the noisy im-
ages

PSNR for the denoised
images by model (3)

PSNR for the denoised images by model (5)

α = 0.7 α = 0.5 α = 0.3 α = 0.1

Figure 2(a-f) 22.19 22.76 23.12 24.22 25.25 25.66

Figure 3(a-f) 17.69 18.20 18.57 19.36 21.03 22.94

Figure 4(a-f) 15.87 16.33 16.64 17.47 19.02 21.17

No. of iterations 100 50 50 50 50

■ Table 2 The experimental results in terms of PSNR values with different levels of speckle noise (σ = 0.06, 0.08, 0.10) by using
models (3) and (5).

Images PSNR for the noisy im-
ages

PSNR for the denoised
images by model (3)

PSNR for the denoised images by model (5)

α = 0.7 α = 0.5 α = 0.3 α = 0.1

Figure 5(a-f) 21.80 22.07 22.26 22.43 23.32 24.10

Figure 6(a-f) 20.62 21.18 21.35 21.50 22.75 23.88

Figure 7(a-f) 19.66 20.29 20.66 20.85 22.24 23.52

No. of iterations 300 100 50 50 50

Figure 2 (a) Speckle noisy image with (σ = 0.1); (b) Denoised
image by (3); (c-f) Denoised images by (5) at α = 0.7, 0.5, 0.3 and
0.1, respectively.

Figure 3 (a) Speckle noisy image with (σ = 0.3); (b) Denoised
image by (3); (c-f) Denoised images by (5) at α = 0.7, 0.5, 0.3 and
0.1, respectively.
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Figure 4 (a) Speckle noisy image with (σ = 0.5); (b) Denoised
image by (3); (c-f) Denoised images by (5) at α = 0.7, 0.5, 0.3 and
0.1 in the related order.

Figure 5 (a) Speckle noisy image with (σ = 0.06); (b) Denoised
image by (3); (c-f) Denoised images by (5) at α = 0.7, 0.5, 0.3 and
0.1, respectively.

CONCLUSION, DISCUSSIONS AND FUTURE DIRECTIONS

Reducing noise in images is a critical task for accuracy and preci-
sion in image processing, and it is possible that noises can emerge
with images through achievement pertaining to diffusion. Ac-
cordingly, a fractional order derivative-based diffusion model for
biomedical imaging has been presented to reduce additive speckle
noise. The medical images (ultrasound image, X-rays, CT scans,
MRIs, etc.) may lose significant features and become degraded
due to the emergence of noise. Detecting the additive noise in the
images and finding the applicable solution in a timely manner be-
comes particularly essential, which is a detecting the additive noise
in the images and finding the solution to such matters becomes a
challenge to be tacked effectively for researchers, clinicians, phar-
maceutical authorities and related practitioners.

The aim of this study has been to prove the viscosity solution
of the diffusion model with the proposed model providing to be
efficient in reducing noise by preserving the essential image fea-
tures like edges, corners and other sharp structures for ultrasound
images in comparison to the classical anisotropic diffusion model.
Consequently, this paper has presented a conformable fractional

Figure 6 (a) Speckle noisy image with (σ = 0.08); (b) Denoised
image by (3); (c-f) Denoised images by (5) at α = 0.7, 0.5, 0.3 and
0.1, respectively.

Figure 7 (a) Speckle noisy image with (σ = 0.10); (b) Denoised
image by (3); (c-f) Denoised images by (5) at α = 0.7, 0.5, 0.3 and
0.1, respectively.

derivative-based anisotropic diffusion model for removing speckle
noise in ultrasound images to attain the optimal outcomes. The
finite difference method has been used to discretize the fractional
diffusion model and classical diffusion models. The peak signal-
to-noise ratio (PSNR) has also been used for the quality of the
smooth images. The proposed mathematical model in this study
is a generalization of the classical diffusion model. The fractional
order α appears in the time derivative and finds the results with
different fractional order a. The performance of the ultrasound
images is measured by the PSNR values.

The comparative experimental results of the fractional and clas-
sical diffusion models as presented herein are computed by the
finite difference explicit scheme. Thus, the results demonstrate
that the proposed mathematical model (5) has larger PSNR val-
ues corresponding to (3) at the different iteration number. We
may, therefore, draw the conclusion that the proposed model ob-
tained yield better results for ultrasound images based on the novel
and extended scheme. Another relevant novel contribution has
been that the improved mathematical model in the scheme of our
study based on the experimental results, as has been proposed,
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includes the time-fractional derivative with smoothness diffusivity,
and subsequently, the viscosity solution of the fractional diffusion
model has been proven through the scheme under consideration.
In future endeavors, the applicability of various fractional deriva-
tives on these mathematical diffusion-related and other equivalent
schemes can be compared and put forth to serve biomedical imag-
ing like X-rays, CT scans, MRIs, etc., bioengineering and other
related medical, clinical and image-signal related applied as well
as computational processes.
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Analyzing Predator-Prey Interaction in Chaotic and
Bifurcating Environments
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ABSTRACT An analysis of discrete-time predator-prey systems is presented in this paper by determining
the minimum amount of prey consumed before predators reproduce, as well as by analyzing the system’s
stability and bifurcation. In order to investigate the local stability of the interior equilibrium point of the proposed
model, discrete dynamics system theory is employed first. Moreover, the characteristic equation is analyzed to
determine the Neimark-Sacker (NS) bifurcation of the system. The normal form and bifurcation theory are
used to investigate the NS bifurcation around the interior equilibrium point. Based on its analysis, the system
exhibits Neimark-Sacker bifurcation when positive parameters are present and non-negative conditions are
met. The region of stability of chaotic behavior can be discovered by developing a feedback control strategy.
By utilizing the maximum Lyapunov exponent, the effect of initial conditions on developed systems is further
explored. Finally, a computer simulation illustrates the results of the analysis.
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INTRODUCTION

It is widely known that predators and prey interact dynamically in
nature, which helps to link complex food chains and food networks.
The biological functions of predator-prey system dynamics have
been explained by several predator-prey models. Predator-prey
models are widely regarded as being one of the best, Lotka-Volterra
is receiving increasing attention in recent years (R. M. Eide 2018;
Pan 2013). Many studies have sought to understand the dynamical
properties of the Lotka-Volterra model, since it plays an important
role in ecosystem studies. These properties include dynamical
behavior, stability, persistence, and antiperiodic, periodic, and
near periodic solutions (Z. L. Luo 2016; X. W. Jiang 2021).

Natural interactions between predators and prey are fascinat-
ing puzzles. Ecology’s fascination with ecosystems comes from
the intimate interconnections between species. When chaos and
bifurcation are introduced into this intricate dance, figuring out
the dynamics becomes even more difficult. A chaotic environment
characterized by sudden shifts and unpredictability complicates
predator-prey relationships. An environment such as this is con-
ducive to the development of novel patterns, unexpected results,
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as well as a better understanding of the nature of life. The purpose
of this study is to shed light on predator-prey interactions within
chaotic and bifurcating environments, as well as their mechanisms,
effects, and ecological implications. To understand these systems
and reveal hidden connections, we will utilize chaos theory, math-
ematical modeling, and ecological studies (Zu et al. 2018; Q. 2015;
Hu Z. 2011; Ibrahim and Touafek 2014; L. Men 2015).

In this exploration, we will draw on innovative research and
seminal studies on predator-prey interactions. By examining the
works of ecological pioneers like Lotka and Volterra, our scientific
investigation will weave a rich tapestry. It is our goal to examine
predator-prey relationships in environments that challenge con-
ventional wisdom and our understanding of the natural world.
This investigation will help us unravel the enigmatic language of
life, which is enigmatic.

When it comes to population dynamical models, difference
equation-based models and differential equation-based models
can be distinguished from each other. Recent years have seen
an increase in the popularity of discrete-time population models
(Q. 2015; L. Men 2015). For the following reasons, discrete-time
models are more appropriate than continuous-time models when
populations have non-overlapping generations and small numbers
of populations. The second reason is that discrete-time simulation
results are more accurate. Moreover, continuous-time models can
be numerically simulated by discretising and transforming them
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into its discrete counterpart . As a result, discrete-time models
exhibit rich dynamical behaviors. In a study entitled Periodic Solu-
tion of Predator-Prey Models, (Fazly and Hesaaraki 2007; X. Zhang
2016), (Zhang C.H 2010) performed studies on periodic solutions
to determine their stability, permanence, and existence. In discrete
dynamical systems, properties such as periodicity, local and global
stability, persistence, uniqueness of equilibrium, and boundedness
of solutions are taken into account (Garic Demirovic M. 2009; Q.
2015; Kalabusic S. 2011; Ibrahim and Touafek 2014). Numerous
articles also investigated the possibility of bifurcation and chaos
when using discrete-time models (Hu Z. 2011; Sen M 2012; Chen
and Changming 2008; Gakkhar and Singh 2012; Joydip Dhar 2015).

Smith et. al. (Smith 1968) introduced the following predator-
prey model where Un and Vn represent the prey and predator
population sizes, respectively.

Un+1 =
(

R − Un(R−1)
UE

− CVn

)
Un

Vn+1 = r
UE

UnVn

 (1)

Where, UE represents the equilibrium density of preys in the
absence of predator. R and r denote the maximum reproductive
rates of the prey and predator respectively, C is a constant. Unfor-
tunately, (Smith 1968) was unable to find the bifurcation parameter
of the system (1) as well as the equilibrium point where the bifur-
cation exists. A modification to the predator-prey model is made
by (Khan 2016) and is presented as follows:

sn+1 = ρ (1 − sn)sn − sntn,

tn+1 = 1
Υ sntn

 (2)

where sn and tn represent the number of preys and predators,
respectively. The initial values s0, t0 are positive real numbers
while ρ, Υ are parameters. In contrast to (Smith 1968), (Khan 2016)
did not find out numerically the results of the Neimark-Sacker
bifurcation for model (2) but discussed in an understandable man-
ner all the theoretical aspects of the Neimark-Sacker bifurcation
that has become an important topic.

In dynamical systems theory, Neimark-Sacker bifurcations are
named after Russian mathematician L. A. Neimark and Amer-
ican mathematician A.F Shilnikov. Dynamic systems are char-
acterized by the point at which a stable periodic orbit turns into
chaos. As a result of this bifurcation, the system exhibits a complex,
non-repeating behavior. Natural and engineered systems, such as
weather patterns and electricity circuits, exhibit Neimark-Sacker
bifurcations, which are fundamental to understanding chaos.

Based on (Smith 1968), we have developed a modified discrete
predator-prey model that follows:

xn+1 = (1 − A)x2
n + xn(A − yn)

yn+1 = 1
B xnyn

 (3)

Biological description of parameters are mentioned in Table 1
Considering its structure, this paper can be separated into the

following sections. In Section-2, we discuss how equilibria exists
and how they are stable locally in R+

2 for the system (3). Further-
more, our discussion focuses on the specific parametric conditions
required for the existance of a Neimark-Sacker bifurcation. As

a bifurcation parameter A is used in Section-3 to study bifurca-
tion (NS). By using feedback control methods, a stable region
is achieved in section-4. The numerical simulations presented
in Section-5 support the theoretical discussion. By showing the
Maximum Laypnuov exponent in section-6, the fluctuation of the
system is discussed according to its initial condition. Finally, we
present a brief conclusion in Section-7.

EQUILIBRIUM POINTS AND THEIR STABILITY

The purpose of this section is to examine the existence of fixed
points in discrete systems and analyses their stability. By using the
formula given below, we can determine the fixed points of system
(3) which satisfy

xn = xn+1 = x∗,

yn = yn+1 = y∗


When we use it in the model (3), we get the following result:

x∗ = (1 − A)(x∗)2 + x∗(A − y∗),

y∗ = 1
B x∗y∗

 (a*)

Framework (a∗) clearly describes the fixed points of model (1).
(i) The system (3) has always a Extinction equilibrium point

E1 = (0, 0).

(ii) The system (3) has Extinction and Exclusion equilibrium
points
E1 = (0, 0) and E2 = (1, 0) for B < 1.

(iii) There is a unique equilibrium point for the system (3) that
is E3 = (B, A + (1 − A)B − 1) for A < 1, B > 1.

Our discussion now turns to the dynamics of model (1) about
these equilibrium points. Linearized system (1) about fixed points
(x, y) can be described by the Jacobian matrix

J(Ei) =

 A + 2(1 − A)x − y −x

y
B

x
B


as a result, the Jacobian matrix J of the linearized system (3) over
the unique positive equilibrium (B, A + (1 − A)B − 1) is defined
by

λ2 + rλ + s = 0 (a**)

where, r = AB − B − 2 , s = A − 2AB + 2B
Additionally, As can be seen from the equation above, all eigen-

values of the Jacobian of (3) evaluated at the unique positive equi-
librium (B, /A + (1 − A)B − 1) are calculated as follows:

λ1,2 =
1
2
(2 + B − AB ±

√
∆)

where,

∆ = r2 − 4rs
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■ Table 1 Description of the parameters

Parameter Role in the Model

xn Prey population size at a particular time step.

yn Predator population size at a particular time.

A Represents prey population intrinsic growth rate, which determines
the reproduction rate of preys.

B Measuring predator productivity in converting prey. When predators
successfully consume their prey.

∆ = −4(A + 2B − 2AB) + (−2 − B + AB)2

As a means of analyzing how stable the fixed points of the
model (3) are, here is the following definition:
Definition 1:
A fixed point (P, Q) is called

(i) a sink if |λ1| < 1 and |λ2| < 1, it is locally asymptotically
stable.

(ii) when |λ1| > 1 and |λ2| > 1, the source is unstable.
(iii) if |λ1| < 1 and |λ2| > 1 or (|λ1| > 1 and |λ2| < 1), it is

saddle.
(iv) if either |λ1| = 1 or |λ2| = 1, it is not hyperbolic. Using

the definition above, we will derive the lemma (2.1) from the
topological classification of the fixed points within the model (3). If
we evaluate the dynamical map in (3) at any point (x, y), Jacobian
matrix is calculated as follows:

J(E1) =

 A 0

0 0



J(E2) =

 2 − A −1

0 1
B



J(E3) =

 1 + B − AB −B

−1+A+B−AB
B 1


Having discussed the models’ fixed points (3), we will now

discuss their topological classification. From (a ∗ ∗) we have:
Lemma 1: The following topological classification holds for the

fixed point E1(0, 0)
(i) When A < 1 the point E1 becomes sink .
(ii) When A > 1 the point E1 is saddle .
(iii) When A = 1 the point E1 is non-hyperbolic.
Lemma 2:
The following topological classification holds for the fixed point

E2(1, 0)
(i) If A > 1 and B > 1 then E2(1, 0) is a sink .
(ii) If A < 1 and B > 1 then E2(1, 0) is a saddle .
(iii) If A = 1 or B = 1 then E2(1, 0) will be non-hyperbolic .
Lemma 3:
The following topological classification holds for the fixed point

E3 = (B, A + (1 − A)B − 1) f or A < 1, B > 1

(i) Among the following parametric conditions, E3 is a sink if
one of the following parametric conditions holds:

(i.a) r ≥ 4s and 0 < A < 1
(i.b) r < 4s and A < ( B−2

B )2

(ii) It is possible for E3 to be a source if one of the following
parametric conditions holds:

(ii.a) r ≥ 4s and A > 1
(ii.b) r < 4s and A > ( B−2

B )2

(iii) When one parametric condition is satisfied, E3 will not be
hyperbolic if one of the following parametric conditions holds:

(iii.a) r ≥ 4s and A = 1
(iii.b) r < 4s and A = ( B−2

B )2

NEIMARK-SACKER BIFURCATION AT E3

Using Lemma(2.3), E3 cannot be hyperbolic when A = 1. The
Neimark-Sacker bifurcation in the system (3) can therefore be
studied by choosing A as the bifurcation parameter near the point
E3. In this context, non-hyperbolic parameters are denoted as

Hk = { (A, B); ∆ < 0, A = (
B − 2

B
)2, B > 1, A, B > 0 }

Here’s a description of the system (3) with arbitrary parameters
(α, β) ∈ Hk

xn+1 = (1 − α)x2
n + xn(α − yn),

yn+1 = 1
β xnyn

 (4)

One can easily found that the point (β, α + (1 − α)β − 1) is the
unique positive equilibrium point for the system (4) when β > 1 ,
α < 1. The following perturbations would be made to model (4)

xn+1 = (1 − (α + α1))x2
n + xn((α + α1)− yn),

yn+1 = 1
β xnyn

 (5)

where |α1| << 1, which is small parameter. Using (5) as a
linearized system and P1(β, α + (1 − α)β − 1), as a unique point
of positive equilibrium, the Jacobian matrix has the following
characteristic equation:

ς2 + r(α1)ς + s(α1) = 0
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where,

r(α1) = (α + α1)β − β − 2 , s(α1) = (α + α1)− 2αβ + 2β

The characteristic equation, as well as the roots of the charac-
teristic equation, change when α varies in a small radius around
0,

ς1,2 =
−r(α1)±

√
r2(α1)−4s(α1)
2

ς1,2 =
(α+α1)β−β−2±

√
((α+α1)β−β−2)2−4((α+α1)−2αβ+2β)

2

ς1,2 =
(α+α1)β−β−2±ι

√
−((α+α1)β−β−2)2+4((α+α1)−2αβ+2β)

2

For α1 <
2((s(α1))

1
2 +1)+β(1−α)

β there are two complex conjugate
roots.

Also, we have

trJ(P1) ̸= 0,−1

,
d | ς1,2 |

dα1 |α1

= 4(αβ2 − (β + 1)2) > 0

After simplification we get ςi
1,2 ̸= 1 for i = 1, ..., 4, is satisfied.

A method for transforming the equilibrium point P1(β, α +
(1 − α)β − 1) of the system (5) into its origin, we take un = xn −
β, vn = yn − α − (1 − α)β + 1. After calculation we get,

un+1 = (1 − (α + α1))(un + β)2 + (un + β)((α + α1)−
(vn + α + (1 − α)β − 1))

vn+1 =
1
β
(un + β)(vn + α + (1 − α)β − 1)


(6)

We examine system (5) in its normal form when α1 = 0 in the
following way. The Taylor series at (un, vn) = (0, 0) is as follows:

un+1 = b11un + b12vn + b13u2
n + b14unvn + b15,

vn+1 = b21un + b22vn + b23unvn + b24

 (7)

Where,

b11 = 1 − β − αβ, b12 = −β, b13 = −α, b14 = −1, b15 = 1 + β − β2

b21 =
(1 − α)(β − 1)

β
, b22 = 1, b23 =

1
β

, b24 = (1 − α)(β − 1)

The linear part of (7) is transformed into a canonical form by
the matrix T

T =

 b12 0

µ − b11 −η


 Xn

Yn


where,

µ =
(α + α1)β − β − 2

2
,

and

η =

√
((α + α1)β − β − 2)2 − 4((α + α1)− 2αβ + 2β)

2
.

