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Research Article

On some general integral formulae

NORBERT ORTNER AND PETER WAGNER*

ABSTRACT. We repeat and reformulate some more or less known general integral formulae and deduce from them
some applications in a concise way. We then present some general double integral formulae which play an essential role
in the calculation of fundamental solutions to homogeneous elliptic operators. In particular, this yields generalizations
of definite integrals found in standard integral tables. In the final section, the area of an ellipsoidal hypersurface in Rn

is represented by a hyperelliptic integral.

Keywords: Leray’s formula, elliptic integrals, definite double integrals.

2020 Mathematics Subject Classification: 26A42, 33E05, 35E05, 44A10, 46F10.

1. INTRODUCTION AND NOTATION

By “general integral formulae”, we understand here integral formulae containing “arbi-
trary” functions, i.e., formulae that hold at least for functions in a space of infinite dimension.
E.g., Frullani’s formula∫ ∞

0

f(ax)− f(bx)

x
dx = f(0) log(

b

a
), a > 0, b > 0

holds for each temperate test function f ∈ S(R1), but of course also in a much more general
context, see [17]. In contrast, the special case∫ ∞

0

cos(ax)− cos(bx)

x
dx = log

( b

a

)
, a > 0, b > 0,

of Frullani’s formula is just a special definite integral.
Besides the many integral representations (Cauchy, Bochner–Martinelli, Leray–Koppelmann

etc.) in complex analysis, see, e.g., [1], there is a host of general integral formulae in real analysis
contained in integral tables, see, e.g., [2, 13.2 Schlömilch’s Transformation, p. 251], [6, pp. 7, 63,
117, 129, 227 307], [9, pp. 93, 96, 98, 102, 107,109, 110, 114, 119, 121, 123, 125, 126, 130], [12,
pp. 6–8], [15, Thms. 1–6, pp. 125–134].

The aim of this article is to attract attention to some general integral formulae in real analysis,
to their connection with integrals over δ-measures (see Section 2) and to some applications (see
Section 3). In Section 4, we present a general integral formula for double integrals, which
earlier enabled to represent fundamental solutions of the homogeneous elliptic operators ∂4

x +
∂4
y + ∂4

z + 2a∂x2∂
2
y + 2b∂2

x∂
2
z + 2c∂2

y∂
2
z , see [20]. Section 5 is devoted to the calculation of the

(hypersurface) area of an ellipsoidal hypersurface in Rn. In dimensions n ≥ 4 and for generic
diameters, this yields a hyper-elliptic integral not reducible to elliptic ones.

Received: 19.11.2023; Accepted: 01.02.2024; Published Online: 06.02.2024
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2 Norbert Ortner and Peter Wagner

Let us introduce some notation. The inner product of x, ξ ∈ Rn is denoted by xξ. We employ
the standard notation for distributions as in [18] and, in particular, we denote the Heaviside
function by Y, see [18, p. 36]. We write δs for the delta distribution with support in s ∈ R, i.e.,
δs =

d
dxY (x− s).

The Fourier transform is defined as

(Ff)(ξ) =

∫
Rn

e−iξxf(x)dx

for f ∈ L1(Rn) and extended to the space of temperate distributions S ′(Rn) by continuity.
The pull-back h∗T = T ◦ h ∈ D′(Ω) of a distribution T in one variable t with respect to a

submersive C∞ function h : Ω → R, Ω ⊂ Rn open, is defined as in [16, Def. 1.2.12, p. 19], i.e.,

〈ϕ, h∗T 〉 =
〈 d

dt

(∫
Ω

Y (t− h(x))ϕ(x)dx
)
, T

〉
, ϕ ∈ D(Ω).

2. AN INTEGRAL FORMULA OF W. GRÖBNER AND N. HOFREITER AND ITS COMPANION

In [12, Equ. 031.13f], the formula

(2.1)
∫ ∞

0

f
(
ξx+

η

x

)dx
x

= 2

∫ ∞

2
√
ξη

f(u)√
u2 − 4ξη

du, ξ > 0, η > 0

is stated. A companion formula holds for ξ, η of opposite sign:

(2.2)
∫ ∞

0

f
(
ξx+

η

x

)dx
x

=

∫ ∞

−∞

f(u)√
u2 − 4ξη

du, ξη < 0.

(Obviously, suitable conditions on the function f must be imposed in order to ensure the exis-
tence of the improper integrals.)

An important application of the above formulae is the Fourier transform of Riemann’s sin-
gularity function Y (x)x−1e−iη/x, η ∈ R\{0}. In fact, if f(u) = e−iu, then formulae (2.1) and (2.2)
yield, by means of the well-known integral representations of the Bessel functions J0, N0,K0,

∞∫
0

e−i(ξx+η/x) dx
x

= 2Y (ξη)

∞∫
2
√
ξη

e−iu√
u2 − 4ξη

du+ Y (−ξη)

∞∫
−∞

e−iu√
u2 − 4ξη

du

= −πY (ξη)
[
N0(2

√
ξη) + iJ0(2

√
ξη)

]
+ 2Y (−ξη)K0(2

√
−ξη),

i.e.,

Fx

(
Y (x)x−1e−iη/x)(ξ) = Fxy

(
Y (x)δ(xy − 1)

)
(ξ, η)

= −πY (ξη)
[
N0(2

√
ξη) + iJ0(2

√
ξη)

]
+ 2Y (−ξη)K0(2

√
−ξη).

If we extend the integral formulae (2.1) and (2.2) to the negative axis by using the equation

−
∫ 0

−∞
f
(
ξx+

η

x

)dx
x

=

∫ ∞

0

f
(
−ξx− η

x

)dx
x
,

we arrive at the following proposition.

Proposition 2.1. Let f be a continuous function on R such that the integral
∫∞
−∞ f(u)du/(1+ |u|) is

convergent in the sense that

lim
M→−∞

lim
N→∞

∫ N

M

f(u)
du

1 + |u|
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converges. Set t−1/2
+ = Y (t)t−1/2 for t ∈ R \ {0}. Then the formula

(2.3)
∫ ∞

−∞
f
(
ξx+

η

x

)dx
|x|

= 2

∫ ∞

−∞
f(u)(u2 − 4ξη)

−1/2
+ du

holds for all ξ, η ∈ R \ {0}.

Proof. The application
R \ {0} −→ R : x 7−→ u = ξx+

η

x
has the range {u ∈ R; u2 ≥ 4ξη} and it covers this range twice. Furthermore,∣∣∣du

dx

∣∣∣ = ∣∣∣ξ − η

x2

∣∣∣ = 1

|x|

∣∣∣ξx− η

x

∣∣∣ = √
u2 − 4ξη

|x|
and hence formula (2.3) follows from substitution. We observe that the integral on the left-hand
side of formula (2.3) has to be interpreted as the limit

lim
M,N→∞

∫
M−1<|x|<N

f
(
ξx+

η

x

)dx
|x|

,

and this limit converges due to the conditional convergence of the integral
∫∞
−∞ f(u)du/(1 +

|u|). □
Let us remark that, vice versa, formula (2.3) implies the equations in (2.1) and (2.2). In fact,

if ξ, η are positive, then we simply set f(u) = 0 for u < 0; if ξη < 0, we first observe that
the integral

∫∞
0

f(ξx + η/x)dx/x depends only on the value of the product ξη as shown by
applying the substitutions x 7→ cx, c > 0, and x 7→ x−1, respectively, in this integral. Hence∫ 0

−∞
f
(
ξx+

η

x

)dx
|x|

=

∫ ∞

0

f
(
−ξx− η

x

)dx
x

=

∫ ∞

0

f
(
ξx+

η

x

)dx
x

holds for ξη < 0.
Let us next explain the connection of the integral on the left-hand side of formula (2.3) with

the measures δs(xy) supported by the hyperbolas xy = s in R2, s ∈ R \ {0}. As distributions,
these measures are defined as

(2.4)

〈ϕ, δs(xy)〉 =
d
ds

∫
R2

ϕ(x, y)Y (s− xy)dxdy

=
d
ds

∫ ∞

−∞

[
Y (x)

∫ s/x

−∞
ϕ(x, y)dy + Y (−x)

∫ ∞

s/x

ϕ(x, y)dy
]

dx

=

∫
R

ϕ
(
x,

s

x

)dx
|x|

, ϕ ∈ D(R2), s ∈ R \ {0}.

Incidentally, we observe that the absolute value in |x| is missing in the well-known textbook
[10], which has so many merits and so few flaws, see [10, Ch. III, Section 1.3, Ex. 3, Equ. (4),
p. 223]. Note that a different, ad hoc definition of the symbol δs(xy)—while, strictly logically,
being possible—is not in agreement with the usual definitions of the composition of functions
and of the pull-back of distributions. In fact, for a different determination of δs(xy) ∈ D′(R2

xy),
s ∈ R \ {0}, the equation

(2.5) δs(xy) = lim
ϵ↘0

1

2ϵ
Y (ϵ− |xy − s|), s ∈ R \ {0}

does not hold in D′(R2) as it should due to δs = limϵ↘0 Y (ϵ− |t− s|)/(2ϵ) in D′(R1
t ). (Equation

(2.5) also shows that δs(xy) must be a positive Radon measure, in contrast to the determination



4 Norbert Ortner and Peter Wagner

in [10].) Similarly, the definition Y ′ := −δ might, strictly logically, be correct, but it would not
make much sense either. We finally observe that δ0(xy) = δ(xy) cannot be defined unambigu-
ously since the mapping h(x, y) = xy is not submersive for xy = 0, i.e., on h−1(suppT ) for
T = δ ∈ D′(R1). Also, the limit in (2.5) diverges in D′(R2) if s = 0.

Note that we can apply the measure δs(xy) not only to test functions ϕ ∈ D(R2), but to each
continuous function ϕ(x, y) such that ϕ(x, y)(|x|+ |y|)ϵ is bounded on the hyperbola xy = s for
some positive ϵ. Therefore

(2.6) 〈f(ξx+ ηy), δs(xy)〉 =
∫ ∞

−∞
f
(
ξx+

ηs

x

)dx
|x|

holds, e.g., for f ∈ S(R) and ξ, η, s ∈ R \ {0}. Upon replacing η by ηs in Proposition 2.1,
formula (2.6) leads to the following proposition.

Proposition 2.2. We set, as before, t−1/2
+ = Y (t)t−1/2 for t ∈ R\{0} and assume that ξ, η ∈ R\{0}.

