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Chaos in Physiological Control Systems: Health or
Disease?
Olfa Boubaker ID ∗,1

∗University of Carthage, National Institute of Applied Sciences and Technology, Tunis, Tunisia.

ABSTRACT During the nineties, the Rössler’s have reported in their famous book “Chaos in Physiology,”
that “physiology is the mother of Chaos.” Moreover, several researchers have proved that Chaos is a generic
characteristic of systems in physiology. In the context of disease, like for example growth of cancer cell
populations, Chaos often refers to irregular and unpredictable patterns. In such cases, Chaos signatures
can be used to prove the existence of some pathologies. However, for other physiological behaviors, Chaos
is a form of order disguised as disorder and can be a signature of healthy physiological functions. This is
for example the case of human brain behavior. As the boundary between health and disease is not always
clear-cut in chaotic systems in physiology, some conditions may involve transitions between ordered and
chaotic states. Understanding these transitions and identifying critical points can be crucial for predicting
Healthy vs. pathological Chaos. Using recent advances in physiological Chaos and disease dynamics, this
survey paper tries to answer the crucial question: when Chaos be a sign of health or disease?

KEYWORDS

Modelling in
physiology
Homeostasis
Physiological
chaos
Chaos in disease
Pathological
chaos
Healthy chaotic
patterns

INTRODUCTION

In Chaos theory, Chaos dynamics refer to a complex, unpredictable,
and random behavior within a system. The concept of Chaos is
often associated with nonlinear and complex dynamics showing
inherent sensitivity to initial conditions where small effects lead
to large and unexpected consequences (Sprott 2003; Lassoued and
Boubaker 2016; Devaney 2018; Lozi 2023). While in the vast litera-
ture, Chaos theory and its applications to various fields, including
mathematics, physics, engineering and so on have been extensively
discussed (Boubaker and Jafari 2018), its application in medicine
remains both intriguing and challenging. Figure 1 shows the pro-
duction per year as well as the production by country or territory
for a literature review done in January 2024 via the Scopus database
using the keyword “Chaos”.

The investigation shows the considerable number of journal
papers published in the field. It is found 40.169 journal papers
written in English with a peak of production in 2023. The search
also reveals that China, United States and India are the three coun-
tries with the highest production in the field. Figure 2 presents

Manuscript received: 3 January 2024,
Revised: 19 February 2024,
Accepted: 21 February 2024.

1olfa.boubaker@insat.ucar.tn (Corresponding author).

the classification of production by subject area. It is noticed that
mathematics, physics, and engineering are the fields with the high-
est production. To my surprise, among this considerable number
of papers dedicated to Chaos theory, I found only 883 articles de-
voted for medicine and 638 documents for neurosciences. This
little production stands for simply 3.8% of the total. The produc-
tion per year related to these two categories is shown in Figure 3
and Figure 4, respectively. In the opposite way, it is important to
note here that the most cited paper in all categories presented in
Figure 2 is the paper titled “Approximate entropy as a measure
of system complexity,” published in 1991 by Pincus presenting an
application of Chaos theory to the analysis of heart rate data, and
its effectively discriminated between healthy and sick groups of
neonates (Pincus 1991).

This observation is consistent with the statements of Rössler in
his famous book “Chaos in Physiology” published in 1994 in which
he has reported that “the physiology is the mother of Chaos” and
that “It appears that physiology has a particularly high affinity to
Chaos” (Rossler and Rossler 1994). It was during the nineties that
researchers have proved that Chaos is a regular characteristic for
systems in physiology (Mackey and An Der Heiden 1984; Mpitsos
et al. 1988; Glass et al. 1988; da Silva 1991; Goldberger et al. 1990;
Elbert et al. 1994)
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(a)

(b)

Figure 1 Data from Scopus database. Query: KEY (Chaos) AND
(LIMIT-TO (SRCTYPE, «j»)) AND (LIMIT-TO (LANGUAGE,
«English»)). (a)Production per year, (b) Production by country or
territory.

Figure 2 Data from Scopus database: Documents by subject area.
Query: KEY (Chaos) AND (LIMIT-TO (SRCTYPE, «j»)) AND (LIMIT-
TO (LANGUAGE, «English»)). The category “Other (10.1%)” in-
cludes medicine and neurosciences with 3.7%.

In this framework, I should note that cardiovascular system,
with a specific focus on heart rate variability (HRV), was the pio-
neering area of application of Chaos theory in physiology recog-
nizing that the heart rate does not exhibit a constant rhythm over
time (Leaning et al. 1983; Pincus and Goldberger 1994; Mansier et al.
1996). Early investigations within Chaos in physiological control
systems had also considered respiratory control model (Flower
et al. 1993), blood pressure regulation (Persson 1996; Wagner et al.
1996), autonomic nervous system dynamics (Korn and Faure 2003)
and neuroendocrine system (Lipsitz and Goldberger 1992). Let us

recognize here that the study of Chaos in physiology is a complex
and evolving field, and the understanding of its implications in
medicine is continually expanding. Researchers use mathematical
models, computational simulations, and empirical observations
to explore the dynamic nature of physiological systems and their
relationship to human health (Lassoued and Boubaker 2020).

Chaotic behavior in physiology was often associated within cer-
tain pathological conditions and may be linked to disease (Cross
and Cotton 1994). For example, for the glucose-insulin regula-
tory system numerous anomalies are perceived in form of chaotic
dynamics such as hypoglycemia, hyperinsulinemia, and type 2
diabetes (Rajagopal et al. 2020). The chaotic pathological signatures
of migraine headache (Bayani et al. 2018), the epileptic seizures
(Panahi et al. 2017, 2019) and the attention deficit hyperactivity dis-
order (Ansarinasab et al. 2023) are recently considered. Complex
dynamics for type 1 diabetes (Ginoux et al. 2018) and cancer model
(Xuan et al. 2022) are also studied.

On another side, Chaos can be a normal and healthy aspect
of certain physiological processes like for example the heartbeat,
the respiratory patterns, and the neural activity which often show
complex irregular patterns falling under the umbrella of Chaos
dynamics. These dynamics can contribute to the adaptability and
resilience of the organism (Golbin and Umantsev 2006; Goldberger
and West 1987). As physiological systems are highly intercon-
nected and dynamic, Chaos theory can help us appreciate the
complexity of these interactions, perturbations, or changes. Some
complex dynamics of the system can lead to unpredictable conse-
quences, which may have implications for health or disease.

Figure 3 Data from Scopus database: Production per year in the
field of medicine. Query: KEY (Chaos) AND (LIMIT-TO (SRCTYPE,
«j»)) AND (LIMIT-TO (LANGUAGE, «English»)) AND (LIMIT-TO
(SUBJAREA, «MEDI»))

In this paper, after reviewing the fundamental basics in mod-
eling and control in physiology, I will try to answer the three
following key questions:

1. How does manifest pathological Chaos in physiological con-
trol systems and what are the motivation behind studying
these dynamics?

2. What are the control systems in physiology showing healthy
chaotic patterns?

3. How can we distinguish between healthy and pathological
Chaos?

2 | Olfa Boubaker CHAOS Theory and Applications



Figure 4 Data from Scopus database: Production per year in the
field of neurosciences. Query: KEY (Chaos) AND (LIMIT-TO (SRC-
TYPE, «j»)) AND (LIMIT-TO (LANGUAGE, «English»)) AND (LIMIT-
TO (SUBJAREA, «NEUR»))

This paper is organized as follows: the following section intro-
duces fundamentals in modeling and control in physiology. In
section 3, main pathological and healthy chaotic systems are re-
viewed and discussed. Finally, general principles and approaches
to help differentiate between healthy and pathological chaotic dy-
namics are exposed.

FUNDAMENTALS IN MODELING AND CONTROL IN PHYSI-
OLOGY

This section will expose motivations and used approaches for mod-
elling dynamic systems in physiology. It also introduces the impor-
tance of the principle of Homeostasis in controlling physiological
systems.

Motivations
Modeling and controlling complex physiological systems is a new
research area compared to other applications in control systems
like robotics, aeronautics, and industrial systems. The results
of this new research field are of huge importance as they can
be used to understand the complexity of physiological systems,
to establish a diagnosis and to forecast the dynamics of some
diseases (Lassoued and Boubaker 2020). Furthermore, in many
cases, certain failures in the body process require external control
laws to normalize the performances of the body (Boubaker 2020) or
use of artificial organs and robotic assistive technologies (Boubaker
2023).

Modelling in physiology
Modelling in physiology can be organized via three main ap-
proaches: the compartment modelling approach, the equivalent
modeling approach and the data driven modelling approach (see
(Lassoued and Boubaker 2020) and related references).

Compartmental modeling approachy It is one of the oldest ap-
proaches used for modelling physiological systems (Enderle and
Bronzino 2012). The related basic equations are expressed as fol-
lows (Lassoued and Boubaker 2020):

dxi
dt

= fi0 +
n

∑
j=1
j ̸=i

( fij − f ji)− f0i ; xi(0) = x0i ; i = 1, 2, . . . , n

(1)
where xi denotes the amount of material in compartment i and

xi0 represents the related initial value. f ji is the mass flow rate of

compartment j from compartment i. Figure 5 shows its arrange-
ment. The index zero represents the environment of the physiolog-
ical system (Lassoued and Boubaker 2020). Applications of this ap-
proach can be found in (Alvarez-Arenas et al. 2019; Yousefnezhad
et al. 2021; Rajeswari and Vijayakumar 2023; Giakoumi et al. 2023;
Boudin et al. 2023; McKnight et al. 2013). Figure 6 describes the
example of the insulin-independent two-compartment model.

Figure 5 Basics in compartmental modelling approach (Lassoued
and Boubaker 2020).

Figure 6 Insulin-independent two-compartment model for describ-
ing glucose kinetics. First compartment holds the vascular space.
Arrowed solid lines are flows, hollow arrow is glucose application
(infusion or dose), and broken line sampling (McKnight et al. 2013).

Equivalent modeling approach By such an approach, physiological
variables are modelled via physical mechanisms such as electrical
or mechanical components (see Table.1). Figure 7. shows an ex-
ample of an equivalent electronic circuit of blood-vessels system
(Lassoued and Boubaker 2020). Figure 8. shows an example of the
equivalent electronic circuit for a short segment of squid giant axon
proposed by Hodgkin and Huxley (Hodgkin and Huxley 1952).
Furthermore, an example of a physiological system modelled by
an equivalent electronic circuit for the cardiovascular system is
found in (Ismail et al. 2018; Zhang et al. 2020).

Data driven modeling approach It is here an empirical approach
that does not imply mathematical modelling derived from physi-
cal systems but machine learning and deep learning modeling ap-
proaches using time series data. Applications of such an approach
can be found in many recent papers (see for example (Dutta et al.
2018; Paoletti et al. 2019) for diabetes management, (Fong et al. 2018;
Yoo et al. 2022) for immune system modelling, (Dritsas and Trigka
2023) for cardiovascular disease modelling and (Khan et al. 2022)
for brain disease modelling).

Classification of mathematical models Dynamical systems in
physiology can be described using lumped models described by

CHAOS Theory and Applications 3



■ Table 1 Physical, mechanical, and electrical analogues (Lassoued and Boubaker 2020).

Physiological Mechanical analogues Electrical analogues

measurements Name Notation Symbol Name Notation Symbol

Pressure Force F - Voltage V -

Volume Displacement x - Charge q -

Flow Velocity v = dx
dt - Current I = dq

dt -

Viscous drag Viscous resistance B = F
v Resistance R = V

I

Compliance Compliance C′ = x
F Capacitance C =

q
V

Figure 7 Equivalent electronic circuit of blood-vessels system (Las-
soued and Boubaker 2020).

Figure 8 Electrical equivalent circuit for a short segment of squid
giant axon proposed by Hodgkin and Huxley. The capacitor repre-
sents the capacitance of the cell membrane; the two variable resis-
tors represent voltage-dependent Na+ and K + conductance, the
fixed resistor represents a voltage-independent leakage conduc-
tance, and the three batteries represent reversal potentials for the
corresponding conductance (Fang and Wang 2021).

ordinary differential equations or distributed parameter mod-
els described by partial differential equations (Shi et al. 2011).
They can be also described by deterministic or stochastic mod-
els, continuous-time, or discrete-time models or by, parametric or
non-parametric models.

Many recent papers have described physiological systems using
fractional-order derivatives. Some other papers have included
time-delays in mathematical models. In fact, “fractional calculus is
recognized as one suitable option to increase the accuracy of the
mathematical models and to provides a memory effect into the time
evolution of the system since its future solutions will depend on
all past times and not only from recent event” (Fernández-Carreón
et al. 2022).

Homeostasis principle
“In physiology, control refers to the process of stabilizing a physio-
logical variable to a specified set point, either by reversing pertur-
bations via negative feedback closed loops or via anticipatory open
loops. In the human body, the control process is designed by Home-
ostasis” (Lassoued and Boubaker 2020). Homeostasis principle
was discovered by Walter Bradford Cannon in 1929 (Cannon 1929).
A literature survey of this principle can be found in (Chapelot
and Charlot 2019). “The Homeostasis principle is the property of a
physiological system to regulate its internal environment to a given
set point in presence of a specific stimulus producing changes in
that variable” (Lassoued and Boubaker 2020).

As shown by Figure 9, the control activity in the body is guar-
anteed by the arrangement of the control center (composed by
nervous and endocrine systems), sensors and effectors. Figure 10
gives several examples of Homeostasis. The example of tempera-
ture regulation in the human body is described by Figure 11. As
reported in (Houk 1988), three basic control strategies guarantying
Homeostasis exist: negative feedback, feedforward, and adaptive
control. These approaches are summarized in Figure 12. Figure
13 and Figure 14 present the two examples of postural balance
homeostasis and glucose homeostasis, respectively, using feed-
back control laws. For further examples of physiological systems
using feedforward and adaptive control, the reader can refer to
(Lassoued and Boubaker 2020).

Figure 9 Homeostasis principle (Lassoued and Boubaker 2020).
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Figure 10 Homeostasis examples including energy and fluid bal-
ances (Lassoued and Boubaker 2020).

Figure 11 Human temperature Homeostasis (Lassoued and
Boubaker 2020).

Figure 12 Basic control strategies in Homeostasis principle (Las-
soued and Boubaker 2020).

CHAOS IN PHYSIOLOGY

According to classical concepts of physiological control, healthy
systems are self-regulated to reduce variability and keep physiolog-
ical constancy. However, contrary to the predictions of homeosta-
sis, the output of a wide range of systems fluctuates in a complex
manner that is underpinned by non-linear mechanisms and the
low dimensional dynamics of Chaos. Chaos supplies new concepts
and methods of analysis that help to understand the dynamics of
neural networks in both health and disease that complement exist-
ing approaches and may lead to new investigative opportunities
(Kernick 2005).

Figure 13 Postural balance via feedback control laws; (A) schematic
model (B) Block diagram (Lassoued and Boubaker 2020).

Figure 14 Scheme of the main mechanisms of glucose homeostasis.
Colored dashed arrows are control signals (glucose or hormone
concentrations) that regulate glucose fluxes or insulin and glucagon
secretion. The scheme does not show adaptive control mechanisms
(e.g., insulin secretion upregulation with insulin resistance) (Mari
et al. 2020).

Really, Peng et al. were between the first researchers claiming
that the classical theory of homeostasis, according to which stable
physiological processes seek to maintain constancy and its more
recently proposed modifications under the rubric of hemodynam-
ics, need to be revised and extended to account explicitly for this
far from equilibrium behavior (Peng et al. 1994).

Nonlinear dynamics in physiology
In (Goldberger et al. 2002), Goldberger et al., have given an ex-
haustive list of nonlinear dynamics that a physiological system can
generate. These complex behaviors include abrupt changes (like
bifurcations, bistability and multistability), hysteresis, nonlinear os-
cillations (including limit cycles, phase-resetting, entrainment. . . ),
scale invariant (including fractal and multi-fractal scaling, long
range correlation, self-organized criticality), nonlinear waves (like
spirals, scrolls, solitons) and deterministic Chaos.

Even controlled via Homeostasis principle, it is proved in many
other research papers that physiological controlled systems are, at
least, capable of the four kinds of behaviors described by Figure 15
(Lassoued and Boubaker 2020; Uthamacumaran 2021). These dy-
namics can include fixed point, limit cycle, limit torus and strange
attractor behavior. It is important to note that the term Chaos in
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physiology does not imply randomness in the traditional sense but
rather a complex and often nonlinear behavior that deviates from
typical physiological patterns (Kernick 2005; Coffey 1998). Study-
ing these chaotic dynamics is crucial for understanding diseases
mechanisms and developing targeted interventions.

Healthy chaotic patterns
Chaotic physiological systems in healthy organisms refer to sys-
tems that show complex, unpredictable behavior despite being
in a state of normal health. It is important to note that Chaos in
physiological systems does not always imply dysfunction; rather,
it reflects the inherent complexity and dynamic nature of these
systems. It is important to emphasize that Chaos in these sys-
tems is often related to their adaptability and responsiveness to
changing internal and external conditions as healthy and stable
living systems are set up as chaotic and fractal in nature (Golbin
and Umantsev 2006; Goldberger and West 1987; Korolj et al. 2019).
While Chaos might be present in healthy physiological systems, it
is typically controlled and contributes to the overall stability and
resilience of the organism. It is proved in many research papers
that a healthy dose of Chaos is always necessary (Korolj et al. 2019).
I give below some examples.

Figure 15 Various behaviors shown by complex systems in phys-
iology (Lassoued and Boubaker 2020). (A) Fixed point; (B) Limit
Cycle; (C) Limit Torus; (D) Strange attractor.

Chaos in healthy cardiovascular and respiratory systems The
cardiovascular system is composed of the heart and vessels. Its
main function is to pump the blood in the body in order to supply
all tissues and organs with oxygen and other nutrients (Formaggia
et al. 2010). The earliest model of this system was proposed in
(Grodins 1959). The modeling of this system was then determined
via different point of view (Golbin and Umantsev 2006; Gois and
Savi 2009; Noble et al. 2012; Cheffer et al. 2021; Yadav and Jadhav
2021). For example, in (Golbin and Umantsev 2006), the authors
prove via the cardiac Hodgkin– Huxley equation that hearts are
poised near the edge of Chaos. They find that the potassium ion-
channel and the sodium ion-channel are memristors.

In (Zhang et al. 2020; Coffey 1998), the authors prove that car-
diac Chaos is prevalent in healthy heart, and a decrease in such
Chaos may be indicative of congestive heart failure. Let us note

that during intense physical exercise, the interaction between the
cardiovascular and respiratory systems can also show chaotic be-
havior. This complexity is often seen as a normal adaptive response
to the increased demands on the body (Golbin and Umantsev 2006;
Goldberger and West 1987). The HRV may show a more irregular
pattern during exercise, and this variability is often considered a
sign of a healthy cardiovascular system (Pincus and Goldberger
1994; Mansier et al. 1996).

Chaos in healthy neural activity in the brain Neural networks in
the brain often display complex patterns of activity (Poon and
Merrill 1997). Some level of Chaos in neural activity is considered
healthy and necessary for cognitive function. Indeed, neuronal
firing patterns and the interactions between different brain regions
contribute to the complexity of brain function. This complexity is
not only normal but is also thought to be essential for cognitive
processes such as learning, memory, information processing and
adaptability (Xuan et al. 2022; Pritchard and Duke 1995; Breakspear
2017; Kavakci 2021). The concept of Chaos in neural dynamics is
often explored through the study of brain waves. For example,
it is proved that the EEG frequencies of aging subjects show a
loss of low-voltage fast waves and an increase in slow waves with
diffussion of slow periodicity. Measures of complexity using frac-
tals and Chaos theory always help to assess age-related anatomic
and physiologic changes and predict pathologies (Goldberger et al.
2002).

Healthy Chaos in gait and locomotion system Human movement
and locomotion involve a complex interplay of muscles, joints, and
neural signals. Walking, for example, is not a perfectly regular
and predictable activity. Gait patterns show variability and chaotic
dynamics, allowing individuals to adapt to changes in terrain and
keep balance. This variability is considered a sign of a healthy and
adaptable motor control system (Müller et al. 2017).

Healthy chaos in immune system According to (Heltberg et al.
2019), Chaos in bodily regulation can optimize our immune system
and can have of great significance for avoiding serious diseases
such as cancer and diabetes.

Heltberg et al. (2019) show how chaotic dynamics create a het-
erogeneous population of cell states and describe how this can
be beneficial in multi-toxic environments. The dynamics of the
transcription factor of the immune system when driven by an ex-
ternal periodic signal and exhibiting chaotic signals are described
by Figure 16.

Figure 16 Dynamics emerging from a transcription factor of the
immune system when driven by a periodic tumor necrosis factor
(TNF) signal exhibiting chaotic output signals when amplitude of
external signals increase (Heltberg et al. 2019).
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Chaos in disease
Chaos in the context of disease often refers to irregular and unpre-
dictable patterns or behaviors within physiological systems (Cross
and Cotton 1994). There are diverse ways in which chaotic dynam-
ics contribute to the complexity and unpredictability of various
diseases across different physiological systems. Understanding
these chaotic patterns is essential for developing effective diagnos-
tic and therapeutic strategies. Here are examples where chaotic
dynamics may be seen in the context of various diseases.

Cardiovascular and respiratory disorders Cardiac fibrillation,
with its complex and disordered patterns, can be seen as a man-
ifestation of Chaos in space and time within the heart muscle
(Garfinkel et al. 1997; Cheffer et al. 2021). The chaotic electrical activ-
ity can disrupt the normal pumping function of the heart, leading
to compromised blood circulation (Gupta et al. 2020, 2021; Gupta
2023). On the other hand, other studies focusing on chronic ob-
structive pulmonary disease, and asthma have shown the chaotic
behavior within these diseases. In this framework, (Mansour et al.
2023) have proposed a new chaotic system that investigates the
connection between weather patterns and respiratory illness.

Cancer progression Cancers are complex systems, consisting of
groups of adaptive malignant cells that self- organize in time and
space, far from thermodynamic equilibrium (Uthamacumaran
2021). They are considered as of the most curious physiologic
problems in these last years. The growth and spread of cancer
cells can show chaotic patterns (Fong et al. 2018; Yoo et al. 2022;
Sedivy and Mader 1997; Debbouche et al. 2022; Uthamacumaran
2020; Naik et al. 2020). Tumor growth is influenced by complex
interactions between cancer cells, the immune system, and the
surrounding microenvironment, resulting in unpredictable disease
progression (Russo et al. 2021). Several mathematical models were
proposed to predict the evolution of this disease. They are based
on the Volterra–Lotka type prey– predator models. One of the most
interesting models was proposed by Itik and Banks in (Itik and
Banks 2010). The non-dimensional model considering a three-cell
population is described by:

dx1
dt

= x1(1 − x1)− a1x1x2 − a2x1x3

dx2
dt

= a3x2(1 − x2)− a4x1x2

dx3
dt

=
a5x1x3
x1 + a6

− a7x1x3 − a8x3

(2)

where x1 represents the number of tumor cells, x2 indicates the
number of host cells, x3 refers to the number of effectors cells in the
single tumor compartment and ai (i = 1, ..., 8) are system’s param-
eters. Let us note that a patient is healthy when the effector cells
are equal to zero, more precisely when the chaotic-cancer system
converges to an equilibrium point. Several papers have proved
that entropy in individual cells change with cancer induction and
increasing anaplasticity (See (Uthamacumaran 2021) and related
papers).

Recent works in this field have considered fractional-order dif-
ferential systems to describe cancer models. The most recent model
is described by (Karaca 2023):

Dγ
t x1 = x1(1 − x1)− a1x1x2 − a2x1x3

Dγ
t x2 = a3x2(1 − x2)− a4x1x2

Dγ
t x3 =

a5x1x3
x1 + a6

− a7x1x3 − a8x3

(3)

where Dγ
t is the Caputo-Fabrizio-Caputo fractional derivative

and 0 < γ ≤ 1 is the fractional order. Figure 17 describes the
numerical simulation for the model (3).

Figure 17 Numerical simulation for cancer model via Atangana-
Baleanu-Caputo fractional operator. (A): Simulation in the three
dimensional-space; (B): projected onto x2(t)-x3(t) planes, respec-
tively (Karaca 2023).

Metabolic disorders It was proved through several research works
that metabolic disorders including obesity, hyperglycemia, hy-
pertension, dyslipidemia, hypercholesterolemia, hypertriglyc-
eridemia, non- alcoholic fatty liver disease and type I and type
II diabetes have complex dynamic patterns. Diabetes involves
dysregulation of blood glucose levels, and the metabolic Chaos
associated with insulin resistance and impaired insulin secretion
can lead to erratic fluctuations in blood sugar levels (Ginoux et al.
2018; Rajeswari and Vijayakumar 2023; Dutta et al. 2018; Paoletti
et al. 2019; Shabestari et al. 2019; Borah et al. 2021).