In this way, the system (7) can be expressed as follows:

Xn+1 = µXn − ηYn + H̃(Xn, Yn)

Yn+1 = ηXn + µYn + K̃(Xn, Yn)

 (8)

where

H̃(Xn, Yn) = m11X2
n + m12XnYn + m13

K̃(Xn, Yn) = m21X2
n + m22XnYn + m23

 (9)

and

m11 = b12b13 + (µ − b11)b14, m12 = −b14η, m13 = b15

m21 = b12b23(µ − η), m22 = −b12b23η, m23 = b24

Furthermore,

H̃Xn Xn |(0,0)= 2m11, H̃XnYn |(0,0)= m12, H̃YnYn |(0,0)= 0

H̃Xn Xn Xn |(0,0)= H̃Xn XnYn |(0,0)= H̃XnYnYn |(0,0)= H̃YnYnYn |(0,0)= 0

and

K̃Xn Xn |(0,0)= 2m21, K̃XnYn |(0,0)= m22, K̃YnYn |(0,0)= 0

K̃Xn Xn Xn |(0,0)= K̃Xn XnYn |(0,0)= K̃XnYnYn |(0,0)= K̃YnYnYn |(0,0)= 0

For (8) to experience the Neimark-Sacker bifurcation, the fol-
lowing relation must be nonzero (Singh and Deolia 2020)

Ω = −Re[
(1 − 2λ̄)λ̄2

1 − λ
ζ11ζ20]−

1
2
∥ ζ11 ∥2 − ∥ ζ02 ∥2 +Re(λ̄ ζ21)

Where,

ζ02 =
1
8
[H̃Xn Xn − H̃YnYn + 2K̃XnYn + ι(K̃Xn Xn − K̃YnYn + 2H̃XnYn )] |(0,0),

ζ11 =
1
4
[H̃Xn Xn − H̃YnYn + ι(K̃Xn Xn + K̃YnYn)

] |(0,0),
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ζ20 =
1
8
[H̃Xn Xn − H̃YnYn + 2K̃YnYn + 2K̃XnYn + ι(K̃Xn Xn − K̃YnYn − 2H̃XnYn )] |(0,0),

ζ21 = 1
16 [H̃Xn Xn Xn + H̃XnYnYn + K̃Xn XnYn + K̃YnYnYn +

. ι(K̃Xn Xn Xn + K̃XnYnYn − H̃Xn XnYn − H̃Xn XnYn )] |(0,0)

After calculation , we get

ζ02 =
1
4
[m11 + m22 + ι(m21 + m12)],

ζ11 =
1
2
[m11 + ιm21],

ζ20 =
1
4
[m11 + m22 + ι(m21 − m12)],

ζ21 = 0,

CHAOS CONTROL

The whole point of this section is to explore chaos control via state
feedback control (Singh and Deolia 2020; Salman SM 2016; Alaydi
1996; Rana et al. 2017; Abarbanel 1996). To ensure that this section
is comprehensive, we will first give an explanation of marginal
stability.
Definition 2: Marginally stable refers to systems or processes that
are neither stable nor unstable, but exist at the boundary between
stability and instability. This indicates the possibility of an unstable
system occurring when a small perturbation occurs.

In this case, we have a discrete biological model (3) that is as
follows:

xn+1 = (1 − A)x2
n + xn(A − yn) + wn

yn+1 = 1
B xnyn

 (10)

Control is added by the addition of wn = −p (xn − B)− q (yn −
(A + (1 − A)B − 1)), with p, q indicating feedback gains. At the
interior fixed point P of the controlled system (10), the variational
matrix VP is evaluated according to the map below:

(F, G) 7−→ (xn+1, yn+1) (11)

Where

F : = (1 − A)x2
n + xn(A − yn)− p (xn − B)−

q (yn − (A + (1 − A)B − 1))

G : =
1
B

xnyn


(12)

VP =

 A − p + 2(1 − A)x − y −q − x

y
B

x
B


If characteristic root corresponding to VP is represented by

Λ1, Λ2 at P, then

Λ1 + Λ2 = 2 + B − AB − p (13)

Λ1Λ2 = A + 2B − 2AB − p − (−1 + A)(−1 + B) q
B

(14)

Solving equations (13) and (14) brings out the lines of marginal
stability under the following conditions ( Λ1 = ±1 and Λ1Λ2 = 1).
The presence of these conditions guarantees that the moduli of the
eigenvalues are less than 1.

When Λ1Λ2 = 1 , then from (14), we can get

M1 : A + 2B − 2AB − p − (−1 + A)(−1 + B) q
B

− 1 = 0 (15)

When Λ1 = 1 , then from (13) and (14), we can get

M2 :
(−1 + A) (−1 + B) (B + q)

B
= 0 (16)

When Λ1 = −1 , then from (13) and (14), we can get

M3 : 3AB + 2p +
(−1 + A) (−1 + B)q

B
− 3 − A − 3B = 0 (17)

By taking (15), (16) and (17) in conjunction, we obtain the
triangular region, which further reveals the fact that |Λ1,2| < 1.
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20
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Stable Eigen 

values

M3

M2

M1

x-axis: p

y-axis: q

Figure 1 Region of stability where |Λ1,2| < 1

NUMERICAL SIMULATION

As a follow-up to our theoretical results, here we will provide
some numerical simulations to support the dynamical behavior
of the system (3). Our results would not be hyperbolic if B = 0.5.
According to Lemma 2.3, if A = 2.5, the bifurcation parameter will
be stable. It is however not possible to have a stable bifurcation
parameter if A < 2.5, as then attracting close curves will emerge
from a positive equilibrium. Based on Figures 14 and 25, the local
stability of the unique positive equilibrium is ensured. Based on
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Figures 15 and 17, one can immediately see from Figure 16 and
Figure 18 an attractor of the system (3). As a result, Figure 2 to
Figure 13 represent the local stability of the system (3), whereas
Figure 14 to Figure 25 illustrate the global asymptotic stability
of the unique positive equilibrium. As shown in Figure 20 to
Figure 24, the unique positive equilibrium is unstable for different
parameter choices when B < 0.5, whereas an attracting invariant
closed curve bifurcates from the positive equilibrium. Figure 26
and Figure 27 show the Neimark-Sackar bifurcation of the system
(3). The state feedback control method is then used to stabilize
the chaos in the discrete biological model (3). We now proceed to
Section (4) to verify the validity of the results obtained. Suppose
A = 3.2 and B = 1.5, then (15), (16) and (17) can be obtained
based on these values

M1 : − 4.4 − p − 0.733333q = 0 (18)

M2 : 0.733333(1.5 + q) = 0 (19)

M3 : 3.7 + 2p + 0.733333q = 0 (20)

The lines found in (18), (19) and (20) form a triangle that repre-
sents the region encompassing |Λ1,2| < 1 (see Figure 1). Figure 28
and Figure 29 show that the system (3) is sensitive to their initial
conditions, which is a useful indicator of the system’s sensitivity.
Last but not least, numerical verification was performed to confirm
the theoretical results. In different aspects of biology, especially in
the field of ecology, this research can provide a theoretical basis for
research.
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Figure 2 Shows behavior of solution of xn, when A = 2.3, B =
0.499, x0 = 0.6, y0 = 0.7
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Figure 3 Shows behavior of solution of yn, when A = 2.98, B =
0.45, x0 = 0.4, y0 = 0.5
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Figure 4 Shows behavior of solution of xn, when A = 2, B =
0.48, x0 = 0.2, y0 = 0.3
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Figure 5 Shows behavior of solution of xn, when A = 3.51, B =
0.81, x0 = 0.003, y0 = 0.004
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Figure 6 Shows behavior of solution of yn, when A = 3.51, B =
0.81, x0 = 0.03, y0 = 0.04
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Figure 7 Shows behavior of solution of xn, when A = 3.76, B =
0.79, x0 = 0.2, y0 = 0.4
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Figure 8 Shows behavior of solution of yn, when A = 3.76, B =
0.79, x0 = 0.2, y0 = 0.4
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Figure 9 Shows behavior of solution of xn, when A = 2.5, B =
0.5, x(0) = 0.4, y0 = 0.3
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Figure 10 Shows behavior of solution of yn, when A = 2.5, B =
0.5, x0 = 0.4, y0 = 0.3
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Figure 11 Shows behavior of solution of yn, when A = 3.5, B =
0.5, x0 = 0.04, y0 = 0.03
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Figure 12 Shows behavior of solution of xn, when A = 3.51, B =
0.81, x0 = 0.003, y0 = 0.004

1000 2000 3000 4000 5000
n

0.2

0.4

0.6

0.8

1.0

y(n)

Figure 13 Shows behavior of solution of yn, when A = 2.5, B =
0.5, x0 = 0.4, y0 = 0.3
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Figure 14 Shows phase portrait in (x, y) plane, when A =
1.81, B = 0.51, x0 = 0.03, y0 = 0.05, of system (3)
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Figure 15 Shows phase portrait in (x, y) plane, when A =
2.33, B = 0.5, x0 = 0.003, y0 = 0.005, of system (3)
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Figure 16 Shows phase portrait in (x, y) plane, when A =
1.83, B = 0.55, x0 = 0.04, y0 = 0.05, of system (3)
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Figure 17 Shows phase portrait in (x, y) plane, when A =
1.876, B = 0.59, x0 = 0.09, y0 = 0.03, of system (3)
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Figure 18 Shows phase portrait in (x, y) plane, when A =
1.073, B = 0.637, x0 = 0.04, y0 = 0.005, of system (3)
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Figure 19 Shows phase portrait in (x, y) plane, when A =
2.43, B = 0.44, x0 = 0.0035, y0 = 0.041, of system (3)

0.40 0.45 0.50 0.55 0.60 0.65
x(n)

0.2

0.4

0.6

0.8

1.0

1.2

y(n)

Figure 20 Shows phase portrait in (x, y) plane, when A =
2.87, B = 0.49, x0 = 0.7, y0 = 0.8, of system (3)
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Figure 21 Shows phase portrait in (x, y) plane, when A = 2, B =
0.48, x0 = 0.2, y0 = 0.3, of system (3)
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Figure 22 Shows phase portrait in (x, y) plane, when A =
2.3, B = 0.499, x0 = 0.6, y0 = 0.7, of system (3)
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Figure 23 Shows phase portrait in (x, y) plane, when A =
2.25, B = 0.49, x0 = 0.5, y0 = 0.6, of system (3)
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Figure 24 Shows phase portrait in (x, y) plane, when A =
1.96, B = 0.39, x0 = 0.4, y0 = 0.5, of system (3)
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Figure 25 Shows phase portrait in (x, y) plane, when A =
1.96, B = 0.39, x0 = 0.4, y0 = 0.5, of system (3)
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Figure 26 Neimark-Sacker bifurcation diagram of system (3) in
(A, xn) plane
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Figure 27 Neimark-Sacker bifurcation diagram of system (3) in
(A, yn) plane

MAXIMUM LYAPUNOV EXPONENT

The Lyapunov exponent is a concept derived from chaos theory
and dynamical systems. The aim of this measurement is to deter-
mine how sensitive chaotic systems are to their initial conditions.
When calculating adjacent trajectory divergences in phase space,
one can use the Lyapunov exponent (Abarbanel 1996).

Positive Lyapunov exponents cause the trajectory of a system
to diverge exponentially, leading to it being classified as chaotic.
When Lyapunov exponents are above zero, the system outcomes
are highly sensitive to conditions at the start, indicating even small
changes could have major impacts. Alternatively, a negative Lya-
punov exponent indicates that nearby trajectories are convergent,
which indicates a predictable and stable system. From a mathe-
matical perspective, it is defined as:

Definition 3: For the map

Θ : R 7→ R

The Lyapunov exponent is defined as:

L̃ = lim
n→∞

ln | d
dx

Θn(x = x0) |
1
n (21)
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Figure 28 Maximum Lyapunov Exponent of the model (3)
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Figure 29 Maximum Lyapunov Exponent of the model (3)

CONCLUSION AND DISCUSSION

Previous research has demonstrated that population models de-
scribed by difference equations have a crucial role in population
dynamics and mathematical ecology. In this study, we examine
the qualitative and dynamic properties of discrete predator-prey
models. Based on bifurcation theory, we determined the stability
conditions for a unique steady state. In this paper, we demon-
strate that the model (3) undergoes NS bifurcation. Moreover,
we present some numerical simulations including the behavior of
solution of prey xn and predator yn over time (n), phase portraits
of system by taking different initial conditions and the values of
parameters and the bifurcation diagram determining the range of
the bifurcation parameter (3 < A < 4). All this numerical study
has been conducted by using "Mathematica" program which verify
our theoretical results.

In this paper, we demonstrate that the stability of the unique
fixed point (3) occurs at a critical bifurcation value when the bifur-
cation parameter (A) reaches this critical value. Neimark-Sacker
bifurcation follows. A more complex dynamics is also visible in
certain regions in the model (3) when the parameter values are
changed. We can conclude that parameter (A) is highly important
for the stability of model (3). Additionally, under the influence
of the Neimark-Sacker bifurcation, invariant closed curves are dy-
namically unstable. Model (3) is an interaction between predators
and prey that can be viewed from the perspective of biology. As a
result, both prey and predator populations are capable of oscillat-
ing around some mean values under suitable conditions since NS
bifurcation exists in the model (3). In addition, the chaotic behav-
ior of the model (3) can be controlled by using feedback control
techniques. Besides showing the MLE, the article concludes that
the system fluctuates within the chaotic region.
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ABSTRACT This manuscript includes the design and evaluation of the new four 16×16 S-boxes for subbyte
operation in image encryption applications and estimates their strength using the following parameters: Dy-
namic Distance, BIC non-linearity, Bijective, Non-linearity, Strict Avalanche Criterion (SAC), and Balanced
criterion. The S-box matrix is designed by a new reconfigurable 3D-Chaotic PRNG. This PRNG is designed
using four different 3D chaotic systems i.e. Lorenz, Chen, Lu, and Pehlivan’s chaotic systems. This reconfig-
urable architecture of PRNG exploits the ODEs of these four attractors that fit all four chaotic systems in a
single circuit. The first part of this manuscript is focused to develop hardware-efficient VLSI architecture. To
demonstrate the hardware performance, the PRNG circuit is implemented in Virtex-5 (XC5VLX50T) FPGA. A
performance comparison of proposed and existing PRNGs (in terms of timing performance, area constraint,
power dissipation and statistical testing) has been presented in this work. The PRNG generates the 24-bit
random number at 96.438-MHz. The area of FPGA is occupied by only 16.66 %, 1.08%, 0.33 %, and 1.15%
of the available DSP blocks, slice LUTs, slice registers and slices respectively. The designed S-boxes using
reconfigurable PRNG fulfill the following criteria: Dynamic Distance, BIC non-linearity, Bijective, Non-linearity,
Strict Avalanche Criterion (SAC), and Balanced criterion.

KEYWORDS

Cryptography
Chaotic systems
PRNG
Operating fre-
quency
NIST Tests
S-Boxes
FPGA

INTRODUCTION

Random number generators are one of the essential components in
cryptography, testing of VLSI circuits, bank transactions, financial
market, avionics communications, etc. Random keys are required
in various steps of cryptography like subbyte operation using
S-box, encryption, decryption, etc. (Lambić and Nikolic 2019;
ElSafty et al. 2021; Garcia-Bosque et al. 2018; Garipcan and Erdem
2020). Nowadays, smart systems that are used in the automation
of houses and buildings, industry, energy, medical, transportation,
communication system, etc. require the security of data transfer
and Internet of Things (IoT) applications (G. Di Patrizio Stanchieri
and Faccio 2019). Multimedia data such as video, image, audio
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and text can be communicated over the network very hugely but
these shared data have a serious security concern. The general
way to achieve this request is to design complex software or/and
hardware-based systems, which can generate random sequences
that provide the private and public keys to get the effective data
encryption and decryption process.

In general, there are two types of PRNG: (1) Linear and (2)
Nonlinear PRNG. Nonlinear PRNG is designed using nonlinear
dynamical systems that exhibit chaos behaviour (L’Ecuyer 2012).
In these types of systems, extreme sensitivity with the initial con-
ditions causes chaotic behaviors over long-term randomness or
unpredictability (H. S. Alhadawi and Lambi 2019). So, the chaotic
system determines the nonlinear system with high randomness
characteristics and low design cost. This makes it suitable for
the designing of nonlinear PRNG. For designing a chaos-based
cipher, a plain message is masked or encrypted using random keys
(which is generated from chaotic maps) (Ü. Çavuşoğlu and Kaçar
2019; Wang et al. 2016). Chaotic systems generate a pseudoran-
dom sequence, which can be applied in designing cryptographic
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keys to get their valuable characteristics like random behavior,
sensitivity to the initial conditions, and ergodicity (Li et al. 2001).
So, the cryptographic properties of chaotic-map-based random
sequences are very crucial from a security point of view for encryp-
tion algorithms. The idea of utilizing a 3D chaotic attractor for the
designing of the PRNG is based on its ability that can generate a
sequence of random numbers (X. Y. Wang and Kadir 2010; Artuğer
and Özkaynak 2022b).

For the last 40 years, various simple chaotic systems have
been found and continue the studied within the 3D quadratic
autonomous framework. There are four criteria for the existence
of chaotic behavior in the study of dynamic nonlinear systems
(Pehlivan and Uyaroǧlu 2012). The first well-known criterion is
Lyapunov exponents (Wolf et al. 1985). It decides the chaotic behav-
ior of dynamic systems. If at least one positive Lyapunov exponent
presents in the dynamic system, the dynamic of this system is
chaotic. The second criterion is Melnikov’s. It is used to investi-
gate the occurrence of chaotic behavior in Hamiltonian systems
and it analyzes by estimating the distance between unstable and
stable manifolds (Xu et al. 2009). The third one is Sil’nikov’s cri-
terion (T. Zhou and Čelikovský 2005). The last criterion is the
topological horseshoes theory; it is based on some subsets of inter-
est in the state space of continuous maps (Li and Yang 2010). These
four criteria have been fulfilled by Lorenz (Lorenz 1963), Chen &
Gupta (Gupta and Chauhan 2022, 2020), Lu (Lu and Chen 2002),
and Pehlivan (Pehlivan and Uyaroğlu 2010) chaotic attractors.

The first 3D chaotic system was founded by Lorenz in 1963, it
is a third-order autonomous system that displays very complex
dynamic behaviors (Lorenz 1963). Another similar chaotic attrac-
tor was found by Chen in 1999. It is dual to the Lorenz system
and topologically non-equivalent 3D chaotic system that shows
interesting characteristics (Gupta and Chauhan 2022). Lu and Chen
found another chaotic attractor known as Lu 3D chaotic system
(Lu and Chen 2002). It represents the transition between Chen and
Lorenz 3D attractors. It is important to note that the 3D chaotic
attractors i.e. Lorenz (Lorenz 1963; Artuğer and Özkaynak 2022a),
Chen (Gupta and Chauhan 2022), and Lu chaotic system (Lu and
Chen 2002), have three particular fixed points: one saddle-foci
and two unstable saddle-foci. Recently, Pehlivan et al. introduced
a new 3D chaotic attractor (Pehlivan and Uyaroğlu 2010). It is
similar to the Lorenz and Chen systems, but it includes six terms
with two quadratics in a form and they have two very different
fixed points (i.e. two stable node-foci).

The Lorenz, Chen, Lu, and Pehlivan chaotic attractors have
been utilized in cryptography as PRNGs (Akgul et al. 2019; Alçın
et al. 2016) due to their advantageous properties as discussed. To
model the mathematical formation of a chaotic system, an ordi-
nary differential equation (ODE) is used. It represents the rate-of-
change of variables of a chaotic system. The ODEs can be solved
using three different techniques i.e. Runge-Kutta, mid-point, or
Euler’s method (Zidan et al. 2011). Each chaotic system has a cer-
tain parameter value, which leads to the desired behavior of a
chaotic system. One method to see the chaotic behavior of dy-
namic systems is to draw a three-dimensional (3D) plot, which is
also known as an attractor. It demonstrates how the solutions of
system variables evolve. Various analog and digital encryption
circuits/systems have been designed using different chaotic attrac-
tors (Alawida et al. 2020; Zamli et al. 2023; Zhao et al. 2019; Rezk
et al. 2020; Garcia-Bosque et al. 2019).

The subbyte operation in image encryption algorithms is the
first step and primarily it decides the security strength of encrypted
images. This operation is performed by the S-Box matrix (Zahid
et al. 2021; Ahmad and Alsolami 2020; Alhadawi et al. 2020). It
includes the 8-bit integers in random order in the form of a matrix.
Therefore, the S-box plays the important role in image encryption
algorithms. There is various image encryption algorithms available
in the literature which shows the importance of S-boxes. The image
encryption method using a chaotic attractors-based S-box matrix
was proposed by Tang et. al. in (Tang et al. 2005). The S-box-based
encryption using tent maps chaotic system was proposed by Y.
Wong et. al. in (Wang et al. 2009). M. Khan et. al. proposed the new
S-boxes using a Boolean function of a chaotic system (Khan et al.
2016, 2022). Unal Çavusoglu et. al. developed the chaotic S-box-
based new image encryption algorithm which offers high-security
strength and fast operation (Çavusoglu et al. 2017). The image
encryption algorithm that uses different S-boxes in each cycle was
proposed by Xiong Wang et. al. in (Wang et al. 2019; Artuğer 2023).
The selection of S-boxes in this method is random which performs
the image encryption.