Then the equation

(2.7)
∫
R2

F (ξx+ ηy, xy)dxdy = 2

∫
R2

F (u, s)(u2 − 4ξηs)
−1/2
+ duds

holds for each measurable function F : R2 → C such that the integral on the right-hand side of (2.7) is
absolutely convergent.

Proof. We first note that the substitution

R2 −→ R2 : (x, y) 7−→ (u, s) = (ξx+ ηy, xy)

covers twice its range {(u, s); u2 ≥ 4ξηs} and has the Jacobian ξx− ηy = ±
√
u2 − 4ξηs. Hence

equation (2.7) holds for F ∈ D({(u, s); u2 6= 4ξηs}) and consequently, by density, also for all
measurable F making one (and hence both) of the integrals in (2.7) absolutely convergent. □

3. GENERALIZATION TO Rn+1. THE FORMULAE OF J.LERAY, J.FARAUT AND K. HARZALLAH

Let us generalize now Proposition 2.2 to n+ 1 dimensions by considering the Lorentz form
t2 − |x|2, t ∈ R, x ∈ Rn, instead of the form (x, y) 7→ xy on R2.

Proposition 3.3. Let τ ∈ R, ξ ∈ Rn+1 such that τ > |ξ| and set ρ =
√
τ2 − |ξ|2 and t

n/2−1
+ =

Y (t)tn/2−1 for t ∈ R. We assume that F : R2 → C is measurable and that the integral
∫
R2 |F (u, s)|[u2−

ρ2s]
n/2−1
+ duds is finite. Then

(3.8)
∫
Rn+1

F (τt+ ξx, t2 − |x|2)dtdx =
πn/2ρ1−n

Γ(n2 )

∫
R2

F (u, s)[u2 − ρ2s]
n/2−1
+ duds.

Proof. Upon using a Lorentz transformation (which automatically preserves volumes), we can
replace (τ, ξ) by (ρ, 0). We assume first that F belongs to C(R2) and has compact support.
Using polar coordinates x = rω, r > 0, ω ∈ Sn−1, the substitutions u = ρt and s = ρ−2u2 − r2,

ds = −2rdr, r = (ρ−2u2 − s)1/2, and Fubini’s theorem, we obtain∫
Rn+1

F (ρt, t2 − |x|2)dtdx =
2πn/2

ρΓ(n2 )

∫ ∞

−∞

[∫ ∞

0

F
(
u,

u2

ρ2
− r2

)
rn−1dr

]
du

=
πn/2

ρΓ(n2 )

∫ ∞

−∞

[∫ u2/ρ2

−∞
F (u, s)

(u2

ρ2
− s

)n/2−1

ds
]

du

=
πn/2ρ1−n

Γ(n2 )

∫
R2

F (u, s)[u2 − ρ2s]
n/2−1
+ duds.
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As in Proposition 2.2, the proof is completed by a density argument. □

From equation (3.8) in Proposition 3.3, we can easily deduce Leray’s formula for the Laplace
transform of Lorentz invariant functions on the cone C = {(t, x) ∈ Rn+1; t ≥ |x|}, see [14,
Equ. (19.11), p. 41], [13, Thm. 1, p. 53], [19].

Proposition 3.4. Let (τ, ξ) ∈ C and set ρ =
√
τ2 − |ξ|2. We assume that g : [0,∞) −→ C is

measurable such that
∫∞
0

|g(s)|K(n−1)/2(ρ
√
s)s(n−1)/4 ds is finite. Then

(3.9)
∫
C

e−(τt+ξx)g(t2 − |x|2)dtdx =

∫ ∞

0

K(n−1)/2(ρ
√
s)
(2π√s

ρ

)(n−1)/2

g(s)ds.

Proof. We set g(s) = 0 for s < 0 and F (u, s) = Y (u)e−ug(s). Then the function F (τt + ξx, t2 −
|x|2) coincides with e−(τt−ξx)g(t2−|x|2) on C and it vanishes on Rn+1 \C. Hence we can apply
Proposition 3.3, and [12, Equ. 313.23] implies∫

C

e−(τt+ξx)g(t2 − |x|2)dtdx =
πn/2ρ1−n

Γ(n2 )

∫ ∞

0

g(s)

[∫ ∞

ρ
√
s

e−u(u2 − ρ2s)n/2−1du
]

ds

=

∫ ∞

0

K(n−1)/2(ρ
√
s)
(2π√s

ρ

)(n−1)/2

g(s)ds.

This completes the proof. □

We remark that Leray’s formula is the analogue of Poisson–Bochner’s formula for the Fourier
transform of radially invariant distributions, see [18, Equ. (VII, 7; 22), p. 259].

Examples. We can derive Faraut–Harzallah’s formula for the Laplace transform of powers
of Lorentz distances [7, Prop. III.9, p. 43] from formula (3.9) above by setting g(s) = s(µ−n−1)/2,
µ ∈ C, Reµ > n− 1. This yields∫

C

e−(τt+ξx)(t2 − |x|2)(µ−n−1)/2 dtdx =
(2π

ρ

)(n−1)/2
∫ ∞

0

K(n−1)/2(ρ
√
s)s(2µ−n−3)/4 ds

= 2
(2π

ρ

)(n−1)/2
∫ ∞

0

K(n−1)/2(ρσ)σ
µ−(n+1)/2 dσ

=
2µ−1π(n−1)/2Γ(µ2 )Γ(

1+µ−n
2 )

(τ2 − |ξ|2)µ/2
, τ > |ξ|,

by [11, Equ. 6.561.16]. Let us remark that the special case of µ = n + 1 furnishes Exercise 1 in
[4, p. 174].

Let us also explain how Proposition 3.3 is connected with a formula in [3]. If we set n = 2
and apply formula (3.8), using a limit process, to the distribution F (u, s) = Y (u)f(u)δ1(s) for
f ∈ C(R) with compact support, then we obtain

(3.10)
∫ ∞

0

〈f(τt+ ξx), δ(t2 − |x|2 − 1)〉dt =
π

ρ

∫ ∞

ρ

f(u)du

for (τ, ξ) ∈ R3 with τ > |ξ| and ρ =
√
τ2 − |ξ|2.

Due to

Y (t)δ(t2 − |x|2 − 1) =
1

2
√
1 + |x|2

δ
(
t−

√
1 + |x|2

)
,

we infer that ∫
R2

f
(
τ
√

1 + |x|2 + ξx
) dx√

1 + |x|2
=

2π

ρ

∫ ∞

ρ

f(u)du.
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Finally, employing the parametrization x1 = coshα sinhβ, x2 = sinhα, t =
√

1 + |x|2 =
coshα coshβ of the upper shell t > 0 of the hyperboloid t2 = 1 + |x|2 and taking account
of dx = cosh2 α coshβ dαdβ, we arrive at∫

R2

f
(
τ coshα coshβ+ξ1 coshα sinhβ + ξ2 sinhα

)
coshαdαdβ

=
2π

ρ

∫ ∞

ρ

f(u)du, τ > |ξ|, ρ =
√
τ2 − |ξ|2,

which is formula 3.1.4.1 in [3].

4. ALGEBRAIC DOUBLE INTEGRALS AND “ELLIPTIC ARCTAN-INTEGRALS"

In [16], we employed the formula

(4.11) ∂3E(x1, 1, x3) = − 1

4π2

∫ x3

0

dλ
∫ ∞

−∞

dα
P (α,−λ− x1α, 1)

in order to represent the (uniquely determined) even and homogeneous fundamental solution
E of the homogeneous elliptic operator P (∂) of degree four and in three variables, see [16,
Prop. 5.2.7, p. 357, and p. 359, line two from below].

Using formula (4.11), we calculated E in the cases of P (∂) = ∂4
1 + ∂4

2 + ∂4
3 , see [16, Ex. 5.2.9,

p. 359], and of P (∂) = ∂4
1 + ∂4

2 + ∂4
3 + 2a∂2

1∂
2
2 , a > −1, see [16, Ex. 5.2.11, p. 362]. For the

operator P (∂) = ∂4
1 + ∂4

2 + ∂4
3 , the fundamental solution E was first obtained in [8, p. 350]; for

elliptic operators of the general form P (∂) =
∑3

j=1

∑3
k=1 cjk∂

2
j ∂

2
k, this was done in [20, Prop. 3,

p. 1198]. All these fundamental solutions can explicitly be represented by the complete elliptic
integral of the first kind.

In the following, let us repeat some steps in these calculations starting from formula (4.11).
We assume that x3 > 0. Substitution of the variables

α = t 4
√
µ, λ = 4

√
µ,

∂(α, λ)

∂(t, µ)
=

(
4
√
µ t

4µ
−3/4

0 1
4µ

−3/4

)
leads to

∂3E(x1, 1, x3) = − 1

16π2

∫ x4
3

0

dµ
√
µ

∫ ∞

−∞

dt
P (t 4

√
µ,−(1 + tx1) 4

√
µ, 1)

.

In the case of the operator P (∂) = ∂4
1 + ∂4

2 + ∂4
3 + 2a∂2

1∂
2
2 , a > −1, we obtain

P (t 4
√
µ,−(1 + tx1) 4

√
µ, 1) = Q(t)µ+ 1,

where Q(t) is a polynomial of degree four fulfilling Q(t) > 0 for t ∈ R. (In the notation, we
suppressed the dependence of the coefficients of Q on x1.) Inverting the order of integrations
and substituting u =

√
Q(t)µ results in

∂3E(x1, 1, x3) = − 1

8π2

∫ ∞

−∞

arctan
(
x2
3

√
Q(t)

)√
Q(t)

dt.

By these considerations, we want to motivate our treatment of integrals of the form

(4.12)
I :=

∫ ∞

−∞

arctan
(
γ
√
Q(t)

)√
Q(t)

dt =
1

2

∫ γ2

0

dµ
√
µ

∫ ∞

−∞

dt
Q(t)µ+ 1

=
1

2

∫ ∞

γ−2

dµ
√
µ

∫ ∞

−∞

dt
Q(t) + µ

, γ > 0.



On some general integral formulae 7

As will be seen in Corollary 4.2 below, I in formula (4.12) can be expressed as an elliptic integral
of the first kind and we shall call it therefore an “elliptic arctan-integral”.