One of the most interesting integer-order models for human
glucose-insulin regulatory system is described by (Shabestari et al.
2019):

dx1
dt

= a1x2(t − τ1)x3(t − τ)− a2x1 + a3x3(t − τ1)

dx2
dt

=
a4
x3

− a5x1(t − τ2) + a6

dx3
dt

= a7(x2 − x̂2)(T − x3) + a8x3(T − x3)− a9x3

(4)

where x1, x2, x3 and x̂2 are the insulin level, glucose level, beta-
cells number and the glucose metabolism considering its basal
state, respectively. τ1 is the delay for the insulin production, be-
cause of blood glucose level rising. The delay between augmented
insulin level and glucose reduction is τ2. Figure 18. Shows the
bifurcation diagrams for the glucose-insulin system (4) depending
on the bifurcation delays τ1 and τ2 and showing routes to Chaos.

Fractional-order modelling of glucose-insulin biological sys-
tems was also considered by some researchers (see for example (Ra-
jagopal et al. 2020; Munoz-Pacheco et al. 2020; Fernández-Carreón
et al. 2022)). In (Fernández-Carreón et al. 2022), the authors de-
rived the fractional-order model corresponding to the integer-order
model (5) as follow:

Dγ
t x1 = a1x2(t − τ1)x3(t − τ)− a2x1 + a3x3(t − τ1)

Dγ
t x2 =

a4
x3

− a5x1(t − τ2) + a6

Dγ
t x3 = a7(x2 − x̂2)(T − x3) + a8x3(T − x3)− a9x3

(5)

By using the fractional-order operator and representing the
phase portraits and bifurcations diagrams, the authors conclude
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that numerical simulations remain in good agreement with the
theoretical findings and that a memory profile, can provide im-
proved accuracy of the physiological disorders. Furthermore, in
(Munoz-Pacheco et al. 2020), the authors who proposed an elec-
tronic realization of the fractional glucose-insulin regulatory model
confirm that the use of fractional-order modelling for chaotic sys-
tems is more interesting for embedded technologies.

Figure 18 Bifurcation diagram for the glucose-insulin system (5)
depending on the bifurcation delays τ1 and τ2 and showing routes to
Chaos (Shabestari et al. 2019).

Neurological disorder Neurological disorders are conditions that
affect the nervous system, which includes the brain, spinal cord,
and peripheral nerves. These disorders can result from abnor-
malities in the structure, function, or chemistry of the nervous
system and often lead to a variety of symptoms affecting move-
ment, sensation, cognition, or other functions. Examples of specific
neurological disorders showing chaotic patterns, contributing to
the characteristic motor symptoms are Alzheimer’s disease (Khan
et al. 2022), neurodegenerative diseases like Parkinson’s disease
and Huntington’s disease (Yulmetyev et al. 2006; Borah et al. 2021;
Shabestari et al. 2019) and Epilepsy (Panahi et al. 2017, 2019; Sar-
badhikari and Chakrabarty 2001).

However, the application of chaos theory to these diseases is
still an area of ongoing research, and the nature of the dynamics
may vary between individuals. Between neurological diseases
I can also cite migraines attacks involving severe headaches of-
ten accompanied by nausea, sensitivity to light, and sound. The
triggers and the unpredictable nature of migraine attacks are also
examples of chaotic behavior in the nervous system (Bayani et al.
2018; Kernick 2005; Khan et al. 2022). Other examples of neuronal
diseases can also be cited such as the chaotic model of memristive

nature of autapsis when an axon is injured. This involves poison-
ing in ion channels or heterogeneity in a local area of the axon for
which signal transmission may be interrupted or blocked during
neuronal communication (Muni et al. 2022).

Viral diseases impacting the immune system There are many fatal
diseases impacting the immune system like HIV/AIDS, Hepatitis
C (HCV) and Herpes Simplex Virus (HSV) which are caused by
virus. For example, HIV-1 infection is a hazardous disease that can
lead to cancer, AIDS, and other serious illnesses. The progression
of HIV to AIDS involves chaotic dynamics in the immune system.
The virus attacks and depletes CD4 T cells, disrupting the body’s
ability to mount an effective immune response (Borah et al. 2021; Ye
et al. 2009; Duarte et al. 2018). The related model can be described
by (Naik et al. 2020):

dx1
dt

= x1[a1

(
1 − x1 + x2 + x3

a2

)
− a3x2]

dx2
dt

= x2[a4

(
1 − x1 + x2 + x3

a2

)
− a5x1 − a6x3]

dx3
dt

= a6x2x3 − a7x3

(6)

where x1 is the population number of cancer cells, x2 represents
the number of healthy cells, x3 refers to the number of HIV-infected
cells ai (i = 1, ..., 7) are system’s parameters. Once again, stability
investigations and results obtained in (Naik et al. 2020) indicate
that fractional models are better predictors, among others.

HOW DISTINGUISHING BETWEEN HEALTHY AND DIS-
EASE CHAOS?

Distinguishing between healthy Chaos and chaotic patterns associ-
ated with disease is a complex task that often requires a thorough
understanding of the specific physiological system under consid-
eration. Interdisciplinary collaboration, combining ability from
clinicians, researchers, and data scientists, is essential for a compre-
hensive assessment of chaotic dynamics in physiological systems.
This collaborative approach enables a more nuanced interpretation
of Chaos, considering both the specific characteristics of the sys-
tem under study and the broader clinical context. Here are some
general principles and approaches to help differentiate between
healthy and pathological chaotic dynamics.

Temporal Patterns
In physiology, there are several types of physiological signals that
can be collected. They include the electroencephalogram (EEG)
measuring the electrical activity of the brain, the electrocardiogram
(ECG) recording the electrical activity of the heart, Electromyogram
(EMG) recording the electrical activity of muscles, the Electroder-
mal Activity (EDA) measuring the electrical activity of the skin,
the Oxygen Saturation (SpO2) measuring the percentage of oxygen
in the blood, the body Temperature, the respiratory rate, the blood
pressure, the blood glucose, the bioelectrical impedance analysis
(BIA), the Capnography measuring the concentration of carbon
dioxide in exhaled air and so on (Shirmohammadi et al. 2016).
Examining the temporal patterns and dynamics of physiological
systems over time is especially important (Stam 2005).

We should recognize that time series often hold "hidden infor-
mation" including chaotic signals for a wide range of physiological
systems. Healthy Chaos often shows short-term dynamics within a
stable overall pattern. In contrast, chaotic patterns associated with
disease may be characterized by sustained instability, irregularities,
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or a lack of right regulation (Goldberger et al. 2002). Nonlinear
analysis of time series of physiological signals such as EEG and
HRV signals can be used to support the diagnosis of many diseases
like cardiovascular diseases (Poon and Merrill 1997).

Integration of multiple parameters
Combining information from multiple physiological parameters
can supply a more comprehensive understanding. Examining the
interactions between different systems and their chaotic patterns
can reveal insights into overall health or the presence of disease
(Poon and Merrill 1997; Borah et al. 2021; Stam 2005; Garland 2013;
Cashin and Yorke 2016).

Using quantitative measures
Employing quantitative measures can supply objective assess-
ments of Chaos. Analyzing specific parameters, such as largest
Lyapunov exponent, fractal dimensions, Hausdorff dimension
D, correlation dimension D2, wavelet transform modulus max-
ima, time asymmetry/irreversibility parameters, Renyi’s entropy
(REN), Shannon spectral, entropy and so on can offer insights into
the nature of chaotic behavior and whether it aligns with healthy
or pathological patterns (Faust and Bairy 2012; Müller et al. 2017;
Pereda et al. 2005).

Integration of imaging techniques
Utilizing advanced imaging techniques (Choquet et al. 2021), such
as functional magnetic resonance imaging (MRI) and electroen-
cephalography (EEG), can supply insights into the spatial and
temporal patterns of chaotic behavior within the body. It can en-
hance the understanding of Chaos dynamics within a physiological
system. Recent advancements in deep learning, particularly convo-
lutional networks, have rapidly become the preferred methodology
for analyzing medical images, facilitating tasks like disease seg-
mentation, classification, and pattern quantification of a range of
diseases including Alzheimer’s, breast cancer, brain tumors, glau-
coma, heart murmurs, retinal microaneurysms, colorectal liver
metastases, and more (Rasool and Bhat 2023).

Baseline variability, population-based Comparisons, and genetic
factors
Healthy physiological systems often show a certain degree of vari-
ability or Chaos within a defined range. Understanding the normal
range of variability for a given parameter, such as heart rate, neural
activity, or hormone levels, is crucial. Deviations that fall outside
the normal range may show pathology. Furthermore, comparing
individual physiological patterns to population-based norms can
be informative (Poon and Merrill 1997).

Deviations that are consistent with a healthy range in the pop-
ulation may suggest adaptive Chaos, while patterns that diverge
significantly may show disease-related Chaos. Genetic and epige-
netic factors play a role in deciding the baseline characteristics of
physiological systems. Understanding how genetic and epigenetic
factors influence chaotic patterns can contribute to distinguishing
between healthy and pathological dynamics (Sedivy and Mader
1997).

Adaptability and responsiveness to interventions
Healthy chaotic patterns are often associated with adaptability and
responsiveness to internal and external stimuli (Cross and Cotton
1994). Interventions or modifications, such as lifestyle changes,
medications, or therapeutic approaches, can supply valuable in-
formation. These adaptive responses contribute to the system’s

ability to support homeostasis. In contrast, chaotic patterns in
disease may be maladaptive, resulting in dysfunction or failure to
respond appropriately to challenges (Golbin and Umantsev 2006).
Indeed, healthy systems often have a reserve ability that allows
them to adapt to stressors and challenges. Assessing the functional
reserve ability of a physiological system can help distinguish be-
tween adaptive, healthy Chaos and dysfunction. Showing specific
associated with healthy or pathological chaotic patterns can be use-
ful. Certain biomarkers may say adaptive responses in a healthy
context or dysregulation in the presence of disease.

Contextual understanding, functional outcome, and clinical symp-
toms

Understanding the purpose and context of chaos within a system
is important. For example, chaotic neural activity during certain
cognitive processes is normal (Tsuda 2015), but chaotic patterns in
neural activity associated with seizures may say pathology (Tsat-
saris et al. 2016; Kavakci 2021). Furthermore, symptoms and signs
associated with disease should not be overlooked. The presence
of abnormal clinical symptoms, in conjunction with chaotic phys-
iological patterns, may say pathology. Assessing the functional
outcome of chaotic dynamics is crucial. Healthy chaotic behavior
contributes to the proper functioning of physiological systems,
supporting best performance. Chaotic patterns associated with
disease may lead to impaired function, symptoms, and negative
health outcomes.

Examining network analysis

Utilizing network analysis techniques can help understand the con-
nectivity and interactions within a physiological system. Indeed
Healthy and stable living systems are proved as chaotic and fractal
in nature. A few of the most accessible examples include neurons
and neural networks, heart rate variability, and the branching vas-
culature (Korolj et al. 2019). Healthy chaotic networks often exhibit
organized complexity, while aging and disease-related may disrupt
normal network dynamics (Alves et al. 2017). Lets’ note for ex-
ample that physiologic aging is associated with a generalized loss
of such complexity in the network showing loss of complex vari-
ability in multiple physiologic processes including cardiovascular
control, pulsatile hormone release, and electroencephalographic
potentials and leading to an impaired ability to adapt to physio-
logic stress (Peng et al. 1994; Alves et al. 2017; Goldberger et al. 2002;
Uthamacumaran 2021).

CONCLUSION

In this paper, after reviewing basics in modeling and control in
physiology, I have examined through a state of art pathological vs
healthy chaotic patterns in physiological systems. I have listed a
number of principles and approaches to help differentiate between
healthy and pathological chaotic dynamics. In all examples, the
presence of chaos does not always show dysfunction or disease.
Instead, it can reflect the intrinsic adaptability of physiological
systems. Researchers have studied these chaotic dynamics to bet-
ter understand the baseline behavior of healthy systems, which
can provide valuable insights for distinguishing normal variations
from patterns associated with pathology. Several prospectives can
be suggested for this complex research domain including improv-
ing the performance of disease diagnostic models and exploring a
new paradigm for intelligent assisted disease diagnosis (Liu et al.
2024; Rasool and Bhat 2023), diseases prediction (Mansour et al.
2023) and disease’s optimal control (Mohammadi and Hejazi 2023).
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ABSTRACT A three-dimensional multiparametric system of ordinary differential equations, arising in the theory
of genetic networks, is considered. Examples of chaotic behavior are constructed using the methodology by
Shilnikov. This methodology requires the existence of saddle-focus points satisfying some additional conditions.
As the result, rich dynamical behavior of solutions can be observed, including chaotic behavior of solutions.
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INTRODUCTION

Genetic regulatory networks are in a focus of investigation of biolo-
gists (Peter 2020) and theoreticians (Samuilik and Sadyrbaev 2023;
Jong 2002; Schlitt 2013; Vijesh et al. 2013). Mathematical models of
GRN can be formulated in terms of ordinary differential equations
(Barbuti et al. 2020). This modeling method is preferable if the
evolution of a network is to be studied. Each equation in a system
corresponds to an element of a network. So realistic networks
and the respective systems are large (Kardynska et al. 2023). To
understand the principles of functioning of gene networks small
networks should be investigated first. The systems of differential
equations also consist of several equations only.

The two-dimensional systems can be studied using the phase
plane method. The results can be visualized easily and the re-
spective conclusions are at hand. We mention briefly the main
properties of two-dimensional systems. They are quasi-linear, and
the right sides contain a nonlinear term and a linear one. The non-
linearity is represented usually by a sigmoidal function, such as
the logistic one, f (z) = 1/(1 + e−µz) (Samuilik 2022), Hill’s func-
tion h(z) = zµ/(zµ + θµ) (Santillan 2008) or Gompertz function
g(z) = exp(− exp(−µz)) (Ogorelova et al. 2020).

Sigmoidal functions are monotone, smooth and bounded. They
are convenient for mathematical treatment and reflect the main
properties of a modeled object. To predict future states of a net-
work, a researcher should analyze the mathematical model. The
following questions should be answered: 1) Does the system have
attracting sets in the phase space; 2) What they (attractors) are;
3) How attractors depend on the parameters of a system; 4) Is it
possible to regulate the model by changing parameters. The main
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issue is, of course, the ability of a model to adequately describe
a modeled object. In other words, could a researcher rely on the
predictions, formulated when mathematically studied a network.
More or less full analysis can be made for two-dimensional (2D)
systems. They have attractors, which are stable critical points, limit
cycles and their combinations. New information is obtained when
studying three-dimensional (3D) systems of the form

dx
dt

=
1

1 + e−µ1(w11x+w12y+w13z−θ1)
− v1x,

dy
dt

=
1

1 + e−µ2(w21x+w22y+w23z−θ2)
− v2y,

dz
dt

=
1

1 + e−µ3(w31x+w32y+w33z−θ3)
− v3z.

(1)

Here the three variables x, y, z are for the elements of a network.
The dynamics of the system and future states of a network de-
pend on solutions of this system and its attractors. There are
many examples of attractors which are stable critical points, stable
periodic solutions (limit cycles) and more (Ogorelova et al. 2020;
Brokan and Sadyrbaev 2016, 2018). There are many examples of
three-dimensional autonomous systems, which exhibited chaotic
behavior. Recall Lorenz system, Rössler system, Duffing type equa-
tions written as 3D-systems, and many nice examples collected
by J.C. Sprott (Sprott 2010) and N.A. Magnitskii (Magnitskii and
Sidorov 2006).

To find a chaotic attractor, which is none of the above men-
tioned, is a non-trivial task. "Chaos should occur often in gene
regulatory networks which have been widely described by nonlin-
ear coupled ordinary differential equations, if their dimensions are
no less than 3. It is therefore puzzling that chaos is also extremely
rare in models of GRN," write the authors in (Zhang et al. 2012).
In (Zhang et al. 2012) two tables are provided, which show the
number of chaotic samples reached in three-dimensional GRN by

CHAOS Theory and Applications 13

CHAOS
Theory and Applications

in Applied Sciences and Engineering

e-ISSN: 2687-4539
RESEARCH ARTICLE

Vol.6 / No.1 / 2024 / pp.13-18
https:/ /doi .org/10.51537/chaos.1380419

https://orcid.org/0009-0000-6438-0602
https://orcid.org/0000-0001-5074-804X


106 tests with random network structures, parameter distributions
and initial variable conditions. This number is one. The same
measurement within networks possessing the structure of periodic
oscillations is 195. We knew only the work (Das et al. 2000) where
a chaotic attractor was discovered for the system of the form (1).

The attempts to find new chaotic attractors in the system (1)
were time and work consuming without any guarantees. Literature
review related to the subject led us to early works by L.P. Shilnikov.
We plan to study this system under the assumptions formulated
in the work (Shilnikov 1965). In this work, a three-dimensional
system was considered, which had a saddle-focus type critical
point (see also (Gonchenko et al. 2019; Deng et al. 2017)). Our intent
is to construct examples of genetic systems which have a critical
point of this type. It is known that the behavior of trajectories in a
neighborhood of such point can be complicated. We are looking
for chaotic behavior.

SHILNIKOV SYSTEM

In the work (Shilnikov 1965) the following system



dx
dt

= ρx − ωy + P,

dy
dt

= ωx + ρy + Q,

dz
dt

= λz + R

(2)

was studied under the conditions ρ < 0, λ > 0, functions P, Q, R
are zeros together with their derivatives at the point (0, 0, 0).

The linearized system around (0, 0, 0) is



dx
dt

= ρx − ωy,

dy
dt

= ωx + ρy,

dz
dt

= λz.

(3)

If we assume that ω is positive, then the origin in the system (3) is
a saddle-focus with 2D stable focus and repulsion in z-direction.
If this repulsion dominates over an attraction in the 2D focus
(λ > −ρ), the behavior of trajectories near the origin in a nonlinear
system (2) can be complicated (Shilnikov 1965). Our intent is to
construct GRN system with similar properties and to test it on
attractors.

Characteristic values for (0, 0, 0) are Λ1 = λ > 0, Λ2,3 = ρ ± ωi,
ρ < 0, ω > 0. The phase space around (0, 0, 0) is the spiral going
away of the plane where its (spiral) projection approaches the
stable focus. According to (Shilnikov 1965), there is a trajectory of
the system (2), which emanates from (0, 0, 0) and ends in (0, 0, 0)
in an infinite time. It was denoted Γ0. The following condition
according to (Shilnikov 1965) is important for the complicated
behavior of trajectories: If λ > −ρ, then in a vicinity of Γ0 there
are infinitely many periodic solutions.

It was mentioned in (Gonchenko et al. 2019, page 9) that there
are two interesting cases of a saddle-focus behavior. The first
case is called saddle-focus I. Then the equilibrium has a stable
2D manifold and unstable 1D manifold. In terms of characteristic
numbers λ1 > 0, λ2,3 = α ± βi, α < 0, β ̸= 0. Conversely, the
saddle-focus II case has λ1 < 0, λ2,3 = α ± βi, α > 0, β ̸= 0.

EXAMPLES

We wish to construct examples of systems of the form (1), which
have critical points with the characteristic numbers λ1 < 0, λ2,3 =
α ± βi, where α > 0. Alternatively, we are interested in the case
λ1 > 0, λ2,3 = α ± βi, α < 0. The notation in this section is
independent of the notation in the previous section. We wish also
the following condition to be satisfied

|λ1| > α. (4)

To construct examples, we will use material in the article (Ko-
zlovska and Sadyrbaev 2022). We set vi = 1, µi = 4 in the system
(1). Suppose that the regulatory matrix

W =


w11 w12 w13

w21 w22 w23

w31 w32 w33

 (5)

is already defined. A critical point can be found from the system

x =
1

1 + e−µ1(w11x+w12y+w13z−θ1)
,

y =
1

1 + e−µ2(w21x+w22y+w23z−θ2)
,

z =
1

1 + e−µ3(w31x+w32y+w33z−θ3)
,

(6)

where

w11 + w12 + w13 = 2 θ1,

w21 + w22 + w23 = 2 θ2,

w31 + w32 + w33 = 2 θ3.

(7)

This choice of θi puts a critical point to a central location
(0.5, 0.5, 0.5). Notice that the right sides of equations in the system
(6) then are equal to 0.5.

Choose λ1 = −2, λ2,3 = 1 ± i. The numbers Λ1 = λ1 + 1 = −1,
Λ2,3 = λ2,3 ± i = 2 ± i (do not mix with Λ in the previous section)
are solutions (Kozlovska and Sadyrbaev 2022) of the characteristic
equation

Λ3 − (w11 + w22 + w33)Λ2 − (w21w12 − w11w22 + w31w13

+w32w23 − w11w33 − w22w33)Λ − (−w31w22w13 + w21w32w13

+w31w12w23 − w11w32w23 − w21w12w33 + w11w22w33) = 0.
(8)

For our choice of Λ1 = −1, Λ2,3 = 2 ± i we obtain the cubic
equation

(Λ + 1)(Λ2 − 4Λ + 5) = Λ3 − 3Λ2 + Λ + 5 = 0. (9)

Comparing (11) and (9), we are led to the conclusion that

(w11 + w22 + w33) = 3,

(w21w12 − w11w22 + w31w13 + w32w23 − w11w33 − w22w33) = −1,

(−w31w22w13 + w21w32w13 + w31w12w23 − w11w32w23

−w21w12w33 + w11w22w33) = −5.
(10)
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This is an over-determined system of equations to find elements
of matrix W. The central point (0.5, 0.5, 0.5) will be a critical point
with the characteristic values λ1 = −2, λ2,3 = 1 ± i.

In such a way multiple examples can be constructed. The central
point (0.5, 0.5, 0.5) need not be a unique critical point. To find the
rest of the critical points (if any), one needs to analyze the location
of the nullclines, which are given by the relations (6).

Example of system (1) with the required critical point
Suppose we wish to construct the system with the critical point at
(0.5, 0.5, 0.5) and with prescribed characteristic numbers. Since the
parameters µ and v are already defined, we need to construct the
regulatory matrix W only. The parameters θ will then be defined
by the relations (7). Choose the characteristic numbers λ1 = −0.8,
λ2,3 = 0.1 ± 2i. The numbers Λ1 = λ1 + 1 = 0.2, Λ2,3 = λ2,3 ±
2i = 1.1 ± 2i are solutions (Kozlovska and Sadyrbaev 2022) of the
characteristic equation

Λ3 − (w11 + w22 + w33)Λ2 − (w21w12 − w11w22 + w31w13

+w32w23 − w11w33 − w22w33)Λ − (−w31w22w13 + w21w32w13

+w31w12w23 − w11w32w23 − w21w12w33 + w11w22w33) = 0.
(11)

For our choice of Λ1 = 0.2, Λ2,3 = 1.1 ± 2i we obtain the cubic
equation

(Λ − 0.2)(Λ2 − 2.2Λ + 5.21) = Λ3 − 2.4Λ2 + 5.65Λ − 1.042 = 0.
(12)

Comparing (11) and (9), we are led to the conclusion that

(w11 + w22 + w33) = 2.4, (w21w12 − w11w22 + w31w13

+w32w23 − w11w33 − w22w33) = −5.65, (−w31w22w13 + w21w32w13

+w31w12w23 − w11w32w23 − w21w12w33 + w11w22w33) = 1.042.
(13)

This is an over-determined system of equations to find elements
of matrix W. The central point (0.5, 0.5, 0.5) will be a critical point
with the characteristic values λ1 = −0.8, λ2,3 = 0.1 ± 2i.

The regulatory matrix

W =


0 0 1.042

−1 0 5.65

0 −1 2.4

 (14)

is good. It is not unique, of course.

EXAMPLES WITH ATTRACTORS

We consider system (1), where parameters are µi, θi, vi and wij. In
any of our examples we will have a critical point with the charac-
teristic values, satisfying the condition (4). Our goal is to obtain
attractors which are neither stable equilibria, nor limit cycles, but
something else. We provide 3D visualizations of attractors, as well
as graphs of x(t), y(t) and z(t). The behavior of solutions is irregu-
lar. We also made a test on the sensitive dependence of solutions
on the initial data. For this, we compute Lyapunov exponents.
Recall, that there are three Lyapunov curves. If one of them is posi-
tive, this is an evidence of the chaotic behavior of solutions. For
calculations, we use Wolfram Mathematica programming written
by M. Sandri (Sandri 1996) and available online.

Example 1
Consider the three-dimensional system (1) with the regulatory
matrix

W =


0 0 2

−0.82 −0.2 4.55

0.1 −0.87 1.11

 (15)

and v1 = 0.164, v2 = 0.1, v3 = 0.2; µ1 = 4.38, µ2 = 4, µ3 =
3.1; θ1 = 0.77, θ2 = 1.09, θ3 = 0.62. Let initial conditions be
(0.41; 0.1; 0.4). There is the critical point P = (6.096; 2.085; 1.356).
The nullclines of the system (1) with the regulatory matrix (15) are
demonstrated in Fig.1 and the trajectory of the system (1) with the
regulatory matrix (15) is shown in Fig.2.