This manuscript has introduced the four new S-boxes using
reconfigurable PRNG. This reconfigurable PRNG is designed us-
ing four different 3D chaotic systems i.e. Lorenz, Chen, Lu, and
Pehlivan attractors. All four chaotic systems reconfigure in a single
architecture due to exploiting the similarities between the differ-
ential equations. The VLSI architecture of the proposed reconfig-
urable PRNG replaces the complex multiplication by hardwired
shifting operation. The first part of this manuscript aims to develop
hardware-efficient VLSI architecture that enhances the timing per-
formances (in terms of latency, bit rate, and maximum operating
frequency), length of the sequence, and randomness. The random
sequences from all four chaotic systems are tested for randomness
using the NIST test suite.

To evaluate the hardware performance, the proposed architec-
ture has been implemented on prototype Virtex-5 (XC5VLX50T)
FPGA. The next part of this manuscript includes the design of
four new 16×16 S-boxes using the proposed reconfigurable PRNG.
To check the suitability of proposed S-boxes in encryption appli-
cations, the following parameters: Dynamic Distance, Bijective,
Balanced, Non-linearity, BIC non-linearity criterion and SAC have
been evaluated in this manuscript. The remaining sections of this
manuscript are arranged as follows: The dynamic behavior of
Lorenz, Chen, Lu, and Pehlivan’s chaotic systems are presented
in Section-2. Section-3 includes the reconfigurable architecture
of PRNG. The statistical description of generated bit Sequences
using NIST is discussed in Section-4. A comprehensive description
and comparison of PRNGs is presented in Section-5. Section-6
includes the design and evaluation of proposed S-boxes. The final
conclusion of this manuscript is mentioned in Section-7.

DESCRIPTION OF LORENZ, CHEN, LU AND PEHLIVAN
CHAOTIC SYSTEM

In this section, we construct parameter variables of Lorenz, Chen,
Lu, and Pehlivan’s three-dimensional (3D) chaotic attractors to
design the hardware efficient and secure digital system of recon-
figurable PRNG. The mathematical formation of chaotic attractors
is done by ODEs. The numerical solution of ODEs can be done
by three different methods: Runge-Kutta, Euler’s method or mid-
point. Hardware point of view, the most suitable approach is
Euler’s method. In this work, this method is adopted to solve the
ODEs of a chaotic system. Eqs. (1) to (3) represent the Euler’s
equations corresponding variables: xi, yi and zi.
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xi+1 = xi + h.ẋi (1)

yi+1 = yi + h.ẏi (2)

zi+1 = zi + h.żi (3)

Table 1 to Table 4 includes the parameter values, range of vari-
ables and ODEs corresponding to Lorenz (Lorenz 1963), Chen
(Gupta and Chauhan 2022), Lu (Lu and Chen 2002), and Pehlivan
(Pehlivan and Uyaroğlu 2010) chaotic attractors. The selection
of parameter values (as shown in Tables 1 to 4) offers hardware
efficient reconfigurable architecture of PRNG. Table 1 shows the
ODEs, range of variables, and parameter value for the Lorenz
chaotic system.

Three variables of this chaotic system are represented by xi,
yi and zi, while a, b and c are the parameters. Similarly, Table
2 presents the ODEs, range of variables, parameter’s value for
Chen’s chaotic system, where xi, yi and zi, a, b and c show the
same meaning. The third attractor is the Lu chaotic system. It has
a wide range of parameter values in which the attractor displaces
a different shape and represents the transition between Chen and
Lorenz 3D attractors. The ODEs and range of variables are men-
tioned in Table 3, where a, b, c are the parameter variables. The
last one is Pehlivan’s chaotic system. It is similar to the Chen, and
Lorenz systems, but it includes six terms with two quadratics in
a form and they have two very different fixed points (i.e. two
stable node-foci). Its ODEs are mentioned in Table 4, where a is
the parameter variable, and xi, yi and zi are system variables.

This section includes the simulation of the dynamic behavior of
Lorenz, Chen, Lu, and Pehlivan’s chaotic system using the Matlab
Tool. To replace a large number of binary multiplication, parameter
variables of chaotic systems are set to be specific values (as shown
in Tables 1 to 4). The benefit of this approach is able to design
multiplierless (except xi.yi and xi.zi) reconfigurable digital chaotic
PRNG. The plane and space plot of the proposed Lorenz, Chen,
Lu, and Pehlivan’s chaotic system are shown in Fig. 1. The Lorenz
system has a 3D attractor as shown in Fig. 1(a), with parameters
values: a = 32, b = 4, c = 32, initial condition (x0, y0, z0) = (1, 1, 1)
and step size: h = 2(−8). Next, the 3D attractor of the Chen
chaotic system is present in Fig. 1(b), with the parameters values:
a = 32, b = 4, c = 24, initial condition (x0, y0, z0) = (5,−15, 40)
and step size:h = 2(−8) Fig. 1(c) shows the chaotic attractor of Lu
system with a = 32, b = 4, c = 16, initial condition (x0, y0, z0) =

(1, 1, 1) and step size: h = 2(−8). Similarly, Fig. 1(d) represents the
chaotic attractor of Pehlivan system with a = 0.5, h = 2( − 8) and
initial condition (x0, y0, z0) = (0.001, 0.001, 0). The phase plane
behavior of Lorenz, Chen, Lu, and Pehlivan’s chaotic system are
shown in Fig. 2 to Fig. 5, correspondingly.

The xy, xz, and yz phase portraits of the Lorenz system are
shown in Fig. 2 with the same parameter values and initial con-
dition. The two-dimensional (2D) attractor plots in the plane of
Chen’s chaotic system are displayed (with the following details: pa-
rameter values a = 32, b = 4, c = 24, h = 2−8 and initial condition:
(x0, y0, z0) = (5,−15, 40) in Fig. 3. Similarly, Fig. 4 represents the
phase portraits of Lu system with a = 32, b = 4, c = 16, h = 2−8

and initial condition (x0, y0, z0) = (1, 1, 1). Finally, the xy,xz and
yz phase portraits of the Pehlivan system with the same parameter
value and initial condition (as discussed in Table 4) are shown in
Fig. 5.

■ Table 1 Variables range and Parameter’s value for Lorenz
chaotic system.

Lorenz chaotic system

ODEs Lorenz (1963) Parameters Range

ẋi = a(yi − xi) a = 32, b = 4, c = 32,

h = 2−8, x0 = 1,

y0 = 1, z0 = 1

−28.1805 ≤ x ≤ 29.2467

ẏi = −xizi + cxi − yi −31.1805 ≤ y ≤ 33.1210

żi = xiyi − bzi 0.9215 ≤ z ≤ 58.6626

■ Table 2 Variables range and Parameter’s value for
Chen’s chaotic system.

Chen Chaotic System

ODEs Gupta and Chauhan (2022) Parameters Range

ẋi=a.(yi − xi) a = 32, b = 4, c = 14,

h=2−8, x0 = 5,

y0 = −15, z0 = 40

-24.280≤ x ≤ 23.9385

ẏi=-xi.zi+(c-a).xi+c.yi -27.4307≤ y ≤27.0290

żi= xi.yi- b.zi 1.7161≤ z ≤ 47.230

■ Table 3 Variables range and Parameter’s value for
L ˙̇u chaotic system.

Lu Chaotic System

ODEs Lu and Chen (2002) Parameters Range

ẋi=a.(yi − xi) a = 32, b = 4, c = 16,

h=2−8, x0 = 1,

y0 = 1, z0 = 1

-20.8399≤ x ≤ 21.2057

ẏi=-xi.zi+c.yi -22.8983≤ y ≤23.3546

żi= xi.yi- b.zi 0.8931≤ z ≤ 34.5366

■ Table 4 Variables range and Parameter’s value for
Pehlivan’s chaotic system.

Pehlivan Chaotic System

ODEs Pehlivan and Uyaroğlu (2010) Parameters Range

ẋi=yi − xi a = 0.5, h = 2−8,

x0 = 0.001, y0 = 0.001,

z0 = 0

-2.8411≤ x ≤ 2.7743

ẏi=-xi.zi+a.yi -4.7402≤ y ≤4.8913

żi= xi.yi- a -2.9902≤ z ≤ 6.6909

PROPOSED DIGITAL ARCHITECTURE OF RECONFIG-
URABLE CHAOTIC PRNG

This section includes the VLSI circuit of reconfigurable chaotic
PRNG using Lorenz, Chen, Lu, and Pehlivan 3D attractors. The
general architecture has been constructed by the exploitation of
similarity between all chaotic attractors which leads to fit into a
single structure. The parameters of Lorenz system has been set to
(25, 22, 25, 2−8) corresponding (a, b, c, h). Moreover, Table 1 depicts
the range of variables: −28.1805 ≤ x ≤ 29.2467,−31.1805 ≤ y ≤
33.1210 and 0.9215 ≤ z ≤ 58.6626. Similarly, Table 2 to Table 4

CHAOS Theory and Applications 221



include the step size, parameters, and variable range of the system
of Chen, Lu, and Pehlivan correspondingly. The benefits of this
approach, all binary multiplication operations of ODEs and Euler’s
expressions (except xi.yi and xi.zi) has been carried out by the
operation of hardwire shifting rather than binary multiplication.
In this modelling, 2’s complement and the fixed-point scheme
have been used in which 7 MSB represent the amount of integer
including sign bit. On the other side, the rest 25 bits represent the
fractional value of all parameters and variables. To retain the same
fractional bits of 25, the truncation rounding scheme is performed
in this operation.

This reconfigurable feature of PRNG is designed by hardwired
shifting operations, additions, subtractions, and multiplexing
schemes. Fig. 6 represents the VLSI architecture of proposed
reconfigurable PRNG using Lorenz, Chen, Lu, and Pehlivan 3D
attractors. This architecture offers the opportunity to configure the
four different systems and it is controlled by a 2-bit signal which
is denoted by Confg[1:0]. Pehlivan’s chaotic system is configured
by Confg[1:0]=2’b00, similarly, Lu chaotic system is configured by
Confg[1:0]=2’b01. Similarly, when Confg[1:0] value is 2’b10, the
multiplexer switches to the Lorenz system, while the value is 2’b11,
architecture computes the Chen system for generating pseudoran-
dom numbers. Three separate 32-bit register block of this figure
is designed to evaluate the value of Euler’s equations (as given
in Eq. (1) to Eq. (3)). The initialization of registers corresponding
to three variable is done by Reset signal which controls the 2×1-
multiplexer, initially all registers hold the value of X0, Y0 and Z0
correspondingly. The adder used in this block to add the present
value of variables (Xi, Yi, Zi) with differential value (h.X, h.Y, h.Z)
as shown in blocks.

The computational process to evaluate differential value h.X
is depicted in Block-1. It is required subtraction to subtract the
value of Xi from Yi. In this block, the logical OR value of Confg[1]
and Confg[0] signal, act as a select line of 2×1-multiplexer. When
the value of logic OR operation is ‘0’, the multiplexer gives the
differential value (h.X ) of Pehlivan’s chaotic system, which is the 8-
bits hardwired left-shifted of subtracted value. While the value of
logic OR operation is ‘0’, the multiplexer gives the 3-bit left shifting
of subtracted value as a differential value (h.X ) corresponding to
Lorenz, Chen, and Lu chaotic system.

The evaluation of h.Y according to the ODE of variable Y (cor-
responding Lorenz, Chen, Lu, and Pehlival chaotic systems) given
in Block-2. In this block, 2-bit Confg[1:0] signal, act as a control
signal of a 4×1-multiplexer. When the value of Confg signal is
2
′b00, multiplexer passes the 9-bit hardwired left shifted value of

Yi according to Pehlivan’s chaotic system. The multiplexer passes
the 4-bit hardwired left shifted value of Yi according to Lu, when
the value of Confg signal is 2

′b01. When the value of Confg signal is
2
′b10, multiplexer passes the subtracted value (8-bit hardwired left

shifted value of Xi from the 3-bit hardwired left shifted value of Yi).
When the value of Confg signal is 2

′b11, multiplexer passes the com-
putational value of 2−8.(8.xi + 24.yi)) according to Chen’s chaotic
system. One 32-bit binary multiplier is required in this block to
multiply the value of Zi with Xi. To subtract the multiplexer’s
output with an 8-bit left-shifted multiplier’s output, one 32-bit
subtractor is used as shown in the figure and their output gives
the differential value (h.Y ). Here, the shifting operation performs
the multiplication operation which is not utilized any hardware
resources.

Similarly, Block-3 presents the computational block to evaluate
the differential value (h.Z ). Here, the logical OR value of Confg[1]
and Confg[0] act as a control signal of the multiplexer. It passes the

(a)

(b)

(c)

(d)

Figure 1 Chaotic attractor in the plane of: (a) Lorenz; (b) Chen;
(c) Lu; and (d) Pehlivan systems.

value 2(−9), when the control signal is equal to logic ‘0′. While, for
control signal equal to logic “1”, multiplexer pass the 6-bits left
shifted value of Zi. This block includes one 32-bit binary multiplier
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(a)

(b)

(c)

Figure 2 Chaotic attractor in plane of Lorenz system with , h =
2−8, a = 32, b = 4, c = 32 and initial condition (x0, y0, z0) = (1, 1,
1): (a) x-y plane; (b) x-z plane; (c) y-z plane.

that multiplies the 32-bit value of Yi with Xi. The subtraction circuit
is also used in this block that subtracts the multiplexer’s output
with the 8-bit left-shifted of multiplier’s output, which gives the
differential value h.Z . The output of this block generates the 24-bit
random numbers in each iteration. These 24-bit data is captured
from 8 Least Significant Bits (LSBs) from each chaotic variable.

Example of the Proposed reconfigurable PRNG: Let a = 32, b =

4, c = 24, h = 2(−8), X0=5 (00001010000000000000000000000000),
Y0=-15 (11100010000000000000000000000000), Z0=40
(01010000000000000000000000000000) and Confg=3. When
the Confg value is 2’b11, architecture computes the Chen system
for generating pseudorandom numbers. Block-1 generates the
differential value: h.(X0) =11111111011000000000000000000000,
Block-2 generates the differential value: h.(Y0)
=11111111110101111111110011100000, and Block-3 generates the
differential value: h.(Z0)=11111111111110101111111011010100.

(a)

(b)

(c)

Figure 3 Chaotic attractor in plane of Chen’s system with , h =
2−8, a = 32, b = 4, c = 24 and initial condition (x0, y0, z0) = (5,
-15, 40): (a) x-y plane; (b) x-z plane; (c) y-z plane.

The value of X1=00001001011000000000000000000000,
Y1=11100001110101111111110011100000, and
Z1=01001111111110101111111011010100 have been gener-
ated from three Euler’s blocks separately. Finally, cap-
tured the 8 Least Significant Bits (LSBs) of each chaotic
variable: X1=00000000, Y1=11100000 and Z1=11010100,
this architecture generates a 24-bits pseudo-random num-
ber in 1st iteration: OUT1=000000001110000011010100.
Similarly, OUT2=000000001100000010101000, OUT3=
111100111100111011011110 and so on, generate in the next
iterations.
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(a)

(b)

(c)

Figure 4 The chaotic attractor in the plane of Lu system with,
h = 2−8, a = 32, b = 4, c = 16 and initial condition (x0, y0, z0) =
(1, 1, 1): (a) x-y plane; (b) x-z plane; (c) y-z plane.

IMPLEMENTATION OF 32-BIT PRNG AND STATISTICAL
TESTS

The implementation of 32-bit PRNG circuits is done on Virtex-
5 FPGA (XC5VLX110T). Its synthesis has been done on the ISE
design suite by Xilinx. Initially, its Register Transfer Level (RTL)
design is done using Verilog HDL. Table 6 depicts the hardware
performance including the parameters: area constraint (in terms
of slice look-up-tables (LUTs), occupied slices and slice registers),
Digital signal processing (DSP) blocks, timing performance (in
terms of critical path delay and maximum operating frequency),
and power dissipation per unit frequency. The post-layout simu-
lation waveform of proposed PRNGs are shown in Fig. 7(a), 7(b),
7(c), and 7(d) corresponding to four different configurations i.e.
Pehlivan, Lu, Lorenz, and, Chen’s PRNG.

(a)

(b)

(c)

Figure 5 Chaotic attractor of Pehlivan system with a = 0.5, initial
condition (x0, y0, z0) = (0.001, 0.001, 0) and h = 2−8: (a) x-y
plane; (b) x-z plane; (c) y-z plane.

The post routing simulation waveform of 32-bit Pehlivan’s
chaotic system-based PRNG is shown in Fig. 7(a). The con-
trol signal (Confg) is used to configure the systems, when
its value is equal to 00, it configures Pehlivan’s chaotic sys-
tem. This simulation takes the initial value: (X0, Y0, Z0) =
(0.96248769, 1.20541650, 42.13836362). The signal “CLK” and “Re-
set” are the master clock signal and reset signal respectively. Ini-
tialization of the registers with X0,Y0, and Z0 is done by “Reset”
signal. The three variable Xi[32:0], Yi[32:0] and Zi[32:0] represent
the iterative values. Its 8-bit LSBs segments combine to generate
a 24-bit pseudo-random number, which is given by the variable
OUT[23:0].

Similarly, Fig. 7(b), 7(c), and 7(d) show the post routing simu-
lation waveform of 32-bits reconfigurable PRNG for Lu, Lorenz,
and Chen 3D attractors with Confg[1:0] equal to 2’b01, 2’b10 and
2’b11 correspondingly. This simulation takes the initial value:
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Figure 6 Proposed architecture of reconfigurable chaotic PRNG using Lorenz, Chen, Lu, and Pehlivan chaotic systems.

(X0, Y0, Z0) = (1, 1, 1), (1, 1, 1), and (5,−15, 40) respectively. In
this figure, the “CLK” and “Reset” signals represent the same mean-
ing. Similarly, the three variable Xi[32:0], Yi[32:0], and Zi[32:0]
represent the iterative values. Its 8-bit LSBs segments combine to
generate 24-bits pseudo-random numbers, which are given by the
variable OUT[23:0].

The proposed reconfigurable PRNG demonstrates over the ex-
isting architectures of PRNGs. It provides the opportunity to
switch between four different 3D-Chaotic systems. This archi-
tecture is a completely digital circuit, which is easily suitable for
real-time digital applications where PRNG is required. The com-
parison table of the hardware performance and security strength
is given in Table 6. This table summarizes the NIST results, timing
performance, power consumption, and area resources.

The maximum operating frequency of proposed PRNG is in-
creased by 23.40% as compared with PRNG (Rezk et al. 2019), while
it increases by 3.69% as compared with PRNG based on logistics
(Pande and Zambreno 2013). A resources of FPGA (in terms of
occupied slices, slice registers, slice LUTs, and DSP blocks) is uti-
lized by designed PRNG circuit is slight increases (as compared
with existing literature) due to the involvement of four different
chaotic systems in a single architecture. However, it is suitable for
generating a high degree of randomness and large period pseu-
dorandom numbers. The proposed architecture consumes 8.6125

mW/MHz total power on Virtex-5 for a 32-bit design. The statis-
tical analysis of generated keys has been done by the NIST test
suit. This result also depicts that the security strength of keys from
four different configurations is highly secure and it can be used in
S-box generation, image encryption, etc.