Let us first explain the basic idea of the evaluation of I in the simpler case of the biquadratic
Q(t) = t4+pt2+r. We shall assume that r > 0 and p > −2

√
r, which are the conditions that the

polynomial Q is positive on the real axis. If, additionally, 0 < r ≤ p2/4 and if we set λ =
√
r,

we can write Q in the form Q(t) = (t2 + a2)(t2 + b2) with a > 0, b > 0 and hence ab = λ and
a+ b =

√
a2 + b2 + 2ab =

√
p+ 2λ. Therefore [12, Equ. 141.14] yields

(4.13)
∫ ∞

−∞

dt
t4 + pt2 + λ2

=
π

λ
√
p+ 2λ

,

and this equation persists for all λ > 0 and p > −2λ by analytic continuation.
Inserting formula (4.13) into (4.12) and substituting λ =

√
µ+ r, then implies

(4.14)

I =
1

2

∫ ∞

γ−2

dµ
√
µ

∫ ∞

−∞

dt
Q(t) + µ

=
π

2

∫ ∞

γ−2

dµ
√
µ
√
µ+ r

√
p+ 2

√
µ+ r

=
π√
2

∫ ∞

√
r+γ−2

dλ√
λ2 − r

√
λ+ p/2

.

By using formula 3.131.8 in [11], we can then represent I by an elliptic integral of the first kind,
i.e., by

F (φ, k) =

∫ φ

0

dα√
1− k2 sin2 α

, 0 ≤ k < 1, φ ∈ R.

This implies the following proposition.

Proposition 4.5. Let γ > 0, r > 0, p > −2
√
r and set Q(t) = t4 + pt2 + r. Then

(4.15)

∫ ∞

−∞

arctan
(
γ
√
Q(t)

)√
Q(t)

dt

=


π
4
√
r
F

(
arcsin

√
2
√
r

√
r +

√
r + γ−2

,

√√
r − p/2

2
√
r

)
: −2

√
r < p ≤ 2

√
r,

2π√
p+ 2

√
r
F

(
arcsin

√
p+ 2

√
r

p+ 2
√

r + γ−2
,

√
p− 2

√
r

p+ 2
√
r

)
: p ≥ 2

√
r.

Let us observe that the limit case γ → ∞ yields

∫ ∞

−∞

dt√
t4 + pt2 + r

=


2
4
√
r
K

(√√
r − p/2

2
√
r

)
: −2

√
r < p ≤ 2

√
r,

4√
p+ 2

√
r
K

(√
p− 2

√
r

p+ 2
√
r

)
: p ≥ 2

√
r.

(As usual the function K denotes the complete elliptic integral, i.e., K(k) = F (π2 , k), 0 ≤ k < 1.)

The upper formula is in accordance with [12, Equ. 222.2c] upon using the substitution x = t2.

More generally as in Proposition 4.5, we can replace the integrand µ−1/2 in formula (4.14)
by a function f(µ) and use formula (4.13) in order to represent the double integral∫ µ2

µ1

f(µ)dµ
∫ ∞

−∞

dt
t4 + pt2 + r + µ

, 0 < µ1 < µ2,
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by a simple one. If we substitute λ =
√
µ+ r as before and set z = p + 2λ, then we obtain the

following proposition.

Proposition 4.6. Let r > 0, p > −2
√
r, 0 < µ1 < µ2 and f ∈ L1([µ1, µ2]). Then

(4.16)
∫ µ2

µ1

f(µ)dµ
∫ ∞

−∞

dt
t4 + pt2 + r + µ

= π

∫ p+2
√
r+µ2

p+2
√
r+µ1

f
( (z − p)2

4
− r

) dz√
z
.

Proposition 4.6 can be generalized to general positive quartics Q(t) = t4 + pt2 + qt + r. The
corresponding result, i.e., Equ. (5) in [20, p. 1197], is a special case of [20, Prop. 2, p. 1196] and
we just quote it in the next proposition.

Proposition 4.7. Let p, q, r ∈ R such that the quartic Q(t) = t4 + pt2 + qt+ r is positive for each real
t. Let 0 < µ1 < µ2 ≤ ∞ and f : (µ1, µ2) → C such that µ−3/4f(µ) ∈ L1((µ1, µ2)). Then

(4.17)
∫ µ2

µ1

f(µ)dµ
∫ ∞

−∞

dt
Q(t) + µ

= π

∫ z2

z1

f
(
µ(z)

) dz√
z
,

where

µ(z) =
(z − p)2

4
− r +

q2

4z

and z1,2 denote the largest real roots of µ(z) = µ1,2, respectively.

If we use the function f(µ) = µ−1/2 in Proposition 4.7, we come back to elliptic arctan-
integrals and we can generalize in this way Proposition 4.5.

Corollary 4.1. Let γ > 0 and p, q, r ∈ R such that the quartic Q(t) = t4 + pt2 + qt+ r is positive for
each real t. Then

(4.18) I =

∫ ∞

−∞

arctan
(
γ
√
Q(t)

)√
Q(t)

dt = π

∫ ∞

z1

dz√
(z − p)2z − 4rz + q2

,

where z1 is the largest real root of the cubic (z − p)2z − 4(r + γ−2)z + q2.

Note that the right-hand side of equation (4.18) is an elliptic integral in Weierstraß’ normal
form. In particular, if the quartic Q has the form

(4.19) Q(t) =
[
(t− t1)

2 + u2
1

][
(t− t2)

2 + u2
2

]
, t1, t2 ∈ R, u1 > 0, u2 > 0,

then we can represent the integral I by the elliptic integral F (φ, k) of the first kind.

Corollary 4.2. Let γ > 0 and Q be as in equation (4.19). Then

(4.20)

I =

∫ ∞

−∞

arctan
(
γ
√
Q(t)

)√
Q(t)

dt =
2π√

(t1 − t2)2 + (u1 + u2)2

× F

(
arcsin

√
(t1 − t2)2 + (u1 + u2)2

(t1 − t2)2 + z1
,

√
(t1 − t2)2 + (u1 − u2)2

(t1 − t2)2 + (u1 + u2)2

)
,

where z1 is the largest real root of the equation[
z + (t1 − t2)

2
][
z − (u1 − u2)

2
][
z − (u1 + u2)

2
]
= 4γ−2z.
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Proof. By translation the integral I depends only on the difference t1 − t2 and hence we can
assume that t2 = −t1. Then Q(t) = t4+pt2+ qt+ r, where p = −2t21+u2

1+u2
2, q = 2t1(u

2
1−u2

2),
r = (t21 + u2

1)(t
2
1 + u2

2). This implies that the cubic

(z − p)2z − 4rz + q2 = z3 + 2(2t21 − u2
1 − u2

2)z
2

+
[
(u2

1 − u2
2)

2 − 8t21(u
2
1 + u2

2)
]
z + 4t21(u

2
1 − u2

2)
2

=
[
z + 4t21

][
z − (u1 − u2)

2
][
z − (u1 + u2)

2
]

has the three real roots (u1 + u2)
2 > (u1 − u2)

2 > −(t1 − t2)
2. Hence, similarly as in the proof

of Proposition 4.1, formula 3.131.8 in [11] implies the result. □

We remark that Corollary 4.2 generalizes Proposition 4.5. In fact, if Q(t) = (t2+u2
1)(t

2+u2
2),

i.e., if t1 = t2 = 0 in (4.19), then p = u2
1 +u2

2, q = 0, r = u2
1u

2
2 and formula (4.20) yields the lower

formula on the right-hand side of (4.17). On the other hand, if Q(t) = [(t−t1)
2+u2

1][(t+t1)
2+u2

1],
i.e., if t2 = −t1 and u1 = u2 in (4.19), then p = 2(u2

1 − t21), q = 0, r = (t21 + u2
1)

2 and formula
(4.20) yields the upper formula on the right-hand side of (4.17).

As before, the limit γ → ∞ yields a complete elliptic integral since z1 → (u1+u2)
2 for γ → ∞.

Hence

(4.21)
∫ ∞

−∞

dt√
Q(t)

=
4√

(t1 − t2)2 + (u1 + u2)2
K

(√
(t1 − t2)2 + (u1 − u2)2

(t1 − t2)2 + (u1 + u2)2

)
.

Note that the representation of
∫
R

dt/
√
Q(t) in [12, Equ. 223.2e] is more complicated.

5. REPRESENTATION OF HYPERSURFACE AREAS BY VOLUME INTEGRALS

If the hypersurface M in Rn is given by M = f−1(1) for a homogeneous function f, then the
area of M can be represented by a volume integral:

Proposition 5.8. Let f : Rn \ {0} −→ (0,∞) be C1 and homogeneous of degree λ > 0 and set
M = f−1(1). Then the hypersurface area Σ(M) of M is given by

(5.22) Σ(M) =
λ+ n− 1

λ

∫
{x∈Rn; f(x)<1}

|∇f(x)|dx.

Proof. Let dσ denote the surface measure on M and ν = ∇f/|∇f | the outward unit normal.
Due to Euler’s equation, we have x · ∇f(x) = λf(x) = λ if x ∈ M and x · ∇|∇f |(x) = (λ −
1)|∇f |(x) for x ∈ Rn \ {0}. Hence

div(x|∇f |) = n|∇f |+ x · ∇|∇f | = (n+ λ− 1)|∇f |.

Therefore Gauß’ divergence theorem yields

Σ(M) =

∫
M

dσ =
1

λ

∫
M

x · ∇f dσ =
1

λ

∫
M

x|∇f | · ν dσ

=
1

λ

∫
f(x)<1

div(x|∇f |)dx =
λ+ n− 1

λ

∫
f(x)<1

|∇f(x)|dx.

□

We shall apply formula (5.22) in order to show that the area of an ellipsoidal hypersurface
in Rn can be represented by a hyperelliptic integral.
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Proposition 5.9. Let n ≥ 2 and ai, i = 1, . . . , n, be positive numbers and set

M =
{
x ∈ Rn;

n∑
i=1

x2
i

a2i
= 1

}
.

Then its hypersurface area is given by

(5.23) Σ(M) =
π(n−1)/2

Γ(n+1
2 )

(n−1∏
j=1

a2j

)∫ ∞

0

(n−1∑
j=1

1

s+ a2j

) √
s+ a2n ds√

s
∏n−1

j=1 (s+ a2j )
.