Figure 1 The nullclines of the system (1) with the regulatory matrix
(15).
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Figure 2 The trajectory of the system (1) with the regulatory matrix
(15).
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The characteristic values for the critical point P are λ1 =
−0.16, λ2,3 = 0.12 ± 1.21i. This is a saddle-focus II with the con-
dition (4) fulfilled. The dynamics of Lyapunov exponents for the
system (1) with the regulatory matrix (15) are demonstrated in
Fig.3 and the graphs of the system (1) with regulatory matrix (15)
are shown in Fig.4.

0 500 1000 1500 2000
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0.0
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Figure 3 The dynamics of Lyapunov exponents for the system (1)
with the regulatory matrix (15).
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Figure 4 The graphs (x(t), y(t), z(t)) of the system (1) with regula-
tory matrix (15).

The Lyapunov exponents are (0.032, 0.005,−0.212) with the
initial condition (0.41; 0.1; 0.4), where LE1 > 0, LE2 = 0 and LE3 <
0 (Saeed et al. 2023).

Example 2
Consider the three-dimensional system (1) with the regulatory
matrix

W =


0 0.262 −7.12

1.46 0 4

0.1425 −1 2

 (16)

and v1 = 0.708, v2 = 0.307, v3 = 0.767; µ1 = 5.63, µ2 = 4.538, µ3 =
4; θ1 = −4, θ2 = 4.44, θ3 = 0.5. The initial conditions are
(0.4; 0.9; 0.4). The nullclines of the system (1) with the regula-
tory matrix (16) are demonstrated in Fig.5 and the trajectory of the
system (1) with the regulatory matrix (16) is shown in Fig.6.

Figure 5 The nullclines of the system (1) with the regulatory matrix
(16).
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Figure 6 The trajectory of the system (1) with the regulatory matrix
(16).

The critical point has coordinates P = (0; 1.269; 1.085). Char-
acteristic values for the critical point P are λ1 = −0.71, λ2,3 =
0.02 ± 1.51i. This point is a saddle-focus II again. The dynamics of
Lyapunov exponents for the system (1) with the regulatory matrix
(16) are demonstrated in Fig.7 and the graphs of the system (1)
with regulatory matrix (16) are shown in Fig.8.
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Figure 7 The dynamics of Lyapunov exponents for the system (1)
with the regulatory matrix (16).
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Figure 8 The graphs (x(t), y(t), z(t)) of the system(1) with the
regulatory matrix (16).

The Lyapunov exponents are (0.065; 0.002;−0.686) with the
initial condition (0.4; 0.9; 0.4), where LE1 > 0, LE2 = 0 and LE3 <
0. The trajectory of Rössler system and the trajectory of the system
(1) with the regulatory matrix (16) are shown in Fig.9.
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Figure 9 The trajectory of the Rössler system ( top picture). The
trajectory of the system (1) with the regulatory matrix (16) ( bot-
tom picture).

The second attractor looks similar to the Rössler one (Ibraheem
and Raied 2022). They are different, however. The Rössler attractor
is based on two critical points, one in the basement and the second
one in the upper part of the attractor. The critical point in the base-
ment is a saddle focus II point, while the second critical point has
one-dimensional unstable manifold and two-dimensional stable
one. The attractor in the system (1) with the regulatory matrix (16)
has a single saddle focus II type point.

CONCLUSION

Chaotic attractors in GRN are extremely rare, according to the
evidences of researchers. So any indications on how to get chaotic
behavior are of great importance. In our study, the examples with a
critical point of saddle-focus type were considered. The condition
λ > −ρ was essential. In our examples, we were looking for
systems with the critical point of this type. So the number of tests
in search of chaos was significantly narrowed. We provide the
GRN system having a critical point of saddle-focus type II, where
λ1 < 0, λ2,3 = α±iβ, α > 0, β ̸= 0 and |λ1| > α. In two cases the
chaotic behavior was confirmed by analysis using the Lyapunov
exponents.
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A Novel Hypothesis for Migraine Disease Mechanism:
The Creation of a New Attractor Responsible for
Migraine Disease Symptoms
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ABSTRACT Migraine Disease (MD) is one of the common primary headaches that can prevent patients from
their everyday life. Despite the high prevalence, the pathophysiology of the disease has not been clearly
understood yet. Here, the brain is considered as a dynamical system. The Chua’s circuit with a chaotic
attractor is the proposed model. This attractor has a one-scroll mode representing a healthy brain and a
double-scroll mode representing a migraine sufferer brain. We believe that MD and Chua’s systems have
certain behavioral similarities. The boundaries of the attractor are the sensitive brain areas in which any small
trigger can start the ictal phase of the migraine. The transition from the inter-ictal phase to the ictal phase in
migraine patients occurs due to a decrease in serotonin levels when the brain is within the boundaries of the
first attractor. Here, this is the results of the increase of system parameters. In addition, the transition from the
ictal phase to the inter-ictal phase in a migraine sufferer brain is caused by a disruption of coordination in the
brain’s structures and this lasts for a certain period for every migraine patient. The structures which are the
result of the Migraine Generator Network (MGN) and Cortical Spreading Depression (CSD). This explanation
may propose newer methods for preventing or curing MD. To better understand MD to control it and shrink
the areas involved in this disease, it is better to know the dynamic systems better. It may help prevent the
formation of migraine ictal attractor or even make the migraine ictal phase attractor smaller even after it has
been formed.

KEYWORDS

Headache
Ictal
Migraine sufferer
Complex dy-
namic system
Chaotic attractor
Chua’s system

INTRODUCTION

Migraine Disease (MD) is one of the primary headaches affecting
one in every seven individuals worldwide (Aslan 2021). This preva-
lent disease is a neurological disorder characterized by numerous
symptoms, including headache, nausea, vomiting, photophobia,
phonophobia, osmophobia, etc. The foremost critical and bother-
ing symptom of the MD is the throbbing headache. The frequency
of incidence of the migraine ictal can range from infrequent to
weekly or even daily. MD is regarded as a chronic disorder with
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episodic manifestations (Ashina et al. 2021). The mechanism of MD
is still not fully understood. However, the activation of some re-
gions in the brainstem called Migraine Generator Network (MGN)
and activation of Cortical Spreading Depression (CSD) during a
migraine ictal are considered to be theories involved in the patho-
physiology of MD. These theories have difficulty explaining the
difference between a healthy brain and a migraine sufferer’s brain
in the inter-ictal phase. In this disease, there are one normal phase
and four abnormal phases, including the pre-ictal, aura, ictal, and
post-ictal phases. In some patients, only one or two phases of the
disease are observed (Lane and davies 2006).

Two common subtypes of MD are migraine with aura (MA) and
migraine without aura (MO), depending on whether the migraine
sufferer experiences the aura phase. The diagnosis of MD is based
on the clinical symptoms described by the patient and the opin-
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ion of the physician. Some studies focus on the classification of
migraine patients and healthy controls based on the extracted fea-
tures from the electroencephalography (EEG) signal (Aslan 2021;
Bellotti et al. 2007; Jindal et al. 2018). According to some researchers,
the brain is a dynamic system that enters the MD state by alter-
nation in its parameters (Dahlem et al. 2013, 2015; Scheffer et al.
2013). In 2003, Charles described migraine as a brain state. He
stated that headache happens due to changes in the state of the
brain. During the start of the ictal phase, certain brain networks
either become active or inactive. As a result, coordination between
different parts of the brain is disrupted. Also, during the ictal
phase, arousal decreases and symptoms like fatigue and yawning
occur. As awareness grows, the brain becomes more responsive to
light, smell, and other stimuli.

In migraine, not only does it activate pain-sensing networks,
but it also disrupts the physiological communication between dif-
ferent parts of the brain. Several studies have indicated alterations
in neuronal connections during the inter-ictal phase, along with a
reduction in theta wave activity on Quantitative Electroencephalog-
raphy (QEEG) during the pre-ictal and ictal phases (Charles 2013).
In 2013, Scheffer et al. considered a minimal model for migraine.
According to their report, when a group of neurons is stimulated
by an input stimulus, it causes an increase in the intracellular level
of potassium and glutamate, which enhances the excitability of
the neurons. This excitability is further amplified by the local
neuronal activity and positive feedback, ultimately leading to the
initiation of a contagious process called CSD by a small trigger in
the neurons. This study suggests that within each small region of
the brain, there exists a dynamic equilibrium. This equilibrium
arises from the generation and decay of pulses. When the baseline
excitability increases, this equilibrium is disrupted, and the brain
reaches a tipping point. In this case, every small trigger initiates
the ictal phase (Scheffer et al. 2013).

Dahlem et al. in 2013 considered migraine to be a dynamic
disease. It was stated that when the headache starts, the brain
transitions from the normal phase and enters a tipping point or
bifurcation point and then enters the headache phase. They de-
clared this stage as the prodromal stage and stated that it could
be detected with dynamical network biomarkers. It is important
to identify the prodromal stage since it is reversible while the
headache stage is not, and this may help prevent the headache
(Dahlem et al. 2013). Dahlem et al. in 2014 also found that when
the brain reaches a tipping point, even a small trigger can start the
headache. In contrast, if the brain is not in this area, even things
known to be major triggers of migraine headaches do not cause
pain.

They considered a path with one or two wells as two states of
health and pain. As the height between the two wells decreases,
the brain enters the tipping point area, and any small trigger causes
the onset of the headache (Dahlem et al. 2015).In 2018, Bayani et
al. extended the model proposed by Scheffer et al. and considered
a group of neurons for 3 different trigeminovascular, descending
modulatory brainstem, and cortex units, then obtained 3 equations
for neuronal activity. They also announced that the inter-ictal
and the ictal stages are chaotic phases, and the pre-ictal phase is
unstable and periodic (Bayani et al. 2018).

According to previous studies, it may be an appropriate method
to consider the brain as a dynamic system and then propose a
complex system model for that as a migraine patient or a healthy
subject. For this reason, it seems possible to gain a good under-
standing of the performance of MD by studying the behavior of
dynamic systems that exhibit similar behavior to MD. This may

also serve a better understanding of the changes in the brain dur-
ing the ictal phase to enable better diagnosis and possibly better
therapy.

HYPOTHESIS

MD is considered a chronic disease with episodic manifestations.
If the frequency of headaches increases, it can lead to chronicity of
the disease. A chronic migraine is present if the headaches occur
15 times or more per month and last longer than 3 months. It is
assumed that there is a pre-ictal phase prior to the ictal phase of
the migraine. This phase can be a warning sign of the headache ini-
tiation. Symptoms that accompany this phase include behavioral
changes, hunger, fatigue, and etc. Despite some theories about
the cause of the MD such as CSD or MGN, the pathophysiological
mechanism of MD is still not fully understood.

Since 1970s, there have been numerous computational models
attempting to explain the spreading depression. Some studies
also considered the role of Central Nervous System (CNS) as a
function of a complex dynamic system. When the parameters of
the dynamic system change, the symptoms of the disease become
visible. A theoretical model from the perspective of the complex
dynamic system is presented here. This is used to explain the
clinical signs and manifestation of MD. The dynamics of individual
neurons are not considered here, but the interaction between whole
neurons is analyzed. As a model for the healthy brain, a complex
system with a chaotic strange attractor is considered. It is assumed
that this attractor changes from one scroll to double scroll when
the system parameters in the brain of migraine patients change. It
is considered that the one scroll attractor can represent a healthy
brain, while the double scroll attractor represents the brain of a
migraine patient.

The size of the two scrolls can change by varying the model
parameters to represent the Chronic Daily Migraine (CDM) or
episodic migraine. For a migraine patient, certain triggers such
as neck pain, bright light, certain foods, and other factors can
sometimes initiate the ictal phase, while having no effect on other
days. It is believed that the brain becomes sensitive in certain
situations where any trigger can initiate the ictal phase. In the
proposed system, the boundaries of the normal attractor are the
regions where any small trigger can change the phase and thus
initiate the ictal phase. In the proposed model, the inner regions of
the normal attractor are the non-sensitive brain situations.

COMPUTATIONAL MODEL

In order to choose a suitable model for MD, different dynamic
systems were considered. Our goal was to find a system that has
one attractor representing a healthy brain and able to generate two
attractors by changing the parameters. This attractor can simulate
the behavior of the brain of a migraine patient. The assumed sys-
tem should have a “one scroll” mode and a “double scroll” mode
representing a healthy brain and the brain of a migraine patient.
Switching between the modes is done with a parameter change.
One of the best-known systems with these features is Chua’s sys-
tem. Chua is a non-linear and well-known dynamic model (Chua
1993).In 1983 Leon Chua developed a chaotic electronic circuit with
2 linear capacitors (C1, C2), a linear inductor (L), a linear resistor
(R), and a voltage-controlled non-linear resistor (RN) known as
Chua’s diode. The Chua’s diode is capable of generating chaotic
behavior. This circuit is shown in Figure 1(a). The Chua’s diode
has 3 regions; a piecewise linear region with 2 unstable points. The
driving points of Chua’s diode are shown in Figure 1(b).
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Figure 1 Representaion of (a) Chua’s circuit and (b) the driving point characteristics of the voltage controlled resistor (Chua’s diode)

The equations of the circuit, which are derived by applying
Kirchoff’s laws to nodes and loops, are as follows:

C1V′
C1 =

VC2 − VC1
R − g(VC1)

(1)

C2V′
C2 =

VC1 − VC2
R + i

(2)

Li′ = −VC2 − R0i (3)

C1 and C2 are the capacitances of the capacitors, L is the inductance
of the inductor, R is the resistance of the resistor, and g(x) is the
three-segment piecewise linear characteristic of the Chua’s diode,
which is shown in Figure 1(b) and mentioned here:

g(x) = Gbx + 0.5(Ga − Gb)(|x + 1| − |x − 1|) (4)

Ga is the slope of the inner region of the non-linear resistor, and Gb
is the slope of the outer part. Then the variables of these equations
are replaced with x1=v1, x2=v2, x3=Ri, and the parameters with

α =
C2
C1

, β =
R2C2

L
, γ =

RR0C2
L

, m0 = RGa, m1 = RGb (5)

Chua’s system equations are achieved as:

x′1 = α(x2 − x1 − h(x1)) (6)

x′2 = x1 − x2 + x3 (7)

x′3 = βx2 − γx3 (8)

Where

h(x) = m1x + 0.5(m0 − m1)(|x + 1| − |x − 1|) (9)

For different values of the parameters, this attractor changes from
a spiral attractor to a double scroll attractor. The spiral attractor
can be the representation of a healthy brain, while the double
scroll attractor can be the representation of the brain of a migraine
patient. Each region can show the ictal or inter-ictal phases, and
the lines connecting the two areas show the pre-ictal and post-ictal
phases.

The similarities between MD and Chua’s system
A healthy brain that does not experience a migraine ictal has only
one normal phase. This mode is the one scroll or spiral mode of
Chua’s attractor, as shown in Figure 2(a).

The value of the parameters for this mode is as:

α = 6.5792, β = 10.9, γ = −0.446, m0 = −1.182, m1 = −0.652
(10)

A healthy brain has only the normal phase, which is free of
headaches. In the proposed model, changing the alpha parameter
can transform the healthy brain into a migraine prone one. In-
creasing the alpha parameter, gives the attractor, which has two
scrolls indicating two phases of a migraine patient’s brain. The
inter-ictal or headache-free phase and the ictal or headache phase
are connected by some lines. Figure 2(b) is a representation of the
double scroll attractor. The value of the parameters are as:

α = 10.3515, β = 16.79, γ = −0, m0 = −2, m1 = −0.2601 (11)

Each region of the attractor represents the ictal and inter-ictal
phases. Suppose the size of one of the regions is smaller than the
size of the other one as shown in Figure 2(c). In this case, the small
region may represent the ictal phase for the situation of episodic
migraine, in which the headache occur with less frequency. How-
ever, if the two areas are the same size, this may represent the brain
of a chronic migraine sufferer, where the migraine sufferer experi-
ences headaches 15 days of a month or more. For the parameter
values as:

α = 11.3515, β = 10.79, γ = −0.14, m0 = −2, m1 = −0.2601 (12)

The representation of the Chua’s attractor for the given parameter
values is in Figure2(c) . This is the proposed model for the brain of
an episodic migraine sufferer.

The representation of x(t) in healthy mode, in the ictal phase,
and in the inter-ictal phase are shown in Figures 3(a), 3(b), and 3(c).
As can be seen in figure 3, the behavior of x (t) in the 3 states of
healthy mode, inter-ictal phase, and ictal phase of migraine does
not seem to make any significant difference. When we compare
the EEG of these 3 groups, there is no noticeable difference in the
appearance of the EEG in the time domain of these 3 groups. But
in general, these behaviors indicate whether there is MD or not.
As a result, we can say that what happens in epilepsy does not
occur in MD. In epilepsy, these differences can be seen in the EEG
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Figure 2 (a) Chua’s system in the spiral mode representing a healthy brain and (b) . Double scroll Chua’s attractor representing a chronic
migraine sufferer brain (c) Double scroll Chua’s attractor representing an episodic migraine sufferer brain

due to synchronization. In MD, however, there is no noticeable
difference in the appearance of the EEG. In this figure, there is also
no significant difference between the behavior of the three groups.
Nevertheless, they originate from different phases and modes of
the Chua’s attractor and lead to different states.

The energy level of x(t) in the different modes of the Chua’s
system was also compared. The energy level was lower in Chua’s
spiral mode (considered here as the healthy mode), than the double
scroll mode (considered as the MD mode). By calculating the
energy levels of the EEG recordings of the migraine patients and
healthy controls in the inter-ictal phase using the publicly available
Carnegie Mellon University datasetl (Chamanzar et al. 2020), this
higher value of average energy was also seen in migraine sufferer
brain compared to a healthy brain. These values are listed in Table
1.

The researchers also point out that the glutamate level is higher
in migraine sufferer brain than a healthy brain(Hoffmann and
Charles 2018). Since glutamate plays an important role in the en-
ergy metabolism of the brain and the neuron excitation (Ramadan
2003), the reason for the higher energy level could be the higher
glutamate level in a migraine sufferer brain.

Migraine patients believe that sometimes any small trigger can

a. x(t) in healthy mode of Chua's system 

 

b. x(t) in inter-ictal phase of migraine mode of Chua's system 

 

c. x(t) in ictal phase of migraine mode of Chua's system 

 

 

Figure 3 Shape of the x(t) in the healthy mode. (b). Shape of the
x(t) in inter-ictal phase of the migraine mode. (c). Shape of the x(t) in
ictal phase of the migraine mode.
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■ Table 1 Comparison of the average energy of different modes of the Chua’s system and EEG recordings of the migraine patients
and healthy controls

Energy level in one scroll mode
of chua’s system (healthy mode)

Energy level in double scroll
mode of chua’s system (disease
mode)

Average energy level in healthy
controls’ EEG recordings in rest
(mean of all channels)

Average energy level in migraine
patients’ EEG recordings in rest
(mean of all channels)

1.9574e+06 5.8743e+06 15839 22957

initiate a migraine ictal, while in other situations even major trig-
gers may not initiate the ictal phase. To test whether this situation
occurs in the proposed model, a point at the edge of the inter-ictal
phase ia chosen, as shown in Figure 4. Here, a small noise is added
to test if the point enters the ictal phase or not. This point enters
the lines between two phases, which represent a path to the ictal
phase. This noise can simulate the small trigger which initiates a
headache. In addition, the lines between the two phases can be
considered pre-ictal and post-ictal phases of the migraine. Another
point is also selected in the inner region of the inter-ictal phase;
then the same noise is added to the system. Since the trajectory is
in the inter-ictal phase and far from the boundries, the same noise
cannot trigger the headache and bring the trajectory into the ictal
phase.

 

Inter-ictal phase  

Ictal phase  

Point 1 in borders of the inter-ictal phase                * 

Point 2 in inter-ictal phase                                       * 

Point 1+ noise                                                

Point 2+ noise 

Chua's attractor in episodic migraine mode  

Figure 4 A point in the edge of the inter-ictal phase entering ictal
phase while adding noise

DISCUSSION

Headaches are one of the most common disorders that 90% of
people experience at least once in their lives. Episodic migraine is
a common primary type of headache, affecting 15% of women and
6% of men worldwide (Hauser and Josephson 2010). 20% of the
migraine patients suffer from migraine with aura (Lane and davies
2006). The prevalence of migraine increases from childhood to the
age of 40 after which it decreases (Stovner et al. 2007). In some
migraine patients, the frequency of the headaches increases. These
people experience migraine without aura 15 times a month. If it
lasts longer than three months, this disorder is referred to as CDM
(Lipton and Bigal 2006). MD has affected many people globally,
particularly young individuals, and has prevented the patients

from their daily activities. 53% of migraine patients report a need
for bed rest, and one third miss one day a year of school or work
(Lipton and Bigal 2006). There is no specific cure to prevent the
onset of this disease.

Despite the high prevalence of MD and the disability attributed
to the severe pain during the migraine ictal phase, the cause of the
disease is not yet clearly understood. Although many studies have
addressed the pathophysiology of the disease (Goadsby et al. 2017;
Hargreaves and Shepheard 1999; Pietrobon and Moskowitz 2013),
some questions about MD have remained unanswered. What is the
real reason for the onset of MD? Medical texts cite two mechanisms
for MD, but it is not yet clear how these mechanisms relate to the
headaches and why new manners occur? How are the periods of
migraine ictal determined? Why can any minor trigger sometimes
initiate a migraine headache and even major triggers may not
start the headache in other situations? What is the reason that
the headache gets stronger or weaker? What are the pre-ictal and
post-ictal phases of migraine headaches?

It seems that the study of individual neurons and changes in
MD is not very suitable to assess and recognize the function of
the disease. We believe that we will get a better understanding
if we have a global view of the neuronal areas. Given what we
know about the performance of the dynamical systems and vari-
ous studies that have compared CNS performance of dynamical
systems, it can be concluded that looking at dynamical systems to
analyze brain function can lead to a better understanding of MD.
Therefore, we hypothesize that different neuronal regions from the
normal behavior of the brain can be considered as attractors and
the system response remains in this healthy attractor. In the case
of MD, a new attractor is added to the responses of different areas
of the CNS, which may indicate the disease attractor.

Entering the abnormal area distorts brain function and forms
classic migraine pain. Although there are no sensors for pain recog-
nition in large parts of the brain (Hauser and Josephson 2010),
severe migraine pain can be caused by a mismatch of informa-
tion between the different brain regions. The best example of this
mechanism is the moment an airplane take off. The vestibular
system detects high acceleration during take-off, but the visual
and auditory systems do not, resulting in mismatch of information
that leads to headaches. According to this theory, some neuronal
regions, referred to as MGN in medical texts, form migraine attrac-
tor regions. When the number of these neuronal regions geater,
the mismatch rate is higher and severe headaches occur.

The model of the creation of a new attractor is closer to reality.
In fact, there is no headache when the brain is in the first attractor,
and headaches occur when the second attractor is created and the
brain enters this attractor. It can be said that the creation of the
second attractor occurs through the activation of MGN or CSD as
a result of changes in the content of substances such as serotonin,
glutamate (Park and Chu 2022) or potassium. Then the brain enters
the second attractor. After the creation of the second attractor,
when the brain enters this attractor, it has been observed that the
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brain energy function increases. This results in an elevation of
the cell metabolism, an increased number of action potentials and
an enhancement of ATP consumption. The dysfunction of energy
metabolism and demonstrable mitochondrial damage has also
been reported for migraine patients in recent studies (Haemmerl
and Kraya 2023).

The EEG recordings of the brains of the migraine patients also
show an increase in energy levels and more spikes than in healthy
controls. This ATP consumption cannot continue indefinitely and
must be reduced to a certain extent to return to the previous state.
The creation of the second attractor occurs through the activation
of MGN and CSD, then the increased glutamate level leads to entry
into the second attractor. The increase in the glutamate levels have
been seen in plasma of the migraine patients which can be the
result of its increase in platelets and neurons (Park and Chu 2022).
Then there is an increase in energy levels and ATP consumption.
After a while, the brain is forced to leave this second attractor and
return to the normal state.

It has recently been demonstrated that ATP sensitive potassium
channels (KATP) open during migraine attacks (Al-Karagholi et al.
2021). This study assumes that the energy level in one part of the
brain suddenly rises due to an increase in glutamate levels and that
other parts of the brain are unable to adapt to these energy changes,
resulting in a mismatch. One of the standard dynamical systems
that exhibit complex behavior is Chua’s system. Chua’s system has
been widely studied and applied in various fields of science and
engineering, such as mathematics, physics, biology, and control
theory. A remarkable similarity can be observed between the
behavior of this system and that of MD. The proposed theory is that
when a person does not experience migraine, the glutamate and
serotonin levels are a little altered, the brain compensates for these
changes and most of the neuronal areas of the MGN in the attractor
function normally. Then the maladaptation rate in different areas
of the brain is low and the headache does not occur. When the
alternation of glutamate and serotonin is high, the neuronal states
of the MGN are activated, the brain enters the second attractor,
energy increases and there is a mismatch of information, resulting
in headaches. As only the normal attractor is formed in healthy
people, the attractor associated with the headache area gradually
develops in migraine patients.