The statistical testing of a random number generator is federal
information, which processes the standard issued by the NIST
(Rukhin et al. 2000). This test includes the fifteen different statisti-
cal tests that perform to check the security strength of generated
random sequences in all aspects of security. For this test, we take
100 samples of bit sequences (each sample has a 106 random bits
sequence). The NIST benchmark test of these four sequences has
been performed. This test suite set the level of significance equal
to 0.01. This means that the resulting p-value of each sample
should be greater than or equal to the level of significance for indi-
cating the randomness strength of generated bit sequences. The
sequences have been generated using parameters and initial seed
values as mentioned in Table 1 to Table 4. The four different gen-
erated sequences from the proposed reconfigurable PRNG have
been passed all the tests. Table 5 present the proportional value
and maximum p-value corresponding to each test of NIST. This
table depicts that test sequences pass all fifteen test of NIST, which
indicate the high security strength of generated random sequences
from the proposed PRNG circuit.
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(a)

(b)

(c)

(d)

Figure 7 Post routing simulation waveform of proposed 32-bit reconfigurable chaotic PRNG: (a) Pehlivan; (b) LU; (c) Lorenz and (d)
Chen system.
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■ Table 5 FPGA synthesis result of proposed and existing architecture of Chaotic-based PRNG

Proposed (Zidan et al., 2011) (de la Fraga et al., 2017) (Rezk et al., 2019) (Pande & Zambreno, 2013)

Chaotic System (Lorenz + Chen + Lu + Pehlivan) Lorenz & Bernoulli (Lu + Lorenz) Logistic

Operand Size 32-bits 32-bits 32-bits 32-bits 32-bits

Number of 3D chaotic attractors 4 1 1 2 1

FPGA
Virtex 5

(XC5VLX50T)

Virtex 4

(XC4VSX35)

Spartan 3E

(XC3S500E)

Virtex 5

(XC5VLX50T)

Virtex 6

(XC6VLX75T)

Occupied Slices/Total 83/7200 145/15360 342/7200 100/7200 181/11640

Slice registers/Total 96/28800 96 /30,720 108/28,800 96 /28800 160/93120

Slice LUTs/Total 313/28800 287 /30,720 575/28,800 276/28800 643/46560

DSP blocks/Total 8/48 8/192 9/48 16/288

Frequency (MHz) 96.438 53.53 36.90 93.00

NIST Pass – – –

■ Table 6 NIST Test Results

Test
Lorenz (10) Chen (11) Lu (01) Pehlivan (00)

P-value within success sequence Proportion successful out of 100 P-value within success sequence Proportion successful out of 100 P-value within success sequence Proportion successful out of 100 P-value within success sequence Proportion successful out of 100

Frequency Test within a Block 0.961876 98 0.905225 99 0.998261 96 0.802587 99

Frequency (Monobit) 0.719747 99 0.657933 100 0.888660 96 0.841481 98

Runs Test 0.955825 99 0.474986 100 0.639464 98 0.996907 99

Longest-Run-of-Ones in a Block 0.844731 99 0.719747 97 0.951366 99 0.942871 96

Linear Complexity 0.657933 98 0.699313 98 0.798139 97 0.933026 98

Binary Matrix Rank 0.862457 99 0.949536 99 0.949536 98 0.862457 97

Approximate Entropy 0.534146 98 0.574903 99 0.153763 98 0.999952 100

Discrete Fourier Transform 0.657933 99 0.926884 96 0.771671 97 0.646355 99

Overlapping Template Matching 0.822183 100 0.883171 100 0.856837 100 0.924076 97

Non-overlapping Template Matching 0.971699 98 0.851383 97 0.779188 99 0.798139 97

Cumulative Sums 0.554420 100 0.867692 100 0.762693 96 0.990843 98

Universal Statistical Test 0.498264 98 0.697354 100 0.802673 96 0.864253 100

Serial Test
0.042808 100 0.304126 100 0.759756 99 0.989703 98

0.474986 99 0.946308 99 0.262249 99 0.653842 99

Random Excursions 0.867523 98 0.643582 99 0.943559 96 0.983256 100

Random Excursions Variant 0.578556 96 0.732568 99 0.969182 99 0.827614 96

DESIGN AND EVALUATION OF S-BOXES

This section designs the four different new S-box matrixes using
the proposed reconfigurable PRNG. The steps for designing S-
boxes from PRNG are illustrated: The first step is to segment the
24-bit random numbers into three parts and each 8-bit binary value
is converted into decimal form. This decimal value compares with
the existing value of the matrix in Step two and it includes the
element of the matrix if the value is not repeated. This process is
repeated until the entire matrix element is filled. And finally gen-
erates the S-boxes, which contain the 256 different 8-bit elements
in random order. Tables 6, 7, 8 and 9 present the S-box matrix
corresponding to Confg equal to 2’b00, 2’b 01, 2’b 10, and 2’b 11.

Since the critical part of cryptography is S-boxes thus, important
characteristics of a cryptographically strong S-box have been exam-
ined in this section. The evaluated characteristics exhibit features
like Average non-linearity of all Boolean functions, non-linearity
of Boolean functions, Balanced, Bijective, Non-linearity of S-Box,
BIC non-linearity criterion, Strict Avalanche Criterion (SAC), and
Dynamic Distance. Moreover, Outcomes have been compared with
other techniques reported in the literature. The reference of the
all-mathematical definitions of the above-mentioned parameters

is (Cassal-Quiroga and Campos-Cantón 2020; Ishfaq 2018; Gupta
and Chauhan 2021).

It is well known that the criterion of bijective property of S-
boxes is equivalent to 2n−1 = 128 where n = 8. Since it satisfies
the bijective criterion for all proposed S-boxes thus it is considered
as desired value for the bijective criterion. Simultaneously, the
balanced, one-to-one and surjective properties are also satisfied for
the proposed S-boxes.

The non-Linearity criterion is another parameter that holds
the nonlinearity property between the vector of input and out-
put of S-boxes. It holds a better explanation for the dissimilarity
degree between Boolean and linear functions (Cassal-Quiroga &
Campos-Cantón, 2020). The calculation of eight Boolean functions
of non-linearity property has been performed for the S-boxes. The
calculated value of eight non linearity function of non-linearity
property for the S-box-1 are 104, 106, 104, 102, 100, 102, 108 and
104, and for the S-box-2 are 104, 104, 104, 106, 106, 102, 104 and 104.
In same way the eight non linearity Boolean values for S-box-3
and S-Box-4 are (102, 104, 106, 104, 110, 106, 106, 102) and (102, 104,
106, 104, 110, 106, 106 and 102) respectively. It is well-identified
that larger non-linear values ensure the highest ability to resist
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■ Table 7 S-Box-1 using proposed chaotic PRNG with Confg
equal to 00.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 89 112 123 134 4 146 179 152 169 224 44 192 13 215 58 65

2 232 121 88 21 15 111 66 165 59 157 156 210 180 87 30 119

3 240 53 164 137 76 209 34 99 254 187 122 43 84 217 55 251

4 6 18 52 109 41 98 8 64 144 190 193 216 36 239 238 194

5 28 96 29 74 195 158 100 181 5 204 168 167 227 214 73 250

6 235 22 186 94 2 166 211 32 199 110 49 113 160 171 97 207

7 253 145 45 39 57 86 155 81 133 71 105 243 129 159 153 12

8 106 31 200 206 161 241 175 79 19 126 197 173 202 188 42 90

9 138 218 125 10 162 154 234 26 27 212 141 170 70 3 0 247

10 182 117 147 196 140 78 108 16 148 255 69 77 118 17 213 9

11 93 131 68 231 11 25 75 101 233 47 103 249 128 127 142 178

12 177 102 51 229 205 23 230 120 24 237 191 50 85 1 136 33

13 80 150 221 67 132 37 62 248 245 223 225 95 198 48 244 219

14 201 130 116 220 246 222 72 115 151 61 54 40 236 35 242 14

15 252 228 92 46 83 60 163 82 139 63 203 189 107 104 114 174

16 38 20 185 143 208 135 7 176 183 124 172 184 149 91 226 56

■ Table 8 S-Box-2 using proposed chaotic PRNG with Confg
equal to 01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 229 238 32 156 240 44 12 248 58 29 8 74 184 34 92 199

2 211 201 103 52 76 235 151 202 252 56 33 99 140 216 204 196

3 41 39 217 23 90 145 210 97 75 87 62 7 161 244 220 153

4 223 116 236 254 162 251 59 233 6 31 182 86 30 158 85 122

5 113 123 207 147 70 187 175 27 28 141 212 25 142 143 146 243

6 178 71 128 114 173 81 253 55 169 197 73 127 10 93 215 181

7 171 2 5 18 189 249 230 206 84 195 200 37 82 4 109 150

8 225 36 14 72 17 69 110 131 239 208 194 247 125 163 13 26

9 186 226 219 106 38 214 57 213 117 152 191 133 64 50 0 9

10 137 126 168 107 45 172 179 190 205 118 192 79 95 120 155 83

11 177 22 136 167 231 174 180 157 119 121 42 88 105 100 124 224

12 68 63 222 134 98 166 20 53 96 246 149 242 66 43 154 237

13 159 48 89 255 160 1 67 40 232 21 241 15 144 3 250 170

14 148 193 94 60 218 78 61 102 185 221 111 129 130 11 108 203

15 228 135 164 47 234 176 46 112 188 139 198 183 65 51 80 209

16 104 245 77 54 24 132 35 138 115 49 101 227 165 91 19 16

powerful attacks.
The randomness of the S-box is measured by Strict Avalanche

Criterion (SAC). If there is an input change then random behavior
comes into the picture which is regarded as the avalanche effect
in S-box. There is an alteration in each output bit with one-half
of the probability if any change is made in the single bit of input.
This phenomenon reflects the Strict Avalanche Criterion (SAC). It
is well known that there is a 50% dependency of Boolean function
on each input bit for a better explanation of this criterion. The
generated SAC values of S-box-1, -2, -3 and -4 are tabulated in Table
[16, 17,18] respectively. The corresponding minimum, maximum,
and average SAC values of 0.3606, 0.5938, and 0.500016 for S-box-1
have been obtained. In the same way, the corresponding minimum,
maximum, and average SAC values of 0.3906, 0.6406, and 0.504894
for S-box-2 have been evaluated and for S-box-3 the minimum,
maximum and average values are 0.3906, 0.5781, and 0.503669.
At last, the minimum, maximum, and average values for S-box-

■ Table 9 S-Box-3 using proposed chaotic PRNG with Confg
equal to 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 247 238 14 230 220 22 77 65 32 172 158 44 135 112 58 102

2 81 177 12 119 19 99 210 92 179 221 233 107 69 30 9 17

3 20 199 222 229 54 235 73 126 13 248 209 129 98 138 190 36

4 48 181 228 226 16 156 18 237 197 78 187 110 123 27 203 43

5 127 184 80 55 219 87 70 183 120 174 46 71 171 60 23 131

6 96 200 25 45 62 168 109 133 84 94 31 164 143 33 21 213

7 47 7 49 215 163 37 117 147 83 29 79 41 169 212 40 191

8 53 8 93 34 68 195 104 3 236 188 4 194 241 245 125 162

9 5 89 185 225 88 227 218 128 42 250 202 207 189 66 132 63

10 118 51 75 141 160 111 243 137 204 86 155 205 206 232 176 82

11 139 255 186 167 6 246 165 136 39 103 114 211 214 244 192 208

12 28 239 253 0 61 242 100 251 57 101 157 161 152 148 52 216

13 145 249 170 154 113 142 178 124 90 105 151 15 224 56 182 72

14 64 134 140 97 91 35 159 231 198 146 150 2 234 193 153 252

15 175 130 115 122 201 74 50 173 254 223 121 95 1 38 217 166

16 24 149 76 26 116 240 67 85 10 180 196 144 11 59 108 106

■ Table 10 S-Box-4 using proposed chaotic PRNG with Confg
equal to 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 243 206 222 218 10 117 13 240 110 229 251 200 216 166 132 120

2 85 101 18 194 68 209 143 50 138 188 32 221 73 53 106 82

3 123 30 213 89 214 184 15 69 104 25 159 56 8 40 178 145

4 142 205 37 226 108 136 203 233 34 163 135 174 212 20 118 137

5 27 168 156 207 246 1 141 211 95 189 71 91 193 154 116 177

6 190 124 97 128 172 61 3 19 234 139 35 245 247 153 114 63

7 228 78 122 75 70 76 38 94 33 115 62 45 152 16 80 66

8 165 160 7 161 90 83 175 67 130 148 86 219 220 167 225 144

9 28 198 249 239 158 237 98 88 49 87 113 65 147 2 252 131

10 9 253 197 238 12 201 11 140 192 185 111 248 173 39 187 41

11 241 105 224 22 250 126 103 217 74 164 44 29 36 0 150 60

12 54 223 119 210 244 121 176 64 215 169 208 59 133 17 43 46

13 93 57 236 171 195 199 191 196 14 72 180 24 52 146 254 235

14 42 232 21 227 47 99 96 181 26 186 77 129 179 92 157 109

15 125 48 230 242 55 84 204 5 102 134 81 162 183 255 127 202

16 31 149 100 79 4 58 182 23 112 6 51 151 155 231 170 107

4 are 0.4063, 0.6094, and 0.5005 respectively. Its average value
corresponding to S-boxes is very closer to 0.5. Thus, the property
of SAC for proposed S-Boxes is satisfied.

To evaluates the security strength of S-Box, Bits Independence
Criterion (BIC) is also important. For the S-boxes, the static pattern
among output vectors and no dependency on each other is ensured
by the BIC parameters. The corresponding BIC non-linearity for
the S-box-1, -2, -3, and -4 has been tabulated in Table [19, 20, 21,
22]. Further, the BIC non-linearity value of 102.5714, 103.1429,
102.8571, and 103.2143 also has been calculated for the S-box-1, -2,
-3, and -4 respectively. The SAC properties are also measured by
the dynamic distance (DD) (Ishfaq 2018) and it is satisfied only
when there is a small integral value for dynamic distance. The DD
for S-Box-1, -2, -3, and -4 have been tabulated in Table [11, 12, 14,
15]. The calculated average values of DD for S-box-1, -2, -3 and
-4 are 5.3125, 5.125, 4.34375 and 4.625 respectively which holds a
better inclination for the fulfill the BIC criterion.
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Table 10 illustrates the comparison of proposed S-boxes in terms
of the property of Bijection, Nonlinearity, SAC, and BIC Non-
Linearity with the existing literature. This table helps to conclude
the important criterion such as Bijective, Balanced, Non-linearity,
and Avalanche Criteria. It has been satisfied by these boxes. Fur-
ther, the average value of non-linearity of S-box-1, -2, -3, and -4 are
103.75, 104.25, 104.00, and 105.00 correspondingly, which indicates
the value of proposed S-boxes is much better than that reported
in the literature (Cassal-Quiroga & Campos-Cantón, 2020). It has
been observed that the expected bijection value of 128 has been ful-
filled by the S-Boxes. Moreover, S-Box-1, -2, -3, and -4 have mean
SAC value of 0.500016, 0.504894, 0.503669 and 0.5005 respectively
that is much closer to 0.5. The BIC-nonlinearity average values are
102.5714, 103.1429, 102.8571, and 103.2143 for S-box-1, -2, -3, and -4
which reveal the betterment of S-boxes.

■ Table 11 Dynamic Distance (DD) of S-box-1

2 12 2 2 6 8 4 2

6 8 2 6 12 2 6 10

6 6 4 6 0 10 6 2

6 4 10 0 6 4 12 0

8 10 8 6 14 2 10 2

4 10 2 2 2 12 4 4

2 2 2 10 4 2 2 0

4 8 0 10 4 8 4 6

■ Table 12 Dynamic Distance Table of S-box-2

4 4 4 0 0 2 2 6

2 2 2 6 2 6 10 6

0 6 0 8 2 4 18 8

2 6 4 8 12 0 6 6

4 2 2 14 10 10 8 2

4 4 10 4 14 2 0 0

12 2 8 6 6 8 4 2

6 2 6 6 6 10 2 4

■ Table 13 Dynamic Distance Table of S-box-2

4 4 4 0 0 2 2 6

2 2 2 6 2 6 10 6

0 6 0 8 2 4 18 8

2 6 4 8 12 0 6 6

4 2 2 14 10 10 8 2

4 4 10 4 14 2 0 0

12 2 8 6 6 8 4 2

6 2 6 6 6 10 2 4

■ Table 14 Dynamic Distance Table of S-box-3

2 4 2 2 2 10 0 12

2 6 4 8 2 8 6 8

4 2 6 4 2 6 2 6

12 2 0 2 6 0 2 0

14 4 10 4 0 2 6 10

4 4 4 0 6 4 2 10

0 0 0 2 12 4 2 2

2 0 8 6 4 2 10 6

■ Table 15 Dynamic Distance Table of S-box-4

0 2 8 2 10 2 4 4

6 12 2 2 4 8 6 16

6 0 4 0 2 8 14 4

2 6 2 10 0 6 4 2

8 10 0 4 6 8 2 8

2 8 10 2 4 2 0 0

10 8 4 2 0 8 4 4

10 2 2 2 2 2 4 0
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■ Table 16 SAC criterion result of the generated S-box-1

0.4844 0.5938 0.4844 0.4844 0.5469 0.5625 0.5313 0.4844

0.5469 0.4375 0.5156 0.4531 0.4063 0.5156 0.5469 0.4219

0.5469 0.5469 0.5313 0.5469 0.5 0.5781 0.5469 0.4844

0.5469 0.4688 0.4219 0.5 0.5469 0.5313 0.4063 0.5

0.5625 0.4219 0.5625 0.5469 0.3906 0.5156 0.5781 0.5156

0.4688 0.5781 0.4844 0.4844 0.5156 0.4063 0.4688 0.5313

0.5156 0.4844 0.5156 0.4219 0.4688 0.5156 0.4844 0.5

0.4688 0.5625 0.5 0.4219 0.4688 0.4375 0.5313 0.4531

■ Table 17 SAC criterion result of the generated S-box-3

0.5156 0.5313 0.4844 0.5156 0.5156 0.5781 0.5 0.4063

0.5156 0.5469 0.5313 0.5625 0.4844 0.5625 0.4531 0.4375

0.4688 0.5156 0.5469 0.4688 0.4844 0.4531 0.5156 0.5469

0.4063 0.5156 0.5 0.5156 0.4531 0.5 0.4844 0.5

0.3906 0.4688 0.5781 0.5313 0.5 0.5156 0.5469 0.5781

0.4688 0.5313 0.5313 0.5 0.4531 0.5313 0.5156 0.4219

0.5 0.5 0.5 0.5156 0.5938 0.5313 0.4844 0.5156

0.5156 0.5 0.5625 0.4531 0.4688 0.4844 0.5781 0.4531

■ Table 18 SAC criterion result of the generated S-box-4

0.5 0.5156 0.5625 0.4844 0.4219 0.5156 0.4688 0.4688

0.4531 0.4063 0.5156 0.4844 0.4688 0.5625 0.5469 0.625

0.5469 0.5 0.5313 0.5 0.4844 0.4375 0.6094 0.5313

0.5156 0.5469 0.4844 0.5781 0.5 0.5469 0.4688 0.5156

0.5625 0.4219 0.5 0.5313 0.4531 0.5625 0.4844 0.4375

0.4844 0.4375 0.5781 0.5156 0.5313 0.4844 0.5 0.5

0.4219 0.4375 0.5313 0.4844 0.5 0.4375 0.4688 0.5313

0.4219 0.5156 0.5156 0.5156 0.4844 0.5156 0.4688 0.5

■ Table 19 BIC Non-linearity criterion of S-box-1

0 98 100 104 102 106 108 106

98 0 100 102 104 98 100 104

100 100 0 102 104 96 100 98

104 102 102 0 106 102 106 100

102 104 104 106 0 104 104 108

106 98 96 102 104 0 102 106

108 100 100 106 104 102 0 102

106 104 98 100 108 106 102 0

■ Table 20 BIC Non-linearity criterion of S-box-2

0 104 104 104 102 100 102 106

104 0 104 104 98 106 102 104

104 104 0 102 106 104 104 106

104 104 102 0 100 102 108 104

102 98 106 100 0 102 98 104

100 106 104 102 102 0 100 102

102 102 104 108 98 100 0 106

106 104 106 104 104 102 106 0

■ Table 21 BIC Non-linearity criterion of S-box-3

0 106 100 102 106 104 102 102

106 0 100 102 106 106 100 104

100 100 0 106 100 104 96 106

102 102 106 0 98 102 104 104

106 106 100 98 0 106 104 102

104 106 104 102 106 0 98 106

102 100 96 104 104 98 0 104

102 104 106 104 102 106 104 0

■ Table 22 BIC Non-linearity criterion of S-box-4

0 106 100 106 104 100 102 104

106 0 106 104 104 104 100 102

100 106 0 104 106 104 108 98

106 104 104 0 100 104 96 104

104 104 106 100 0 106 102 102

100 104 104 104 106 0 108 102

102 100 108 96 102 108 0 104

104 102 98 104 102 102 104 0
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■ Table 23 Comparison of our S-boxes and other S-boxes used in typical block ciphers.