Proof. The function f(x) =
∑n

i=1 x
2
i /a

2
i is homogeneous of degree λ = 2 and |∇f | = 2(

∑n
i=1 x

2
i /a

4
i )

1/2.
Hence formula (5.22) in Proposition 5.8 implies, upon substituting yi = aixi, i = 1, . . . n,

Σ(M) = (n+ 1)

∫
f(x)<1

√√√√ n∑
i=1

x2
i

a4i
dx = (n+ 1)

( n∏
i=1

ai

)∫
|y|<1

√√√√ n∑
i=1

y2i
a2i

dy.

With the further substitution yn = t(
∑n−1

j=1 y2j /a
2
j )

1/2, we then obtain

(5.24) Σ(M) = 2(n+ 1)

( n∏
i=1

ai

)∫ ∞

0

√
1 +

t2

a2n
dt

∫
Et

n−1∑
j=1

y2j
a2j

dy′,

where the inner integral runs over the ellipsoid

Et =
{
y′ ∈ Rn−1;

n−1∑
j=1

y2j
A2

j

≤ 1
}
, Aj =

aj√
t2 + a2j

, j = 1, . . . , n− 1,

and represents a sum of moments of second order thereof.
The calculation of such moments is quite straight-forward. We present it here just for com-

pleteness. Evidently, it suffices to consider the summand y2n−1/a
2
n−1 in the inner integral on

the right-hand side of formula (5.24). Substituting yj = Ajuj , j = 1, . . . , n − 1, and setting
u′′ = (u1, . . . , un−2) we obtain∫

Et

y2n−1

a2n−1

dy′ =
A2

n−1

a2n−1

(n−1∏
j=1

Aj

)∫
|u′|<1

u2
n−1 du′

and ∫
|u′|<1

u2
n−1 du′ = 2

∫ 1

0

u2
n−1 dun−1

∫
|u′′|2<1−u2

n−1

du′′

=
2πn/2−1

Γ(n2 )

∫ 1

0

u2
n−1(1− u2

n−1)
n/2−1 dun−1

=
2πn/2−1

Γ(n2 )
· 1
2
B
(3
2
,
n

2

)
=

π(n−1)/2

2Γ(n+3
2 )

.

Altogether this yields

Σ(M) =
2π(n−1)/2

Γ(n+1
2 )

(n−1∏
j=1

a2j

)∫ ∞

0

(n−1∑
j=1

1

t2 + a2j

) √
t2 + a2n dt∏n−1

j=1

√
t2 + a2j

.

The final substitution s = t2 then leads to formula (5.23) and thus concludes the proof. □



On some general integral formulae 11

We remark that the integral in formula (5.23) is an elliptic integral for n = 2 and for n = 3,
but is hyperelliptic and not elliptic in dimensions n ≥ 4 if the diameters 2ai, i = 1, . . . , n, are
generic positive real numbers. The representation of the length of an ellipse (n = 2) and of the
surface area of an ellipsoid (n = 3), respectively, by elliptic integrals is known since the times
of Legendre, see [5, Problem 1, p. 265, Problem 15, p. 279].
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ABSTRACT. In this paper, we employ the concept of operator means as well as some operator techniques to establish
new operator Bellman and operator Hölder type inequalities. Among other results, it is shown that if A = (At)t∈Ω and
B = (Bt)t∈Ω are continuous fields of positive invertible operators in a unital C∗-algebra A such that

∫
Ω At dµ(t) ≤

IA and
∫
Ω Bt dµ(t) ≤ IA , and if ωf is an arbitrary operator mean with the representing function f , then(

IA −
∫
Ω
(AtωfBt) dµ(t)

)p

≥
(
IA −

∫
Ω
At dµ(t)

)
ωfp

(
IA −

∫
Ω
Bt dµ(t)

)
for all 0 < p ≤ 1, which is an extension of the operator Bellman inequality.

Keywords: Bellman inequality, Cauchy-Schwarz inequality, Hölder inequality, operator mean, Hadamard product,
continuous field of operators, C∗-algebra
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1. INTRODUCTION AND PRELIMINARIES

Let L (H ) denote the C∗-algebra of all bounded linear operators on a complex Hilbert space
H with the identity IH . An operator A ∈ L (H ) is called positive if ⟨Ax, x⟩ ≥ 0 for all x ∈ H
and in this case we write A ≥ 0. We write A > 0 if A is a positive invertible operator. The
set of all positive invertible operators is denoted by L (H )+. For self-adjoint operators A,B ∈
L (H ), we say A ≤ B if B − A ≥ 0. Also, an operator A ∈ L (H ) is said to be contraction,
if A∗A ≤ IH . The Gelfand map f(t) 7→ f(A) is an isometrical ∗-isomorphism between the
C∗-algebra C(sp(A)) of continuous functions on the spectrum sp(A) of a self-adjoint operator
A and the C∗-algebra generated by A and IH . If f, g ∈ C(sp(A)), then f(t) ≥ g(t) (t ∈ sp(A))
implies that f(A) ≥ g(A).

Let f be a continuous real valued function defined on an interval J . It is called operator
monotone on J if A ≤ B implies f(A) ≤ f(B) for all self-adjoint operators A,B ∈ L (H ) with
spectra in J . It is said to be operator concave on J if λf(A) + (1− λ)f(B) ≤ f(λA+ (1− λ)B)
for all self-adjoint operators A,B ∈ L (H ) with spectra in J and all λ ∈ [0, 1], see, e.g., [10].
Every nonnegative continuous function f is operator monotone on [0,+∞) if and only if f is
operator concave on [0,+∞), see [11, Theorem 8.1]. A map Ψ on L (H ) is called positive if
Ψ(A) ≥ 0 whenever A ≥ 0 and is said to be unital if Ψ(IH ) = IH . If Ψ is a unital positive
linear map and f is an operator concave function on an interval J , then

(1.1) f(Ψ(A)) ≥ Ψ(f(A)) (Davis-Choi-Jensen’s inequality)
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DOI: 10.33205/cma.1435944
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for every self-adjoint operator A on H , whose spectrum is contained in J , see also [11, 17]. Let
A and B be bounded linear operators on a Hilbert space H . The operator A⊗B on H ⊗H is
defined by (A⊗ B)(x⊗ y) = Ax⊗ By for every x, y ∈ H . From this definition, it is clear that
the tensor product of positive operators is positive. Furthermore, for operators A,B,C,D ∈
L (H ), by the definition of the tensor product, we have (A⊗B)(C ⊗D) = AC ⊗BD and if A
and B are positive, then (A⊗B)r = Ar⊗Br for all r ≥ 0. For a given orthonormal basis {ej} of
a Hilbert space H , the Hadamard product A ◦B of two operators A,B ∈ L (H ) is defined by
⟨A ◦ Bei, ej⟩ = ⟨Aei, ej⟩⟨Bei, ej⟩. It is known that the Hadamard product can be presented by
filtering the tensor product A⊗B through a positive linear map. In fact, A ◦B = U∗(A⊗B)U,
where U : H → H ⊗ H is the isometry defined by Uej = ej ⊗ ej , see [3, 4, 9, 23].

The axiomatic theory for operator means of positive invertible operators has been developed
by Kubo and Ando [16]. A binary operation ρ on L (H )+ is called an operator mean, if the
following conditions are satisfied:

(i) A ≤ C and B ≤ D imply AρB ≤ C ρD;
(ii) An ↓ A and Bn ↓ B imply AnρBn ↓ AρB, where An ↓ A means that A1 ≥ A2 ≥ · · ·

and An → A as n → ∞ in the strong operator topology;
(iii) T ∗(AρB)T ≤ (T ∗AT )ρ(T ∗BT ) (T ∈ L (H ));
(iv) IH ρ IH = IH .

It is easy to see that T ∗(AρB)T = (T ∗AT ) ρ (T ∗BT ) for all invertible operators T . In particular,
(αAραB) = α (AρB) , (α ≥ 0). There exists an affine order isomorphism between the class of
operator means and the class of positive operator monotone functions f defined on (0,∞) via
f(t)IH = IH ρ (tIH ) (t > 0) with f(1) = 1. In addition,

AρB = A
1
2 f(A

−1
2 BA

−1
2 )A

1
2

for all A,B ∈ L (H )+. The operator monotone function f is called the representing function
of ρ. If f and g are the representing functions of the operator means ρf and ρg , respectively,
then f ≤ g on (0,+∞) if and only if (Aρf B) ≤ (Aρg B) for all positive invertible operators

A and B. The functions f♯µ(t) = tµ, f∇µ
(t) = (1 − µ) + µt, and f!µ(t) =

(
(1−µ)+t−1µ

2

)−1

on

(0,∞) give the operator weighted geometric mean A♯µB = A
1
2

(
A

−1
2 BA

−1
2

)µ
A

1
2 , the operator

weighted arithmetic mean A∇µB = (1−µ)A+µB, and the operator weighted harmonic mean

A!µB =
(

(1−µ)A−1+µB−1

2

)−1

, respectively, for all µ ∈ (0, 1). An operator mean ρ is symmetric
if AρB = BρA for all A,B ∈ L (H )+. For a symmetric operator mean ρ, a parametrized
operator mean ρt, 0 ≤ t ≤ 1, is called an interpolational path for ρ if it satisfies

(1) Aρ0 B = A, Aρ1/2B = AρB, and Aρ1 B = B;
(2) (Aρp B) ρ (Aρq B) = Aρ p+q

2
B for all p, q ∈ [0, 1];

(3) The map t ∈ [0, 1] 7→ Aρt B is norm continuous for each A and B.

The power means AmrB = A
1
2

(
IH +(A

−1
2 BA

−1
2 )r

2

) 1
r

A
1
2 are some typical interpolational means

for r ∈ [−1, 1]. Their interpolational paths are

Amr,tB = A
1
2

(
(1− t)IH + t(A

−1
2 BA

−1
2 )r

) 1
r

A
1
2 (t ∈ [0, 1]).

In particular, Am1,tB = A∇tB = (1 − t)A + tB,Am0,tB = A♯tB, and Am−1,tB = A!tB =(
(1− t)A−1 + tB−1

)−1. If Ψ is a unital positive linear map on L (H ) and ω is an operator
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mean, then we have

Ψ(AωB) ≤ Ψ(A)ωΨ(B)(1.2)

for all positive invertible operators A and B, see [11, Theorem 5.8]. For more information about
operator means, see [11, 16].