Therefore, the growth of the disease can be explained by an
enlargement of the ictal area of the attractor. By comparing the
size of the ictal migraine attractor with the inter-ictal attractor, the
length and brevity of the headaches and the frequency of migraine
headaches can be justified. In some cases, patients become severely
sensitive to stimuli, depending on how close the trajectory is to
the branch area, which represents the transition to the ictal attrac-
tor. The farther the trajectory is from the branch, the greater the
stimulus required to enter the ictal area. In contrast, the closer the
trajectory is to the branch, the less stimulus is required to enter
the migraine ictal area. According to the drawn trajectory and
the phase space of Figure 4, the attractor transition areas can be
medically considered pre-ictal and post-ictal areas. In the pre-ictal
area (the transition pathway from an inter-ictal attractor to the
ictal attractor), it gradually deviates from normal function. The
headache rate gradually increases. The transition period can be
short or long in different people. In the post-ictal area (the transi-
tion pathway from the ictal attractor of migraine to the inter-ictal
attractor), we move away from the migraine-related areas with
severe headaches and approach the inter-ictal attractor, then the
amount of pain gradually decreases.

CONCLUSION

It is assumed that the anatomical differences between the brains
of healthy people and migraine patients, which may be caused
by genetic factors or other circumstances, are the reason for the
creation of the second attractor, which is the attractor of the ictal
phase of migraine. CSD and MGN can occur in a migraine sufferer
brain leading to the ictal phase of migraine. Then the differences
between the structure of a migraine sufferer brain and a healthy
brain has created a second attractor.

The transition from the inter-ictal phase (first attractor) to the
ictal phase (second attractor) in migraine patients occurs due to a
decrease in serotonin levels when the brain is within the bound-
aries of the first attractor.When the serotonin level drops in a mi-
graine sufferer brain for any reason, which is normal in the daily
behavior of the brain, and the brain is also at the boundaries of
the attractor, it enters the ictal phase of migraine (second attractor).
On the other hand, if the brain is not at the attractor boundaries
can compensate the decrease in serotonin level and does not enter
the second attractor. For this reason, minor triggers can sometimes
cause a headache, while in some cases, even major stimuli have no
impact.

The transition from the ictal phase to the inter-ictal phase in a
migraine sufferer brain is caused by a disruption of coordination in
the brain’s structures. The structures which are a result of CSD and
MGN activation. When the neurons in this region fail to generate
necessary action potentials, these structures become disconnected.
When the neurons’ ATP intake increases due to high energy levels,
a lack of ATP and energy can occur resulting in the neurons being
unable to generate action potentials, causing the cessation of the
headaches. In other words, a migraine sufferer brain has a higher
energy level. Eventually, the body cannot sustain this level of
energy, leading to deactivation of neurons in the affected area of
the brain and interruption of the second attractor. This results in a
reversal to the first attractor, ultimately stopping the headache.

The cause of headaches in migraine sufferers is due to a mis-
match of energy levels in the brain. A migraine sufferer brain is
initially adapted to a lower energy level. When a certain part of
the brain experiences a sudden increase in energy level, the brain
is unable to adapt to this heightened level of energy, leading to
the onset of a headache. According to the above mentioned items,
ATP plays a key role in the migraine cycle. Thus, high fat and high
calorie foods keep the second attractor on standby. In this case, a
brief stimulus starts the headache phase. When migraine patients
consume high-fat and high-calorie foods, they are more likely to
experience headaches and enter a the second attractor (Bic et al.
1999). In addition, high-calorie and high-fat foods consumption
during an ictal phase can prolong headaches. It is recommended
that migraine patients reduce their fat and calorie intake, especially
when they feel a migraine attack coming on.

In this study, we attempt to explain the disease function and
offer a theory that reasonably justifies the behavior of the MD. This
explanation may propose newer methods for preventing or curing
MD. To better understand MD to control it and shrink the areas
involved in this disease, it is better to know the dynamic systems
better. It may help prevent the formation of migraine ictal attractor
or even make the migraine ictal phase attractor smaller even after
it has been formed. A series of electrical stimuli when the headache
starts can take us back from the migraine ictal area to the inter-ictal
area, which should be further studied.
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ABSTRACT Chaotic systems are known to be extremely sensitive to initial conditions, meaning small changes
can have a significant impact on the outcomes. By analyzing the average profit margin in relation to chaotic
dynamics, companies can conduct sensitivity analysis to assess the potential impact of various factors on
their profitability. This analysis can help identify critical variables or scenarios that may significantly affect
profit margins. In this article, we have proposed a hyperchaotic financial system with hyperbolic sinusoidal
non-linear variables applied to the average profit margin. Furthermore, we have investigated the stability of the
hyperchaotic financial dynamics model to provide information to companies to assess the consistency and
reliability of their profitability. In addition, fundamental dynamic behavior like Lyapunov exponents, bifurcation
analysis, coexisting attractors have been reported. Finally, a nonlinear feedback control approach is developed
to train an adaptive neural fuzzy controller. The application of Lyapunov theory confirms that this nonlinear
feedback controller can effectively minimize the synchronization error within a finite duration. The results
from simulations establish the effectiveness of the proposed neural fuzzy controller architecture in controlling
the synchronization of two hyperchaotic financial models. Additionally, the simulation includes a comparison
between the performance of the nonlinear controller and the adaptive neural fuzzy controller.

KEYWORDS

Chaotic system
Financial system
Dynamical analy-
sis
Complexity analy-
sis
Adaptive neural
fuzzy controller

INTRODUCTION

Chaotic behavior in financial systems often leads to increased
volatility and unpredictability (Guegan 2009; Vogl 2022; Inglada-
Perez 2020). By studying the average profit margin in relation to
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chaotic dynamics, companies can gain a better understanding of
the potential risks they face (Lux 1998; Shi et al. 2022; Xin et al.
2013). This understanding can help in developing risk manage-
ment strategies and contingency plans to mitigate the adverse
effects of financial instability on profitability. Moreover, chaotic be-
havior in financial markets can create opportunities for profit. The
market fluctuations and price volatility can allow skilled investors
and traders to capitalize on short-term price movements and gen-
erate profits through strategic buying and selling (Ma and Li 2020;
Musaev et al. 2022). The ability to identify patterns or trends within
chaotic behavior can provide a competitive advantage in capturing
these profit opportunities.

Financial chaotic systems arise in business modelling and they
have many applications in science and engineering. Many studies
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have discussed the financial model using hyperchaotic systems ap-
proach, such as Yu et al. (2012) proposed hyperchaos financial sys-
tem with addition variable average profit margin using quadratic
nonlinear term and designed speed feedback controllers and lin-
ear feedback controllers for stabilizing hyperchaos to unstable
equilibrium points. Xin (2009) constructed a new 4D continuous
autonomous financial hyperchaotic system using a nonlinear state
feedback controller. In their study, Vargas et al. (2015) introduced
an adaptive controller aimed at achieving synchronization in hy-
perchaotic finance systems. The proposed controller addresses
uncertainties that may arise from factors such as unknown system
parameters and disturbances that vary over time or are dependent
on the system’s state. Szumiński (2018) conducted an analysis of
integrability for complex dynamical systems within the context
of the financial hyperchaotic model, utilizing differential Galois
theory.

The primary focus of this study was to demonstrate the non-
integrability of the examined system across a broad range of func-
tions. Additionally, the research aimed to identify specific pa-
rameter values that may indicate integrability within the system.
Jahanshahi et al. (2019) apply the four-dimensional financial hy-
perchaotic system and propose a unique control method for sup-
pressing chaos and achieving synchronization in this nonlinear
system. This study approach combines fuzzy logic with a fast
disturbance observer and ITSMC. Chen et al. (2021) developed suit-
able control strategies for achieving synchronization between two
financial systems that have different initial conditions. They also
provided mathematical evidence demonstrating the effectiveness
of the control law employed in their study. Kai et al. (2017) pro-
posed a 4D hyperchaotic financial system derived from an existing
three-dimensional nonlinear financial system. They expand upon
this system by incorporating a controller term to account for the
impact of control on the overall dynamics.

On the other hand, numerous findings regarding the analysis
and control of financial hyperchaotic systems have been docu-
mented in the existing literature. Bekiros et al. (2021) introduce an
optimal mixed H2/H∞ control approach based on type-2 fuzzy
logic for a hyperchaotic financial system. Their investigation cen-
ters around the dynamical properties of the system in the presence
of coexisting attractors. Cao (2018) designed a four-dimensional
hyperchaotic finance system, which can generate double-wing
chaotic and hyperchaotic attractors with three equilibrium points.
Hajipour et al. (2018) developed a sliding mode control strategy
to regulate a hyperchaotic financial model and to ensure stability
of the proposed system in the face of unwanted dynamics and
disturbances. To achieve this, they applied an adaptive sliding
mode control scheme that aims to drive the system’s states towards
desired set points.

Xu et al. (2021) investigate the H∞ control problem for a hy-
perchaotic finance system with an energy-bounded disturbance,
employing a delayed feedback controller. Through the utilization
of quadratic system theory, an augmented Lyapunov functional,
integral inequalities, and rigorous mathematical derivations, they
establish a sufficient condition based on linear matrix inequalities.
This condition ensures that the closed-loop system attains desirable
performance characteristics, including boundedness, H∞ perfor-
mance, and asymptotic stability. Li et al. (2022) introduce a novel
approach to establish adequate conditions that ensure the presence
and stabilization of positive solutions in a specific hyper-chaotic
financial model. Their study also investigates a nonlinear chaotic
financial system with diffusion by incorporating the concepts of
Laplacian semigroup and impulsive control. Rao and Zhu (2021)

demonstrate the theoretical importance of guiding the actual finan-
cial market. Their study highlights that implementing positive and
accurate macroeconomic control measures at specific frequencies
can promote market stability and result in higher positive interest
rates.

Specifically, the main contributions and novelty of this study
can be summarized into the following points:

1. The system consists of a total eleven terms including with
sinusoidal hyperbolic non-linear variables applied to the av-
erage profit margin

2. The system exhibits multistability and coexistence attractors

3. A nonlinear feedback control approach is developed to train
an adaptive neural fuzzy controller

The structure of this research article is presented as follows.
First, we provide a concise description of the mathematical model
for the hyperchaotic financial system. Next, we carry out a dy-
namic analysis of the new hyperchaotic financial system. We also
discuss the multistability and coexisting hyperchaotic attractors
for the new hyperchaotic financial system. As a control application,
we present an adaptive neural fuzzy controller for the synchroniza-
tion of the new hyperchaotic financial systems and describe the
simulation results. Finally, we conclude this research article with a
summary of the main results.

MODELING OF THE NOVEL FINANCIAL RISK SYSTEM

A chaotic-based financial system due to Gao and Ma Gao and Ma
(2009) can be expressed as follows

ż1 = z3 + (z2 − a)z1

ż2 = 1 − bz2 − z2
1

ż3 = −z1 − cz3

(1)

where a represents the savings, b denotes the per investment cost,
and c signifies the elasticity of commercial demands, all of which
are positive constants. Considering the respective values as fol-
lows: a = 0.9, b = 0.2, c = 1.2, and the initial state of the system
is (z1(0), z2(0), z3(0)) = (1, 2, 0.5), the system (1) exhibits chaotic
behavior. The Lyapunov exponents of the Gao-Ma system (1) are
calculated as LE1 = 0.0833, LE2 = 0 and LE3 = −0.6987. Using
these values, the Kaplan-Yorke dimension of the Gao-Ma system
(1) is evaluated as follows:

DKY = 2 +
LE1 + LE2

|LE3|
= 2.1192 (2)

Furthermore, Yu et al. Yu et al. (2012) proposed 4-D hyper-
chaotic finance system with added average profit margin. The
4D hyperchaotic finance system Yu et al. (2012) has the following
dynamics: 

ż1 = z3 + (z2 − a)z1 + z4

ż2 = 1 − bz2 − z2
1

ż3 = −z1 − cz3

ż4 = −dz1z2 − pz4

(3)
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where parameters a, b, c, d, p are held positive. Yu et al. Yu et al.
(2012) showed that the system (3) exhibits hyperchaotic behavior
for the following values: a = 0.9, b = 0.2, c = 1.5, d = 0.2 and p =
0.17. For MATLAB simulations, the initial state of the system (3) is
chosen as Z(0) = (1, 2, 0.5, 0.5). The Lyapunov exponents of the
Hyperchaotic Yu finance system (3) are calculated as LE1 = 0.0344,
LE2 = 0.0180, LE3 = 0 and LE4 = −1.1499.

Using these values, the Kaplan-Yorke dimension of the hyper-
chaotic Yu system (3) is evaluated as follows:

DKY = 3 +
LE1 + LE2 + LE3

|LE4|
= 3.0456 (4)

This study proposes a new finance model by combining the Gao-
Ma finance model (1) and the Yu finance model (3). Specifically,
we consider the effect of hyperbolic sinusoidal nonlinearity in the
z4 dynamics of the system. The new hyperchaotic finance system
has the following form:

ż1 = z3 + (z2 − a)z1 + qz4

ż2 = 1 − bz2 − z2
1

ż3 = −z1 − cz3

ż4 = −dz1z2 − p sinh(z1)

(5)

Eq. (5) which represents a new financial 4-D system consists
of the parameters a, b, c, d, p, q that are held as positive constants
taking the following values: a = 0.9, b = 0.2, c = 1.5, d = 0.3,
p = 0.15 and q = 0.1. Suppose also that we consider the initial
state as Z(0) = (1, 2, 0.5, 0.5).

The calculation of Lyapunov exponents for the 4-D system (5)
yields the following values: LE1 = 0.0382, LE2 = 0.0298, LE3 = 0
and LE4 = −1.0865 which establish the hyperchaotic behavior of
the system. Using these values, the Kaplan-Yorke dimension of
the new hyperchaotic financial system (5) is evaluated as follows:

DKY = 3 +
LE1 + LE2 + LE3

|LE4|
= 3.0625 (6)

Table 1 gives a comparison of the Lyapunov exponents, maxi-
mal Lyapunov exponent (MLE) and the Kaplan-Yorke dimension
(DKY) of the three financial systems expressed by (1), (3) and (5). Ta-
ble 1 demonstrates that the maximum Lyapunov exponent (MLE)
value of the new system (5) is greater than that of the financial sys-
tems (1) and (3). Moreover, it is also shown that the Kaplan-Yorke
dimension of the new system (5) is greater than that of the financial
systems (1) and (3). These are the advantages of the proposed fi-
nancial chaotic system (5). A disadvantage of the new hyperchaotic
system is that it includes a hyperbolic sinusoidal nonlinearity in
its dynamics and for this reason, designing an electronic circuit or
field programmable gate array (FPGA) design of the new financial
system (5) is complicated.

Figure 1 exhibits the plot for the strange attractors and phase
portraits of system (5).

Next, we solve the following system of equations for finding
the equilibrium point for system (5).



0 = z3 + (z2 − a)z1 + qz4

0 = 1 − bz2 − z2
1

0 = −z1 − cz3

0 = −dz1z2 − p sinh(z1)

(7)

■ Table 1 Lyapunov Exponents, MLE and Kaplan-Yorke Dimen-
sion of Three Financial Systems

Financial
System

Lyapunov Exponents (LEs) MLE
Value

DKY

Gao-Ma
Financial
System (1)

LE1 = 0.0833
LE2 = 0
LE3 = −0.6987

0.0833 2.1192

Hyperchaotic
Yu System
(3)

LE1 = 0.0344
LE2 = 0.0180
LE3 = 0
LE4 = −1.1499

0.0344 3.0456

New Fi-
nancial
System (5)

LE1 = 0.0381
LE2 = 0.0298
LE3 = 0
LE4 = −1.0865

0.0381 3.0625

By performing a straightforward calculation, it can be deter-
mined that the new financial hyperchaotic system (5) possesses
a unique equilibrium point given by E0 = (0, 1/b, 0, 0). For
the hyperchaotic case, b = 0.2. In this special case, the new
financial hyperchaotic system (5) has the unique equilibrium
point E0 = (0, 5, 0, 0). We can establish the Jacobian matrix at
E0 = (0, 5, 0, 0) to be as follows:

J =



4.10 0 1 0.1

0 −0.2 0 0

−1 0 −1.5 0

−1.65 0 0 0


(8)

We find that the matrix J has the eigenvalues: λ1 = 0.0484,
λ2 = 3.8712, λ3 = −0.2 and λ4 = −1.3196. This shows that
E0 = (0, 5, 0, 0) is a saddle point and unstable equilibrium for
system (5).

DYNAMICAL ANALYSIS

In this section, we conduct an analysis of the dynamical properties
of the new hyperchaotic financial model (5) as a function of its pa-
rameters. To achieve this, we utilize various tools such as spectrum
of Lyapunov exponents, bifurcation diagrams, and phase plots.

This section of the paper aims to explore how the parameters
affect the behavior of the recently developed hyperchaotic finance
system. To achieve this, we will utilize Lyapunov exponents spec-
trum, bifurcation diagrams, and phase plots. Specifically, we will
focus on the case where Z0 = (0.4, 0.2, 0.4, 0.4).

Bifurcation Diagram and Lyapunov Exponent
Dynamics when a varies Figure 2 depicts the bifurcation diagram
and Lyapunov exponents spectrum of the new hyperchaotic fi-
nance system (5), where the parameter a is varied within the range
[0, 4], while the other parameters remain constant: b = 0.2, c = 1.5,
d = 0.3, p = 0.15, and q = 0.1. Notably, the Lyapunov spectrum
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(a) (b)

(c) (d)

Figure 1 Phase portraits of the new hyperchaotic financial system (5) using MATLAB in (a) z1 − z2 plane (b) z2 − z3 plane, (c) z3 − z4 plane and
(d) z1 − z4 plane

results presented in Figure 2b align with the findings obtained
from the bifurcation diagram shown in Figure 2a.

When the value of a lies within the interval [0, 2.85], the system
(5) demonstrates the presence of two positive Lyapunov exponents,
indicating an extreme hyperchaotic nature. The Kaplan-Yorke di-
mension for this behavior is measured to be DKY = 3.055. For
plots, we specifically selected a to be 0.5. As a result, Figure 3a
illustrates the z1 − z2 attractor, visually representing the hyper-
chaotic behavior exhibited by the system (5) with the respective
Lyapunov exponents having the following values:

LE1

LE2

LE3

LE4

 =


0.053

0.013

0

-1.042

 (9)

When the parameter a fall within the range [2.86, 3.10], the
system (5) demonstrates a positive maximal Lyapunov exponent,
indicating the presence of chaotic behavior. The Kaplan-Yorke
dimension, measured to be DKY = 3.011, further confirms the
complex nature of hyperchaotic finance system (5). Specifically
selecting a to be 2.95 for our plots, we observe the z1 − z2 attrac-
tor depicted in Figure 3b, which illustrates the chaotic behavior
exhibited by the system (5). The respective values for Lyapunov
exponents are as follows:


LE1

LE2

LE3

LE4

 =


0.0260

0

-0.012

-1.032

 (10)

When the parameter a fall within the range [3.11, 4], the system
(5) exhibits periodic behavior without complexity. For plots, we
specifically selected a to be 3.5. As a result, Figure 3c, presents
the z1 − z2 attractor, visually representing the periodic behavior
displayed by the new 4D hyperchaotic finance system (5). Specific
to this case, the respective Lyapunov exponents are recorded as
the followings: 

LE1

LE2

LE3

LE4

 =


0

-0.042

-0.045

-1.011

 (11)

Dynamics when b varies In Figure 4, the bifurcation diagram and
Lyapunov exponents spectrum are depicted for the finance system
(5) as the parameter b changes within the range of [0, 0.5].
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(a) (b)

Figure 2 Characteristics of the system (5) in terms of a) Bifurcation diagram and b) LEs spectrum when a ∈ [0, 4].

(a) (b) (c)

Figure 3 Output Matlab simulation (a) z1 − z2 hyperchaotic attractor of the system (5) when a = 0.5. (b) z1 − z2 chaotic attractor of system (3)
when a = 2.95 and (c) z1 − z2 periodic orbit of the system (5) when a = 3.5.

When the parameter b falls within the range [0, 0.29], the sys-
tem (5) displays the presence of two positive Lyapunov exponents,
signifying an extreme hyperchaotic nature. The Kaplan-Yorke di-
mension for this behavior is measured to be DKY = 3.063. For
plots, we specifically chose b to have a value of 0.05. Consequently,
Figure 5a displays the z1 − z3 attractor, providing a visual repre-
sentation of the hyperchaotic behavior exhibited by the system (5).
The associated Lyapunov exponents are as follows:


LE1

LE2

LE3

LE4

 . =


0.053

0.013

0

-1.042

 (12)

When the parameter b is within the range [0.30, 0.35], the system
(5) showcases a positive maximal Lyapunov exponent, indicating
the presence of chaotic behavior. The measurement of the Kaplan-
Yorke dimension as DKY = 3.010 further validates the complex
nature of the system (5). For plots, we specifically selected b to
have a value of 0.31. As a result, the z1 − z3 attractor presented in
Figure 5b vividly portrays the chaotic behavior exhibited by the
system (5). The corresponding Lyapunov exponents are as follows:


LE1

LE2

LE3

LE4

 =


0.017

0

-0.006

-1.101

 (13)

When the parameter b is in the range of [0.036, 0.5], the system
(5) exhibits periodic behavior without complexity. For plots, we
specifically selected b to be 0.5. As a result, Figure 5c presents the
z1 − z3 attractor, visually representing the periodic behavior dis-
played by the system (5). The corresponding Lyapunov exponents
are as follows: 

LE1

LE2

LE3

LE4

 =


0

-0.013

-0.222

-1.051

 (14)

Dynamics when c varies For system (3), the Bifurcation diagram
and Lyapunov exponents spectrum are depicted as in Figure 6 as
the value of c ranges from 0 to 1.5.

When c belongs to the intervals ([0, 0.84], [0.98, 1.01]), the sys-
tem (5) has one zero and three negative Lyapunov exponents,
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(a) (b)

Figure 4 Characteristics of the system (5) in terms of a) Bifurcation diagram and b) LEs spectrum when b ∈ [0, 0.5].

(a) (b) (c)

Figure 5 Output Matlab simulation (a) z1 − z3 hyperchaotic attractor of system (3) when b = 0.5. (b) z1 − z3 chaotic attractor of the system (5)
when b = 0.31 and (c) z1 − z3 periodic orbit of the system (5) when b = 0.5.

indicating the emergence of periodic behavior. For plots, we have
chosen the parameter c = 0.5. Subsequently, Figure 7a illustrates
the z2 − z3 attractor, which clearly demonstrates the periodic be-
havior of the system (5). The corresponding Lyapunov exponents
are as follows:


LE1

LE2

LE3

LE4

 =


0

-0.025

-0.133

-0.134

 (15)

When c belongs to the intervals
([0.84, 0.87], [0.91, 0.98], [1.01, 1.15]), the system (5) demonstrates
a positive maximal Lyapunov exponent, and the Kaplan-Yorke
dimension yields a fractional value of DKY = 3.072. These
characteristics indicate that the system (5) exhibits complex
chaotic behavior. For plots, we have selected the parameter
c = 1.02. Subsequently, Figure 7b illustrates the z2 − z3 attractor,
clearly showcasing the chaotic behavior of the system (5). The
corresponding Lyapunov exponents are as follows:


LE1

LE2

LE3

LE4

 =


0.061

0

-0.025

-0.502

 (16)

In the range where c belongs to ([0.87, 0.91], [1.15, 1.5]), the
system (5) showcases two positive Lyapunov exponents, indicating
the presence of extreme hyperchaotic behavior. The system also
possesses a fractional value of the Kaplan-Yorke dimension, with
DKY = 3.090. For plots, we have chosen the parameter c = 1.35.
Subsequently, Figure 7c illustrates the z2 − z3 attractor, effectively
demonstrating the hyperchaotic behavior of the system (5). The
corresponding Lyapunov exponents are as follows:


LE1

LE2

LE3

LE4

 =


0.057

0.027

0

-0.929

 (17)

Dynamics when d varies For the system (5), the Bifurcation dia-
gram and Lyapunov exponents spectrum are plotted as in Figure 8
when d varies in the region [−0.3, 0.3].
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(a) (b)

Figure 6 Characteristics of system (3) in terms of a) Bifurcation diagram and b) LEs spectrum when c ε [0, 1.5].

(a) (b) (c)

Figure 7 Output Matlab simulation (a) z2 − z3 hyperchaotic attractor of the system (5) when c = 0.5. (b) z2 − z3 chaotic attractor of the system (5)
when c = 1.02 and (c) z2 − z3 periodic orbit of the system (5) when c = 1.35.