Bijection
Nonlinearity SAC

BIC Non-Linearity

Min. Max. Average Min. Max. Average

(Cassal-Quiroga &

Campos-Cantón, 2020)

S-box-1 128 96 104 101.75 0.3906 0.5781 0.5012 103.42

S-box-2 128 96 108 102.25 0.4219 0.6094 0.5059 103.50

(Gupta & Chauhan, 2021)
S-box-1 128 98 108 103.7500 0.4063 0.5938 0.507583 103.7857

S-box-2 128 94 108 100.5000 0.3906 0.6094 0.498792 102.9286

Proposed

S-box-1 128 100 108 103.75 0.3906 0.5938 0.500016 102.5714

S-box-2 128 102 106 104.25 0.3906 0.6406 0.504894 103.1429

S-box-3 128 100 106 104.00 0.3906 0.5781 0.503669 102.8571

S-box-4 128 102 110 105.00 0.4063 0.6094 0.5005 103.2143

CONCLUSION

This paper summarizes the design and evaluation of the new four
S-boxes for subbyte operation in image encryption applications
and estimates their strength using the following parameters: Dy-
namic Distance, BIC non-linearity, Bijective, Non-linearity, Strict
Avalanche Criterion (SAC), and Balanced criterion. The S-box
matrix is designed by a new reconfigurable 3D-Chaotic PRNG.
This PRNG is designed using four different 3D chaotic systems
i.e. Lorenz, Chen, Lu, and Pehlivan’s chaotic systems. This recon-
figurable architecture of PRNG exploits the ODEs of these four
attractors that fit all four chaotic systems in a single circuit. The
novelty of this PRNG is multiplierless VLSI architecture. That
offers relatively better performance. To demonstrate the hard-
ware performance, the PRNG circuit is implemented in Virtex-5
(XC5VLX50T) FPGA and finds the timing performance which gen-
erates the 24-bit random number at 96.438-MHz. The area of FPGA
is occupied by only 16.66%, 1.08%, 0.33%, and 1.15% of the avail-
able DSP blocks, slice LUTs, slice registers and slices respectively.
Finally, the proposed four different S-box matrixes fulfill the fol-
lowing criteria: Dynamic Distance, BIC non-linearity, Bijective,
Non-linearity, Strict Avalanche Criterion (SAC), and Balanced cri-
terion. Therefore, it can conclude that the proposed S-boxes are
used for secure image encryption algorithms.
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Artuğer, F., 2023 A new s-box generator algorithm based on 3d
chaotic maps and whale optimization algorithm. Wireless Per-
sonal Communications 131: 1–19.
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Artuğer, F. and F. Özkaynak, 2022b Sbox-cga: substitution box gen-
erator based on chaos and genetic algorithm. Neural Computing
and Applications 34: 1–9.

Cassal-Quiroga, B. B. and E. Campos-Cantón, 2020 Generation of
dynamical s-boxes for block ciphers via extended logistic map.
Mathematical Problems in Engineering 2020: 1–12.

ElSafty, A. H., M. F. Tolba, L. A. Said, A. H. Madian, and A. G.
Radwan, 2021 Analog integrated circuits and signal processing.
Hardware realization of a secure and enhanced s-box based
speech encryption engine 106: 385–397.

G. Di Patrizio Stanchieri, E. P., A. De Marcellis and M. Faccio,
2019 A true random number generator architecture based on
a reduced number of fpga primitives. AEU - Inte. J. Electron.
Commun. 105.

Garcia-Bosque, M., A. Pérez-Resa, C. Sánchez-Azqueta, C. Aldea,
and S. Celma, 2019 Chaos-based bitwise dynamical pseudoran-
dom number generator on fpga. IEEE Transactions on Instru-
mentation and Measurement 68: 291–293.

Garcia-Bosque, M., A. Pérez-Resa, C. Sánchez-Azqueta, C. Aldea,
and S. Celma, 2018 A new technique for improving the secu-
rity of chaos based cryptosystems. In 2018 IEEE International

CHAOS Theory and Applications 231



Symposium on Circuits and Systems (ISCAS), pp. 1–5.
Garipcan, A. M. and E. Erdem, 2020 A trng using chaotic entropy

pool as a post-processing technique: analysis, design and fpga
implementation. Analog Integr. Circuits Signal Process. 103: 391–
410.

Gupta, M. and R. Chauhan, 2020 Efficient hardware implementa-
tion of pseudo-random bit generator using dual-clcg method.
Journal of Circuits, Systems and Computers 30.

Gupta, M. D. and R. K. Chauhan, 2021 Secure image encryption
scheme using 4d-hyperchaotic systems based reconfigurable
pseudo-random number generator and s-box. Integr. 81: 137–
159.

Gupta, M. D. and R. K. Chauhan, 2022 “hardware efficient pseudo-
random number generator using chen chaotic system on fpga. J.
Circuits, Syst. Comput. 31: 2250043.

H. S. Alhadawi, S. M. I., M. F. Zolkipli and D. Lambi, 2019 Design-
ing a pseudorandom bit generator based on lfsrs and a discrete
chaotic map. Cryptologia 43: 190–210.

Ishfaq, F., 2018 A MATLAB Tool for the Analysis of Cryptographic Prop-
erties of S-boxes. MATLAB Tool for the Analysis of Cryptographic
Properties of S-boxes.

Khan, H., M. M. Hazzazi, S. S. Jamal, I. Hussain, and M. Khan,
2022 New color image encryption technique based on three-
dimensional logistic map and grey wolf optimization based gen-
erated substitution boxes. Multimedia Tools and Applications
82: 1–22.

Khan, M., T. Shah, and S. I. Batool, 2016 Construction of s-box
based on chaotic boolean functions and its application in image
encryption. Neural Computing and Applications 27: 677–685.
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ABSTRACT Chaos, which is found in many dynamical systems, due to the presence of chaos, systems behave
erratically. Due to its erratic behaviour, the chaotic behaviour of the system needs to be controlled. Severe
acute respiratory syndrome Coronavirus 2 (Covid-19), which has spread all over the world as a pandemic.
Many dynamical systems have been proposed to understand the spreading behaviour of the disease. This
paper investigates the chaos in the outbreak of COVID-19 via an epidemic model. Chaos is observed in
the proposed SIR model. The controller is designed based on the fractional-order Routh Hurwitz criteria for
fractional-order derivatives. The chaotic behaviour of the model is controlled by feedback control techniques,
and the stability of the system is discussed.

KEYWORDS

Chaos
Feedback control
Fractional order
Routh Hurwitz cri-
teria
Chaotic attractor
Stability

INTRODUCTION

Mathematical modelling is one of the best ways to understand
the dynamics of physical phenomena. Some dynamical systems,
whether they are linear or nonlinear, show unpredictable be-
haviour which is termed "chaos." Chaos is a very active area of
research for researchers who are working particularly in the non-
linear dynamical system. Chaos does not have a unified definition,
yet this phenomenon is observed and studied in different branches
of science and technology, whether it is science, population dy-
namics, telecommunication engineering, etc.

The COVID-19 epidemic first broke out in December 2019,
when its danger and impact were not known. The conditions
under which this disease will propagate are also unknown to the
world. It is necessary to control the spread of any disease. To con-
trol the spread of the disease, we must understand its behaviour
particularly the virus’s speed of infection and the duration of its
symptoms. All the governments and world health organisations
are trying to control and prevent the spread of COVID-19. One
of the important steps to controlling the spread of COVID-19 is
the mathematical modelling of this disease and its analysis. Vari-
ous techniques have been developed to model infectious diseases.
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One of the popular methods is the compartmental method. In
this method, the entire population is segregated into different
compartments, and the interplay between these compartments is
represented in the form of equations to represent the model. (Ker-
mack and McKendrick 1927) have proposed for the first time the
mathematical model of an epidemic where they have separated
the entire population into three compartments: (i) people who are
prone to the disease; (ii) people who are already infected and can
spread the infection; (iii) people who are already recovered and
have developed the immune system; or (iv) people who have left
the study area. Many mathematical models (Alsadat et al. 2023;
Debbouche et al. 2021; Giordano et al. 2020; Haq et al. 2022; Javeed
et al. 2021; Babu et al. 2021; Mandal et al. 2020) are proposed for
the study of COVID-19. (Xie 2020; Maltezos and Georgakopoulou
2021; Farshi 2020) have used Monte Carlo simulation models to
determine the development of COVID spread.

Chaos in the dynamical system of COVID-19 was analysed by
(Mangiarotti et al. 2020) in 2020, where he worked on the data
of the national health commission of the People’s Republic of
China. In this work, (Mangiarotti et al. 2020) have proposed a
model based on three variables: (i) the cumulated number of daily
confirmed cases; (ii) the daily number of serious cases and those
who are under intensive care at present; (iii) the daily cumulated
number of deaths. From these parameters, the daily number of
new cases, the daily number of additional severe cases, and the
daily number of new deaths are derived. The chaos in this model
has been observed with 11 parameters. (Debbouche et al. 2021)have
conceived the dynamical system model proposed by (Mangiarotti
et al. 2020) of COVID-19 with fractional order differentiation in the
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Caputo sense. The fractional order derivative with commensurate
and incommensurate order has been analyzed, and the chaotic
behaviour of it has been observed. (Postavaru et al. 2021) in 2021
studied the Covid-19 pandemic and chaos.

The fractional order derivative is considered for the consider-
ation of memory concepts in the dynamical system. Although
it is quite difficult to formulate a complete model of any novel
epidemic, many parameters may still not be known. (Higazy 2020)
has used the fractional-order SIDARTHE model and proposed the
control strategy. (Ahmad et al. 2022) proposed the fractional order
model considering five classes of the population. (Borah et al. 2022)
have investigated the memory effect by introducing the fractional
derivative and chaos. They used different methods for controlling
the chaos. (Xu and Tang 2021) proposed an integrated epidemic
modelling framework for the real time forecast of COVID-19.(Xu
et al. 2020) proposed a generalised fractional order SEIR model for
forecast analysis of the epidemic trends in the USA.(Chandra and
Bajpai 2022) have proposed the fractional order model with the
consideration of social distancing as one parameter to make the
model mimic real-time data.

These proposed COVID-19 models do not address how to con-
trol the chaos present in the dynamical system. There are numer-
ous methods to achieve chaos control. Due to their ease of design,
the first two primary methods for managing chaos are feedback
control and non-feedback control, which are particularly appeal-
ing and have been widely used in actual implementation. (Bai
and Lonngren 2000) put forth the Active Control Method, which,
due to its ease of use and simplicity in applications, has drawn
the attention of many researchers working in the field of nonlin-
ear dynamics. (Srivastava et al. 2014) have controlled the chaos
of the fractional-order Rabinovich-Fabrikant system. (Borah et al.
2021) have controlled and anti-controlled fractional order models
of diabetes, HIV, dengue, migraine, Parkinson’s, and Ebola-virous
diseases.

The present article is further divided in the following sections:
(i) Section 2 explains the preliminary concepts of fractional dif-
ferentiations and the stability of fractional order Routh-Hurwitz
criterion, it has the basic information about the proposed model (ii).
Section 3 contains the stability analysis of the system (iii). Section
4 contains the analysis of the chaos controls, and the parameters
required for the control are presented in this section. (iv) Section 5
talks about the results (v). Section 6 is the conclusion. It is to the
author’s knowledge that no author has tried to control the chaos
of a dynamical system of the kind proposed in the current article.

PRELIMINARIES

Definition: The Riemann-Liouville (Podlubnv 1999) type fractional
derivative of order α≥0 of function f(0,∞) 7→ R. is defined by

Dα f (t) =
dn

dtn
1

Γ (n − α)

∫ t

0
(t − τ)n−α−1 f (τ) dτ (1)

where n=[α]+1 and [α] is the integer part of α.

Definition: The Caputo type (Podlubnv 1999) fractional derivative
of order α>0 of the function f (0,∞)→ R is defined by

Dα f (t) =
1

Γ (n − α)

∫ t

0
(t − τ)α−1 f (n) (τ) dτ (2)

where n= [α]+1 and [α] is the integer part of α.

Theorem: (Matignon 1996) an autonomous system of type (3)

Dα
t x (t) = f1 (x, y, z)

Dα
t y (t) = f2 (x, y, z)

Dα
t z (t) = f3 (x, y, z)

(3)

is said to be asymptotically stable by if and only if all its eigenval-
ues of the Jacobian matrix.

J =


∂ f1
∂x

∂ f1
∂y

∂ f1
∂z

∂ f2
∂x

∂ f2
∂y

∂ f2
∂z

∂ f3
∂x

∂ f3
∂y

∂ f3
∂z

 (4)

at its equilibrium point meets specific requirements
of.|arg(λ)| > απ

2 .This result is derived by (Matignon 1996)
for a linear dynamical system. Since local linearization is a
technique used to test the local stability of equilibrium points
in nonlinear systems, the theorem can be used in this context
(Srivastava et al. 2014).
The characteristic equation of the Jacobian matrix at the equilib-
rium is

TP (λ) = λ3 + a1λ2 + a2λ + a3 (5)

The discriminant is
D(P) = 18a1a2a3 + (a1a2)

2 − 4a3a1
3 − 4a3

2 − 27a2
3

The fractional order Routh-Hurwitz criterion (Ahmed et al. 2006;
Srivastava et al. 2014) is as follows for the system to be stable.:
(i) The equilibrium point meets the necessary and sufficient condi-
tions in order to be locally asymptotically stable, and if D(P) > 0,
these conditions are a1 > 0, a3 > 0, a1a2 − a3 > 0.
(ii)If D(P) < 0, a1 ≥ 0, a2 ≥ 0, a3 > 0 then the equilibrium
point is locally asymptotically stable for α < 2

3 . However, if
D(P) < 0, a1 < 0, a2 < 0, α > 2

3 ,then all the roots of the char-
acteristic equation satisfy the condition
(iii)If D(P) < 0, a1 > 0, a2 > 0, a1a2 − a3 = 0then all individuals
0 ≤ α < 1 are locally asymptotically stable at the equilibrium
point.
(iv) A need for equilibrium points to be locally stable asymptoti-
cally is a3 > 0.

Proposed Model: The considered model in this article is. As pro-
posed in (Mangiarotti et al. 2020) The three decision variable x
(Number of daily cases) ,y ( Number of daily serious cases re-
ported) and Z( Number of daily deaths) along with 11 parameters
α1,α2, α3, α4, α5, α6, α7, α8, α9, α10,α11 .

dαx
dtα = α1z2 + α2x2 + α3y (z + α4x)

dαy
dtα = α5x + α6y + α7 z2

dαz
dtα = α8xz + α9xy + α10z + α11x2

(6)

Values of the parameters are considered as The above model
shows the chaotic behaviour with initial values x=180, y=30, z=8
for the time variation of t=100, for order of derivatives α=0.97.
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■ Table 1 Values of the parameter in the model (6)

α1 = −0.10530723 α2 = 2.343X10−5 α3=0.15204 α4=−0.01451520 .

α5=−0.20517824 α6=0.44040714 α7=0.16060376 α8=−0.00011493.

α9=−1.215X10−5 α10=0.2844499 α11=2.38X10−6 .

Figure 1 Chaotic behaviour of the system in (6) with initial values x=180, y=30, z=8 for the time variation of t=100, for order of derivatives
α = 0.97

STABILITY OF THE SYSTEM

To analyse the stability of the system we have

α1z2 + α2x2 + α3y (z + α4x) = 0

α5x + α6y + α7 z2 = 0

α8xz + α9xy + α10z + α11x2 = 0

(7)

On solving this nonlinear system of equations with the given pa-
rameters as in proposed model is given, we have. The Jacobian

matrix ( J) of the above system is

J =


2α2x + α3α4y α3z 2α1z + α3y

α5 α6 2α7z

α8z + α9y + 2α11x α9x α8x + α10

 (8)

The equilibrium point is calculated on solving the
equations in (7) and we get 4 equilibrium points
which are E1(0, 0, 0),E2(−1149.44,−590.097, 12.2352)
,E3(−619.232,−6075.71, 125.975) , E4(25638.5, 6103.77,−126.557).
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The eigen values of the Jacobian matrix at these points are
0.2202 + 18.7956i, 0.2202 − 18.7956i, 0.2844 + 0.000i, on E1, on E2
the eigen values are 0.0007 + 9.4981i, 0.0007 − 9.4981i, 0.0004 +
0.000i .The eigen vales of the Jacobian matric on E3 is 0.0007 +
2.0519i, 0.0007 − 2.0519i, 0.001 + 0.000i on the last point E4 the
eigen values are −3.9423, 3.9415,−0.0001 which shows that all the
equilibrium points are unstable.

CHAOS CONTROL

To control the chaos of the covid dynamical system as proposed in
(6) let us construct the feedback controller such as

dαx
dtα = α1z2 + α2x2 + α3y (z + α4x)− k1 (x − x̄)

dαy
dtα = α5x + α6y + α7 z2 − k2 (y − ȳ)

dαz
dtα = α8xz + α9xy + α10z + α11x2 − k3 (z − z̄)

(9)

Where k1, k2, k3 are control parameters and x̄ , ȳ , z̄ are Equilib-
rium points of the system. At equilibrium point the Jacobian of
this system is

2α2 x̄ + α3α4ȳ − k1 α3 (z̄ + α4 x̄) 2α1 z̄ + α3ȳ

α5 α6 − k2 2α7 z̄

α8 z̄ + α9ȳ + 2α11 x̄ α9 x̄ α8 x̄ + α10 − k3

 (10)

characteristic polynomial of the above Jacobian matrix with the
parameters as in Table 1 is

P(t) =t3 + (k1 + k2 + k3 − 0.72485704 + 0.00007x̄ + 0.00221ȳ) t2

+ (−0.44040714 k3 + 0.125273767 − 0.72485704k1+

0.2844499k2 + k1k2 + k1k3 + k2k3 − 0.00047 x̄ + 0.00012 k1 x̄
+ 0.00006806999999999999 k2 x̄ − 0.00004686 k3 x̄−
5.3856198 × 10−9 x̄2 − 0.00158 ȳ + 0.00221 k2 ȳ + 0.00221

− 4.700724164505601 × 10−7 x̄ ȳ + 0.031171093689712204 z̄−
0.000002558965689 ȳ z̄ + 0.0000049 x̄ z̄ + 0.00000185 ȳ2) t
− 0.2844499 k1 k2 + 0.12527376693228598 k1 − 0.44040714 k1k3

+ k1k2k3 + 0.00012293029636844125x̄ − 0.00005 k1 x̄
+ 0.000013329322313999999 k2 x̄ + 0.00011493 k1 k2 x̄−
0.0004321685343128659 k3 x̄ − 0.00004686 k2 k3 x̄ + 0.00027ȳ
− 0.0006102759693364992 k2 ȳ − 0.000971930557124997 k3 ȳ+

0.002206891008 k2 k3 ȳ − 1.719996417347599 × 10−7 x̄ ȳ

− 4.700724164505601 × 10−7 k2 x̄ ȳ − 0.008862839394471904 z̄
− 0.0000242059198878 k2 z̄ + 0.03119529961 k3 z̄+

0.000003587 x̄ z̄ − 4.966912964857768 × 10−8 x̄2−
5.3856198 × 10−9 k2 x̄2 − 8.13557944 × 10−7ȳ2 + 0.00000185 k2 ȳ2

+ 0.000003902671368 k1 x̄ z̄ + 0.0000010025248296 k2 x̄ z̄+

3.191341960623825 × 10−9 x̄2 z̄ + 0.000001126986760450619 ȳ z̄

− 0.000002558965689 k2 ȳ z̄ + 0.0000056128 z̄2−
− 0.00000255897 k2 ȳ z̄ + 0.000005618 z̄2−
2.32461222782208 × 10−7 x̄ z̄2 + 5.933621547907201 × 10−7ȳz̄2

(11)

For Routh Hurwitz criteria for fractional order, we have

a1 = k1 + k2 + k3 − 0.72485704 + 0.00006807x̄ + 0.00220689101ȳ
(12)

a2 =− 0.44040714 k3 + 0.1252737669 − 0.72485704 k1 + 0.2844499k2

+ k1k2 + k1k3 + k2k3 − 0.0004694552045990659 x̄ + 0.00011493 k1 x̄
+ 0.00006806999999999999 k2 x̄ − 0.00004686 k3 x̄ + 0.00011493 k1 x̄

+ 0.00006807 k2 x̄ − 0.00004686 k3 x̄ − 5.3856198 × 10−9 x̄2

− 0.0015822065264615 ȳ + 0.002206891008 k2 ȳ + 0.0022069 k3 ȳ

− 4.700724164505601 × 10−7 x̄ ȳ + 0.031171094 z̄ − 0.00000256 ȳ z̄

+ 0.0000049051962 x̄ z̄ + 0.0000018473 ȳ2,
(13)

a3 =− 0.2844499 k1 k2 + 0.12527376693228598 k1 − 0.44040714 k1k3

+ k1k2k3 + 0.0001229303x̄ − 0.000050615992600199994 k1 x̄
+ 0.00001333 k2 x̄ + 0.000115 k1 k2 x̄ − 0.0004322 k3 x̄
− 0.0000479 k2 k3 x̄ + 0.00027 ȳ − 0.0006103 k2 ȳ − 0.00097 k3 ȳ

+ 0.0022069 k2 k3 ȳ − 1.71999642 × 10−7 x̄ ȳ

− 4.700724165 × 10−7 k2 x̄ ȳ − 0.00886284 z̄ − 0.00002421 k2 z̄
+ 0.0311953 k3 z̄ + 0.000003587330339763896 x̄ z̄

− 4.966912964857768 × 10−8 x̄2 − 5.3856198 × 10−9 k2 x̄2

− 8.1355794402204 × 10−7ȳ2 + 0.00000185 k2 ȳ2

+ 0.00000390267 k1 x̄ z̄ + 0.0000010025248296 k2 x̄ z̄

+ 3.191341960624 × 10−9 x̄2 z̄ + 0.000001126986760451 ȳ z̄

− 0.00000255897 k2 ȳ z̄ + 0.0000056127665 z̄2

− 2.32461222782208 × 10−7 x̄ z̄2 + 5.93362154791 × 10−7ȳz̄2

(14)

D(P) = 18a1a2a3 + (a1a2)
2 − 4a3a3

1 − 4a3
2 − 27a2

3 (15)

RESULTS AND DISCUSSION

In the control analysis of the above problem, we observe that
the system is getting controlled at every equilibrium point with
the feedback controller. At first equilibrium point E1(0, 0, 0) the
stability is achieved at k1 = 1, k2 = 2, k3 = 5 for the values of
α = 0.97. when we increase the values of k3, the first eigenvalue of
the Jacobian matrix increases in negative direction very fast so that
system goes towards the equilibrium point with fast rate.