The classical Hölder inequality asserts that n∑
j=1

xj

 1
p
 n∑

j=1

yj

 1
q

≥
n∑

j=1

x
1
p

j y
1
q

j ,(1.3)

where xj , yj (1 ≤ j ≤ n) are positive real numbers and p, q > 0 with 1
p + 1

q = 1. For p = q = 2

the above inequality states that the celebrated Cauchy-Schwarz inequality.
Let Aj , Bj ∈ L (H )+ (1 ≤ j ≤ n) and ω be an operator mean. Then the operator mean ω is

concave on pairs of positive invertible operators i.e., n∑
j=1

Aj

 ω

 n∑
j=1

Bj

 ≥
n∑

j=1

(Aj ωBj),(1.4)

where for the weighted operator mean is an extension of the operator Hölder inequality as
follows  n∑

j=1

Aj

 ♯ν

 n∑
j=1

Bj

 ≥
n∑

j=1

(Aj♯νBj) for all 0 ≤ ν ≤ 1.(1.5)

As a special case of the inequality (1.4), we have

(A+B)ω (C +D) ≥ (AωC) + (B ωD)(1.6)

for all positive invertible operators A,B,C,D and an operator mean ω, see [11, Theorem 5.7].
Bellman [6] proved that if p is a positive integer and a, b, aj , bj (1 ≤ j ≤ n) are positive real

numbers such that
∑n

j=1 a
p
j ≤ ap and

∑n
j=1 b

p
j ≤ bp, then(a+ b)p −

n∑
j=1

(aj + bj)
p

1/p

≥

ap −
n∑

j=1

apj

1/p

+

bp −
n∑

j=1

bpj

1/p

.

A multiplicative analogue of this inequality for p = 2 is due to Aczél, see [1] and its oper-
ator version in [20]. Popoviciu [22] extended Aczél’s inequality for p ≥ 1. During the last
decades, several generalizations, refinements, and applications of the Bellman inequality in
various settings have been given and some results related to integral inequalities are presented,
see [1, 3, 5, 6, 7, 8, 12, 15, 18, 19, 20, 25].

In [19], the authors showed the following generalization of the operator Bellman inequalityIH −

 n∑
j=1

Aj ωf Bj

p

≥

IH −
n∑

j=1

Aj

ωfp

IH −
n∑

j=1

Bj

 ,(1.7)

where Aj , Bj (1 ≤ j ≤ n) are positive invertible operators such that
∑n

j=1 Aj ≤ IH ,
∑n

j=1 Bj ≤
IH , ωf is a mean with the representing function f and 0 < p ≤ 1.

Let A be a C∗-algebra of operators acting on a Hilbert space, let Ω be a locally compact
Hausdorff space, and let µ(t) be a Radon measure on Ω. A field (At)t∈Ω of operators in A is
called a continuous field of operators if the function t 7→ At is norm continuous on Ω and the
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function t 7→ ∥At∥ is integrable. One can form the Bochner integral
∫
Ω
At dµ(t), which is the

unique element in A such that

(1.8) φ

(∫
Ω

At dµ(t)

)
=

∫
Ω

φ(At) dµ(t)

for every linear functional φ in the norm dual A ∗ of A , see [13]. Let C(Ω,A ) denote the set
of bounded continuous functions on Ω with values in A , which is a C∗-algebra under the
pointwise operations and the norm ∥(At)∥ = supt∈Ω ∥At∥, see [13].

In this paper, by the concept of operator means, we obtain a refinement of the inequalities
(1.2). By using this refinement, we present some refinements of the operator Hölder inequality
(1.5) and the operator Bellman inequality (1.7) for positive invertible operators. Furthermore,
we generalize and refine some derived results for continuous fields of operators in a C∗-algebra
A .

2. REFINEMENTS OF SOME GENERALIZED OPERATOR INEQUALITIES

In this section, by the concept of operator means, we present some refinements of the oper-
ator Hölder inequality and the operator Bellman inequality. We need the following lemmas to
illustrate our result.

Lemma 2.1 ([18]). Let A,B ∈ L (H )+ be such that A is contraction, let h be a nonnegative operator
monotone function on [0,+∞), and let ωf be an operator mean with the representing function f . Then

AωhofB ≤ h(AωfB).

In the following lemma, we present an operator inequality for three arbitrary operator means.

Lemma 2.2. Let σ, τ, ρ be three arbitrary operator means such that σ ≤ τ or τ ≤ σ. Then

A ≤ (AσB) ρ (Aτ B) ≤ B(2.9)

for all positive invertible operators A and B such that A ≤ B.

Proof. Assume that A and B are positive invertible operators such that A ≤ B. Applying the
properties of operator means, we have

A = AσA ≤ AσB ≤ B σB = B and A = Aτ A ≤ Aτ B ≤ B τ B = B.

Moreover, if σ ≤ τ , i.e., AσB ≤ Aτ B, then(
A ≤

)
AσB ≤ (AσB)ρ(Aτ B) ≤ Aτ B

(
≤ B

)
(2.10)

and if τ ≤ σ, i.e., Aτ B ≤ AσB, then(
A ≤

)
Aτ B ≤ (AσB) ρ (Aτ B) ≤ AσB

(
≤ B

)
.(2.11)

Combining inequalities (2.10) and (2.11), we get

A ≤ (AσB) ρ (Aτ B) ≤ B,

as required. □

Remark 2.1. Assume that σ, τ, ρ1, ρ2 are arbitrary operator means such that σ ≤ τ or τ ≤ σ and A,B
are positive invertible operators such that A ≤ B. Then, applying Lemma 2.1, we get

A ≤ (AσB) ρ1 (Aτ B) ≤ (AσB) ρ2 (Aτ B) ≤ B,

where ρ1 ≤ ρ2. To see this, note that, if ρ1 ≤ ρ2, then for the positive invertible operators AσB and
Aτ B, we have

(AσB) ρ1 (Aτ B) ≤ (AσB) ρ2 (Aτ B).
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Moreover, by Lemma 2.1, we have

A ≤ (AσB) ρ1 (Aτ B) and (AσB) ρ2 (Aτ B) ≤ B

for arbitrary operator means σ, τ with σ ≤ τ or τ ≤ σ. Combining the above inequalities, we get desired
result.

Remark 2.2. Assume that σf and σg are arbitrary operator means with the representing functions f
and g, respectively, with f ≤ g or g ≤ f . As a special case of Lemma 2.1 for ρ = ∇λ, (0 ≤ λ ≤ 1), we
have

A ≤ Aσ(1−λ)f+λgB ≤ B(2.12)

for all positive invertible operators A and B such that A ≤ B. To see this, note that

(Aσf B)∇λ(Aσg B) = (1− λ)A
1
2 f(A

−1
2 BA

−1
2 )A

1
2 + λA

1
2 g(A

−1
2 BA

−1
2 )A

1
2

= A
1
2

(
(1− λ)f(A

−1
2 BA

−1
2 ) + λg(A

−1
2 BA

−1
2 )
)
A

1
2

= Aσ(1−λ)f+λg B.

Hence, by Lemma 2.1, we get

A ≤ (Aσf B)∇λ(Aσg B) = Aσ(1−λ)f+λg B ≤ B,

as required.

As an application of the above result, we have the next lemma, which is a refinement of the
inequality (1.2).

Lemma 2.3. Let σ, τ, ρ, ω be arbitrary operator means such that σ ≤ τ or τ ≤ σ, and let Ψ be a unital
positive linear map on L (H ). Then(

Ψ(A)ωΨ(B)
)p ≥

(
Ψp(AωB)σ

(
Ψ(A)ωΨ(B)

)p)
ρ
(
Ψp(AωB) τ

(
Ψ(A)ωΨ(B)

)p)
≥ Ψp(AωB)(2.13)

for all positive invertible operators A, B and 0 < p ≤ 1.

Proof. Applying the inequality (1.2) and the operator monotonicity of g(t) = tp, (0 < p ≤ 1),
we have

Ψp(AωB) ≤ (Ψ(A)ωΨ(B))p.

Replacing A by Ψp(AωB) and B by (Ψ(A)ωΨ(B))p, respectively, in the inequality (2.9), we
have

Ψp(AωB) ≤
(
Ψp(AωB)σ

(
Ψ(A)ωΨ(B)

)p)
ρ
(
Ψp(AωB) τ

(
Ψ(A)ωΨ(B)

)p)
≤
(
Ψ(A)ωΨ(B)

)p
for all operator means σ, τ, ρ, ω such that σ ≤ τ or τ ≤ σ, as required. □

In the first result of this section, we present a refinement of the operator Hölder inequality
(1.4) as follows.
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Theorem 2.1. Let Aj , Bj ∈ L (H )+ (1 ≤ j ≤ n) and σ, τ, ρ, ω be arbitrary operator means such that
σ ≤ τ or τ ≤ σ. Then n∑

j=1

Aj

ω

 n∑
j=1

Bj

p

≥

 n∑
j=1

(AjωBj)

p

σ

 n∑
j=1

Aj

ω

 n∑
j=1

Bj

p ρ

 n∑
j=1

(AjωBj)

p

τ

 n∑
j=1

Aj

ω

 n∑
j=1

Bj

p
≥

 n∑
j=1

(AjωBj)

p

for 0 < p ≤ 1.

Proof. Assume that Aj , Bj ∈ L (H )+ (1 ≤ j ≤ n) and σ, τ, ρ, ω are arbitrary operator means
with σ ≤ τ or τ ≤ σ. Note that if A1 ⊕ · · · ⊕ An and B1 ⊕ · · · ⊕ Bn are two diagonal operator
matrices, then by the definition of operator means, for the operator mean ω, we have(

A1 ⊕ · · · ⊕An

)
ω
(
B1 ⊕ · · · ⊕Bn

)
=
(
A1ωB1

)
⊕ · · · ⊕

(
AnωBn

)
.

Replacing A by A1 ⊕ · · · ⊕ An and B by B1 ⊕ · · · ⊕ Bn in the inequality (2.13) and taking Ψ
in the inequality (2.13) to be the unital positive linear map defined on the diagonal blocks of
operators by Ψ(A1 ⊕ · · · ⊕An) =

1
n

∑n
j=1 Aj , we have the desired result. □

As a consequence of Theorem 2.1, we have a refinement of the operator Hölder inequality
involving the weighted geometric mean.