When d belongs to the interval [−0.3,−0.14], the system (5)
exhibits four negative Lyapunov exponents, indicating its conver-
gence to a stable state. Figure 9a illustrates the z1 − z4 attractor for
d = −0.3. The corresponding Lyapunov exponents are as follows:

LE1

LE2

LE3

LE4

 =


-0.029

-0.405

-0.409

-1.126

 (18)

When the value of d falls within the range [−0.13, 0.03], the
system (5) demonstrates the presence of one positive Lyapunov
exponent, resulting in a fractional value of the Kaplan-Yorke di-
mension DKY = 3.034. This indicates that the system (5) exhibits
complex chaotic behavior. Figure 9b showcases the z1 − z4 attrac-
tor for d = 0, illustrating the chaotic behavior of the system (5).
The corresponding Lyapunov exponents are as follows:

LE1

LE2

LE3

LE4

 =


-0.055

0

-0.020

-1.040

 (19)

When the value of d lies within the interval [0.04, 0.3], the sys-

tem (5) showcases two positive Lyapunov exponents, indicating
its extreme hyperchaotic behavior. Moreover, the Kaplan-Yorke
dimension takes on a fractional value of DKY = 3.051. Figure
9c represents the plotted z1 − z4 attractor for d = 0.2, effectively
demonstrating the hyperchaotic behavior of the system (5). The
corresponding Lyapunov exponents are as follows:


LE1

LE2

LE3

LE4

 =


0.032

0.023

0

-1.077

 (20)

Dynamics when p varies Figure 10 illustrates the Bifurcation dia-
gram and Lyapunov exponents spectrum of the system (5) while
the value of p varies between 0 and 3.

When the parameter p falls within the range [0, 0.7], the system
(5) exhibits extreme hyperchaotic behavior. The Kaplan-Yorke
dimension for this behavior is measured to be DKY = 3.062. Figure
11a displays the z2 − z4 hyperchaotic attractor for p = 0.1. The
associated Lyapunov exponents are as follows:
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(a) (b)

Figure 8 Characteristics of the system (5) in terms of a) Bifurcation diagram and b) LEs spectrum when d ∈ [−0.3, 0.3].

(a) (b) (c)

Figure 9 Output Matlab simulation (a) z1 − z4 hyperchaotic attractor of the system (5) when d = 0.5. (b) z1 − z4 chaotic attractor of the system (5)
when d = 0 and (c) z1 − z4 periodic orbit of the system (5) when d = 0.2.


LE1

LE2

LE3

LE4

 =


0.041

0.026

0

-1.086

 (21)

When the parameter p is within the range [0.8, 1.7], the system
(5) showcases a positive maximal Lyapunov exponent, indicating
the presence of chaotic behavior with DKY = 3.033. Figure 11b
portrait the z2 − z4 chaotic attractor exhibited by the system (5) for
p = 1.2. The corresponding Lyapunov exponents are as follows:


LE1

LE2

LE3

LE4

 =


0.076

0

-0.039

-1.119

 (22)

When the parameter p is in the range of [1.8, 3], the system (5)
exhibits periodic behavior without complexity. Figure 11c presents
the z2 − z4 attractor, visually representing the periodic behavior
displayed by the system (5) for p = 3. The corresponding Lya-
punov exponents are as follows:


LE1

LE2

LE3

LE4

 =


0

-0.020

-0.023

-1.146

 (23)

Dynamics when q varies For system (5), the Bifurcation diagram
and Lyapunov exponents spectrum are illustrated as in Figure 12
as the value of q ranges from 0 to 0.5.

When q = 0, the system (5) exhibits periodic behavior. Figure
13a illustrates the z3 − z4 attractor, which clearly demonstrates the
periodic behavior of the system (5). The corresponding Lyapunov
exponents are as follows:

LE1

LE2

LE3

LE4

 =


0

0

-0.010

-0.947

 (24)

When q belongs to the interval [0.01, 0.28], system (3) exhibits
complex hyperchaotic behavior with DKY = 3.055. For plots,
we have selected the parameter q = 0.2. Subsequently, Figure
13b illustrates the z3 − z4 attractor. The corresponding Lyapunov
exponents are as follows:
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(a) (b)

Figure 10 Characteristics of the system (5) in terms of a) Bifurcation diagram and b) LEs spectrum when p ε [0, 3].

(a) (b) (c)

Figure 11 Output Matlab simulation (a) z2 − z4 hyperchaotic attractor of the system (5) when p = 0.1. (b) z2 − z4 chaotic attractor of the system
(5) when p = 1.2 and (c) z2 − z4 periodic orbit of the system (5) when p = 3.


LE1

LE2

LE3

LE4

 =


0.048

0.013

0

-1.106

 (25)

In the range where q belongs to [0.29, 0.5], the system (5) gen-
erates chaotic behavior. The system also possesses a fractional
value of the Kaplan-Yorke dimension, with DKY = 3.017. Figure
13c illustrates the z3 − z4 attractor for q = 0.5. The corresponding
Lyapunov exponents are as follows:

LE1

LE2

LE3

LE4

 =


0.093

0

-0.074

-1.122

 (26)

Multistability and Coexisting Attractors The new 4D hyperchaotic
finance system (5) possesses the ability to exhibit multiple coexist-
ing attractors. To explore this phenomenon further, we examine
the system’s behavior using two distinctive starting points: Z01 =
(0.4, 0.2, -0.4, 0.4) and Z02 = (0.4, 0.2, 0.4, 0.4).

When the parameters a = 0.9, b = 0.2, c = 1, d = 0.3, p = 0.15,
and q = 0.1 are held constant, the finance system (5) exhibits
two distinct periodic behaviors based on its initial conditions, as
illustrated in Figure 14. The figure showcases three separate repre-
sentations denoted as (a), (b), and (c).

In the presence of parameters, a = 0.9, b = 0.2, c = 1.05, d = 0.3,
p = 0.15, and q = 0.1, the finance system (5) reveals the presence
of two distinct chaotic attractors, determined by the selection of
initial conditions (Z01 or Z02), as depicted in Figure 15. The figure
encompasses three different representations, labeled as (a), (b), and
(c).
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(a) (b)

Figure 12 Characteristics of the system (5) in terms of a) Bifurcation diagram and b) LEs spectrum when q ∈ [0, 0.5].

(a) (b) (c)

Figure 13 Output Matlab simulation (a) z3 − z4 hyperchaotic attractor of the system (5) when q = 0.1. (b) z3 − z4 chaotic attractor of the system
(5) when q = 0.2 and (c) z3 − z4 periodic orbit of the system (5) when q = 0.5.

SYNCHRONIZATION OF HYPERCHAOTIC FINANCE SYS-
TEM WITH GENERAL ADAPTIVE NEURAL FUZZY CON-
TROLLER METHOD

Nonlinear Control Design

To synchronize two hyperchaotic financial systems modelled by the
dynamics (5), first consider the following master-slave equations
where index m is for master and index s is for slave.



żm1 = zm3 + (zm2 − a)zm1 + qzm4

żm2 = 1 − bzm2 − z2
m1

żm3 = −zm1 − czm3

żm4 = −dzm1zm2 − p sinh(zm1)

(27)



żs1 = zs3 + (zs2 − a)zs1 + qzs4 + u1

żs2 = 1 − bzs2 − z2
s1 + u2

żs3 = −zs1 − czs3 + u3

żs4 = −dzs1zs2 − p sinh(zs1) + u4

(28)

where ui is the controller (decision variable) that should direct
the equations of the slave system to the equations of the master
system. Figure 16 shows that by having different values of initial
conditions for the two hyperchaotic financial systems, the behavior
of the system will be different.

The first goal in designing a nonlinear controller is to determine
the system error equation. So:

e1 = zs1 − zm1

e2 = zs2 − zm2

e3 = zs3 − zm3

e4 = zs4 − zm4

(29)

The main goal in controller design is to reach

lim
t→∞

∥ei(t)∥ = 0 (i = 1, 2, 3, 4) (30)
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(a) (b) (c)

Figure 14 Matlab plots of the coexisting periodic/periodic attractors generated by the new 4D finance system (5), where the attractors gener-
ated from Z01 are in blue color, while attractors generated from Z02 are in red color. (a) z1 − z2 plane, (b) z1 − z3 plane and (c) z2 − z3 plane.

(a) (b) (c)

Figure 15 MATLAB plots of the coexisting chaotic/chaotic attractors generated by the new finance system (5), where the attractors generated
from Z01 are in blue color, while the attractors generated from Z02 are in red color. (a) z1 − z2 plane, (b) z1 − z3 plane and (c) z2 − z3 plane.

Figure 16 Behavior of two 4D hyperchaotic systems for initial condi-
tions zm1(0) = 0.4, zm2(0) = 0.2, zm3(0) = 0.4, zm4(0) = 0.4 and
zs1(0) = 0.2, zs2(0) = 0.7, zs3(0) = −0.5, zs4(0) = 0.1

From equation (29), we derive:



ė1 = e3 + qe4 + (zs2 − a)zs1 − (zm2 − a)zm1 + u1

ė2 = −be2 − z2
s1 + z2

m1 + u2

ė3 = −e1 − ce3 + u3

ė4 = −d(zs1zs2 − zm1zm2)− p(sinh(zs1)− sinh(zm1)) + u4

(31)

Theorem 1. The slave hyperchaotic finance system (28) will synchronize
with the hyperchaotic finance system (27) if the controller is chosen as
follows.

u1 = −e3 − qe4 − (zs2 − a)zs1 + (zm2 − a)zm1 + λ1e1

u2 = be2 + z2
s1 − z2

m1 + λ2e2

u3 = e1 + ce3 + λ3e3

u4 = d(zs1zs2 − zm1zm2) + p(sinh(zs1)− sinh(zm1)) + λ4e4
(32)

Proof. To prove the stability of the candidate Lyapunov function,
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it is considered as follows

Vi(e) =
4

∑
i=1

1
2

e2
i =

1
2
(e2

1 + e2
2 + e2

3 + e2
4) (33)

If we derive from the equation (31), we have

V̇ = e1 ė1 + e2 ė2 + e3 ė3 + e4 ė4 (34)

By substituting equation (29) and (31) in the equation (34) and
finally by substituting the proposed nonlinear controller, we have:

V̇ = λ1e2
1 + λ2e2

2 + λ3e2
3 + λ4e2

4 < 0 (35)

where λi, (i = 1, 2, 3, 4) are the controlling gains chosen to be
negative. This completes the proof. ■

Nonlinear control design simulation results
Considering the same initial conditions as before, also the con-
troller gain is equal to λi(i = 1, 2, 3, 4) = −2, Figure 17 shows the
synchronization of two hyper-chaotic finance systems given by
(27) and (28). The controller is applied to the model since t = 20.
Figure 17 shows the synchronization of two hyperchaotic systems
by the proposed nonlinear method.

Figure 18 shows the behavior of the non-linear controller (de-
cision variable) that has been applied to the hyper-chaotic slave
system (28) from T = 20. Figure 19 shows that the synchronization
error in the proposed method tends to zero after passing a short
period of time.

Figure 17 Synchronization of two hyperchaotic finance systems (27)
and (28) in a non-linear way

Figure 18 Non-linear controller behavior (decision variable)

Figure 19 Synchronization error of two hyperchaotic finance sys-
tems (27) and (28) by nonlinear control method

By increasing the gain of the nonlinear controller, the conver-
gence speed of the error can be adjusted to zero. But this issue
will face problems in the real world. To prove, gains are equal to
λi(i = 1, 2, 3, 4) = −3 will be considered (See Figure 20). Also, to
ensure the performance of the proposed method, the controller
application time has also been changed. The initial conditions
are unchanged. The synchronization error of two hyperchaotic
systems with gains can be seen in Figure 21.

Figure 20 Synchronization of two hyperchaotic finance systems (27)
and (28) with gains λi(i = 1, 2, 3, 4) = −3

Figure 21 Synchronization error of two hyperchaotic finance sys-
tems (27) and (28) with gains
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Figure 22 Behavior of nonlinear controller with gains λi(i =
1, 2, 3, 4) = −3

Training and Test of General Adaptive Neural Fuzzy Controller
For ANFIS training, the training data must be determined first.
The block diagram in Figure 23 shows how the training data is
extracted from the nonlinear controller. As can be seen in Figure
23, training data is entered in ANFIS training block and training
is completed by setting P1 to P4 parameters. The parameters P1
to P4 are given in Table 2. An important principle in fuzzy neural
network training is what part of controller behavior and error to
use for training.

In Figure 22, the controller’s action time is t = 10, which has
reached zero at the approximate time of t = 12.5. Also, in Figure
21, in the interval 10 < t < 12.5, the system error has reached
zero. Therefore, training data should be selected from time t equal
to 10 < t < 12.5. This is precisely the learning of the nature of
hyperchaotic systems. Note that the time step is equal to 0.01.

Figure 23 The concept of learning the adaptive neural fuzzy net-
work with the nonlinear control method

Considering that the condition for stopping training is to reach
zero error or the number of epochs, in this article, the number of
epochs of training has led to stopping training. Figure 24 shows
that the fuzzy neural network has trained the nonlinear controller
well. Figure 25 shows the error of the proposed method for train-
ing.

Numerical Simulation and Comparison between the performance
of two methods of controlling nonlinear and fuzzy adaptive neural
feedback
Now the exquisite controller design is finished. ANFIS controller
is replaced by non-linear controller. In the numerical simulation,
the initial conditions of the slave financial finance system are set
equal to zs1(0) = 0.1, zs2(0) = −0.2, zs3(0) = 0.1, zs4(0) = 0.5, and

■ Table 2 Proposed fuzzy neural network architecture

Total number of trainings 250

Number of training pairs 83

Number of check pairs 83

Number of test pairs 84

Number of input / output membership function (P1) 5

Input / Output Membership Function Type (P2) ’gaussmf’

epoch (P3) 80

Training error (P4) 0

Figure 24 Comparison between the behavior of the nonlinear con-
troller and the trained behavior of the ANFIS controller

Figure 25 ANFIS controller training error

the initial conditions for the master financial hyperchaotic system
are taken as zm1(0) = 0.4, zm2(0) = 0.2, zm3(0) = 0.4, zm4(0) =
0.4. To ensure the performance of the controller, the time of its
application to the system will also be changed. Figure 26 shows
the synchronization of two hyperchaotic finance systems (27) and
(28) using ANFIS control method. The application time of ANFIS
controller is t = 13.

In the last part of the numerical simulation, the performance of
two non-linear and infinite control methods is compared. For this
purpose we regulate the initial conditions of the two hyperchaotic
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■ Table 3 Comparison of mean least square error

Type Control MSE (E1) MSE (E2) MSE (E3) MSE (E4)

Nonlinear 0.0983 0.1379 0.0270 0.0098

ANFIS 0.0980 0.1382 0.0273 0.0098

Figure 26 Synchronization of two hyperchaotic finance systems (27)
and (28) by ANFIS control method

Figure 27 Synchronization error of two hyperchaotic finance sys-
tems (27) and (28) using ANFIS control method

Figure 28 ANFIS controller behavior for synchronization of two
hyperchaotic finance systems (27) and (28)

finance systems (27) and (28) as unchanged, while that of the slave
hyperchaotic system equals to zs1(0) = 0.9, zs2(0) = 0.4, zs3(0) =

Figure 29 comparing the error of two controllers with the same
simulation conditions

Figure 30 The comparison of the behavior of two controllers with
the same simulation conditions

1, zs4(0) = 0.25.
The gains of the nonlinear controller are equal to λi(i =

1, 2, 3, 4) = −3. The controller is applied at time t=5. Figure 29
shows the error of two non-linear and ANFIS controllers for each
variable of the financial hyper chaotic system. As can be seen from
Figure 29, the error behavior in all variables of the hyperchaotic
system was almost the same for both methods. Table 3 shows the
mean of the least squares error for each variable.

Figure 30 shows the behavior of two nonlinear and ANFIS
controllers while the simulation conditions of both were the same.
Controller behavior in the real world represents implementation
costs. Therefore, this behavior must be analyzed after designing
the controller. In the analysis of the behavior of the controller for
the first variable, the range of the ANFIS controller is much higher
than the nonlinear controller, but in the fourth variable, the range
of the nonlinear controller is more than the ANFIS. In the other two
variables (second and third), the range of the nonlinear controller
is higher.
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CONCLUSION

In this article, we investigated the new 4D hyperchaotic financial
system with sinusoidal hyperbolic non-linear variables applied to
the average profit margin. The bifurcation diagrams, Lyapunov
exponents, and multistability, have all been used to explain the
complexity behavior of new 4D hyperchaotic financial system.
Finally, a nonlinear control and adaptive neural fuzzy controller
are designed for demonstrate the performances of the proposed
approach. The main finding is the simulation results show that
the proposed neural fuzzy controller architecture well controls
the synchronization of the new 4D hyperchaotic financial systems
taken as master and slave systems.
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ABSTRACT It has been reported by World Health Organization (WHO) that the Covid-19 epidemic due to the
Sar-Cov-2 virus, which started in China and affected the whole world, caused the death of approximately six
million people over three years. Global disasters such as pandemics not only cause deaths but also bring
other global catastrophic problems. Therefore, governments need to perform very serious strategic operations
to prevent both infection and death. It is accepted that even if there are vaccines developed against the virus,
it will never be possible to predict very complex spread dynamics and reach a spread pattern due to new
variants and other parameters. In the present study, four countries: Türkiye, Germany, Italy, and the United
Kingdom have been selected since they exhibit similar characteristics in terms of the pandemic’s onset date,
wave patterns, measures taken against the outbreak, and the vaccines used. Additionally, they are all located
on the same continent. For these reasons, the three-year Covid-19 data of these countries were analyzed.
Detailed chaotic attractors analyses were performed for each country and Lyapunov exponents were obtained.
We showed that the three-year times series is chaotic for the chosen countries. In this sense, our results are
compatible with the results of the Covid-19 analysis results in the literature. However, unlike previous Covid-19
studies, we also found out that there are chaotic, periodic, or quasi-periodic sub-series within these chaotic
time series. The obtained results are of great importance in terms of revealing the details of the dynamics of
the pandemic.
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INTRODUCTION

Humanity has faced the Covid-19 epidemic, which is the biggest
global disaster after the Second World War and has surrounded
the whole world. The pandemic was declared by the World Health
Organization (WHO) on March 11, 2020, due to the coronavirus epi-
demic that started in China and affected the whole world (World
Health Organisation 2020). As of March 26, 2023, 761 million peo-
ple were infected with coronavirus and 6.8 million people died
(World Health Organisation 2023). With the beginning of mass
deaths, all governments and WHO are trying to control and pre-
vent the spread of Covid-19. As it is known until the Covid-19
vaccine was found, all countries of the world tried to prevent the
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spread of this virus with a series of measures such as curfews and
travel restrictions. One of the important steps to controlling the
spread of Covid-19 was the mathematical modeling of the pan-
demic and its analysis. With the acquisition of vaccines, efforts
were made to prevent the Covid-19 epidemic. As of April 2023, 69.9
percent of the world’s population had at least one COVID-19 vac-
cine. However, despite vaccines, new virus types have emerged
and caused new spreading waves. Fortunately, the end of the
pandemic process, which lasted approximately three years, was
announced by WHO in May 2023.

Modeling a pandemic is important for two reasons. The first
of these is to find or understand the mathematical model of the
spreading dynamics of the pandemic. The other is to make model-
based predictions and develop strategies to take preventive mea-
sures against the pandemic. Various models have been supposed
to carry out the spread dynamics of infectious diseases. One of
the popular methods is the compartment method proposed by
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Kermack and McKendrick (Kermack and McKendrick 1927). In
this method, the entire population is divided into different com-
partments: i) people who are prone to the disease; ii) people who
are already infected and can spread the infection; iii) people who
have already recovered and have developed the immune system.

This model is called as SIR model in the literature. After the
Covid pandemic started, many mathematical and simulation mod-
els are proposed for the study of COVID-19 based on SIR model
(Schaffer 1985; Olsen et al. 1988; Hethcote et al. 1989; Earn et al. 2000;
Kumar et al. 2019; Machado et al. 2020; Gumel et al. 2004; Livadiotis
2020; Youssef et al. 2020; Ahmetolan et al. 2020). However, it is
known that these models are not sufficient to predict the course of
the pandemic. The validity of most predictive models relies on nu-
merous parameters, involving biological and social characteristics
often unknown or highly uncertain.

To fully understand the dynamics of the spread of such a pan-
demic, it is necessary to analyze the data set consisting, for exam-
ple, of the number of people infected or lost their lives. Does the
time series correlate? Does the time series consist of unpredictable
data? Is there a pattern in the data set? The answers to these ques-
tions are important in understanding the dynamics of diffusion.
Many studies have been conducted to answer these questions. For
example, Mangiarotti et al showed that there are chaotic attrac-
tors in the Covid-19 data of China, Japan, South Korea, and Italy
(Mangiarotti et al. 2020). These findings indicate that the number
of people infected and those who lost their lives in the pandemic
is unpredictable.

It also points out that it is necessary to include the chaos the-
ory to understand the dynamics of the pandemic. It has been
previously reported that the Mexican flu and Ebola and dengue
epidemics contained chaotic patterns (Speakman and Sharpley
2012; Mangiarotti et al. 2016; Agusto and Khan 2018). Additionally,
it is also possible to see new studies in the literature supporting
that the Covid-19 pandemic has chaotic spreading dynamics (Jones
and Strigul 2021; Borah et al. 2022; Abbes et al. 2023; Russell et al.
2023; Mashuri et al. 2023; Wang et al. 2023; Debbouche et al. 2022;
Sapkota et al. 2021; Gonçalves 2022).

As it is known, many parameters affect virus spreading. The
most important of these are new virus variants arising from the
Sars-Cov-2 virus. This causes the data to be superimposed. There-
fore, it requires detailed analysis to determine the character of the
wave. For example, the data may include quasi-periodic or chaotic
signals. Quasi-periodic signals of this type are known as weak
signals in the literature. These weak signals can be detected with
the help of chaotic oscillators (Wang et al. 1999; Wang and He 2003;
Liu et al. 2007; Raj et al. 1999; Birx and Pipenberg 1992). However,
in this study, we will analyze data as a whole and sub-series to
detect quasi-periodic and chaotic regimes.

Since Covid-19 remains a potential, careful analysis of available
data remains important. Even if the pandemic were to be offi-
cially declared over when we look at the records of the WHO and
the Coronavirus Resource Center, it is evident that the COVID-19
outbreak still persists at a low level(World Health Organisation
2023; Coronavirus Resource Center 2024). It should not be for-
gotten that the world is always under the threat of a pandemic.
Understanding the dynamics of the spread is crucial to combating
any outbreak. Throughout history, uncontrollable pandemics have
inflicted greater damage on nations than wars, and in some cases,
entire states have collapsed due to epidemics. The fight against
infectious diseases is not merely an epidemic issue but a strate-
gic concern for countries. Therefore, analyzing Covid-19 data is
still important to carry out the dynamics of the pandemic. In the

present study, we will analyze Covid-19 data of Türkiye, Germany,
Italy, and United Kingdom in detail to discuss the spreading dy-
namic. We will analyze the phase spaces and calculate Lyapunov
exponents for these countries’ time series and different time inter-
vals. As a main contribution, in the present works, we will show
that three years Covid-19 data for the chosen countries are chaotic,
and, it is the first time, we will show that the chaotic, periodic
or quasi-periodic sub-series embedded as a sub regimes in these
chaotic pandemic time series.

The study is organized as follows: In Section II, we briefly
introduce the mathematical techniques and algorithms for the
analysis of a time series. In Section III, we presented three years
Covid-19 mortality data with sub-peak periods and mortality data
for Türkiye, Germany, Italy, and the United Kingdom. In Section IV,
we give numerical results in detail for four countries. We plotted
attractors in the phase spaces and computed Lyapunov exponents
of the time series of Covid-19. In this section, we show that Covid-
19 data have chaotic attractors and positive Lyapunov exponents
in some time intervals while they have quasi-periodic solutions in
some time intervals. Finally, in the last chapter, the discussion and
conclusion are given.

CHAOTIC TIME SERIES ANALYSIS

Time series
It is known that a time series is a series of data points indexed in
time order. Time series can be obtained from data produced by a
physical system, but also from discrete or a differential equation.
While the discrete systems can be expressed as xn+1 = f(xn),
the continuous systems can be expressed in the differential form
as dx(t)

dt = F(x) with three or more degrees of freedom x(t) =
[x1(t), x2(t), ..., xm(t)]. The time series we are interested in here
is the Covid-19 mortality series of four different countries. This
series consists of three years of data. Our main aim is to reveal
whether these series are chaotic or not. As we will show below,
we will do this both for the entire series and by dividing the series
into subdivisions. We will use the same method of analysis for
both cases. To perform chaotic analysis, we will need knowledge
of the phase space and the Lyapunov exponent. These details will
be given briefly below.

According to the classical approach of chaos theory, for a time
series to be chaotic, it must be sensitive to the initial condition and
be unpredictable. Since the Covid epidemic contains dynamic vari-
ables that depend on time, it should also be taken into account that
it is sensitive to physical factors that change over time. However,
the best way to see chaotic behavior in the data set is to perform
phase space analysis and calculate the Lyapunov exponent. We
will calculate these quantities using Matlab. However, we would
like to briefly present the background of the calculation.