It shows that if we subtract from the first equation in the model
(6) the daily cases one time, from the second equation twice the
rate of change of the daily number of critical cases, and from the
third equation five times the daily deaths, then the system is under
control. The other case that is possible is that instead of controlling
too many death cases, we could reduce the 6 times daily critical
cases and control the chaos in the system. If we could control the
3 times daily critical cases, then the system would also be under
control.

The second equilibrium point E2 shoes the stability with k1 = 8,
which means that at this juncture the system will not be chaotic if
8 times we could reduce the daily cases or 5 times we reduce the
daily critical cases, or if the daily cases are reduced by 10 times
and daily deaths are reduced by 12 times or more, the system is
under control.
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■ Table 2 : Stability using Routh Hurwitz criteria at the first equilibrium point E1(0, 0, 0) after putting these points in the equation
12, 13, 14, 15 is as follows.

Sr. No k1 k2 k3 a1 a3 a1a2 − a3 D(P) Eigen val-
ues of Ja-
cobian Ma-
trix of Con-
trolled sys-
tem

Stable / Un-
stable

1 1 2 5 7.2751 7.3543 100.08 94.97 -4.7156,
-1.5596,
-1.0000

Stable for
0 < α < 1
.

2 1 2 10 12.2751 15.1523 323.2150 4.6960x103 -9.7156
-1.5596
-1.0000

Stable for
0 < α < 1

3 1 2 ≥ 5 +ive +ive +ive +ive -ive Stable for
0 < α < 1.

4 1 6 1 7.2751 3.9782 95.4491 240.2804 -0.7156,
-5.5596,
-1.0000

Stable for
0 < α <
1..

5 1 ≥ 6 1 +ive +ive +ive +ive -ive Stable for
0 < α < 1.

6 3 1 1 4.2751 1.2013 19.2970 8.0779 -0.7156,
-0.5596,
-3.0000

Stable for
0 < α < 1.

7 ≥ 3 1 1 +ive +ive +ive +ive −ive Stable for
0 < α < 1
.

Figure 2 Plot x,y,z at (a) k1 = 1, k2 = 2, k3 = 5 at α=0.97 at E1 (b) Plot at k1 = 3, k2 = 1, k3 = 1 at α=0.97 at E1

The third equilibrium point, E3 is such that we need to reduce
the critical cases by 12 − 15 times and the daily deaths by 21 times
to control the system. we need to reduce the daily critical cases

by 3 times, or more than system is under control. Similarly, at the
fourth equilibrium point E4 the system is under control if 9 times
daily cases are reduced and 3 times daily critical cases are reduced,
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■ Table 3 : Stability using Routh Hurwitz criteria at the second equilibrium point E2(1149.44, 590.097, 12.2352) after putting these
points in the equation 12, 13, 14, 15 is as follows.

Sr. No k1 k2 k3 a1 a3 a1a2 − a3 D(P) Eigen val-
ues of Ja-
cobian Ma-
trix of Con-
trolled sys-
tem

Stable / Un-
stable

1 8 1 1 7.8946 0.0762 75.7604 2.1594x103 -6.5686,
-0.9980,
-0.3280

Stable for
0 <α< 1.

2 ≥ 8 1 1 +ive +ive +ive +ive -ive Stable for
0 <α< 1

3 1 5 1 4.8946 0.4466 25.1061 74.3602 -4.3634
-0.1542
-0.3770

Stable for
0 < α < 1

4 1 ≥ 5 1 +ive +ive +ive +ive -ive Stable for
0 <α< 1

5 10 1 12 20.8946 54.6713 2.3339x103 4.7597x103 -0.6626,
-8.7041,
-11.5279

Stable for
0 <α< 1

6 10 1 ≥ 12 +ive +ive +ive +ive -ive Stable for
0 <α< 1

■ Table 4 : Stability using Routh Hurwitz criteria at the Third equilibrium point E3(−619.232,−6075.71, 125.975) after putting these
points in the equation 12, 13, 14, 15 is as follows.

Sr. No k1 k2 k3 a1 a3 a1a2 − a3 D(P) Eigen val-
ues of Ja-
cobian Ma-
trix of Con-
trolled sys-
tem

Stable / Un-
stable

1 12 3 21 21.8246 24.3566 2.0203x103 7.5909x105 -16.7962
+ 0.0000i,
-2.5142 +
1.0957i,
-2.5142 -
1.0957i

Stable for
0<α<1

2 12 ≥ 3 21 +ive +ive +ive +ive -ive Stable for
0<α<1

3 12 3 21-27 +ive +ive +ive +ive -ive Stable for
0<α<1

4 12-15 3 21 +ive +ive +ive +ive -ive Stable for
0 <α< 1

whereas 13 times daily deaths are reduced. The system is under
control, and it will not generate chaos.

On observing all the cases at the equilibrium points we observe

that system is under control if we could reduce the daily cases by
12 times and daily critical cases by 3 times and daily deaths by 21
times then system is under control. These changes in the system

238 | Mishra et al. CHAOS Theory and Applications



■ Table 5 : Stability Using Routh Hurwitz criteria at the first equilibrium point E4(25638.5, 6103.77,−126.557) after putting these
points in the equation 12, 13, 14, 15 is as follows.

Sr. No k1 k2 k3 a1 a3 a1a2 − a3 D(P) Eigen val-
ues of Ja-
cobian Ma-
trix of Con-
trolled sys-
tem

Stable / Un-
stable

1 9 3 13 39.4907 211.1828 1.3829x104 1.7508x107 -0.0417, -
25.7969, -
13.6521

Stable for
0<α<1

2 ≥ 9 3 13 +ive +ive +ive +ive -ive Stable for
0<α<1

3 9 ≥ 3 13 +ive +ive +ive +ive -ive Stable for
0<α<1

4 9 3 ≥ 13 +ive +ive +ive +ive -ive Stable for
0 <α< 1

■ Table 6 : Stability analysis with the control parameters values as k1 = 12, k2 = 3, k3 = 21

Equilibrium Point a1 a3 a1a2 − a3 D(P) Eigen values of
Jacobian Matrix
of Controlled sys-
tem

Stable / Unstable

E1 35.2751 636.2805 1.1147x104 2.0627x106 -20.7156, -
2.5596, -12.0000

stable

E2 33.8946 565.7037 9.7454x103 1.9480x106 -2.6660, -
10.6586, -
20.5700

stable

E3 21.8246 24.3566 2.0203x103 7.5909x105 -16.7962 +
0.0000i, -2.5142
+ 1.0957i, -
2.5142 - 1.0957i

stable

E4 50.4907 788.8388 3.0759x104 4.4526x107 -0.8051, -
30.6777, -
19.0079

stable
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Figure 3 Plot x,y,z at (a) k1 = 8, k2 = 1, k3 = 1 at α=0.97 at E2 (b) k1 = 10, k2 = 1, k3 = 12 at α= 0.97 at E2

Figure 4 Plot x,y,z at (a) k1 = 12, k2 = 3, k3 = 21 at α=0.97 at E3 (b) k1 = 15, k2 = 31, k3 = 21 at α= 0.97 at E3

Figure 5 Plot x,y,z at (a) k1 = 9, k2 = 3, k3 = 13 at α=0.97 at E4 (b) k1 = 9, k2 = 3, k3 = 20 at α= 0.97 at E4
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can be achieved by the social distancing which could reduce the
daily cases and daily critical cases and preventing deaths by proper
treatment on time.

CONCLUSION

In the present article, the feedback control method has been applied
to control the chaos in the dynamical system of COVID-19, as
proposed by (Mangiarotti et al. 2020) , which has been studied
by (Debbouche et al. 2021). In the present article, the fractional
order Routh- Hurwitz stability criteria have been utilized, and
to solve the fractional-order system, Adams-Bashforth-Molton
methods are used. The control of chaos is obtained under different
equilibrium points and parameters. In this article, chaos is studied
in the dynamical system that is proposed for representing the
spread of COVID-19. In the present article, it is shown under what
conditions the control parameters of daily infected cases, daily
critical cases, and daily deaths should be controlled so that chaos
can be controlled in the dynamical system.
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ABSTRACT The foreign exchange (forex) market is a dynamic and complex financial arena where the
exchange rates of various currency pairs fluctuate continuously. Among these currency pairs, EUR/TRY and
USD/TRY hold significant economic relevance due to their roles in international trade and finance. In this study,
we analyze the multifractality of hourly EUR/TRY and USD/TRY exchange rate data for the whole period, as
well as its time-varying individual and cross correlations, spanning from May 31, 2018, to March 21, 2022. We
employ multifractal detrended cross-correlation analysis (MF-DCCA) and multifractal detrended fluctuation
analysis (MF-DFA) methodologies. The aim of studying multifractality in exchange rates is to comprehend and
model the complex and intricate nature of price movements and dynamics of the EUR/TRY and USD/TRY
exchange rates. In the analysis of the whole period, multifractality is detected in individual exchange rates and
cross correlations. In the rolling window analysis, we demonstrated how multifractality and cross correlation
multifractality change over time. Additionally, contributions of the sources of the multifractality are investigated
in a time-varying framework. Multifractal nature of these exchange rates indicate that they exhibit complex and
scale-dependent behaviors, which go beyond the traditional linear models. The existence of multifractality in
EUR/TRY and USD/TRY exchange rates has significant implications for financial modeling, risk management,
and trading strategies. It implies that standard linear models may not capture the full complexity of these
markets, necessitating the development of more sophisticated models that account for multifractal properties.

KEYWORDS
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MF-DFA
MF-DCCA
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INTRODUCTION

Fractal theory is originated from (Mandelbrot 1982) and used to
provide an explanation for economic and financial data where
traditional efficient market hypothesis (EMH) failed. Fractal ge-
ometry is applied in the analysis of systems which are irregular
and self-similar at all scales. One of the key characteristics of these
systems are non-integer dimensions. Fractal systems can be cate-
gorized as monofractal or multifractal. Monofractal systems can
be defined by a single scaling exponent and different regions of
these systems have same scaling properties. However, multifractal
systems display varying scaling properties in different regions,
requiring multiple scaling exponents to describe the system.

Firstly, in the field of hydrology (Hurst 1951, 1957) suggested
rescaled range (R/S) methodology for studying systems exhibiting
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fractal properties. However, Lo (1991) demonstrated the shortcom-
ings of Hurst methodology such as sensitivity to short-term auto-
correlation. To address this deficiency (Peng et al. 1994) proposed
a methodology called Detrended Fluctuation Analysis (DFA). DFA
methodology is successfully applied to noisy and non-stationary
time series which exhibiting long-range correlations and fractal
scaling properties. Numerous data sets have been successfully ana-
lyzed using this method, including geological, economic, financial,
weather and earthquake data (Liu et al. 1999; Buldyrev et al. 1998;
Blesić et al. 1999; Bunde et al. 2000; Ashkenazy et al. 2001; Talkner
and Weber 2000). However, studies in this field have revealed
that some data from various fields such as medicine, geophysics,
economy and finance do not exhibit monofractal scaling behavior.
Consequently, a single scaling exponent cannot adequately repre-
sent these multifractal systems (Kantelhardt et al. 2001; Hu et al.
2001), and multiple scaling exponents are required.

To analyze multifractal systems (Kantelhardt et al. 2002) pur-
posed Multifractal Detrended Fluctuation Analysis (MF-DFA)
which is an extension of the DFA. MF-DFA methodology has been
successfully applied to many nonstationary time series datasets in
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the literature (Kantelhardt et al. 2003; Movahed et al. 2006; Telesca
et al. 2004). The literature demonstrates that many time series from
various fields exhibit multifractal properties, and a single scaling
exponent is not sufficient to describe these datasets (Matia et al.
2003; Chen and He 2010; He and Chen 2010b,a; Zunino et al. 2009).

Afterwards, by developing DFA methodology Podobnik and
Stanley (2008) introduced the detrended cross-correlation analysis
(DCCA) methodology for studying cross correlations between two
systems. Subsequently, Zhou (2008) combined MF-DFA and DCCA
to propose the multifractal detrended cross-correlation analysis
(MF-DCCA) methodology for investigating multifractal properties
of two correlated nonstationary time series. MF-DCCA method-
ology has been successfully applied to numerous economic and
financial datasets from foreign exchange market (Xie et al. 2017;
Li et al. 2016), the stock market (Ma et al. 2013a; Yue et al. 2017),
the crude oil market (Ma et al. 2013b, 2014; Wang et al. 2011b), car-
bon market (Zhuang et al. 2014, 2015) and the commodity market
(Wang et al. 2011a; Lu et al. 2017).

Furthermore foreign exchange market is of great importance
to global economy. This market connects economies around the
world without geographic and temporal boundaries. Exchange
rates are vital macroeconomic variables for policy makers, in-
vestors, researchers and economists. Instabilities of exchange
rates can have devastating effects on the economies. Therefore,
researchers and economists have attempted to model exchange
rates using various methodologies. These studies have revealed
that predicting and explaining fluctuations in exchange rates is
challenging. Efficient market hypothesis suggested by (Fama 1965)
indicated, share prices follow random walk and are unpredictable.
However, this hypothesis challenged by different authors subse-
quently (Yen and Lee 2008; Lim and Brooks 2011). An alternative
to EMH is fractal market hypothesis (FMH) which is suggested
by (Lim and Brooks 2011; Peters 1994). This hypothesis suggests
that markets exhibit the same structure on different scales (daily,
weekly, monthly, etc.). The EMH has led to investigations into the
fractal and multifractal properties of economic and financial time
series.

To the best of our knowledge, there is only one study in the
literature that investigates the multifractal properties of USD/TRY
exchange rates (Gülbaş and Gazanfer 2013). This study detected
multifractality in USD/TRY exchange rates but did not provide
a time varying analysis to investigate how multifractality and
sources of multifractality change over time. There are other studies
in the literature that examine the multifractal properties of various
exchange rates as well (Stošić et al. 2015; Schmitt et al. 1999; Caraiani
and Haven 2015; Han et al. 2019). While these studies have detected
multifractality in other exchange rates, they have not shed light on
how multifractality and its sources change over time.

MF-DFA and MF-DCCA methods are important methods in the
field of time series analysis, particularly for studying complex and
non-linear behaviors in financial data and other complex systems.
The importance of these methods is presented below:

a) Capturing Nonlinear Behavior: Financial and economic data
often exhibit nonlinear behaviors that cannot be adequately cap-
tured by traditional linear methods. MF-DFA and MF-DCCA are
designed to detect and quantify these nonlinear characteristics,
providing a more accurate representation of the underlying dy-
namics.

b) Multiscale Analysis: MF-DFA and MF-DCCA allow for the
analysis of data across multiple time scales. This is important be-
cause financial data often exhibit different patterns and behaviors
at different scales. By analyzing multiple scales, these methods

offer a more comprehensive view of the system’s complexity.
c) Multifractality: These methods are specifically designed to

identify and characterize multifractal behavior in time series data.
Multifractality refers to the property where different scales of ob-
servation exhibit different levels of self-similarity and irregularity.
This is a common feature in financial data and other complex
systems.

d) Cross-Correlation Analysis: MF-DCCA goes beyond tradi-
tional correlation analysis by accounting for cross-correlations that
exist at different time scales. This is crucial in understanding how
different variables interact and influence each other over different
horizons.

MF-DFA and MF-DCCA methods have some differences from
other methods. These differences are summarized as below:

a) Fractal vs. Multifractal Analysis: Traditional fractal analysis
focuses on self-similarity at a single fractal dimension. In contrast,
multifractal analysis considers multiple fractal dimensions, which
allows for a more nuanced understanding of complex systems.

b) Nonlinear vs. Linear Methods: While linear methods assume
a linear relationship between variables, MF-DFA and MF-DCCA
are designed to capture nonlinear and multifractal behaviors. This
is particularly important in financial markets where linearity often
fails to explain the full complexity.

c) Time Scale Consideration: MF-DFA and MF-DCCA analyze
data across multiple time scales, which provides insights into the
dynamics at different levels. Traditional methods might overlook
these multiscale interactions.

d) Cross-Correlation Consideration: MF-DCCA specifically ad-
dresses cross-correlations between multiple variables at different
time scales. This is a feature that many traditional methods lack.

e) Complexity: MF-DFA and MF-DCCA are more complex
and sophisticated methods compared to traditional linear analysis.
They require a deeper understanding of their underlying principles
and assumptions.

In recent years Turkey has become integrated into international
economic markets. According to the general trade system in
Turkey, in the January-April period of 2022, exports increased
by 21.6% compared to the previous year and reached 83.5 billion
dollars, while imports increased by 40.2% and reached 116 billion
85 million dollars. Therefore USD/TRY and EUR/TRY exchange
rates are of great importance to the Turkish economy and have
significant effects on other macroeconomic variables such as GDP,
current account deficit, inflation and unemployment. The selection
of the preferred dataset, specifically the USD/TRY and EUR/TRY
exchange rates, was based on careful consideration of several crite-
ria that these currency pairs satisfy, making them ideal candidates
for multifractality analysis. We chose to test the multifractality of
USD/TRY and EUR/TRY exchange rates because of the several
reasons. Firstly, USD/TRY and EUR/TRY are important currency
pairs involving major global currencies (US Dollar and Euro) and
the Turkish Lira.