Corollary 2.1. Let Aj , Bj ∈ L (H )+ (1 ≤ j ≤ n) and σ, τ, ρ be arbitrary operator means such that
σ ≤ τ or τ ≤ σ. Then  n∑

j=1

(Aj♯νBj)

p

≤

 n∑
j=1

(Aj♯νBj)

p

σ

 n∑
j=1

Aj

 ♯ν

 n∑
j=1

Bj

p
ρ

 n∑
j=1

(Aj♯νBj)

p

τ

 n∑
j=1

Aj

p

♯ν

 n∑
j=1

Bj

p
≤

 n∑
j=1

Aj

 ♯ν

 n∑
j=1

Bj

p

(2.14)

for all ν ∈ [0, 1] and 0 < p ≤ 1. In particular, for τ = σ, we have n∑
j=1

(Aj♯νBj)

p

≤

 n∑
j=1

(Aj♯νBj)

p

σ

 n∑
j=1

Aj

 ♯ν

 n∑
j=1

Bj

p

≤

 n∑
j=1

Aj

 ♯ν

 n∑
j=1

Bj

p
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for all ν ∈ [0, 1] and 0 < p ≤ 1.

Remark 2.3. Note that if 0 ≤ s ≤ t ≤ 1, then A♯sB ≤ A♯tB for positive invertible operators
A and B such that A ≤ B. Therefore, for positive invertible operators Aj , Bj (1 ≤ j ≤ n) with
AjBj = BjAj (1 ≤ j ≤ n) and σ = ♯s, ρ = ∇, and τ = ♯t in Corollary 2.1, we have

n∑
j=1

A1−ν
j Bν

j

≤1

2


 n∑

j=1

A1−ν
j Bν

j

1−s n∑
j=1

Aj

(1−ν)s n∑
j=1

Bj

νs


+


 n∑

j=1

A1−ν
j Bν

j

1−t n∑
j=1

Aj

(1−ν)t n∑
j=1

Bj

νt


≤

 n∑
j=1

Aj

(1−ν) n∑
j=1

Bj

ν

for all 0 ≤ s ≤ t ≤ 1, which is an extension and a refinement of the classical Hölder inequality.

In the following result, we obtain a refinement of the generalized operator Bellman inequal-
ity (1.7).

Theorem 2.2. Let Aj , Bj ∈ L (H )+ (1 ≤ j ≤ n) be such that
∑n

j=1 Aj ≤ IH ,
∑n

j=1 Bj ≤ IH ,
and let ωf be an operator mean with the representing function f and 0 < p ≤ 1. Then

IH −
n∑

j=1

Aj

ωp
f

IH −
n∑

j=1

Bj


≤

( n∑
j=1

(AjωfBj) +

IH −
n∑

j=1

Aj

ωf

IH −
n∑

j=1

Bj

µ

ρ

 n∑
j=1

(AjωfBj) +

IH −
n∑

j=1

Aj

ωf

IH −
n∑

j=1

Bj

ν

−
n∑

j=1

(AjωfBj)

)p

≤

IH −
n∑

j=1

(AjωfBj)

p

for all arbitrary means ρ and 0 ≤ µ ≤ ν ≤ 1.
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Proof. Applying Theorem 2.1 to Xj , Yj ∈ L (H )+ (1 ≤ j ≤ n+1) and to two arbitrary operator
means ρ, ωf , and to the weighted geometric means ♯µ, and ♯ν such that 0 ≤ µ ≤ ν ≤ 1, we get

n+1∑
j=1

(XjωYj)

≤

n+1∑
j=1

(XjωfYj)

 ♯µ

n+1∑
j=1

Xj

ωf

n+1∑
j=1

Yj


ρ

n+1∑
j=1

(XjωfYj)

 ♯ν

n+1∑
j=1

Xj

ωf

n+1∑
j=1

Yj


≤

n+1∑
j=1

Xj

ωf

n+1∑
j=1

Yj

 .(2.15)

By putting Xj = Aj , Yj = Bj (1 ≤ j ≤ n) Xn+1 = IH −
∑n

j=1 Aj , and Yn+1 = IH −
∑n

j=1 Bj ,
and taking σ = ♯µ and σ = ♯ν in the inequalities (2.15), we get

n∑
j=1

(AjωfBj) +

IH −
n∑

j=1

Aj

ωf

IH −
n∑

j=1

Bj


≤

 n∑
j=1

(AjωfBj) +

IH −
n∑

j=1

Aj

ωf

IH −
n∑

j=1

Bj

 ♯µ (IH ωfIH )


ρ

 n∑
j=1

(AjωfBj) +

IH −
n∑

j=1

Aj

ωf

IH −
n∑

j=1

Bj

 ♯ν (IH ωfIH )


≤ (IH ωfIH )

or equivalently,

n∑
j=1

(AjωfBj) +

IH −
n∑

j=1

Aj

ωf

IH −
n∑

j=1

Bj


≤

 n∑
j=1

(AjωfBj) +

IH −
n∑

j=1

Aj

ωf

IH −
n∑

j=1

Bj

 ♯µIH


ρ

 n∑
j=1

(AjωfBj) +

IH −
n∑

j=1

Aj

ωf

IH −
n∑

j=1

Bj

 ♯νIH


≤IH , for 0 ≤ µ ≤ ν ≤ 1.
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Using the definition of the operator means ♯µ and ♯ν , we have

n∑
j=1

(AjωfBj) +

IH −
n∑

j=1

Aj

ωf

IH −
n∑

j=1

Bj


≤

 n∑
j=1

(AjωfBj) +

IH −
n∑

j=1

Aj

ωf

IH −
n∑

j=1

Bj

µ

ρ

 n∑
j=1

(AjωfBj) +

IH −
n∑

j=1

Aj

ωf

IH −
n∑

j=1

Bj

ν

≤IH

for all arbitrary means ρ and 0 ≤ µ ≤ ν ≤ 1. Hence,IH −
n∑

j=1

Aj

ωf

IH −
n∑

j=1

Bj


≤

 n∑
j=1

(AjωfBj) +

IH −
n∑

j=1

Aj

ωf

IH −
n∑

j=1

Bj

µ

ρ

 n∑
j=1

(AjωfBj) +

I −
n∑

j=1

Aj

ωf

I −
n∑

j=1

Bj

ν

−
n∑

j=1

(AjωfBj)

≤IH −
n∑

j=1

(AjωfBj), for 0 ≤ µ ≤ ν ≤ 1.

It follows from the operator monotonicity of g(t) = tp (0 < p ≤ 1), the above inequalities, and
Lemma 2.1 thatIH −

n∑
j=1

Aj

ωfp

IH −
n∑

j=1

Bj


≤

( n∑
j=1

(AjωfBj) +

IH −
n∑

j=1

Aj

ωf

IH −
n∑

j=1

Bj

µ

ρ

 n∑
j=1

(AjωfBj) +

I −
n∑

j=1

Aj

ωf

I −
n∑

j=1

Bj

ν

−
n∑

j=1

(AjωfBj)

)p

≤

IH −
n∑

j=1

(AjωfBj)

p

for 0 ≤ µ ≤ ν ≤ 1,

as required. □



Extensions of the operator Bellman and operator Hölder type inequalities 21

3. SOME EXTENSIONS FOR CONTINUOUS FIELDS OF OPERATORS

Let A be a C∗-algebra of operators acting on a Hilbert space, let Ω be a compact Hausdorff
space, and let (At)t∈Ω be a continuous field of operators in A . In this section, by using the con-
cept of the continuous fields of operators, we present some results involving the operator Hölder
type inequalities and the operator Bellman type inequalities.

We need following lemma to illustrate our results.

Lemma 3.4. Let A be a C∗-algebra, Ω be a compact Hausdorff space equipped with a Radon measure µ,
and let A = (At)t∈Ω and B = (Bt)t∈Ω in C(Ω,A ) be continuous fields of positive invertible operators.
Then

∫
Ω

∫
Ω

(At ◦Bs) dµ(t) dµ(s) =

∫
Ω

At dµ(t) ◦
∫
Ω

Bs dµ(s) (At, Bs ∈ A ).(3.16)

Proof. Assume that A is a C∗-algebra of operators acting on a Hilbert space, Ω is a compact
Hausdorff space, and (At)t∈Ω is a continuous field of operators in A . Using [21, Page 78], since
A : t 7→ At is a continuous function from Ω to A , for every operator At ∈ A and for every
ε > 0, we can consider an element of the form

Iλ(At) = Σn
k=1A(tk)µ(Ek) = Σn

k=1Atkµ(Ek),

where the Ek’s form a partition of Ω into disjoint Borel subsets, and

tk ∈ Ek ⊆ {t ∈ Ω : ∥At −Atk∥ ≤ ε} (1 ≤ k ≤ n),

with λ = {E1, · · · , En, ε}. Then (Iλ(At))λ∈Λ is a uniformly convergent net to
∫
Ω
Atdµ(t). It

follows from the norm continuity of the tensor product of two operators that for any operator
B ∈ A , we have

∫
Ω

(At ⊗B) dµ(t) =

(∫
Ω

At dµ(t)

)
⊗B.(3.17)

Also, by using the definition of the Bochner integral for any operator X ∈ A , we have
∫
Ω
(X∗AtX)dµ(t) =

X∗ (∫
Ω
Atdµ(t)

)
X. Therefore, for an arbitrary operator B ∈ A , we get

∫
Ω

(At ◦B) dµ(t) =

∫
Ω

V ∗(At ⊗B)V dµ(t) = V ∗
∫
Ω

(At ⊗B) dµ(t)V

= V ∗
(∫

Ω

At dµ(t)⊗B

)
V =

∫
Ω

At dµ(t) ◦B (At, B ∈ A ),(3.18)
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where V : H → H ⊗ H is the isometry defined by V ej = ej ⊗ ej , for a given orthonormal
basis {ej} of the Hilbert space H . Hence, we have∫

Ω

∫
Ω

(At ◦Bs) dµ(t) dµ(s) =

∫
Ω

∫
Ω

V ∗(At ⊗Bs)V dµ(t) dµ(s)

=

∫
Ω

V ∗
(∫

Ω

(At ⊗Bs) dµ(t)

)
V dµ(s) (by (3.18))

=

∫
Ω

V ∗
((∫

Ω

At dµ(t)

)
⊗Bs

)
V dµ(s) (by (3.17))

=

∫
Ω

(∫
Ω

At dµ(t)

)
◦Bs dµ(s)

=

∫
Ω

U∗
((∫

Ω

At dµ(t)

)
⊗Bs

)
Udµ(s)

= U∗
(∫

Ω

(∫
Ω

At dµ(t)

)
⊗Bs dµ(s)

)
U (by (3.18))

= U∗
((∫

Ω

At dµ(t)

)
⊗
(∫

Ω

Bs dµ(s)

))
U (by (3.17))

=

∫
Ω

At dµ(t) ◦
∫
Ω

Bs dµ(s) for At, Bs ∈ A .