Attractor Reconstruction
Reconstruction of phase space is very important to see the dy-
namic behavior of the given time series. To figure out the trajectory
from a given time series is a big challenge. Fortunately, the delay
time-coordinate embbedding method laid by Takens (Takens 1981).
The delay-coordinate method can be given as follows. From a
measured time series x(k) = x(t0 + k∆t) with ∆t being the sam-
pling interval, the following vector quantity of m components is
constructed:

x(t) = {x(t), x(t + τ), ..., x(t + (m − 1)τ)} (1)

where t = t0 + k∆t, τ is the delay time which is an integer multiple
of ∆t and m is the embedding dimension. To plot a phase space
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of a given time series, it is necessary to determine the delay time
τ and embedding dimension m. Once these two parameters are
determined, the reconstructed vector x(t) can accurately represent
the trajectory of the unknown attractor. We will not go into calcu-
lation details here. It can be seen in the details of computing these
quantities in Ref.(Takens 1981).

Lyapunov Exponent
The Lyapunov exponent is the most important quantity used to
determine whether chaotic behavior exists in a dynamic system.
A positive Lyapunov exponent is the strongest sign that indicates
that there is chaos in the system. On the other hand, a negative
Lyapunov exponent represents fixed points while a zero Lyapunov
exponent denotes a limit cycle or a quasiperiodic orbit.

The Lyapunov exponent of a dynamical system or time se-
ries represents the rate of exponential divergence of an orbit
from perturbed initial conditions. For example, consider an m-
dimensional discrete map x(j) (j = 1, 2, ..., m). Let xn(j) be its state
at time n. By adding δx(j) to the xn(j), we set an new state as
x′n(j) = xn(j) + δx(j). The distance between two states changes
exponentially with time

∥δxn(j)∥ ∼ eλt∥xn−1(j)∥ (2)

Then the maximal Lyapunov exponent λmax can be obtained from
Eq.(2) as

λmax = lim
N→∞

1
N

N

∑
j=0

ln
∥δxn(j)∥
∥δxn−1(j)∥ (3)

where ∥δxn(j)∥ = (∑m
j δxn(j)2)1/2. By using this approximation

can be computed Lyapunov exponent for the dynamical systems.
However, it is quite difficult to use this method in a time series
analysis. Various methods have been developed to calculate the
Lyapunov exponent in time series (Rosenstein et al. 1993; Wolf et al.
1985) and other methods (Meranza-Castillón et al. 2019; Arellano-
Delgado et al. 2017). In this study, we will calculate Lyapunov
exponents using Matlab (Inc. 2023) which based on the algorithm
given in Ref.(Rosenstein et al. 1993). In this algorithm process,
firstly time delay time τ and embedding dimension m are com-
puted to construct the phase space for the time series data, and
then, the distance between two trajectories starts at different states.

COVID-19 MORTALITY TIME SERIES OF FOUR COUNTRIES

In this study, as we mentioned in the introduction we will analyze
the COVID-19 mortality data of Türkiye, Germany, Italy, and the
United Kingdom, respectively. The data of the countries between
2020 and 2022 will be used in the analysis. The data were taken
from public data of the World Health Organization and Our World
in Data sites (Our World in Data Organisation 2023; World Health
Organisation 2023).

Three years Covid-19 mortality data for four countries are given
in Fig.1. As can be seen from Fig.1 pandemic peaks occur at differ-
ent time intervals in the time series of four different countries. To
conduct a systematic analysis of the data of these four countries,
we divided the three-year time series into six sub-divisions for the
sake of simplicity. Each peak was represented with a different color,
and the start and end dates of the peaks were given in the panels.
In Fig.1 the area under the peaks gives the number of people who
died during that peak period. These numbers are also given in
Table 1. On the other hand, it should be noted that the highest
peaks were considered when determining the peak range for each
country. For example, if there was no major peak in one country

and there was a high peak in another country, it was evaluated as
if there was a peak in the same period. We paid attention to this
generality when separating these compartments. However, the
analysis of peaks is independent of the number of peaks.
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Figure 1 Mortality time series between 17.03.2020 − 31.05.2022
due to Covid-19: In (a) Türkiye, in (b) Germany, in (c) Italy, in (d)
United Kingdom.

The number of deaths for each peak period for four countries is
given in Table 1. It can be seen that the number of deaths varies
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■ Table 1 COVID-19 waves and mortality number of four countries.

1st 2nd 3rd 4th 5th 6th

Day Deaths Day Deaths Day Deaths Day Deaths Day Deaths Day Deaths

Türkiye 89 4792 73 1371 198 23127 128 21198 169 32147 149 16330

Germany 106 8887 103 649 309 82247 182 26935 132 21472 181 19708

Italy 176 35265 197 62307 112 29571 126 4556 238 35895 105 9429

United Kingdom 175 57858 265 96248 218 27398 166 23374 99 7786 78 5596

dramatically within the same peak intervals. The fact that these
numbers are very different from each other can be considered to
vary depending on many parameters such as the elderly popula-
tion, isolation strategies, and vaccination. In this study, we would
like to analyze the character of the time series, not the numbers
in different time intervals. Therefore, firstly, we performed the
phase space analyses for three years of data for each country, and
the character of the time series was determined by calculating
Lyapunov exponents. Subsequently, we separately analyzed all
epidemic peaks for each country. Similarly, we discussed the phase
space Lyapunov exponents for each pandemic peak. Analysis
results are given below.

CHAOS ANALYSIS OF THE COVID-19 MORTALITY DATA

Türkiye
The time series showing the number of deaths due to COVID-19
in Türkiye between 2020 and 2022 is given in Fig 1(a). We obtained
the embedding dimensions and delay time for this time series
using the method presented in Section Chaotic time series analysis.
With the help of this information, we constructed the phase space
of the time series in Fig 2 (a). Although not visible in great detail,
it can be seen that more than one orbit exists in the phase space.
These orbits may indicate the presence of a chaotic attractor. But
the attractor is not very clear, as in Lorenz, for example. Orbits may
indicate the existence of a periodic or quasi-periodic solution. To
see whether the orbit is chaotic or not, we calculated the Lyapunov
exponent of the series with the help of MATLAB (Inc. 2023) and
gave the result in Fig 2 (b).
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Figure 2 COVID-19 data set of Türkiye’s reported deaths time
series between 17.03.2020 − 31.05.2022. Embedding dimension
d = 3 and time delay τ = 20. In (a) phase space representation,
in (b) Lyapunov exponent.

As can be seen from Fig 2 (b) the Lyapunov exponent for
COVID-19 three-year mortality data is positive which indicates
data has chaotic behavior.
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Figure 3 Reconstructed phase space of Türkiye’s waves. In (a) 1st

wave, in (b) 2th wave, in (c) 3th wave, in (d) 4th wave, in (e) 5th

wave, in (f) 6th wave.
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Figure 4 Largest Lyapunov exponent of Türkiye’s wawes. In (a)
1st wave, in (b) 2th wave, in (c) 3th wave, in (d) 4th wave, in (e)
5th wave, in (f) 6th wave.

On the other hand, to analyze the local region in the time series,
we first computed the embedding dimensions and delay times for
the sub-time series corresponding to each peak, and we separately
plotted the phase space diagrams for these sub-time series in Fig 3.
As can be seen from this figure the single trajectory is seen in all sub-
panels in Fig 3. One can see that the presence of these single orbits
may indicate aperiodic orbits of the sub-time series. Lyapunov
exponents of these sub-time series were calculated and given in
Fig 4. As can be seen from Fig 4 all sub-time series of Türkiye
have different negative Lyapunov exponents. These interesting
results show that while the three-year time series of Covid-19 data
is chaotic, the behavior of the sub-time series in the same period
is not chaotic for Türkiye. This result is meaningful as it indicates
that a time series consisting of quasi-periodic signals sub-sets can
produce chaotic dynamics when evaluated as a whole.

Germany

Similarly and using the same systematics, we analyzed the three-
year data of the Germany time series shown in Fig 1(b). We de-
termined the delay time for this time series and plotted the phase
space as can be seen in Fig 5(a). Contrary to Türkiye’s data, we
can say that there are more orbits around attractors in Germany’s
data. We can see from Fig 5(b) that this attractor is chaotic. Indeed,

the Lyapunov exponent of this time series is positive. While the
Largest Lyapunov Exponent (LLE) value is 0.038 for Germany, this
value is around 0.028 for Türkiye. This difference indicates that
Germany’s Covid-19 time series is more chaotic than Türkiye’s
time series.
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Figure 5 COVID-19 data set of Germany’s reported deaths time
series between 09.03.2020 − 19.06.2022. Embedding dimension
d = 3 and time delay τ = 20. In (a) phase space representation,
in (b) Lyapunov exponent.
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Figure 6 Reconstructed Phase Space of Germany’s Waves. In (a)
1st wave, in (b) 2th wave, in (c) 3th wave, in (d) 4th wave, in (e)
5th wave, in (f) 6th wave.
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Figure 7 Largest Lyapunov exponent of Germany’s waves. In (a)
1st wave, in (b) 2th wave, in (c) 3th wave, in (d) 4th wave, in (e)
5th wave, in (f) 6th wave.

To analyze the time series of each independent peak in Ger-
many’s Covid-19 data given in Fig. 3(b), we computed embedding
dimensions and delay times for each sub-data. We separately plot-
ted the phase space diagrams for these sub-time series in Fig. 6.
As can be seen from this figure more trajectories are seen in all
sub-panels in Fig 6. These multi-orbits may indicate chaotic orbits
of the sub-time series. Lyapunov exponents of these sub-time se-
ries were calculated and given in Fig. 7. As can be seen from Fig. 7
all sub-time series of Germany have different positive Lyapunov
exponents. These interesting results show that the three-year time
series and all sub-series of Covid-19 data of Germany are chaotic.

Italy

Similarly, we compute the delay time for the three-year data of
the Italy time series shown in Fig. 1(c). The chaotic attractor for
this data is given in Fig. 8(a). It can be seen that there is more than
one trajectory in this phase space. Additionally, we obtained the
Lyapunov exponent for this data and plotted it in Fig. 8(a). The
value of the Lyapunov exponent for Italy is 0.0037 which is close
to the value of Germany.

To see detailed phase space attractors of the sub-series for Italy’s
Covid-19 data given in Fig 3(c), we computed embedding dimen-
sions and delay times for each sub-data. We separately plotted the
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Figure 8 COVID-19 data set of Italy’s reported deaths time series
between 21.02.2020 − 2.10.2022. Embedding dimension d = 3
and time delay τ = 10. In (a) phase space representation, in (b)
Lyapunov exponent.

0 100 200 300 400 500 600 700 800 900 1000

x (t)

0

100

200

300

400

500

600

700

800

900

1000

x
 (

t+
1
2
)

ITA wave 1

(a)

0 100 200 300 400 500 600 700 800 900 1000

x (t)

0

100

200

300

400

500

600

700

800

900

1000

x
 (

t+
4
)

ITA wave 2

(b)

0 100 200 300 400 500 600 700 800

x (t)

0

100

200

300

400

500

600

700

800

x
 (

t+
1
8
)

ITA wave 3

(c)

0 10 20 30 40 50 60 70 80

x (t)

0

10

20

30

40

50

60

70

80

x
 (

t+
8
)

ITA wave 4

(d)

0 50 100 150 200 250 300 350 400 450 500

x (t)

0

50

100

150

200

250

300

350

400

450

500

x
 (

t+
1
8
)

ITA wave 5

(e)

0 50 100 150 200 250 300

x (t)

0

50

100

150

200

250

300

x
 (

t+
1
4
)

ITA wave 6

(f)

Figure 9 Reconstructed phase space of Italy’s waves. In (a) 1st

wave, in (b) 2th wave, in (c) 3th wave, in (d) 4th wave, in (e) 5th

wave, in (f) 6th wave.

phase space diagrams for these sub-time series in Fig 9. As can be
seen from this figure more trajectories are seen in all sub-panels
in Fig 9. Although there appear to be attractors in the phase space
diagrams, it is difficult to say that the character of the time series
can be fully understood from the orbits in the phase space. To see
the dynamics of the sub-time series, Lyapunov exponents of the
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Figure 10 Largest Lyapunov exponent of Italy’s waves.In (a) 1st

wave, in (b) 2th wave, in (c) 3th wave, in (d) 4th wave, in (e) 5th

wave, in (f) 6th wave.

sub-time series were calculated separately and given in Fig 10. In-
terestingly, the second and third peaks have a negative Lyapunov
exponent, while the others have a positive exponent. These re-
sults indicate that the three-year chaotic Italy series consists of a
combination of chaotic and quasi-periodic sub-series.

United Kingdom
Finally, we compute the delay time for the three-year data of the
United Kingdom time series shown in Fig. 1(d). The attractor for
this data is given in Fig. 11(a). It can be seen that there is more than
one trajectory in this phase space. Additionally, we obtained the
Lyapunov exponent for this data and plotted it in Fig. 11(b). The
value of the Lyapunov exponent for the United Kingdom is 0.029
which is close to the value of Türkiye.

Obtaining embedding dimensions and delay times for all sub-
series for United Kingdon’s Covid-19 data given in Fig 1(d). We
separately plotted the phase space diagrams for these sub-time
series in Fig 12. As can be seen from Fig 12 while the orbits are
more distinct in the first two panels, however, the orbits are in-
tertwined in the others. To reveal the dynamics of the sub-time
series, Lyapunov exponents were calculated separately and given
in Fig 13.
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Figure 11 COVID-19 data set of United Kingdom’s reported
deaths time series between 08.03.2020 − 03.12.2022. Embedding
dimension d = 3 and time delay τ = 10. In (a) phase space
representation, in (b) Lyapunov exponent.
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Figure 12 Reconstructed Phase Space of United Kingdom’s
waves. In (a) 1st wave, in (b) 2th wave, in (c) 3th wave, in (d) 4th

wave, in (e) 5th wave, in (f) 6th wave.

Surprisingly, one can see that all sub-time series of the United
Kingdom have a negative Lyapunov exponent. While the entire
series is chaotic, the subseries behave as quasi-periodic. These
results are similar to Türkiye’s results.
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Figure 13 Largest Lyapunov exponent of United Kingdom’s
waves. In (a) 1st wave, in (b) 2th wave, in (c) 3th wave, in (d) 4th

wave, in (e) 5th wave, in (f) 6th wave.

CONCLUSION

As we mentioned in the introduction, it is very difficult to pre-
dict and make predictions about the course of the pandemic due
to reasons such as its multi-parameter-dependent dynamics, the
emergence of new variants, and the impact of vaccine applications.
So far, it has been possible to obtain limited information about the
course of the pandemic through model-based or statistical analysis-
based studies. The most important possible reason for this may be
that the pandemic dynamics are chaotic. Therefore, in this study,
to see the presence of chaotic patterns in the Covid-19 data, we
analyzed the Covid-19 mortality data of Türkiye, Germany, Italy,
and the United Kingdom for three years by using the data of the
WHO.

We plotted phase space diagrams of three-year mortality data
of four countries and obtained Lyapunov exponents. We found
positive Lyapunov exponents for all countries, which indicates
phase space trajectories of the Covid-19 data are chaotic. These
significant numerical results support the studies that suggest that
the Covid-19 pandemic has chaotic dynamics. On the other hand,
we considered the subset of data corresponding to the spreading
peaks of mortality data in the time interval for three years.

Surprisingly, we found that some of the sub-time series of these
countries exhibit chaotic or quasi-periodic behavior. This interest-

ing result was reported for the first time in this study. This reveals
that there may be quasi-periodic -weak- regimes within a chaotic
time series. These findings are important for a more detailed un-
derstanding of epidemics with chaotic spread dynamics.

If we summarize the results, analysis has revealed that while
the Covid-19 epidemic in Türkiye was chaotic over three years,
however, no peak that emerged in this period was chaotic. For
example, the situation is quite different in Germany. While the
three-year data in Germany behaves chaotically, it can be seen
from the figure that all independent peaks in this time interval are
also chaotic.

The situation in United Kingdom is the same as in Türkiye. As
can be seen from the figure, all peaks are chaotic. However, in the
Italy, the second and third peaks are periodic or quasi-periodic,
while the others are chaotic. As is known, positive Lyapunov ex-
ponents indicate that the series behaves chaotic. In the analysis,
we saw that time series that behave chaotically take different pos-
itive values. These values can be thought to reflect the degree of
chaoticness of the system.

As a result, by analyzing Covid-related deaths from four coun-
tries, we showed that the series is chaotic as seen as seen Figs.2(b),
5(b), 8(b) and 11(b). In this sense, our results are compatible with
the results obtained in the previous studies (Jones and Strigul 2021;
Borah et al. 2022; Abbes et al. 2023; Russell et al. 2023; Sapkota et al.
2021; Gonçalves 2022). However, unlike previous Covid-19 studies,
we also found out that there are chaotic, periodic or quasi-periodic
sub-series within these chaotic time series. These new and novel re-
sults are reported for the first time in this study. Here we analyzed
data from four countries, however, one can estimate that the time
series of Covid-19 in the other countries have similar dynamics.

It can be assumed that a pandemic is a catastrophic event that
occurs within a complex system (Aydiner 2020). Therefore, by
its nature, the pandemic is expected to be chaotic. Indeed, it has
been confirmed in the present study and previous studies that
the Covid-19 pandemic is chaotic (Jones and Strigul 2021; Borah
et al. 2022; Abbes et al. 2023; Russell et al. 2023; Sapkota et al. 2021;
Gonçalves 2022). However, it is interesting to find periodic or
quasi-periodic regimes in chaotic time series. For example; all
sub-series of Türkiye and United Kingdom in Figs.4 and 13 are
quasi-periodic, not chaotic.

Similarly, two sub-series for Italy in 10(b) and (c) are also quasi-
periodic. Quasi-periodic regimes may indicate that the correlations
between daily mortality values goes to zero which means daily
mortalities are relatively independent each other.
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ABSTRACT Artificial neural networks (ANN), an Artificial Intelligence (AI) technique, are both bio-inspired
and nature-inspired models that mimic the operations of the human brain and the central nervous system
that is capable of learning. This paper is based on a system that optimizes the performance of an uncertain
unmanned nonlinear Multi-Input Multi-Output (MIMO) aerodynamic plant called Twin Rotor MIMO System
(TRMS). The pitch and yaw angles which are challenging to control and optimize in practice, are being used
as the input to the Nonlinear Auto-Regressive with eXogenous (NARX) model, and eventually trained. The
training features use the Matlab Deep Learning Toolbox. The NARX structure has its core in the neural
networks’ architecture. Data is collected from the TRMS testbed which is used to train the network. ANN
as a Hybrid intelligent control strategy of ANN in combination with Pattern Search and Genetic Algorithm, is
then utilized to optimize the parameters of the neural networks. At the end it was validated, tested and the
optimized system run in simulation and compared with other intelligent and conventional controllers, with the
proposed controller outperforming them, giving a very fast-tracking control, stable and optimal performance
that satisfactorily met all our design requirements.
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INTRODUCTION

The modelling, optimization and control of rigid bodies and flexi-
ble structures/systems (Ahmad et al. 2000a,b; Moness and Diaa-
Eldeen 2017) (such as plates, shells, beams, frames, etc.) are increas-
ingly gaining a considerable attention from researchers globally
(Tavakolpour et al. 2010; Nasir and Tokhi 2014; TRahman et al.
2019). These bodies and structures are highly essential manufac-
turing elements in electro-mechanical, civil, marine and aerospace
engineering. In this paper, the application of Feedforward Neural
Networks (NN) is applied to the beam of a nonlinear uncertain
system called, the TRMS. It is a highly nonlinear, high-order, com-
plex system (Moness and Diaa-Eldeen 2017; Toha and Tokhi 2009;
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Alam et al. 2004; Toha and Tokhi 2010; Ahmad et al. 2016) the
nonlinearities and complexities emanate from the cross-couplings
between the twin-rotors. These pose as a serious challenge to
effectively model, control and optimize. The modelling, control
and optimization of the TRMS can be carried out in either the
model-based/model-driven or data-driven approaches. The data-
driven (i.e. black-box modelling) approaches for which this paper
is based, requires some input/output dataset (Ljung and Gun-
narsson 1990)[obtained through system simulation, offline and/or
online. With this dataset, the system is identified through System
Identification (SI) techniques.

The drawback of SI is that it has demonstrated a computational
inadequacy with nonlinear systems, but much less uncomplicated
with linear systems (Ahmad et al. 2000a). In spite of this, it is
still indispensable and a powerful design strategy, especially if
the system can be linearized about some equilibrium points. To
use SI methodologies, require training of the network used in
the design process, which can be parametric or non-parametric.
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The non-parametric SI (which is of interest here) involves the use
of Artificial Intelligence, such as ANN (Sjöberg et al. 1994; Chu
et al. 1990) or an Adaptive Neuro-Fuzzy Inference System (ANFIS)
(Castillo et al. 2006). For brevity, ANN is simply referred to as NN.
However, they suffer from being caught in a local minimum and
a very slow convergence resulting from system complexities of
nonlinear systems. To solve these problems metaheuristic methods
are employed for faster convergence optimization. With this, the
solution being trapped in a local minimum or local minima is
prevented, thus guaranteeing an accurate solution (TRahman et al.
2019).

A number of these metaheuristics’ approaches have been suc-
cessfully used in the training of ANNs in engineering and scientific
applications. Some of these methods include Symbiotic Organisms
Search (SOS) scheme employed to train a feed forward NN to solve
a classification problem (Wu et al. 2016), Genetic Algorithm (GA)
(Sivadasan and Shiney 2023) Harmony Search, Simulated Anneal-
ing and Differential Evolution (DE) (Rere et al. 2016), a hybrid
algorithm composed of Particle Swarm Optimization (PSO) used
for optimization of a Convolutional NN to also solve a classifica-
tion problem (Yaghini et al. 2013), ANN models trained for stock
market price predictions/forecasts (Ghasemiyeh et al. 2017), the
newly developed Stochastic Fractal Search Algorithm SFS by Sal-
imi (Salimi 2015) and used to train ANNs (Mosbah and El-Hawary
2017; Khishe et al. 2018). Also, the successful applications of ANNs
in estimating the nonlinear dynamics of dynamical systems have
been reported for kinematics in (Xia and Wang 2001; Yoo et al. 2006;
Abbas and Liu 2022) for dynamics in (Lin and Goldenberg 2001;
El-Fakdi and Carreras 2013) and for control in (Xia and Wang 2001;
Wai 2003; Palepogu and Mahapatra 2023)

Due to the extreme and profoundly serious (i.e., massive) non-
linearities the control of Unmanned Aerial Vehicles (UAVs), of
which class the TRMS falls, is a challenging one (Agand et al. 2017).
Rahideh et al. proposed a Model Inversion Control law to control a
1-DOF pitch model of the TRMS using ANN (Rahideh et al. 2012a).
The ANN was used adaptively to tune the system model. The
obtained control law was consequently used to achieve control
and tracking. The scheme used an adaptive nonlinear iterative
learning control (Patan and Patan 2023; Bensidhoum et al. 2023) for
compensation of the errors due to modelling, thereby identifying
the system. The use of the NARX neural networks based on a Back
Propagation (BP) algorithm for network training was proposed
by Tijani et al in (Tijani et al. 2014) to solve a multi-objective opti-
mization problem. The algorithm used a multi (or many)-objective
DE algorithms to identify and control the nonlinear TRMS using
real-time data from experiments. The motivation of this work
stems from the fact that unlike linear systems and processes which
a tremendous depth of knowledge exists on the control of such
systems and processes, for nonlinear control systems are quite very
challenging. Since most or nearly all control systems are nonlinear
attention has shifted by researchers and control engineers globally
on development of control techniques, methodologies and strate-
gies to address these systems. Nowadays the research direction
has shifted focus on Artificial Intelligence (AI) and Computational
Intelligence (CI) which are at the cutting edge. From studies on the
use of ANN, an AI-based technique, developing a controller using
NN structure is quite very difficult, because of the dynamic nature
of such systems, where the states are also dynamic in nature and
constantly changing. This pose as a serious challenge to control
such a system.

In this study, the use of Deep Neural Networks architecture
using NARX Shallow NN for the ANN training is used to identify,

optimize and control the nonlinear TRMS lab-scaled helicopter.
The NARX model is used here identifies/ capture the nonlinear
dynamics of the nonlinear TRMS testbed. The NARX network is a
feedforward neural network composed of 2 layers, with a sigmoid
transfer or activation function in the hidden layer and a linear
transfer function in the outer layer. Tapped delay lines are also
used by the network to store previous values of the input and
output sequences. Here, the outputs are fed back into the inputs
through the delay lines, since if y(t) is the output, then y(t) is a
function of

y(t − 1), y(t − 2), . . . , y(t − d). (1)

The learning rules algorithms employed mostly are the
Bayesian Regularization (trainbr), Levenberg-Marquardt (trainlm),
and the Scaled Conjugate Gradient (trainscg). The first two algo-
rithms are based on the Jacobian calculations while the last training
method is based on the gradient calculations. In this paper, the
2 inputs (elevation and azimuth) and the outputs/target vectors
(pitch and yaw) are composed of 181 datasets each, at random,
roughly divided into 70% for the training phase, 15% for the vali-
dation phase and 15% for the test phase to generalize the network.
2 different set of numbers of hidden neurons of 10 and 1000 were
used, with a tapped delay line of 4. The paper is organized as
follows: Section 2 presents the experimental arrangements as well
as the governing equations of motion; Section 3 presents the NN ar-
chitecture and theoretical background; Section 4 gives the training
results and final simulations.