These exchange rates reflect economic relationships between
Turkey and the United States or the Eurozone. Studying their
multifractality can provide insights into the dynamics of these
economic relationships. Secondly, these currency pairs are among
the most actively traded pairs in the foreign exchange market
due to Turkey’s significant economic activities and its geopolitical
positioning. High trading activity often results in complex and
multifractal price behaviors, making them interesting candidates
for analysis. Thirdly, the Turkish Lira has historically exhibited no-
table volatility in comparison to major currencies. Such volatility
often results in intricate, non-linear, and multifractal price move-
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ments. Studying these complex behaviors is vital for understand-
ing the underlying dynamics and interactions in the market. Given
the potential volatility of the Turkish Lira, individuals, businesses,
and investors involved in transactions or investments with Turkey
have a vested interest in understanding the multifractal nature of
these exchange rates for effective risk management. Fourthly, ex-
change rates have policy implications for governments and central
banks.

Understanding the multifractality of USD/TRY and EUR/TRY
can aid in policy decisions related to trade, investment, and mone-
tary policy. Finally, in the literature time-varying multifractality of
USD/TRY and EUR/TRY exchange rates are not investigated in
the literature. The selection of USD/TRY and EUR/TRY exchange
rates is motivated by their substantial economic importance. The
USD/TRY exchange rate is a key benchmark for Turkey’s foreign
exchange market, and the EUR/TRY exchange rate represents
another critical currency pair in the region. Both are integral to
international trade, investment, and financial stability within the
Turkish economy.

In this study time-varying multifractal properties of exchange
rates are analyzed using MFDFA and MF-DCCA methodologies.
In this context, two different types of analysis were conducted.
These are whole period analysis and rolling window analysis. In
the whole period analysis MFDFA and MF-DCCA methodologies
are applied to the entire dataset to investigate multifractality over
the entire period. In the rolling window analysis MFDFA and
MF-DCCA methodologies are applied to data windows and by
sliding the window changes in multifractality are examined. Our
study addresses seven research questions:

1. Whether USD/TRY and EUR/TRY exchange rates are multi-
fractal?

2. How the multifractality levels of USD/TRY and EUR/TRY
exchange rates change over time?

3. Whether cross-correlations between USD/TRY and
EUR/TRY exchange rates are multifractal?

4. How the multifractality level of cross correlation between
USD/TRY and EUR/TRY exchange rates changes over time?

5. How the fat-tailed distribution’s contribution to the level of
multifractality of USD/TRY and EUR/TRY exchange rates changes
over time?

6. How the long-range correlation’s contribution to the level of
multifractality of USD/TRY and EUR/TRY exchange rates changes
over time?

7. Which cause of multifractality of USD/TRY and EUR/TRY
exchange rates is more prevalent over time: long-range autocorre-
lation or fat-tailed distribution?

Studying multifractality in exchange rates serves several pur-
poses:

a) Better Understanding of Market Behavior: Multifractal analy-
sis helps researchers and analysts delve deeper into the underlying
structure of exchange rate movements. It allows them to identify
complex patterns and irregularities that are not apparent through
traditional methods.

b) Risk Management: Exchange rate movements can have sig-
nificant implications for international trade, investment, and risk
management. Understanding multifractality can aid in developing
more accurate risk assessment models, which is crucial for busi-
nesses and financial institutions exposed to currency fluctuations.

c) Model Improvement: Traditional financial models often as-
sume certain levels of linearity and Gaussian (normal) distribution
of returns. However, exchange rates frequently exhibit fat tails, ex-
treme events, and time-varying volatility. Studying multifractality

can lead to the development of more accurate models that capture
these characteristics.

d) Algorithmic Trading: Many financial institutions use algo-
rithmic trading strategies to make investment decisions. Under-
standing multifractality can lead to the development of more so-
phisticated trading algorithms that adapt to the nonlinear and
irregular behavior of exchange rates.

e) Policy Formulation: Central banks and governments make
policy decisions based on economic conditions, including exchange
rates. Multifractal analysis can provide insights into the underly-
ing dynamics of exchange rates, which can inform more effective
policy decisions.

f) Academic Research: Academics study multifractality in ex-
change rates to contribute to the theoretical understanding of fi-
nancial markets and to advance the field of financial economics.

In conclusion our study makes several contributions to the lit-
erature. Firstly, as far as we know fractal properties of hourly
exchange rates are not investigated in the literature. We used
hourly data in our multifractal analysis because hourly data pro-
vides a higher frequency of observations compared to daily or
weekly data. This increased frequency allows for a more detailed
analysis of price movements and captures finer nuances in market
behavior. Also, financial markets exhibit distinct intraday patterns
and volatility changes and hourly data captures these patterns.
Additionally, multifractal analysis involves studying patterns at
various scales or time horizons. Hourly data allows for a broader
range of scales to be analyzed, from short-term fluctuations to
longer-term trends.

Usage of hourly data distinguish our study from other stud-
ies since hourly data offers a finer level of granularity, captures
intraday price movements, reveals higher-frequency fluctuations
and volatility changes, and enables researchers to study the imme-
diate market reactions. Secondly, in the literature fractal analysis
is usually applied to one or few time periods. However, we pre-
sented a time-varying analysis in a rolling window framework.
Thirdly, we also presented how the contributions of multifractality
sources have changed over time in a rolling window framework.
The following is how our study is set up. Section 2 presents the
MF-DFA and MF-DCCA techniques. Data is provided in Section 3.
In Section 4, empirical findings are given. And Section 5 provides
conclusions.

METHODOLOGY

Multifractal Detrended Fluctuation Analysis (MF-DFA)
Suppose xt denotes a time series where t = 1, 2, . . . , N The MF-
DFA method consist of five steps.

Step1: In the first step the profile is calculated as follows:

Xi =
i

∑
t=1

(xt − x̄) (1)

In the expression above x̄ is calculated as below:

x̄ =
1
N

N

∑
t=1

xt (2)

Step 2: In the next step the profile Xi is divided into Ns =
int(N/s) equal-length parts that don’t overlap. There might be a
little residue at the end of the profile since the length of the series
xt might not be multiple of the time scale s. The identical process
used at the end of the series was repeated in order to account for
this residue. As a result of this procedure 2Ns total segments are
obtained.
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Step 3: The variance is calculated by following two formulas
for segments v = 1, 2, . . . , Ns and for segments v = Ns + 1, Ns +
2, . . . , 2Ns respectively:

F2
X(s, v) =

1
s

s

∑
j=1

(
X(v−1)s+j − X̂v

j

)2
(3)

F2
X(s, v) =

1
s

s

∑
j=1

(
XN−(v−Ns)s+j − X̂v

j

)2
(4)

In the above formulas X̂v
j denotes the fitting polynomial in

segment v with order m. In this study fitting polynomial order m
is selected as one.

Step 4: In the next step qth order fluctuation function Fq
X(s) is

computed by averaging all segments using following two formulas
for q ̸= 0 and q = 0 respectively:

Fq
X(s) =

(
1

2Ns

2Ns

∑
v=1

[
F2

X(s, v)
] q

2

) 1
q

(5)

Fq
X(s) = exp

(
1

4Ns

2Ns

∑
v=1

[
F2

X(s, v)
])

(6)

Step 5: By analyzing logarithm plots of Fq
X (s) versus logarithms

of s for each q value the scaling behavior of the fluctuation function
is determined. If long-range power-law correlation exists between
the series, there is a power-law relationship expressed as below:

Fq
X(s) ∼ sh(q) (7)

The generalized Hurst exponent, or h(q), in the expression
above reflects the correlation with power-law. The expression h(q)
represents the scaling behavior of segments with large fluctuations
for positive values of q, whereas for negative values of q, it repre-
sents the scaling behavior of segments with smaller variations. To
describe a multifractal series the singularity spectrum f (α) can be
used which is calculated as below:

α(q) = h(q) + qh′(q) (8)

f (α) = q[α(q)− h(q)] + 1 (9)

The derivative of h (q) with respect to q is denoted by h′(q) in
the expression above. The Hölder exponent, denoted by the sym-
bol α (q), measures the singularity’s power, while the singularity
spectrum, denoted by the symbol f (α), measures the Hausdorff
dimension of the subset of the series that is characterized by α (q).
Multifractal mass function can be calculated as below:

τ(q) = qh(q)− 1 (10)

The width of the multifractal spectrum (∆α), which is calculated
as follows, can be used to gauge the level of multifractality:

∆α = αmax − αmin (11)

Higher ∆α values indicate higher levels of multifractality and
lower ∆α values indicate lower levels of multifractality. The sin-
gularity spectrum possesses an α0 value which corresponds to
maximum f (α), i.e. f (α0) = 1. Skewness of the spectrum indicates
information on the dominant fluctuations. Right-skewed spectrum
suggests that minor variations will predominate, while left-skewed
spectrum suggests that huge fluctuations will.

Multifractal Detrended Cross-Correlation Analysis (MF-DCCA)
The MF-DCCA methodology combines two methods namely
DCCA and MF-DFA. The MF-DCCA methodology can be utilized
to demonstrate multifractal properties of two power-law corre-
lated time series. Suppose xt and yt represent two time series with
t = 1, 2, . . . , N. The MF-DCCA method consist of following five
steps:

Step1: In the first step the profiles are calculated as follows:

Xi =
i

∑
t=1

(xt − x̄) (12)

Yi =
i

∑
t=1

(yt − ȳ) (13)

In the expressions above x̄ and ȳ are the average values of the
series.

Step 2: In the second step each profile is divided into 2Ns seg-
ments as in MF-DFA.

Step 3: Next covariance is calculated by following two formulas
for segments v = 1, 2, . . . , N and for segments v = Ns + 1, Ns +
2, . . . , 2Ns respectively:

F2
XY(s, v) =

1
s

s

∑
j=1

∣∣∣X(v−1)s+j − Xv̂
j

∣∣∣ · ∣∣∣Y(v−1)s+j − Yv̂
j

∣∣∣ (14)

F2
XY(s, v) =

1
s

s

∑
j=1

∣∣∣XN−(v−Ns)s+j − Xv̂
j

∣∣∣ · ∣∣∣YN−(v−Ns)s+j − Yv̂
j

∣∣∣
(15)

In the above formulas X̂v
j and Ŷv

j denote the fitting polynomials
in segment v with order m. In this study fitting polynomial order
m is selected as one.

Step 4: In the next step fluctuation function with order q, Fq
XY(s),

is computed by averaging all segments using following two for-
mulas for q ̸= 0 and q = 0 respectively:

Fq
XY(s) =

(
1

2Ns

2Ns

∑
v=1

[
F2

XY(s, v)
]q/2

)1/q

(16)

Fq
XY(s) = exp

(
1

4Ns

2Ns

∑
v=1

[
F2

XY(s, v)
])

(17)

Step 5: By analyzing logarithm plots of Fq
XY (s) versus logarithm

s the scaling behavior of the fluctuation function is determined
for each value of q. If the considered series are power-law cross-
correlated, there is a power-law relationship expressed as below:

FXYq (s) s(hXY (q)) (18)

In the expression above hXY(q) represents generalized correla-
tion exponent which reflects the power-law relationship. If hXY(q)
depends on q then correlation between the two time series is mul-
tifractal. However, if hXY(q) is independent of q then correlation
is monofractal.

Similar to MF-DFA multifractal spectrum fXY(α) can be ob-
tained from following formulas:

αXY(q) = hXY(q) + qh′XY(q) (19)

fXY(α) = q[αXY(q)− hXY(q)] + 1 (20)
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The term h′XY(q) in the expression above refers to the deriva-
tive of hXY(q) with regard to q. The αXY (q) is called Hölder expo-
nent and reflects the power of the singularity. Also, width of the
multifractal spectrum (∆α) indicates strength of multifractality.

DATA AND PRELIMINARY ANALYSIS

In this study hourly data for EUR/TRY and USD/TRY exchange
rates are utilized. The dataset comprises 23600 observations and
spans period between 2018-05-31 13:01 and 2022.03.21 08:01:00.
The data is sourced from GCM Forex company. Two types of
data analyses were conducted in this study: whole-period analysis
and rolling window analysis. In the rolling window analysis, a
window size of 4,000 observations was selected, with a sliding step
of 400 observations. The changes in exchange rates in the whole
period are depicted in Figure 1 and Figure 2. Summary statistics
for exchange rates are also presented in Table 1. As shown in
Table 1 both exchange rates exhibit right-skewed distributions.
Additionally, both exchange rates are leptokurtic and possess fat
tailed distributions. Since one source of multifractality is fat tailed
distribution, we can anticipate multifractality in both exchange
rates. In Figure 3 and Figure 4 autocorrelations for exchange rates
are plotted.

As evident in these figures, significant autocorrelations are ob-
served in EUR/TRY and USD/TRY exchange rates up to lags 8,653
and 8,804, respectively. Therefore, there are long-range autocorre-
lations in both exchange rates. Since another source of multifrac-
tality is long-range autocorrelation, we can expect multifractality
in these exchange rates. Long-range autocorrelation can lead to
multifractality because it can create a heterogeneous distribution
of the values of the time series. This heterogeneous distribution
can lead to different scaling behaviors over different time intervals.
For example, if the values of a time series are clustered together
above the mean, then the time series will be more volatile over
short time intervals. This is because the values of the time series
are more likely to change rapidly when they are clustered together.

On the other hand, if the values of a time series are clustered
together below the mean, then the time series will be more volatile
over long time intervals. This is because the values of the time
series are more likely to change slowly when they are clustered
together. Therefore, long-range autocorrelation can lead to mul-
tifractality by creating a heterogeneous distribution of the values
of the time series. This heterogeneous distribution can lead to
different scaling behaviors over different time intervals (Jafari et al.
2007; Dashtian et al. 2011; Tanna and Pathak 2014). In our prelimi-
nary analysis we calculated fractal dimensions for USD/TRY and
EUR/TRY exchange rates using Box-count estimator, Hall-Wood
estimator, Wavelet estimator and DCT-II estimator (Gneiting et al.
2012) and presented the results in Table 2. To illustrate how these
fractal dimensions change over time, we applied a rolling window
analysis and displayed the findings in Figure 5 and Figure 6. As ev-
ident from Table 2 and Figures 5-6, both USD/TRY and EUR/TRY
exchange rates exhibit fractal (non-integer) dimensions.

EMPIRICAL RESULTS

In this study firstly MFDFA is applied to exchange rates individu-
ally. In individual analyzes firstly, multifractality is investigated
for the whole dataset. Secondly, a rolling window methodology is
used to investigate how multifractal properties change over time
and to assess the contributions of long-range autocorrelation and
fat-tailed distribution to multifractality. Afterwards, MF-DCCA is
applied to both EUR/TRY and USD/TRY exchange rates. In this
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Section firstly MF-DCCA is applied to whole dataset to examine
the multifractal properties of the complete dataset. Secondly, using
a rolling window methodology, changes in the cross-correlation
multifractality between the exchange rates over time are examined.
Additionally, the study explores how contributions of long-range
autocorrelation and fat-tailed distribution to cross-correlation mul-
tifractality change over time.

In order to apply MFDFA and MF-DCCA methods three pa-
rameter values must be determined: vector of scales, q-order of
the moment (q) and polynomial order for the detrending (m). In
both whole period analysis and rolling window analysis q-order
of the moment values are selected from -10 to +10 in steps of 1
including zero and polynomial order for the detrending is set to 1.
However, in whole period analysis scales values are selected from
100 to 5900 in steps of 10 and in rolling window analysis scales
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■ Table 1 Descriptive Statistics

Exchange
Rate

Min 1st Q. Median Mean 3st Q. Max Std. Dev. Skewness Kurtosis

USD/TRY 4.451 5.738 6.792 7.302 8.203 18.080 2.3026 1.72126 5.7037

EUR/TRY 5.253 6.387 7.532 8.392 9.747 18.413 2.6457 1.44015 4.6592

■ Table 2 Fractal Dimensions

Method USD/TRY EUR/TRY

Box-count estimator 1.328052 1.316235

Hall-Wood estimator 1.510337 1.480936

Wavelet estimator 1.518846 1.405108

DCT-II estimator 1.526528 1.435383
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Figure 5 Change in fractal dimensions for USD/TRY exchange rate

values are selected from 10 to 400 in steps of 10. In our analysis
to measure the level of multifractality (∆α) values are utilized. To
illustrate how individual and cross correlated multifractality levels
of the exchange rates change over time we presented the changes
in (∆α) values within a rolling window framework.
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Figure 6 Change in fractal dimensions for EUR/TRY exchange rate

In the literature, not only the level of multifractality but also
the factors contributing to multifractality has been investigated.
Multifractality is primarily influenced by two factors. These are
fat-tailed distribution and long-range autocorrelation. To mea-
sure the contribution of these two causes to the multifractality,
surrogate and shuffled data are generated and utilized. In the
generation of shuffled data autocorrelations are destroyed but
the distribution is preserved. After generation of shuffled data,
(∆αShu f f led) Shuffled value is calculated from this shuffled data.
Eventually, when (∆αShu f f led) Shuffled is subtracted from orig-
inal (∆α) value, long-range autocorrelations’ contribution to the
multifractality are obtained.

Another factor that contributes to multifractality is the presence
of a fat-tailed distribution. To assess the multifractality’s contribu-
tion from the fat-tailed distribution, surrogate data is employed.
Surrogate data is generated by using a phase randomization pro-
cedure. In this procedure fat-tails in the distribution is eliminated
but linear properties of the distribution are preserved. To eval-
uate contribution of fat tails to the multifractality, (∆αSurrogate)
surrogate value is calculated from surrogate data. Subsequently,
(∆αSurrogate) Surrogate value is subtracted from original (∆α)
value to calculate contribution of fat tails to the multifractality.

In next sections to illustrate how the contributions of long-range
autocorrelation factor and fat-tailed distribution factor to multifrac-
tality change over time fifty shuffled time series and fifty surrogate
time series are generated for each time window and (∆α) values
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are calculated for each of the fifty series. Subsequently, mean and
standard deviation values of fifty (∆α) parameters for shuffled
and surrogate series are calculated in each time window. Since MF-
DCCA method requires two time series we generated fifty pairs of
surrogate and shuffled time series to explore the contributions of
fat-tailed distribution and long-range autocorrelation to multifrac-
tality of the cross-correlations. By utilizing the means and standard
deviations of (∆α) values calculated from surrogate and shuffled
time series, contributions of two factors to the multifractality are
examined. We generated multiple shuffled and surrogate series
because in each realization different series are obtained. There-
fore, multiple surrogate and shuffled series are required for robust
results.

MF-DFA of USD/TRY Exchange Rate

Firstly, we analyzed multifractality of USD/TRY exchange rate
by using whole period data. The results are presented in Figure
7. Upper left panel of Figure 7 indicates logarithm–logarithm
plots of fluctuation function Fq(s) versus time scale s for q values
equal to 10, 0 and -10. The linearity of points in this graph reveals
presence of power-law cross-correlations between time scale and
fluctuation function. The upper right panel of Figure 7 illustrates
how the Hurst exponent changes for various values of q. The
Hurst exponents do not remain constant across a range of q values,
leading us to the conclusion that the USD/TRY exchange rate
exhibits multifractality.

Additionally, for q = 2 Hurst exponent is computed as 0.5268
which is slightly higher than 0.5, indicating a very weakly persis-
tent time series. Lower left panel of Figure 7 shows how mass
exponent change for different values of q. Since mass exponent
nonlinearly depends on q, this provides further evidence of multi-
fractality of USD/TRY exchange rate. Lower right panel of Figure
7 presents multifractal spectrum of USD/TRY exchange rate. Here
width of the multifractal spectrum (∆α) reveals the level of mul-
tifractality and a positive (∆α) value indicates the existence of
multifractality. Also, since α0 value is higher than 0.5 there is
persistent long-range correlations in the USD/TRY exchange rate
series. Left-skewed spectrum implies that large fluctuations are
dominant in the time series.
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Figure 7 Change in fractal dimensions for USD/TRY exchange rate

To explore how the level of multifractality for USD/TRY ex-
change rate change over time we illustrated how multifractal spec-
trum (∆α) change over time in a rolling window framework. Re-
sults are depicted in Figure 8 and Figure 9 with black curves. In
these figures with dots on black curve fifty original (∆α) values

are presented and each of these corresponds to single time win-
dow. When the original (∆α) values are examined three different
regimes in terms of multifractality are distinguished. In period
between 2018-05-31 13:01 and 2020-06-24 13:01 and in period be-
tween 2020-07-17 06:01 and 2022-03-21 08:01 multifractality levels
of USD/TRY exchange are higher than the period between 2019-
11-22 19:01 and 2021-02-16 12:01. Also, there is a noticeable peak
in the multifractality in the period between 2018-08-09 13:01 and
2019-04-04 00:01. Moreover, there is a collapse in the multifractality
in the period between 2021-04-27 15:01 and 2021-12-16 10:01.