□

The first result of this section is the Hölder inequality for continuous fields of operators in-
volving an arbitrary operator mean. The main ideas of the following result are stimulated by
[4].

Theorem 3.3. Let A be a C∗-algebra, Ω be a compact Hausdorff space equipped with a Radon measure
µ, let A = (At)t∈Ω and B = (Bt)t∈Ω in C(Ω,A ) be continuous fields of positive invertible operators,
and let ωf be an operator mean with the representing function f . Then(∫

Ω

As dµ(s)

)
ωf

(∫
Ω

Bs dµ(s)

)
≥
∫
Ω

(As ωf Bs) dµ(s).(3.19)

Proof. For the continuous fields of positive invertible operators A = (At)t∈Ω ∈ A and B = (Bt)t∈Ω ∈
A , we put the positive unital linear map

Ψ(S) =

∫
Ω

Z∗SZdµ(t) (S ∈ A ),

where Z = B
1
2
t

(∫
Ω
Bs dµ(s)

)− 1
2 . Thus, we have(∫

Ω

At dµ(t)

)
ωf

(∫
Ω

Bs dµ(s)

)
=

(∫
Ω

Bs dµ(s)

) 1
2

f

((∫
Ω

Bs dµ(s)

) 1
2
∫
Ω

At dµ(t)

(∫
Ω

Bs dµ(s)

)− 1
2

)(∫
Ω

Bs dµ(s)

) 1
2

=

(∫
Ω

Bs dµ(s)

) 1
2

f

(∫
Ω

(∫
Ω

Bs dµ(s)

)− 1
2

B
1
2
t (B

− 1
2

t AtB
− 1

2
t )B

1
2
t

(∫
Ω

Bs dµ(s)

)− 1
2

dµ(t)

)

×
(∫

Ω

Bs dµ(t)

) 1
2
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=

(∫
Ω

Bs dµ(s)

) 1
2

f

(∫
Ω

Z∗B
− 1

2
t AtB

− 1
2

t Zdµ(t)

)(∫
Ω

Bs dµ(t)

) 1
2

=

(∫
Ω

Bs dµ(s)

) 1
2

f
(
Φ
(
B

− 1
2

t AtB
− 1

2
t

))(∫
Ω

Bs dµ(s)

) 1
2

≥
(∫

Ω

Bs dµ(s)

) 1
2

Φ
(
f
(
B

− 1
2

t AtB
− 1

2
t

))(∫
Ω

Bs dµ(s)

) 1
2

(by (1.1))

=

(∫
Ω

Bs dµ(s)

) 1
2
(∫

Ω

Z∗f
(
B

− 1
2

t AtB
− 1

2
t

)
Zdµ(t)

)(∫
Ω

Bs dµ(t)

) 1
2

=

∫
Ω

B
1
2
t f
(
B

− 1
2

t AtB
− 1

2
t

)
B

1
2
t dµ(t)

=

∫
Ω

(At ωf Bt) dµ(t),

as required. □

Remark 3.4. In the discrete case Ω = {1, · · · , n}, for positive invertible operators A1, · · · , An and
B1, · · · , Bn, Theorem 3.4 enforces the inequality (1.4).

Remark 3.5. Assume that Ω = [0, 1] is with the Lebesgue measure and A = R is the real numbers.
Then C([0, 1],R) is the C∗-algebra involving all continuous real-valued functions over [0, 1]. As a
special case of Theorem 3.3, we have the integral version of the Hölder inequality as follows(∫ b

a

f(x) dx

)
ω

(∫ b

a

g(x) dx

)
≥
∫ b

a

(f(x)ω g(x)) dx,

where f, g ∈ C([0, 1],R) are positive functions and ω is an operator mean.

Using the inequality (2.9), we obtain a refinement of the Hölder inequality for continuous
fields of operators (3.19) as follows.

Theorem 3.4. Let A be a C∗-algebra, Ω be a compact Hausdorff space equipped with a Radon measure
µ, let A = (At)t∈Ω and B = (Bt)t∈Ω in C(Ω,A ) be continuous fields of positive invertible operators,
and let σ, τ, ρ, ω be arbitrary operator means such that σ ≤ τ or τ ≤ σ. Then(∫

Ω

At dµ(t)

)
ω

(∫
Ω

Bs dµ(s)

)
≥
[(∫

Ω

(At ωBt) dµ(t)

)
σ

[(∫
Ω

At dµ(t)

)
ω

(∫
Ω

Bs dµ(s)

)]]
ρ

[(∫
Ω

(At ωBt) dµ(t)

)
τ

[(∫
Ω

At dµ(t)

)
ω

(∫
Ω

Bs dµ(s)

)]]
≥
∫
Ω

(At ωBt) dµ(t).

Proof. Using the inequality (3.19) and replacing

A by
∫
Ω

(At ωBt) dµ(t) and B by
(∫

Ω

At dµ(t)

)
ω

(∫
Ω

Bs dµ(s)

)
in the inequality (2.9), respectively, we get the desired result. □

In the next result, we obtain an inequality for continuous fields of operators.
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Theorem 3.5. Let A be a C∗-algebra, let Ω be a compact Hausdorff space equipped with a Radon
measure µ, let A = (At)t∈Ω and B = (Bt)t∈Ω in C(Ω,A ) be continuous fields of positive invertible
operators such that

∫
Ω
At dµ(t) ≤ A and

∫
Ω
Bt dµ(t) ≤ B for some positive invertible operators A,B ∈

A , and let ωf be an arbitrary operator mean with the representing function f . Then(
(Aωf B)−

∫
Ω

(At ωf Bt) dµ(t)

)p

≥
(
A−

∫
Ω

At dµ(t)

)
ωfp

(
B −

∫
Ω

Bt dµ(t)

)
(3.20)

for all 0 < p ≤ 1.

Proof. Assume A = (At)t∈Ω and B = (Bt)t∈Ω are continuous fields of positive invertible op-
erators such that

∫
Ω
At dµ(t) ≤ A and

∫
Ω
Bt dµ(t) ≤ B for some positive invertible operators

A,B ∈ A . Then we have

Aωf B =

(
A−

∫
Ω

At dµ(t) +

∫
Ω

At dµ(t)

)
ωf

(
B −

∫
Ω

Bt dµ(t) +

∫
Ω

Bt dµ(t)

)
≥
(
A−

∫
Ω

At dµ(t)

)
ωf

(
B −

∫
Ω

Bt dµ(t)

)
+

(∫
Ω

At dµ(t)ωf

∫
Ω

Bt dµ(t)

)
(by the inequality (1.6))

≥
(
A−

∫
Ω

At dµ(t)

)
ωf

(
B −

∫
Ω

Bt dµ(t)

)
+

(∫
Ω

(At ωf Bt) dµ(t)

)
.

Hence, by the above inequality, the operator monotonicity of f(t) = tp (0 < p ≤ 1) and Lemma
2.1, we get(

(Aωf B)−
∫
Ω

(At ωf Bt) dµ(t)

)p

≥
((

A−
∫
Ω

At dµ(t)

)
ωf

(
B −

∫
Ω

Bt dµ(t)

))p

≥
(
A−

∫
Ω

At dµ(t)

)
ωfp

(
B −

∫
Ω

Bt dµ(t)

)
,

as required. □

In the next result, by using Theorem 3.5, we have the operator Bellman inequality for contin-
uous fields in a unital C∗-algebra.

Corollary 3.2. Let A be a unital C∗-algebra, let Ω be a compact Hausdorff space equipped with a Radon
measure µ, let A = (At)t∈Ω and B = (Bt)t∈Ω in C(Ω,A ) be continuous fields of positive invertible
operators such that

∫
Ω
At dµ(t) ≤ IA and

∫
Ω
Bt dµ(t) ≤ IA , and let ωf be an operator mean with the

representing function f . Then(
IA −

∫
Ω

(AtωfBt) dµ(t)

)p

≥
(
IA −

∫
Ω

At dµ(t)

)
ωfp

(
IA −

∫
Ω

Bt dµ(t)

)
(3.21)

for all 0 < p ≤ 1.

Remark 3.6. Assume that C([0, 1],R) is the C∗-algebra involving all continuous real-valued func-
tions over [0, 1]. As a special case of the inequality (3.21), we have the integral version of the Bellman
inequality as follows(

1−
∫ b

a

(g(x)ωfh(x)) dx

)p

≥

(
1−

∫ b

a

g(x) dx

)
ωfp

(
1−

∫ b

a

h(x) dx

)
(0 < p ≤ 1),
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where f, g ∈ C([0, 1],R) are positive functions such that
∫ b

a
g(x) dx ≤ 1 and

∫ b

a
h(x) dx ≤ 1, and ωf is

an operator mean with the representing function f . In particular, for ωf = ♯ 1
2

, we have

1−
∫ b

a

√
g(x)h(x) dx ≥

√
1−

∫ b

a

g(x) dx

√
1−

∫ b

a

h(x) dx.

These two above inequalities are the integral version of the Bellman inequality (1.7).

In the next theorem, we present a refinement of the operator Bellman inequality (3.21) for
continuous fields of operators.

Theorem 3.6. Let A be a unital C∗-algebra, let Ω be a compact Hausdorff space equipped with a Radon
measure µ, let A = (At)t∈Ω and B = (Bt)t∈Ω in C(Ω,A ) be continuous fields of positive invertible
operators such that

∫
Ω
At dµ(t) ≤ IA ,

∫
Ω
Bt dµ(t) ≤ IA , and let ωf be an arbitrary operator mean

with the representing function f . Then(
IA −

∫
Ω

(AtωfBt) dµ(t)

)p

≥
((

IA −
∫
Ω1

At dµ(t)

)
ωf

(
IA −

∫
Ω1

Bt dµ(t)

)
−
∫
Ω2

(At ωf Bt) dµ(t)

)p

≥
(
IA −

∫
Ω

At dµ(t)

)
ωfp

(
IA −

∫
Ω

Bt dµ(t)

)
for all 0 < p ≤ 1 and for two disjoint sets Ω1,Ω2 ⊆ Ω such that Ω = Ω1 ∪ Ω2.