SETUP OF EXPERIMENT

Figure 1 (a) The Real-world experimental setup at the Botswana
International University of Science and Technology (BIUST),
with the beam inclined at 60° to the horizontal at rest and show-
ing I/O communication cables (b) Schematic graphic (Abdul-
wahhab and Abbas 2017; Ezekiel et al. 2020, 2021).

Figure 2 The electrical circuit connection of the DC motor of the
TRMS
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The model of the DC motors is given in (Darus and Lokaman
2010; Rahideh et al. 2008) as:

diaγ

dt
=

1
Laγ

(Vγ − Eaγ − Raγiaγ) (2)

Eay = Kay pyvy (3)

Jyr = cyaw = −Gs (4)

Tey = Kayyiay (5)

Tzy = Kty0y|wy| (6)

Where, Vγ is the control voltage input to either the vertical or
the horizontal channel, Eaγ, iaγ, Raγ, and Laγ are respectively the
e.m.f, current, resistance, and inductance in the armature of the
main/tail motor; kαγ and ktγ are constants; ϕγ is the flux linkages;
ωγ is the angular velocity of either the main or tail motor, Teγ,
TLγ are the magnetic torque and load torque respectively in the
main/tail motor; Jγr, Bγr are the moments of inertias and viscous
friction damping coefficients of the rotors in the main/tail motors.

Figure 3 Planar (vertical plane) representation of the TRMS, show-
ing the gravity and propulsive forces (Rahideh et al. 2012b)

Governing Equations of Motion of the TRMS
Being a dynamical system that has rotational motion, Newtonian
mechanics for rotational dynamics or Lagrangian mechanics may
be used to develop the dynamic equations of motion. Based on
Newtonian mechanics for rotational dynamics, the dynamic equa-
tions of motion (using Newton’s laws of motion for rotational
dynamics) (Coelho et al. 2007a, 2008, 2007b) of the TRMS, repre-
senting the flight in the pitch (or vertical) plane and the yaw (or
horizontal) plane are respectively given by:

dSv

dt
=

Mv

Jv
=

lmFv(ωm)− ΩvKv + g[(A − B) cos αv − C sin αv]

Jv

− 1
2

Ω2
h(A + B + C) sin 2αv

Jv

=
lmFv(ωm) + g[(A − B) cos αv − C sin αv]− Tfric,v

Jv
(8)

dSh
dt

=
Mh
Jh

=
ltFh(ωt) cos αv − ΩhKh

D sin2 αv + E cos2 αv + F
=

ltFh(ωt) cos αv − ΩhKh
Jh

(8)

where, Ωv and Ωh are the angular/rotational velocities of the
rotors for the pitch and yaw orientations, respectively, given by:

Ωv =
dαv

dt
= Sv +

Jtrωt
Jv

(9)

Ωh =
dαh
dt

= Sh +
Jmrωm cos αv

Jh
= Sh +

Jmrωm cos αv

D sin2 αv + E cos2 αv + F
(10)

where A, B, C, D,E,F are constants, and are given by:
A =

(mt
2 + mtr + mts

)
lt; B =

(mm
2 + mmr + mms

)
lm; ‘ ‘L

C =
mb
2

lb + mcblb; D =
mb
3

l2
b + mcbl2

cb;

E =
(mm

3
+ mmr + mms

)
l2
m +

(mt
3

+ mtr + mts

)
l2
t ;

F = mmsr2
ms +

mts
2

r2
ts

The aerodynamic propulsive forces, Fv(ωm) and Fh(ωt), are
produced by the main/tail rotors in the vertical/horizontal planes,
respectively, and are given by:

Fv(ωm) =
JvΩ̂v + g[(A − B) cos αv − C sin αv]− Tfric,v

lm
(11)

Ω̇v =
d2αv

dt2 (12)

Fh(ωt) =
JhΩ̇h − Tfric,h

lt cos αv
(13)

Ω̇h =
d2αh
dt2 (14)

The variables Mv and Mh represent the sum of moments in the
pitch and yaw planes, respectively. Similarly, Jv and Jh denote the
sum of moments of inertias in the vertical and horizontal planes.
Tfric,v stands for the frictional torque developed in the pitch plane.
The masses mmr and mtr correspond to the composite mass of
the Main/Tail rotor plus Main/Tail DC motor. mm and mt are
the masses of the beam’s Main/Tail portion, mcb is the mass of
the counterweight, and mms and mts represent the masses of the
Main/Tail shield. The lengths lb, lcb, lm, and lt refer to the coun-
terbalance beam length, the distance from the pivot joint to the
counter-balance or counterweight, and the lengths of the beam’s
Main/Tail portion. The angles αv and αh represent the angles for
the pitch and yaw, respectively.

THE NEURAL NETWORK STRUCTURE

The NN structure presents the layers arrangements and the no. of
neurons in each layer. Each of the two planes/axes of our plant in
question (i.e., the pitch and yaw) are presented with a Feedforward
NN structure.
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Figure 4 The NARX shallow NN for the (a) pitch (b) yaw angles
(Rahideh et al. 2012a,b).

Figure 5 The actual NARX shallow (1-layered) NN controllers for
the (a) pitch (b) yaw, each having 10 neurons with network weights
attached as seen above (c) the configuration showing the single-
input single-output network (d) the feedforward configuration for both
pitch and yaw angles.

The Feedforward Neural Network
For the first NARX shallow Neural Networks (Fig. 4a) having one
hidden layer with 10 hidden neurons, since 4 input tapped delays
are employed for this research work, then the pitch angle of the
beam is the inputs to the NN at the current time, and delayed 1, 2,
3, and 4 samples, i.e., αv(t), αv(t− 1), αv(t− 2), αv(t− 3), αv(t− 4).
In a similar vein, the second NARX NN model is for the yaw angle
with inputs at the current time instant, and those delayed by 1, 2,
and 3 samples, i.e., αh(t), αh(t − 1), αh(t − 2), αh(t − 3), αh(t − 4).
For both models, the output vαd(t) is expressed as:

vαd(t) = bw +
n

∑
j=1

wj f j

(
bvj +

3

∑
i=1

vijxi

)
= WTF(VTX) (15)

X =



1

x1

x2

x3


(16)

xi = αv(t − i + 1) = αh(t − i + 1), i = 1, 2, 3 (17)

W =



w1

w2

...

wn


, n = 10, 1000 (18)

V =


bv,1 · · · bv,10

...
. . .

...

v3,1 · · · v3,10

 and V =


bv,1 · · · bv,1000

...
. . .

...

v3,1 · · · v3,1000

 (19)

f j(zj) =
1

1 + e−αizj
, j = 1, 2, . . . , 10 (20)

F =



1

f1(z1)

...

f10(z10)


(21)

where, X= the input vector, W= the network weights, ,V= the biases
matrices,F= the activation function Widrow and Hoff (1960).

Training the Network

The neural network must be trained in order for biases and weights
adjustments so as to obtain the optimum system parameters. This
training could be carried out in offline or online scenarios, but
here the offline training is adopted. The network weights and
biases are updated/adjusted with the main aim of minimizing the
tracking error response of the plant (TRMS). This adjustment is
done according to the following formulations (Widrow and Hoff
1960):

Ẇ = −
[(

F − FVTX
)

rT + β∥e∥W
]

ΛW (22)

V̇ = −ΛV

[
XrTWTFT + β∥e∥V

]
(23)

where ΛW , ΛV represent the network learning rates, and with
β > 0 ensures tracking the error of the system e and the neural
networks weights are bounded uniformly. e is given by:

e =

αv,ref − αv

α̇v,ref − α̇v

 (24)

F =



0 0 . . . 0

∂ f1(z1)
∂z1

0 . . . 0

0 ∂ f2(z2)
∂z2

. . .
...

0 . . .
. . . ∂ f2(z2)

∂z2

0 . . . 0 0


(25)

rT = (eT PB)T (26)

where, P is the Lyapunov candidate solution for the nonlinear
equation:

AT P + PA + Q = 0 (27)
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where Q must be a positive-definite matrix (i.e., Q > 0), A and B
are matrices for the tracking error (e), given by:

A =

 0 1

−kp −kd

 (28)

B =

0

1

 (29)

Validation of the Model
The tools used for validating the nonlinear model of the TRMS
include, One Step-Ahead (OSA) Prediction, Mean Squared Error
(MSE), Correlations Tests (Autocorrelation and cross-correlation
functions) and Normalization.

OSA Prediction
The OSA prediction for the NARX network or model occurs
when the feedback loop of the network is open. The NARX net-
work/model thus predicts the next value of the output vαd(t) from
the previous ones of vαd(t) and the input αγ(t). For a Multi-Step-
Ahead prediction, the feedback loop must necessarily be closed.
The OSA is a measure of the accuracy in modeling. It is given by:

v̂αd(t) = f [αγ(t), αγ(t− 1), . . . , αγ(t−nαγ ), vαd(t− 1), . . . , vαd(t−nvαd )]
(30)

where, f is a nonlinear function approximator, αγ, vαd represent
the input/output respectively, v̂d(t) is the prediction value and γ
represents pitch or yaw. The OSA is an extension of the NARX
model, where the NARX model is given by:

vαd(t) = f
[
vαd(t − 1), . . . , vαd(t − nvαd ), αγ(t − 1), . . . , αγ(t − nαγ )

]
(31)

eres = vαd(t)− v̂αd(t) (32)

Mean Squared Error (MSE)
The MSE (Mean Squared Error) is a validation test, providing the
average of the sum of mean squares of the differences between
the actual and predicted outputs (vαd(t), v̂αd(t)) of the TRMS sys-
tem. The outputs are generated using the input and the optimized
parameters of the network. MSE is given by:

MSE = f (e) =
1
n

n

∑
i=1

|eres|2 =
1
n

n

∑
i=1

|vαd(t)− v̂αd(t)|2 (33)

where, n is the number of input/output samples.
The MSE (Mean Squared Error) algorithm helps in adjusting

the network weights and biases, minimizing the MSE. Fortunately,
the MSE performance indicator is a quadratic function, which will
either have a global minimum, a weak minimum, or no minimum
at all, determined by the nature of the input vectors. Hence, a
unique solution may or may not exist. The MSE algorithm, or
Widrow-Hoff learning algorithm (Demuth and Beale 2000), ap-
proximates MSE based on the steepest descent algorithm at each
iteration.

Taking the partial derivatives of the MSE with respect to
weights and biases at the kth iteration, we get:

∂e2
res(k)
∂wij

= 2eres(k)
∂eres(k)

∂wij
, j = 1, 2, . . . , R (34)

∂e2
res(k)
∂b

= 2eres(k)
∂eres(k)

∂b
(35)

Taking the partial derivative w.r.t error

(eres)

∂eres(k)
∂wi,j

=
∂

∂wi,j
[t(k)− α(k)] =

∂

∂wi,j
[t(k)− (W p(k) + b)] (36)

or
∂eres(k)

∂wi,j
=

∂

∂wi,j
[t(k)−

(
R

∑
i=1

w1,i pi(k) + b

)
] (37)

where, pi(k) is the ith element of the input vector at the kth
iteration.
Further simplification yields:

∂eres(k)
∂wi,j

= −pj(k)

∂eres(k)
∂b = −1

 (38)

The Correlations Tests
These tests are statistical tests for bivariate dataset composed of
the autocorrelation and cross-correlation functions (Darus and
Lokaman 2010), given by:

ϕεε(τ) = E[ε(t − τ)ε(t)] = δ(t)

ϕxε(τ) = E[x(t − τ)ε(t)] = 0 ∀τ

ϕx2ε(τ) = E
[(

x2(t − τ)− x̄2(t)
)

ε(t)
]
= 0 ∀τ

ϕx2ε2 (τ) = E
[(

x2(t − τ)− x̄2(t)
)

ε2(t)
]
= 0 ∀τ

ϕε(εx)(τ) = E[ε(t)ε(t − 1 − τ)x(t − 1 − τ)] = 0 τ ≥ 0


(39)

where, ϕεε(τ) and ϕxε(τ) are the autocorrelation and cross-
correlation functions between x(t) and ε(t), and ε(t) is the error of
the prediction sequence.

Normalization
In practice, the correlations computed are normalized to ensure
all the values fall within a given bandwidth and/or range. The
normalized correlation function between two sequences ϕ1(t) and
ϕ2(t) is given by:

ϕ̂ψ1ψ2 (τ) =
∑N−τ

i=1 ψ1(t)ψ2(t − τ)√
∑N

i=1 ψ2
1(t)∑N

i=1 ψ2
2(t)

(40)

RESULTS AND DISCUSSION

The Nonlinear TRMS Modelling
The method employed in this research work involves the use of
a time-domain closed-loop control approach. Here, the NARX
shallow Neural Networks modelling is used as a compensator to
train the network and provide the closed-loop control signal. The
input signals to the TRMS and the NN are a uniform random signal,
exciting both the pitch and yaw subsections of the plant/system.
The Simulink model of the TRMS as well as the signals are given
below.
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Figure 6 Simulation of the TRMS (a) Pitch Random signals for the input (b) Its Log/Magnitude (c) Yaw Random signals for the input (d) Its
Log/Magnitude (e) Simulink model of the nonlinear TRMS

Shallow NN Modelling
Training with Levenberg-Marquardt (LM) It is known that for every
nerual network structure designed/implemented as a solution
to e.g. a control problem, the correction error functions must lie
within an acceptable predefined region which is depicted in figs 7
(a - e), otherwise the control design objective will not be acheiav-
able. Also, the Best validation performance for our design must
occur at an epoch where the best value falls the parameterized
training, validation and testing performance scores. And as can be
clearly seen, these were obtained at various epochs for individual
runs of the TRMS plant, forming the availabe simulation data to
the NN. 3 different runs each for 10 neurons (figs. 7 (g – i)) and
for 1000 neurons (figs. 7 (j – l) were used in order to show data
integrity fro the TRMS Simulink model obtained from first princi-
ples. For the training, testing and validation of the NN strucuture,
Levenberg-Marquardt training algorithm was used throughut this
reaserch and the step-by-sstep procedure is giving above in fig. 7
(m) in Matlab.using the nntool command.

Further Discussions Figs 9 – 13 below show the results obtained
from different controllers employed in this study. In Fig. 9, Clas-
sical PID control was used for simulation times of (a) 50 (b) 100
seconds, while in Fig. 10, ANN controllers were generated and
deployed for simulation times of (a) 50 (b) 100 seconds. In Fig.
11, the developed ANN controllers were combined with meta-
heuristic approaches of Pattern Search (PS) and Latin Hyperbole
(LH) to improve on the neural controller. In Fig. 12, the ANN
controllers were combined with PS and Genetic Algorithm (GA)
this time to obtain highly improved tracking control performances
for simulation times of (a) 50 (b) 100 seconds. Fig. 13 is merely

a comparison of these techniques above, combined, to depict the
strength of the ANN + PS + GA strategy over the other methods in
setpoint tracking of the commanded input to the TRMS prototype
helicopter.

Since the performance measures can be given in terms of time-
domain or frequency-domain specifications, here the performance
indices are expressed in terms of the usual time-domain specifica-
tion: rise time τr, settling time τs, and steady-state error ess. These
results have been presented and tabulated in Tables 1 and 2 below.
Note that the ISE and RMSE are functions of the squares of ess error
coefficients, statistically designed as indices of performances of the
control simulations. Since the results are presented in a composite
fashion, the combined ess for the pitch and yaw angles for ANN +
PS + GA is negligibly small compared to the other methods used,
as seen in Fig. 12 and Table 1. This explains the best tracking
performance and low control energy required.

Note: PS = Pattern Search; LH = Latin Hyperbole; τr=rise time;
τs=Settling time; ess=Steady-state error

Note: PS = Pattern Search; LH = Latin Hyperbole; τr=rise time;
τs=Settling time; ess=Steady-state error; ISE = Integral Squared
Error; RMSE = Root Mean Squared error

The TRMS plant is a highly uncertain and highly nonlinear
plant with high-frequency oscillations, particularly with the pitch
angle. This can pose as a serious control challenge in efforts to
remove the rippling oscillations. This is shown in the scope of the
designed control system using the conventional PID controllers
(Fig. 9). For the real system, this evidently would affect the plant
operation in the inability of the plant to settle within acceptable
limits specified for effective control. The need, therefore, for im-
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Figure 7 Levenberg-Marquardt training with (a) 10 (b) 1000 hidden neurons; Autocorrelation Error for (c) 10 (d) 1000 hidden neurons; Input-
Error Corelation for (e) 10 (f) 1000 hidden neurons; Best validation performance for (g)-(i) 10 (j) – ( l) 1000 hidden neurons (m) Matlab nntool
NARX NN GUI programming and execution.
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Figure 8 Control system designed to implement step input signal tracking control using (a) conventional PID controller (b) neural networks
controllers generated using the ‘gensim’ command

Figure 9 The tracking control for the elevation (pitch)-red and azimuth (yaw)-blue trackings of the TRMS using PID controllers for a simulation
time of (a) 50 (b) 100 seconds

Figure 10 The final acutal output shown for the elevation (pitch)-red and azimuth (yaw)-blue trackings of the TRMS using ANN controllers
realized using the “getsim”command for a simulation time of (a) 50 (b) 100 seconds

proved tracking becomes indispensable for such a safety-critical
system.

This informed the use of the neural networks (NN) controllers
(Fig. 10). The NN controllers were able to eliminate the undesirable
oscillations or ripples in the final outputs for the yaw angle at first
glance (Fig. 10), though with a large overshoot. When the network

weights of the ANN controllers were optimized using intelligent
schemes of Pattern Search with Latin Hyperbole (ANN + PS + LH)
and Pattern Search with Genetic Algorithm (ANN + PS + GA), the
GA-based ANN controllers completely eliminated the ripples for
both angles and brought the system within acceptable bandwidths
of control (Fig. 12) and fast tracking simulation time of 10 seconds.
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Figure 11 Improved step input tracking control for the pitch and yaw angles using neural networks controllers optimized using Pattern Search +
Latin Hyperbole for a simulation time of (a) 10 (b) 100 seconds

Figure 12 Final Improved step input tracking control for the pitch and yaw angles using neural networks controllers optimized using Pattern
Search + GA for a simulation time of (a) 10 (b) 100 seconds

Figure 13 Comparisons of the different controllers employed above for a step input tracking response for the (a) pitch and (b) yaw angles, for a
simulation time of (a1 & b1) 50 (a2 & b2) 100 seconds

The ANN + PS + LH also performed well with a fast tracking
response but with a very high overshoot for the yaw angle and a
large steady-state error (ess) (Fig. 11).

The best-performing algorithm as evidenced in Table 2 above
is the proposed ANN + PS + GA, with the best settling time for
the pitch angle (τs = 5.14) and the second-best settling time for the

CHAOS Theory and Applications 59



■ Table 1 Quantitative comparison of time-domain specifica-
tions between the proposed ANN + Pattern Search + GA con-
troller, and the 3 other controllers design strategies for pitch &
yaw angles

Controller Method
Horizontal plane

(ϕ angle )

Vertical plane

(θ angle )

τr τs es τr τs ess

PID 0.24 100 0.04 0.48 25.00 0.00

ANN 1.18 14.5 0.02 1.32 56 0.00

ANN + PS + LH 1.55 9.9 0.99 4 37 0.11

ANN + PS + GA 3.85 14.42 0.03 2.79 5.14 0.002

■ Table 2 Quantitative comparison of performance indices
between the proposed ANN + Pattern Search + GA controller,
and 3 other controllers design strategies for pitch & yaw angles.

Controller Method
Horizontal

(ϕ angle )

plane
Vertical plane

(θ angle )

ISE RMSE ISE RMSE

PID 1.402 0.087 1.135 0.001

ANN 1.862 0.016 1.556 0.223

ANN + PS + LH 1.835 0.002 2.243 0.123

ANN + PS + GA 2.034 0.032 72.36 0.758

yaw angle, as well as good rise times, i.e., very fast responses and
good steady-state errors for both the pitch and yaw angles.

CONCLUSION

Results for the NARX Feedforward NN methodology in the mod-
eling of the nonlinear TRMS have been presented in this report.
It has also been shown that different solutions are obtained for
every NN training undergone. This is due to the differing initial
weights conditions and biases as well as the arbitrary (i.e., random)
division of the dataset into training, validation, and testing in the
given ratios of 0.7, 0.15, 0.15. To ensure accuracy of the modeling
results, retraining should be performed several times.

The final output results for the ANN and Pattern Search with
Genetic Algorithm (ANN + PS + GA) show satisfactory control
for the optimized performance of the nonlinear plant, outperform-
ing three other controllers employed, as proven by the statistical
and graphical results presented. The proposed controller met all
our design requirements of within 5% of settling time, below 1%
(≫1%) of overshoot, as well as excellent rise times, i.e., very fast
(aggressive) responses for both the pitch and yaw angles, and no
steady-state error for the pitch angle, and a negligible steady-state
error for the yaw angle. Also of note was the minimum control
energy used by the controller in achieving these objectives.

The neural controllers designed were based on SISO control
architecture of the neural networks, each for the decoupled and
independent pitch and yaw subsystems. For future work, a more
robust and adaptive MIMO neural networks controller can be
developed/designed without going through the rigours of decou-
pling the TRMS helicopter model where some dynamics could be
lost due to system approximations and simplification in modelling.
The MIMO neural controller should automatically determine the
network gains and biases for a neural networks structure with
two-inputs two-outputs in a reasonable amount of time.
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ABSTRACT The aim of this study is to forecast the amount of tax complaints filed with the Turkish Ombudsman
in the future and whether or not policymakers require a specific tax Ombudsman. The polynomial regression for
discrete data set is proposed to fit the number of events of tax complaints in the period from years 2013 to 2021.
The artificial data set is generated by models which are polynomial regression and parametric distribution. The
location, scale and shape parameters are determined according to the smallest value between the observed
and predicted dependent variable. After determining the smallest value for the tried values of shape parameter
and the parameters of polynomial regression, the best value determined by grid search for shape parameter is
around 1.07. Thus, the heavy-tailed from of exponential power distribution is gained. The artificial data sets
are generated and sorted from the smallest to biggest ones. The maximum values are around 700 and 800
which can be regarded as future prediction because the distance among observations is taken into account
by models from polynomial regression and parametric distribution. Since the polynomial regression and the
parametric models are used simultaneously for modelling, the distance among observations can also be
modelled by parametric model as an alternative approach provided.

KEYWORDS
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Public economics
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els
Simulation

INTRODUCTION

Estimation is a challenging topic that needs to be improved by ad-
vancing the tools in the statistical literature. Many data sets in the
applied sciences should be modelled efficiently. For example, the
number of Ombudsman who hear complaints from citizens about
failures, actions and decisions by public authorities is discrete data
such that natural numbers are used to represent these kind of data
sets. The main aim of the Ombudsman is to fight against abuse of
rights, omissions, wrong decisions and delays for citizens. As the
institution of the ombudsman is important, a design for estimating
the number of Ombudsman will be an important issue in the near
future. A combination of polynomial regression as a parametric
model based on the regression case and the parametric distribu-
tion, for example the exponential power distribution, based on the
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distributional form of dependent variable or any variable can be
proposed to set an approach for forecasting (Mineo and Ruggieri
2005). Note that if the data set is discrete, the discrete models
such as binomial, generalized form of binomial, etc. can be used
to fit the data set. If the data set is continuous, the continuous
parametric model such as exponential power distribution and its
variants such as skew, model, trimodal family for a known para-
metric models can be generated and used. The compound forms of
distributions are also derived to model the data set more efficiently
as far as we can do (Balakrishnan and Nevzorov 2004).

In the working principle of nature providing the observed val-
ues after the experiment has been performed, it is not easy to imply
that a data set can be only one parametric model. There is a hard
indeterminacy in the nature of data formation. For this reason, the
regression form can be a bridge for us to fit the data if we insist
on driving the tools as alternative objectives in this study. Since
estimation is a fluctuation around function f used for the represen-
tation of parametric model such as exponential power distribution,
that is, we can get f̂ representing the estimated form of f due to the
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finite sample points of f , it is logical to suggest that a regression
form can be used for data to perform a modelling instead of using
directly parametric model to fit the data set (Vila et al. 2020, 2022).

Especially, since we have small sample size of data, it can be a
gate for us to overcome the problem about the case where we have
few data that will be needed to fit precisely as far as we can achieve
the joint work between polynomial regression as a parametric
model and the parametric distribution when compared by the
non-parametric forms (Härdle et al. 2004; Hunter 2023). Thus, we
can have an applicable form when we use the computational tool
for this marriage. Especially when the sample size is small, the
parametric models cannot be very powerful because we do not
have enough data where the data set comes from or it is very rough
to know how the real data set has occurred while the experiment
is being conducted.