In our analysis we generated 50 shuffled and 50 surrogate series
for each time window to illustrate how the contribution of long-
range autocorrelation and fat-tailed distribution to multifractality
change over time. Mean (∆αSurrogate) values of surrogate series
computed in each time window are shown with a blue curve in
Figure 8 and mean (∆αShu f f led) values of shuffled series com-
puted in each time window are shown with a blue curve in Figure
9. Red error bars represent ±1 standard deviations of generated
surrogate and shuffled series in each time window.
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Figure 8 Change in (∆α) calculated from original data and change
in (∆α) calculated from surrogate data
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Figure 9 Change in (∆α) calculated from original data and change
in (∆α) calculated from shuffled data

To assess the change in the contribution of fat-tailed distribu-
tion to multifractality we subtracted mean values of (∆αSurrogate)
obtained from surrogate data from original (∆α) values and pre-
sented this in Figure 10. In this figure, high values indicate a strong
fat-tailed distribution’s contribution to the multifractality, while
low values indicate a low fat-tailed distribution’s contribution
to the multifractality. As seen from Figure 10 fat-tailed distribu-
tion’s contribution to the multifractality is weakened in the period
between 2019-11-22 19:01 and 2021-02-16 12:01.

Furthermore, to assess the change in long-range correlation’s
contribution to multifractality mean (∆αShu f f led) values obtained
from shuffled data are subtracted from original (∆α) values. The
results are illustrated in Figure 11. In this figure each value rep-
resents contribution level of long-range autocorrelation to multi-
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■ Table 3 Multifractality regimes in USD/TRY exchange rate

(∆α) 1. Regime 2. Regime 3. Regime

Mean 0.8966261 0.4876900 0.9534882

Variance 0.016327789 0.002052737 0.007530036
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Figure 10 Change in the fat-tailed distribution’s multifractality contri-
bution
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Figure 11 Change in the multifractality’s long-range autocorrelation
contribution
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Figure 12 Examining the impacts of fat-tailed distribution and long-
range autocorrelation on multifractality
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Figure 13 Change points in multifractality of USD/TRY exchange
rate

fractality. This figure reveals that the long-range autocorrelation’s
contribution to multifractality is once again weakened between
2019-11-22 19:01 and 2021-02-16 12:01. Additionally, the contri-
bution of long-range autocorrelation to multifractality shows a
striking decline between 2021-04-27 15:01 and 2021-12-16 10:01.

Figure 12 is presented to compare the contributions of the fat-
tailed distribution and long-range autocorrelation to the multi-
fractality. This figure illustrates the difference between mean
(∆αSurrogate) value obtained from surrogate data and mean
(∆αShu f f led) value obtained from shuffled data. Positive val-
ues in Figure 12 indicate that the long-range autocorrelation has a
greater contribution to the multifractality than the fat-tailed dis-
tribution. Figure 12 reveals that, except for the time period from
2021-04-02 23:01 to 2022-01-10 06:01, long-range autocorrelation
contributes more to multifractality than the fat-tailed distribution.

To detect change points and regimes in the level of multifractal-
ity in USD/TRY exchange rate binary segmentation algorithm is
applied (Scott and Knott 1974; Sen and Srivastava 1975). We iden-
tified two change points in the 23rd and 33rd windows, resulting
in three regimes. Results are presented in Table 3 and Figure 13.

MF-DFA of EUR/TRY Exchange Rate

Multifractal analysis results for EUR/TRY exchange rate covering
whole period data are presented in Figure 14. Upper left panel of
Figure 14 displays power-law cross-correlations between time scale
s and fluctuation function Fq(s) for q values equal to 10, 0 and -10.
Upper right panel of Figure 14 reveals a varying Hurst exponent
according to value of q, providing evidence for multifractality.
Additionally, Hurst exponent for q = 2 is computed as 0.5637,
slightly higher than 0.5, indicating a weakly persistent time series.
Notably, this Hurst exponent value of 0.5637 is greater than the
Hurst exponent value of 0.5268 for the USD/TRY exchange rate,
indicating that the EUR/TRY exchange rate is more persistent
than the USD/TRY exchange rate. As observed in the lower left
panel of Figure 14 mass exponents are nonlinear, providing further
evidence of multifractality. The lower right panel of Figure 14
displays the multifractal spectrum of the EUR/TRY exchange rate.
Here positive value for (∆α) indicates evidence for multifractality.
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Additionally, since α0 value is higher than 0.5 there is persistent
long-range correlations in the EUR/TRY exchange rate series. The
left-skewed spectrum suggests that large fluctuations dominate
the time series.

Similar to the USD/TRY exchange rate, to illustrate how multi-
fractality level for the EUR/TRY exchange rate change over time
Figure 15 and Figure 16 presented. In these figures black curves
represents (∆α) values calculated from original data. As observed
in these figures level of multifractality is maximum in the period
between 2018-05-31 13:01 and 2019-01-23 22:01. After 2018-05-31
13:01 there is steady decline in multifractality until 2019-07-30
08:01. In the period between 2018-12-29 00:01 and 2019-10-31 01:01
slightly higher values and a horizontal trend are observed for mul-
tifractality. In the period between 2019-04-04 01:01 and 2020-09-02
13:01 multifractality remains relatively flat and low. After 2020-
02-05 11:01 an upward trend is observed until 2021-10-30 01:00.
However, in the period between 2021-04-27 15:01 and 2021-12-16
10:01 a collapse in the multifractality is observed.

To reveal contributions of long-range autocorrelation and fat-
tailed distribution to multifractality 50 shuffled time series and 50
surrogate time series are generated in each time window. Mean val-
ues of (∆αSurrogate) calculated from surrogate series in each time
window is presented in Figure 15 with blue curve and mean values
of (∆αShu f f led) calculated from shuffled series in each time win-
dow is also presented in Figure 16 with blue curve. In these figures
error bars represent ±1 standard deviations of (∆αSurrogate) and
(∆αShu f f led) values obtained from surrogate and shuffled series.

To demonstrate how contribution of fat-tailed distribution to
multifractality is change over time Figure 17 is plotted. To obtain
this figure mean (∆αSurrogate) values obtained from surrogate
series are subtracted from original (∆α) values. As observed in
Figure 17 contribution of fat-tailed distribution to multifractality is
highest in period between 2018-05-31 13:01 and 2019-01-23 22:01.
Following this period, the fat-tailed distribution’s contribution to
multifractality decreased. After 2020-02-05 11:01 a steady increase
in the fat-tailed distribution’s contribution to multifractality is ob-
served. However, between 2021-04-27 15:01 and 2021-12-16 10:01,
there appears to have been a decline in the fat-tailed distribution’s
contribution to multifractality.

The change in the contribution of long-range autocorrelation to
multifractality over time is presented in Figure 18. In this figure,
it can be observed that the long-range correlation’s contribution
to multifractality is highest in the early period and gradually de-
creases untill 2019-05-21 8:01. After this date two relatively hor-
izontal trend periods are distinguished. First horizontal trend
period is between 2019-04-04 01:01 and 2021-03-11 04:01. Second
horizontal trend period is between 2020-08-10 22:01 and 2021-10-30
01:00. Additionally, between 2021-04-27 15:01 and 2021-12-16 10:01,
there is a collapse in the long-range correlation’s contribution to
multifractality. This period also corresponds to a decline in the
contribution of long-range autocorrelation to multifractality.

Comparison between contributions of long-range autocorrela-
tion and fat-tailed distribution to multifractality is presented in
Figure 19. Positive values in this figure indicate that the long-range
autocorrelation has a greater contribution to the multifractality
than the fat-tailed distribution. Figure 19 remains relatively flat
and have positive values until the date 2021-11-23 18:01. This
indicates that long-range autocorrelation has been the primary
source of multifractality up to this point. However negative values
are observed in this figure during the period between 2021-04-27
15:01 and 2022-01-10 06:01. These negative values indicate that the
fat-tailed distribution now contributes more to multifractality than

long-range autocorrelation does.
To detect change points and regimes in the level of multifractal-

ity in EUR/TRY exchange rate, a binary segmentation algorithm
is applied (Scott and Knott 1974; Sen and Srivastava 1975). We
detected three change points in 4th, 13th and 34th windows, result-
ing in four regimes. Results are presented in Table 4 and Figure
20.

Fluctuation function Fq

scale

lo
g

2
(F

q
)

−
9

−
7

−
5

100 810 1540 2990 5900

Hurst exponent

q

h
q

−10 −5 0 5 10

0
.3

0
.5

0
.7

Mass exponent

q

τ
q

−10 −5 0 5 10

−
8

−
4

0

 α

f 
( 

α
 )

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
.0

0
.4

0
.8

Figure 14 Whole period multifractality of EUR/TRY exchange rate
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Figure 15 Change in (∆α) calculated from original data and change
in (∆α) calculated from surrogate data
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Figure 16 Change in (∆α) calculated from original data and change
in (∆α) calculated from shuffled data

MF-DCCA of USD/TRY and EUR/TRY Exchange Rates
In this stage, the EUR/TRY and USD/TRY exchange rates are
studied using multifractal detrended cross-correlation analysis.
Firstly, results from whole dataset are presented.
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■ Table 4 Multifractality regimes in EUR/TRY exchange rate

(∆α) 1. Regime 2. Regime 3. Regime 4. Regime

Mean 1.3802250 0.7392889 0.5069429 0.7771875

Variance 0.027409312 0.011176401 0.005778175 0.019095466
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Figure 17 Change in the fat-tailed distribution’s multifractality contri-
bution

0.0

0.5

1.0

1.5

2
0

1
9

−
0

3
−

0
1

2
0

1
9

−
0

7
−

0
1

2
0

1
9

−
1

1
−

0
1

2
0

2
0

−
0

3
−

0
1

2
0

2
0

−
0

7
−

0
1

2
0

2
0

−
1

1
−

0
1

2
0

2
1

−
0

3
−

0
1

2
0

2
1

−
0

7
−

0
1

2
0

2
1

−
1

1
−

0
1

2
0

2
2

−
0

3
−

0
1

Date

∆
α

 −
 ∆

α
(S

h
u

ff
le

d
)

EUR/TRY

Figure 18 Change in the multifractality’s long-range autocorrelation
contribution
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Figure 19 Examining the impacts of fat-tailed distribution and long-
range autocorrelation on multifractality
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Figure 20 Change points in multifractality of EUR/TRY exchange
rate

In Figure 21 relationships between time scale s and fluctuation
function for q values equal to 10, 0 and -10 are plotted. The linearity
of these points indicates that there is a power-law relationship be-
tween these two values. In Figure 22 generalized cross-correlation
exponent between the two exchange rates are presented. In this
figure, since generalized cross-correlation exponents are depen-
dent on q values, it suggests that the cross-correlation between
the exchange rates is multifractal. Additionally, for logarithm
difference data, generalized cross-correlation exponent for q=2 is
computed as 0.5393, slightly higher than 0.5, indicating that the
cross-correlated series has a weak persistent structure. The mul-
tifractal spectrum for cross-correlation between USD/TRY and
EUR/TRY exchange rates is shown in Figure 23. In this figure
it can be observed that width of the multifractal spectrum (∆α)
is positive, providing further evidence for multifractality in the
cross-correlation. Moreover, since α0 value is greater than 0.5, it
indicates the presence of persistent long-range correlations.

In MF-DCCA level of correlation multifractality between two
exchange rate series can be measured with the multifractal spec-
trum’s width (∆α). In this part we demonstrated how multifrac-
tality level of cross correlation between the two exchange rates
and source of multifractality change over time in a rolling window
framework.

Long-range autocorrelation and fat-tailed distribution are the
two sources of multifractality for cross correlation. To measure the
contribution of these two sources shuffled time series and surro-
gate time series are utilized. However, in MF-DCCA, since there
must be two series, 50 pairs of surrogate series and 50 pairs of shuf-
fled series are generated for each time window. The (∆αSurrogate)
values obtained from pairs of surrogate series are presented in Fig-
ure 24 and (∆αShu f f led) values obtained from pairs of shuffled
series are presented in Figure 25 with blue curves. In these figures
red error bars represent ±1 standard deviation.
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When Figure 24 and Figure 25 are examined, a downward
trend in multifractality for original series is observed in the period
between 2018-05-31 13:01 and 2021-01-22 20:01. In the period
between 2020-06-01 22:01 and 2021-04-02 22:01 there is a rapid
rise in multifractality. Also, in the period between 2020-08-10
22:01 and 2021-10-30 01:01 a gradual increase in multifractality is
observed. However, there is a collapse in multifractality during
the period between 2021-04-27 15:01 and 2021-12-16 10:01.

Figure 26 is presented to examine how the fat-tailed distribu-
tion’s contribution to the multifractality changes over time. Addi-
tionally, Figure 27 is presented to reveal how the contribution of
long-range correlation to multifractality changes over time. These
two figures display similar pattern. In both Figure 26 and Figure
27 there are significant collapse in contributions to multifractality
during the period between 2021-04-27 15:01 and 2021-12-16 10:01.

To compare fat-tailed distribution’s and long-range autocor-
relation’s contributions to multifractality Figure 28 is presented.
Positive values in this figure indicate that the long-range auto-
correlation has a greater contribution to the multifractality than
the fat-tailed distribution. When examining this figure, a nega-
tive value is observed for the period between 2021-04-27 15:01
and 2021-12-16 10:01. This negative value suggests that the fat-
tailed distribution’s contribution to multifractality has surpassed
the long-range correlation’s contribution. Apart from this period,
dominant source of multifractality is long-range correlation.

To identify change points and regimes in the level of cross
correlation multifractality between exchange rates a binary seg-
mentation algorithm is applied (Scott and Knott 1974; Sen and
Srivastava 1975). We detected seven change points in 5th, 13th,
16th, 23th, 34th, 42th, and 47th windows, resulting in eight regimes.
Results are presented in Table 5 and Figure 29.
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■ Table 5 Multifractality regimes in EUR/TRY exchange rate

(∆α) 1. Regime 2. Regime 3. Regime 4. Regime 5. Regime 6. Regime 7. Regime 8. Regime

Mean 0.9991 0.8620 0.5493 0.7182 0.4773 0.8532 0.7763 0.8518

Variance 3.22e-02 1.11e-03 1.00e-03 1.86e-03 1.13e-02 1.68e-03 4.50e-02 9.31e-05
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Figure 25 Change in (∆α) calculated from original data and change
in (∆α) calculated from shuffled data
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Figure 26 Change in the fat-tailed distribution’s multifractality contri-
bution
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Figure 27 Change in the multifractality’s long-range autocorrelation
contribution
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Figure 28 Examining the impacts of fat-tailed distribution and long-
range autocorrelation on multifractality
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Figure 29 Change points in cross-correlation multifractality

CONCLUSION

A multifractal system is a general type of fractal system in which
the system cannot be adequately described by a single exponent.
In the literature, it has been demonstrated that many systems from
different fields exhibit multifractality. In this study individual
and cross correlation multifractality of EUR/TRY and USD/TRY
exchange rates are explored with MF-DFA and MF-DCCA method-
ologies. In the analysis both whole period data and rolling window
data are utilized. Whole period analyses reveal that the two ex-
change rates as well as correlation between the exchange rates are
multifractal.

Multifractality in these exchange rates implies presence of inef-
ficiencies which can be exploited by investors. These inefficiencies
can be exploited by investors who are able to identify them and
trade accordingly. For example, investors who believe that the
volatility of a particular exchange rate is about to increase may
choose to sell that currency, while investors who believe that the
volatility is about to decrease may choose to buy that currency.
Advanced trading algorithms can be designed to detect and act
upon multifractal patterns in exchange rates. Multifractality can
create arbitrage opportunities where an asset’s price differs on
different time scales or in different markets.

Arbitrageurs can profit from these price differentials by buying
low and selling high. By using rolling window method, we illus-
trated how multifractal properties of the exchange rates change
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over time. As indicated by (∆α) values multifractality levels of the
exchange rates change over time and higher multifractal levels im-
plies higher complexity, higher risks and more violent fluctuations.
Additionally, we examined how contributions of long-range au-
tocorrelation and fat-tailed distribution to multifractality change
over time. Shape of the singularity spectra for exchange rates
suggests that large fluctuations are more dominant in EUR/TRY
exchange rate than USD/TRY exchange rate.

Our results suggest that long-range autocorrelation’s contribu-
tion to multifractality is higher than the fat-tailed distribution’s
contribution except during the period between 2021-04-27 15:01
and 2021-12-16 10:01. Therefore, dominant source of multifractality
is the long-range autocorrelation. However, when the multifractal-
ity of the two exchange rates are examined a collapse in the multi-
fractality is observed during in the period between 2021-04-27 15:01
and 2021-12-16 10:01. Moreover, in this period, contribution of fat-
tailed distribution to multifractality become dominant. As evident
from Figure 1 and Figure 2, during this period, both USD/TRY and
EUR/TRY exchange rates exhibit significant instability, and there
is substantial government intervention in the foreign exchange
market. Since USD/TRY and EUR/TRY exchange rates are mul-
tifractal and characterized by autocorrelation, non-linearity, and
long memory (persistence), traditional efficient markets hypothesis
which assumes normal distribution and linearity is not appropriate
for these exchange rates.

The implications of multifractality of USD/TRY and EUR/TRY
exchange rates are significant and can impact various areas within
finance, economics, and decision-making. Multifractal behavior
suggests that exchange rate movements are not only random but
also characterized by irregular patterns and fluctuations across
different time scales. This complexity can lead to unexpected and
extreme price movements, which are important considerations
for risk assessment and management. Multifractality for these
exchange rates implies that the volatility of these exchange rates
can vary depending on the time scale being considered. This
makes it difficult to predict the future volatility of these exchange
rates, and it can also make it difficult to trade these exchange
rates profitably. Also, the multifractality of these exchange rates
suggests that they are not efficient markets. This means that there
are opportunities to make profits by exploiting the inefficiencies in
these markets.

However, these opportunities are often difficult to find and ex-
ploit, and they can also be risky. Multifractal analysis can provide
insights for traders and algorithmic trading systems. By under-
standing the non-linear dynamics of exchange rates, traders can
develop strategies that adapt to the multifractal nature of the mar-
ket, potentially improving trading outcomes. Traditional linear
models may not fully capture the complexities of multifractal be-
havior. The findings from multifractal analysis can lead to the
development of more sophisticated models that better reflect the
true nature of exchange rate movements. Multifractal behavior
can affect portfolio diversification strategies. Investors need to
consider how different assets, including USD/TRY and EUR/TRY
exchange rates, interact and exhibit multifractal patterns to ef-
fectively manage risk and optimize returns. Multifractality in
exchange rates can have policy implications for central banks and
governments. Understanding the intricate and non-linear behav-
iors of currencies can inform decisions related to monetary policy,
trade agreements, and economic interventions. The recognition
of multifractal behavior can influence how financial markets are
regulated. Regulators might need to consider the implications of
non-linear and complex behaviors for market stability and investor

protection.
In the future studies how multifractality and its sources evolve

over longer time periods can be investigated. Comparative analy-
sis with other currency pairs or financial assets can be conducted
to identify commonalities and differences in multifractal behav-
ior. The impact of external factors, such as geopolitical events,
economic policies, or global financial crises, on the multifractality
of exchange rates can be explored. Machine learning techniques
to enhance the prediction and forecasting capabilities based on
multifractal properties can be incorporated.
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