Proof. Assume that A = (At)t∈Ω and B = (Bt)t∈Ω are continuous fields of positive invertible
operators in a unital C∗-algebra A with

∫
Ω
At dµ(t) ≤ IA and

∫
Ω
Bt dµ(t) ≤ IA . We have(

IA −
∫
Ω

At dµ(t)

)
ωf

(
IA −

∫
Ω

Bt dµ(t)

)
=

(
IA −

∫
Ω1

At dµ(t)−
∫
Ω2

At dµ(t)

)
ωf

(
IA −

∫
Ω1

Bt dµ(t)−
∫
Ω2

Bt dµ(t)

)
≤
(
IA −

∫
Ω1

At dµ(t)

)
ωf

(
IA −

∫
Ω1

Bt dµ(t)

)
−
∫
Ω2

(At ωf Bt) dµ(t)

(by the inequality (3.20))

≤(IA ωfIA )−
∫
Ω1

(At ωf Bt) dµ(t)−
∫
Ω2

(At ωf Bt) dµ(t)

(by the inequality (3.20))

=IA −
∫
Ω

(At ωf Bt) dµ(t).

Hence, by the above inequalities, the operator monotonicity of f(t) = tp (0 < p ≤ 1) and
Lemma 2.1, we have(

IA −
∫
Ω

At dµ(t)

)
ωfp

(
IA −

∫
Ω

Bt dµ(t)

)
≤
((

IA −
∫
Ω

At dµ(t)

)
ωf

(
IA −

∫
Ω

Bt dµ(t)

))p

≤
(
IA −

∫
Ω

(At ωf Bt) dµ(t)

)p

,
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as required. □

In the next theorem, we present another refinement of the operator Bellman inequality (3.21)
involving continuous fields of operators.

Theorem 3.7. Let A be a unital C∗-algebra, let Ω be a compact Hausdorff space equipped with a Radon
measure µ, let A = (At)t∈Ω and B = (Bt)t∈Ω in C(Ω,A ) be continuous fields of positive invertible
operators such that

∫
Ω
At dµ(t) ≤ IA and

∫
Ω
Bt dµ(t) ≤ IA , let ωf be an arbitrary operator mean with

the representing function f , and let λ : s ∈ Ω 7−→ λs ∈ [0, 1] be a measurable function. Then(
IA −

∫
Ω

(AsωfBs) dµ(s)

)p

≥
(((

IA −
∫
Ω

λsAs dµ(s)

)
ωf

(
IA −

∫
Ω

λsBs dµ(s)

))
−
∫
Ω

(1− λs)
(
AsωfBs

)
dµ(s)

)p

≥
(
IA −

∫
Ω

As dµ(s)

)
ωfp

(
IA −

∫
Ω

Bs dµ(s)

)
for 0 < p ≤ 1.

Proof. Assume that A = (At)t∈Ω and B = (Bt)t∈Ω are continuous fields of positive invertible
operators in a unital C∗-algebra A such that

∫
Ω
At dµ(t) ≤ IA and

∫
Ω
Bt dµ(t) ≤ IA and

λs ∈ [0, 1] (s ∈ Ω). First note that∫
Ω

As dµ(s) =

∫
Ω

(As∇λsAs) dµ(s) =

∫
Ω

λsAs dµ(s) +

∫
Ω

(1− λs)As dµ(s),

∫
Ω

Bs dµ(s) =

∫
Ω

(Bs∇λs
Bs) dµ(s) =

∫
Ω

λsBs dµ(s) +

∫
Ω

(1− λs)Bs dµ(s),

IA −
∫
Ω

λsAs dµ(s) ≥
∫
Ω

(1− λs)As dµ(s) ≥ 0,

and

IA −
∫
Ω

λsBs dµ(s) ≥
∫
Ω

(1− λs)Bs dµ(s) ≥ 0.

Then,(
IA −

∫
Ω

As dµ(s)

)
ωf

(
IA −

∫
Ω

Bs dµ(s)

)
=

(
IA −

∫
Ω

λsAs dµ(s)−
∫
Ω

(1− λs)As dµ(s)

)
ωf

(
IA −

∫
Ω

λsBs dµ(s)−
∫
Ω

(1− λs)Bs dµ(s)

)
≤
((

IA −
∫
Ω

λsAs dµ(s)

)
ωf

(
IA −

∫
Ω

λsBs dµ(s)

))
−
∫
Ω

[
((1− λs)As)ωf ((1− λs)Bs)

]
dµ(s)

(by the inequality (3.20))

≤
((

IA −
∫
Ω

λsAs dµ(s)

)
ωf

(
IA −

∫
Ω

λsBs dµ(s)

))
−
∫
Ω

(1− λs)
(
AsωfBs

)
dµ(s)

(by the properties of means)
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≤
(
(IA ωfIA )−

∫
Ω

(λsAsωfλsBs) dµ(s)

)
−
∫
Ω

(1− λs)
(
AsωfBs

)
dµ(s)

(by the inequality (3.20))

≤ IA −
∫
Ω

λs(AsωfBs) dµ(s)−
∫
Ω

(1− λs)
(
AsωfBs

)
dµ(s)

(by the properties of means)

= IA −
∫
Ω

(AsωfBs) dµ(s).

Hence, the operator monotonicity of f(t) = tp (0 < p ≤ 1) Lemma 2.1, and the above inequali-
ties imply that(

IA −
∫
Ω

As dµ(s)

)
ωfp

(
IA −

∫
Ω

Bs dµ(s)

)
≤
((

IA −
∫
Ω

As dµ(s)

)
ωf

(
IA −

∫
Ω

Bs dµ(s)

))p

≤
(((

IA −
∫
Ω

λsAs dµ(s)

)
ωf

(
IA −

∫
Ω

λsBs dµ(s)

))
−
∫
Ω

(1− λs)
(
AsωfBs

)
dµ(s)

)p

≤
(
IA −

∫
Ω

(AsωfBs) dµ(s)

)p

for 0 < p ≤ 1. This completes the proof. □

In the following result, we obtain the operator Hölder inequality involving the Hadamard
product of operators. The main ideas of the next result are stimulated by [2, 24].

Theorem 3.8. Let A be a unital C∗-algebra, let Ω be a compact Hausdorff space equipped with a Radon
measure µ, and let A = (At)t∈Ω and B = (Bt)t∈Ω in C(Ω,A ) be continuous fields of positive invertible
operators. Then∫

Ω

At dµ(t) ◦
∫
Ω

Bs dµ(s) ≥
∫
Ω

(At♯αBt) dµ(t) ◦
∫
Ω

(As♯1−αBs) dµ(s)

for 0 ≤ α ≤ 1.

Proof. Assume that a, b > 0 and Xt, Xs ∈ A are positive invertible operators. The Heinz
inequality [14] asserts that

a1−νbν + aνb1−ν ≤ a+ b for 0 ≤ ν ≤ 1.(3.22)

If we replace b by a−1 and take µ = 2ν − 1 (3.22), then we get

aµ + a−µ ≤ a+ a−1 for 0 ≤ µ ≤ 1.

Replacing a by the positive invertible operator Xt ⊗X−1
s in the above inequality, we get

Xµ
t ⊗X−µ

s +X−µ
t ⊗Xµ

s ≤ Xt ⊗X−1
s +X−1

t ⊗Xs.(3.23)

Multiplying both sides of (3.23) by the positive invertible operator X
1
2
t ⊗X

1
2
s , we have

X1+µ
t ⊗X1−µ

s +X1−µ
t ⊗X1+µ

s ≤ X2
t ⊗ IA + IA ⊗X2

s .
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Now, replacing µ by 2α− 1, Xt by X
1
2
t , and Xs by X

1
2
s , respectively, in the above inequality, we

get

Xα
t ⊗X1−α

s +X1−α
t ⊗Xα

s ≤ Xt ⊗ IA + IA ⊗Xs for 0 ≤ α ≤ 1.

Now, setting Xt = A
− 1

2
t BtA

− 1
2

t and Xs = A
− 1

2
s BsA

− 1
2

s , and then, multiplying by A
1
2
t ⊗ A

1
2
s , in

the above inequality, we get

(At♯αBt)⊗ (As♯1−αBs) + (At♯1−αBt)⊗ (As♯αBs) ≤ At ⊗Bs +Bs ⊗At.

Therefore, for the Hadamard product, we have

(At♯αBt) ◦ (As♯1−αBs) + (At♯1−αBt) ◦ (As♯αBs) ≤ At ◦Bs +Bs ◦At.

Taking the double integral over the above inequality, we get∫
Ω

∫
Ω

((At♯αBt) ◦ (As♯1−αBs) + (At♯1−αBt) ◦ (As♯αBs)) dµ(t) dµ(s)

≤
∫
Ω

∫
Ω

(At ◦Bs +Bs ◦At) dµ(t) dµ(s).

Using Lemma 3.4, we have∫
Ω

∫
Ω

(
(At♯αBt) ◦ (As♯1−αBs) + (At♯1−αBt) ◦ (As♯αBs)

)
dµ(t) dµ(s)

=

∫
Ω

(At♯αBt) dµ(t) ◦
∫
Ω

(As♯1−αBs) dµ(s) +

∫
Ω

(At♯1−αBt) dµ(t) ◦
∫
Ω

(As♯αBs) dµ(s)

=2

∫
Ω

(At♯αBt) dµ(t) ◦
∫
Ω

(As♯1−αBs) dµ(s)

and ∫
Ω

∫
Ω

(
At ◦Bs +Bs ◦At

)
dµ(t) dµ(s)

=

(∫
Ω

Atµ(t) ◦
∫
Ω

Bs dµ(s)

)
+

(∫
Ω

Bsµ(s) ◦
∫
Ω

At dµ(t)

)
=2

∫
Ω

Atµ(t) ◦
∫
Ω

Bs dµ(s).

Hence, we get∫
Ω

(At♯αBt) dµ(t) ◦
∫
Ω

(As♯1−αBs) dµ(s) ≤
∫
Ω

Atµ(t) ◦
∫
Ω

Bs dµ(s),

as required. □

Remark 3.7. In the discrete case Ω = {1, · · · , n}, for positive invertible operators A1, · · · , An and
B1, · · · , Bn, Theorem 3.8 enforces the inequality (1.4) for the Hadamard product.
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