Note that a data set can show a regression or a polynomial
movement/pattern. Since we are proposing to use the regression
equation in order to model the data set observed over time, the
time series form can be suggested as a regression case. On the
other hand, the bulk of the data at each time throughout the time
period cannot be a fixed variance. In particular, it is reasonable
to observe that a non-identical distributed data throughout time
is indispensable observed in the nature of the data set. That is,
there may be heteroscedasticity (Mokhtari et al. 2022). Such non-
identical movement or heteroscedasticity can be modelled by using
the peakedness parameter p in the exponential power distribution
when the regression case is used. On the other hand, there is a
struggle between the chosen parametric model for the distribution
of the error term of the regression equation to determine whether
or not there is heteroscedasticity in reality. There may be another
reason to imply the existence of heteroscedasticity if we change
the analytical form of the regression model.

In the regression equation, the square of the error term, known
as the estimated variance, is used to generate the artificial dataset,
that is, we want to estimate the scale parameter for the dataset
using the regression approach with parametric model based on
the peakedness parameter p. This approach is an alternative if
we want to estimate the scale parameter for the data set. Since
the discrepancy can be detected by the error term in the regres-
sion, the generation for artificial data can also be done by using
the peakedness parameter of the exponential power distribution
(Mineo and Ruggieri 2005). On the other hand, it is reasonable
to expect that the peakedness (p) and scale (σ) parameters can
interact, because they are parameters which are responsible for
changing the shape of the function. Note that the interaction can
lead to occur the heteroscedasticity. The main problem is about
the future prediction of tax complaints when the polynomial re-
gression and parametric model are used together. Thus, we can
perform an efficient fitting by using not only a trend as regression
(location) but also the error terms of polynomial regression model
which are modelled by exponential power distribution. It should
be noted that heteroscedasticity can be modelled as an alternative
approach if the parametric distribution is used.

Taxation is an important and effective way to manage govern-
ment resources fairly. There are many studies to model the tax of
governments which use the distribution assumption to model the
tax managed by governments. The role of tax is investigated and
the different suggestion on the tax regulation in the management
modelling or planning in the government have been carried out
in the different and directions which are still investigating what
the government policy should be or some markers in the finan-
cial markets push or drive the policy management to increase the

efficiency and correctness on the process improvement (Bala and
Biswas 2005). It is generally accepted that the tax management is
very problematic and the Ombudsman is an inevitable community
for the set and built law system to touch the correct and effective
decision in the timing period in the tax system. We believe that
the Ombudsman should be supported and improved by means of
using different directions. Thus, the role of tax management can
be improved and more accurate decision can be reached by the
responsible drivers in the system of government policy.

These improvements, such as rotations, directions, suggestions,
etc., make an automatic control and checked feedback in the work-
ing principle of the set system, which should be improved simulta-
neously, no matter when it finally stops. In other words, it should
be a system which is a rounding around itself and it should be
controlled by independent communities which can work out inde-
pendently and put their suggestions briefly touching every point
of the picture carefully and do not cover any potential uncov-
ered parts in the tax system management. Such a situation can be
achieved by carrying out the stricter effective analysing procedure
which will not be influenced and touched. The reality of the cur-
rent system should have its clarifications in order to discover the
hidden parts in the system. For this purpose, the Ombudsman is
a key institute for us to round up the system and so the quality
control can be tried to be guaranteed (Serrano 2007).

Basically, this institution listens to taxpayers’ complaints and
solves their problems. It also improves the organisation of the tax
service. In America, for example, the name is even more different.
The Taxpayer Advocate Service is an institution in the US that
intervenes when the Internal Revenue Service does not want to
do so. There is at least one local Taxpayer Advocate in every state.
There is no such thing as a tax ombudsman in US tax law. In Spain,
as in other countries, there is a tax ombudsman who depends on
the government. He balances the relationship between the tax-
payer and the administration. In the Law of Taxpayers’ Rights
there are five functions of the Tax Ombudsman. These are; infor-
mative action, democratic control, alternative dispute resolution,
and improving the moving legal system (Bala and Biswas 2005).

The organization of the paper is as follows: Section for pre-
liminaries introduces the parametric model and the estimation
method. In next section, the problem is solved by using models
from polynomial regression and parametric distribution. The nu-
merical results and figures are given as a separate section. The last
section is divided for the conclusions.

PRELIMINARIES

Parametric model
The normal distribution is commonly used and it is a popular
distribution. The generalisation of the normal distribution and
the different probable directions are proposed by (Çankaya 2018).
The exponential power distribution is one of them and it has a
peakedness parameter being responsible for determining the peak
of the function. The empirical distribution of the data can be a way
to observe how the shape of the function behaves.

The analytical expression of the exponential power distribution
is given by the following form:

f (x; µ, σ, p) =
1

2σp1/pΓ(1 + 1/p)
exp{−

∣∣∣∣ x − µ

p1/pσ

∣∣∣∣p
} (1)

µ ∈ R, σ > 0, p > 0 represents parameters for location, scale and
peakedness of the function, respectively. The exponential power
distribution is the special form of asymmetric bimodal exponential
power distribution (Mineo and Ruggieri 2005; Çankaya 2018).
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Estimation method: Maximum likelihood estimation
If there is a distribution of the error terms in the regression model,
or the error terms are assumed to have a distribution such as
normal, Student t, exponential power, asymmetric bimodal expo-
nential power distribution (Çankaya 2018) etc., then the error terms
can be a member of a parametric model. If a distribution is used in
the regression model as the location of the parametric model, then
maximum likelihood estimation is preferred to estimate the pa-
rameters of the regression model. There are important properties
which are efficiency, consistency, minimum variance, etc. when
maximum likelihood estimation method is used (Lehmann and
Casella 2006).

The function lmp in ’normalp’ at RStudio 2023.09.1+494 free
open statistical software is used to fit a regression model with the
dependent variable y and the independent variables x1, x2, · · · , xk.
It can be used when the errors are distributed as an exponen-
tial power distribution (Mineo and Ruggieri 2005; Lehmann and
Casella 2006). The maximum likelihood estimation method gives
us advantage of using the assumed parametric model to estimate
the regression parameters when the errors are distributed as the
corresponding parametric model. Each observation can be consid-
ered as an output, i.e. there can be a regression expression that
can be applied to find the relationship between the observations
in the period. The next section provides the detailed discussion
and methodological contribution to assess the distribution of the
variable y and the variable ε. Thus, the regression expression, as
a fixed part that tries to represent how a real relationship exists
between variables, can be used to determine the distribution of the
error term ε.

DESCRIPTION OF THE PROBLEM

There is a potential overlap between the chosen regression model,
with its corresponding distribution of the error term of the regres-
sion model, and the chosen kernel smoothing techniques which
are based on the parametric or semi-parametric approaches. In
modelling, not only the assumed regression model but also the
distribution of the error terms are two components that influence
each other. Thus, if we can determine what the distribution of the
error term can be, then the distribution of the observation term y
as a dependent variable will also be determined. Each data is the
replication of the previous case or there is a potential dependence
among the previous cases of the data set, as in the case of the ran-
dom walk in the stochastic process (Iacus et al. 2008). The data set
can be reorganised by using the regression approach which we can
consider to apply. It is logical to expect that a data set can be repre-
sented by a polynomial approach. Since a polynomial approach
can be performed on the data set, the future prediction can be
performed by polynomial regression. In the context of the artificial
data set, it is reasonable to perform a random number generation
procedure to observe which data can be artificially observed.

In order to fit the data set via the proposed function, the poly-
nomial regression approach can be used. Secondly, a parametric
model for error term of regression can be suggested. After the
regression case can be done, the peakedness parameter of the ex-
ponential power distribution can be determined by using the grid
search approach. Since we perform such an approach to deter-
mine the value of the peakedness parameter p for peakedness,
the computational cost of simultaneously estimating the location,
scale and peakedness parameters can be solved as an alternative
approach for modelling. This is an important contribution when
the sample size is small and we need to use a parametric model
to generate the artificial dataset. Why do we need to generate an

artificial dataset? The future prediction or the probable numerical
values for the questionnaire of phenomena can be determined,
as an alternative approach if the regression case is not the only
solution for the future prediction.

In other words, it is logical to observe that each data can be a
member of a polynomial movement in the forthcoming situation
in an experiment. Even if we assume that each data is indepen-
dently distributed, it is reasonable to perform a polynomial motion
among the data set. Independence can be a restrictive approach,
or an alternative comment, is that it is already well known that
a number can be made to belong to a polynomial function. A
rounding around a data can be produced by another data, which
shows that it is possible to carry out modelling using a polynomial
approach based on the regression case. In the statistical literature,
this approach should be preferred when the computational cost
increases as the number of parameters to be estimated increases.
In our approach, the first step was to determine the peakedness
parameter using the grid search algorithm. The second step is the
estimation of the location and scale parameters when the peaked-
ness parameter p is given as a fixed value determined by using
the case of regression with polynomial motion. Finally, random
numbers are generated for the estimated values of the position and
scale parameters. The maximum likelihood estimation method
is used to obtain the estimators of the parameters when the fixed
value of the peakedness parameter p determined by the polyno-
mial approach is given.

Econometricians search for regression models to fit the data
set based on the time series sense. Statisticians make the overlap
between the chosen regression model and the error term (ε) of the
regression model. Both scientists try to find the best strategy for
modelling the data set. The advantage of being a statistician may
be more beneficial because a statistician focuses on the distribution
of the error term. The distribution of the error term in the equation
(2) corresponds to the distribution of the variable y which repre-
sents the observed value. Even if the nature of the observed value
of tax complaints is discrete, the polynomial regression model can
also be proposed to fit the number of events in the period. In this
case, since the events y(t) := yt, where t represents time, depend
on time as in the case of the random walk in the stochastic process,
there can be a potential correspondence from the discrete data to
the continuous data.

For further discussion, the tax complaints occur due to many
reasons based on the continuous observations from the govern-
ment money process. The currency and the economic indicators
are responsible tools that lead to have the continuous observations.
That is, in other words, when we make a projection where the
discrete data comes from, it is observable to detect that the con-
tinuous observations touch occurring the discrete data sets. Even
if the binomial regression or the corresponding counterparts are
used to model the discrete data sets, the continuous case is more
flexible to generate artificial data sets; because the peakedness pa-
rameter is more important to determine the distribution of the data
set. On the other hand, the continuous data already represents
the discrete data as a neighbourhood framework. In addition, the
binomial distribution converges to the normal distribution with
peakedness parameter p = 2 in the exponential power distribution.
In this direction, there can be a transfer from the discrete data to
the continuous data (Sicuro et al. 2015).

It should be noted that even if the discrete data are analysed in
the regression case, the continuous distribution can be used for the
application; because there is a correspondence between the polyno-
mial function and the gamma function (Alzer and Grinshpan 2007).
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In this sense, as discussed above, the peakedness parameter plays
a key role in determining the distribution of the data. The exponen-
tial power distribution is symmetric around the location parameter
and so the general tendency of the economic indicators is assumed
to be symmetric due to the nature of the experiments; because the
government applies the tax rule equally balanced on the people in
the country and the symmetric distribution can play the role for
modelling the data sets output by many reasons occurred on the
economic indicators (Haberman 1989; Coles et al. 2001; Mineo and
Ruggieri 2005; Çankaya 2018; Çankaya and Arslan 2020).

Materials and Methods

Regression model Regression models are generally used to set
the relationship between at least two variables. The nature of the
dependent and independent variables can be determined accord-
ing to what a researcher investigates. When the observations from
the experiments are measured, they are analysed according to the
researcher’s objective. In our framework, a polynomial regression
equation is used to model the observations by using the sequence
occurred over time. In other words, in mathematical terms, the set
of data or observations can be expressed in terms of the movement
over time.

The assumed regression model for representation of reality is
as follow:

y = a0 + a1xp1 + a2xp2 + a3xp3 + ε (2)

where ε is a random variable assumed to have an exponential
power distribution. The parameters p1, p2 and p3 are responsible
for the different degrees of the polynomial function in the equa-
tion (2). a0, a1, a2 and a3 are regression parameters estimated
using the lmp function with different trial values of the peakedness
parameter p.

The sampling form of the equation (2) is given by

yt = a0 + a1xp1
t + a2xp2

t + a3xp3
t + εt, t = 1, 2, · · · , n (3)

where xt = t as an explanatory variable representing the time
(year) and n is the number of sample size.

It should be noted that since the polynomial movement among
the data sets is assumed to be expressed by the polynomial regres-
sion case, it should be preferred to model the upcoming events.
It is important to note that the distribution of the error term ε
begins to play a role in determining the value of the peakedness
parameter in the parametric model used. In the general setting,
it is logical to propose a parametric model that has a peakedness
parameter. Thus, using the role of the peakedness parameter will
give us an advantage in determining the tail movement and thus
we can have a chance for future prediction instead of using the
regression case in future prediction. Such an approach makes an
alternative suggestion/contribution to the statistical literature to
determine the value of the peakedness parameter p as an alterna-
tive approach. On the other hand, the peakedness parameter p and
the powers p1, p2 and p3 in the regression model can play same
role when there is a conceptual equivalence and the definition
of the regression, i.e., E(Y/X = x) with the non-fixed value of
scale parameter (or with heteroscedasticity), takes into account, i.e.,
Y ∼ D(E(Y/X = xt), σ(X = xt)). Since the number of samples
is small, it will not be easy to determine the almost exact peaked-
ness of the assumed parametric model. For this reason, we have
provided an alternative approach to determine the peakedness pa-
rameter from the data set. The assumed model for the distribution
of ε is the exponential power one.

The nature of the occurred phenomena tricks our approach,
because tax complaints can have a heavy tailed distribution due to
the nature of the tax complaints (Jenkins 2017).

Algorithmic schema for computational procedure The following
steps show the schematic algorithm how the computational proce-
dure is conducted to reach the value of peakedness of parameter
p if the polynomial regression in equation (2) is used (see Appen-
dices).

1. Determine the peakedness parameter p by using lmp function
in the normalp package in RStudio 2023.09.1+494 software

2. Try different values of the parameters p to get the different
probable the smallest difference between the predicted y, i.e.
ŷ, and the observed y as data

3. Use the polynomial regression in equation (2)

4. Set a vector for the tried values of peakedness parameter p

5. For each values of p1, p2 and p3 which are (0, 75, 1.25],
(1.75, 2.25] and (2.75, 3.25], respectively, the values of peaked-
ness parameter p are determined according to the smallest
value, i.e. predicted error (ε̂ = y − ŷ), of the distance between
the predicted y, i.e. ŷ, and the observed y. If an appropriate
p value which satisfies the smallest value for ε̂ is determined,
then the determined value of p in the 125 000 times due to
set1=50, set2=50 and set3=50 makes the probable appropri-
ate values of p, which is obtained by each values of p1, p2 and
p3

If the number of degree of power parameter in the polynomial
regression in equation (3) is increased according to for loop given
above, the different forms of the values of p1, p2 and p3 in regres-
sion equation can be tried to model the movement among the
observations. The role of sensitivity of higher order powers p2
and p3 should be applied to fit the observations more precisely,
because the degree of polynomial regression can be versatile due
to the chosen values of p2 and p3 especially. Note that it is pos-
sible to apply different polynomial regression with higher order
polynomial power; however, the dependence structure among the
right hand side of regression equation (3) can start to be a problem,
leading to a multicollinearity problem. The dependence can be
tricked according to the chosen values of parameters p1, p2 and
p3. To avoid the more biased estimation for the parameters a0, a1,
a2 and a3 due to the probable structure of the dependence among
the variables xp1 , xp2 and xp3 , we continue to follow the regression
equation in (3). That is, the new variable xp4 or other variables
have not been added to the regression model, because the degree
of perturbation should be avoided for mathematical reasons as
well (Montgomery et al. 2021).

Since the nature of the polynomial approach can have the nega-
tive estimated values for the parameters, the forecast in the forth-
coming numbers for the occurred events from tax complaints can-
not be determined by using the regression approach directly. On
the other side of the picture, since we have few data sets for ap-
plying the regression case, the rank problem can occur due to the
number of regression parameters starting to be close to the number
of sample size n = 9 in our case (Stanimirović 2017). For this
reason, we prefer to use two steps for the approach in the future
prediction instead of doing the prediction using the regression
equation.
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NUMERICAL RESULTS

Tools: polynomial regression and correlation
The numerical results with illustrative representations are pro-
vided to observe how the regression equation produces the results
which are the estimated values for correlation, standard deviation
and their empirical probability density function (pdf) computed
by means of the EnvStats package with kernel functions (such as
Refs. (Härdle et al. 2004; Hunter 2023)) in RStudio 2023.09.1+494
software.

The parameters a0, a1, a2 and a3 in regression model at equation
(3) can be estimated and provided by the following form:

ŷ = â0 + â1xp1 + â2xp2 + â3xp3 (4)

where x is independent variable having numerical values from 1 to
the sample size n and p1, p2 and p3 are power parameters which
are responsible to make a flexible fitting on the data.

The equation (4) is used to get the predicted ŷ. The correlation
values are computed by using the correlation formula for the ob-
served y and the predicted ŷ values (Lehmann and Casella 2006).
According to the codes in appendix, the estimated values for the
correlation coefficient are given by figure 1. Figure 1 informs us
for the estimated values of correlation coefficients between the ob-
served values of y and the estimated values of ŷ given by equation
4.

The performance of future prediction depends on the degree of
the values of correlation. That is, we have success at the degree
%85 for trusting the numerical values generated artificially. For this
aim, the values at the figure 2a should be preferable to represent
the non-identically case of distributed data set, i.e., if the estimated
values of scale parameter are big, then we can have values being
far from the bulk of the data.

The estimated values for correlation coefficient
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(b) Empirical pdf of the estimated
values for correlation coefficient

Figure 1 ρ̂: The estimated values for the correlation coefficient

Figures 1a and 1b represent the histograms and the smoothed
form of empirical pdf according to the frequency when the band-
width from kernel estimation in EnvStats package is determined
automatically as nearly as being small. The same illustrations are
given by forthcoming figures 2-5 and 7.

The statistics for scale parameter as a dispersion measure
The following figures represent the numerical values generated
at random from the exponential power distribution with the de-
termined value of the peakedness parameter p = 1.07. These

numerical values are sorted from smallest to largest. They are
then plotted according to these sorted values. Each sorted value is
replicated and the number of replication is 10 000. Since we have
the sorted values, we have the advantage of being able to plot the
values that are the maximum and the previous ones which are
represented by (−1), (−2), (−3), etc. Thus, the probable values
which are maximum and the previous values before maximum can
be observed. It is important to note that since we are replicating,
the random data may have different values for each replication.
For such a design, there may be some cases where there are the
same numerical results in the simulation given by Figure 8.
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(b) Empirical pdf of√
Var(y) + V̂ar(ε̂)

Figure 2 Histogram and empirical pdf for n − k in computation of
the estimated error, ε̂

Std of y and error term with bias
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Var(y) + V̂ar(ε̂)

Figure 3 Histogram and empirical pdf for n in computation of
the estimated error, ε̂

The distance between the observed variable y and the predicted
variable ŷ is defined as the variation. It is also called as error term ε.
The sampling form of ε, i.e., ε̂, is given by the following expression
for the exponential power distribution:

ε̂ =
1
n

n

∑
t=1

(yt − ŷt)
p̄ (5)

ε̂ =
1

n − k

n

∑
t=1

(yt − ŷt)
p̄ (6)

Comparing figures 2 and 3, the values in figure 3 are smaller
than those in figure 2 because the formula for the error term, ε, is
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1
n ∑n

t=1(yt − ŷt)
p for exponential power distribution. For the figure

(2), 1
n−k ∑n

t=1(yt − ŷt)
p, where k is the number of the estimated pa-

rameter. Note that the error term can also be considered as a scale
parameter. Then we have the estimated values of the parameter σ,
given by the figures 4 and 5.

The estimated values of sigma

F
re

qu
en

cy

25 26 27 28

0
50

00
10

00
0

15
00

0
20

00
0

(a) p
√

1
n−k ∑n

i=1(yi − ŷi)p
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Figure 4 Histogram of σ̂ and empirical pdf for n − k in computa-
tion of the estimated error, ε̂

The estimated values of sigma with bias
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Figure 5 Histogram of σ̂ and empirical pdf for n in computation
of the estimated error, ε̂

Since the determined value for the parameter p is around 1.07
(see figure 7a), the behaviour of the exponential power distribution
is a heavy-tailed one. Thus, the future prediction may be more
representative for the target in which we can safely use it, taking
into account the predictive performance of our approach for the
probable cases in the future. Since the number of sample size n
is 9, it cannot be enough to suggest numerical values from the re-
gression model in equation (2), because the polynomial movement
cannot be enough to evaluate how the future occurs. It is possible
to use other methods based on the mode movement that can also
be taken into account to model and analyse the real data set. In this
case, there can be parametric and non-parametric models that can
produce the light-tailed movement. In such a case, we can have the
numerical values that cannot be far from the location as the central
tendency of the empirical data set. In our statistical analysis, the
year 2100 can also be proposed for the future prediction.

In each replication, the number of samples is 100. According to
the estimated values used for the location and scale parameters, we
can have the negative values due to the nature of the parametric
model used, which is the exponential power distribution with p =

1.07. Since the awareness of the population about the Ombudsman
system is reflected in different areas of the tax and financial system,
the numbers that represent the case of the Turkish Ombudsman
consulted for the tax complaints can be increased. It is surprisingly
important to note that the results in the 2013-2021 period provide
the analysis results that give the heavy-tailed function, which can
provide an advantage for future prediction even if the numerical
values are discrete.

It is known that the discrete data can show the representation
of a continuous case if the number of replications of events in
the experiments is increased or the big law of large numbers is
applied as an asymptotic behaviour. For example, the binomial
distribution approaches the normal distribution (Lehmann and
Casella 2006). The figure 6a showing the scatter plot shows a
polynomial movement, which may be one approach we propose
to model the data set.

Illustrative purposes for observing behaviour of artificial and real
data sets
Figure 6 shows the scatter plot, the empirical probability and the
empirical cumulative distributions of real data set with sample size
n = 9. Figure 6b shows that there can be a bimodality on the data
set. However, even if data is discrete and shows a bimodality, this
is an extra situation needed to investigate. In our approach, we
keep to follow polynomial regression and one-mode parametric
model called as exponential power distribution, because the tax
and the related part being Ombudsman can have a movement
based on the time series.
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Figure 6 Illustrative representation for real data
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Figure 7 shows the histogram, empirical and cumulative dis-
tributions of the determined values of the peakedness parameter
p of the exponential power distribution. Cumulative distribution
function (cdf) is the cumulated form of probability density function
(pdf). Note that the bimodality in figure 6b can also be modelled
by bimodal distribution. However, the main aim is to determine
the tail behaviour in order to where the maximum values can be
around. It should be noted that the empirical distribution of the
determined values of the parameter p can be modelled using the
smooth kernel estimation method (Härdle et al. 2004); however,
the chosen kernel plays the role of determining the probabilities.

Instead of using the location estimation for the parameter p
in its probable empirical distribution, we use the mean of the
determined values of the peakedness parameter p with a sample
size of 125 000; because we generate the artificial data set when the
parameter p is close to upper values of 1, which will not affect the
more accurately generated probable random numbers (see figure
8). On the other hand, since the maximum likelihood estimation
method is used, the distribution of the determined values of p is
expected to be asymptotically normal, which may allow to use
the arithmetic mean as a statistic for the values of p (see figure 7b)
(Lehmann and Casella 2006).

On the other hand, the values for the parameter p is around
1.07, which means that the synthetic data can get values from the
tails, that is, it is possible to observe the values which is bigger
than the real values, 179 as a maximum value. In such scenario, we
add the role of distance among observations while performing the
analysing on the data set. If the values of p tends going to 1 which
leads to get reaching more degree of heavy tails for the exponential
power distribution, it is reasonable to observe the values which
can be bigger than 800. The codes in the appendices can be used to
generate the synthetic data sets.

Figures 8 and 9 show the different numbers of estimated values
generated by the exponential power distribution. In figure 9, the
estimated value of the scale parameter is larger than in figure 8,
which is why the estimated values from the simulation for the
Ombudsman are around 800. An additional comment is that after
sorting the synthetic dataset from smallest to largest, the previous
values that come before the maximum value of the dataset are
also given by the y-axis of Figures 8 and 9, labelled with the last
value (-1) of the synthetic. (−1), (−2) and (−3) represent the
ordered data. Note that the data set is sorted from the smallest
to the biggest one, the last three values are chosen and they are
represented by (−1), (−2) and (−3).

In addition, the fact that the trending slope looks away from
the x-axis can be interpreted as an evidence that these artificially
generated data will increase the necessity of the Ombudsman in
the future. Note that even though the maximum value of real data
sets is the number 179, the generated values for the artificial data
sets are close to 800 as a maximum value; because we suggest
to use the role of scale parameter as a dispersion measure which
provides very important indicator for determining the behaviour
of the data sets in any phenomena at the applied field of science.
Thus, the role of scale parameter is an inevitable situation to touch
more precisely the process in phenomena.

Note that the peakedness parameter p plays role as well impor-
tantly. Thus, the scale and peakedness playing role for determin-
ing tail behaviour of the function are in the class to determine the
shape of function (Lehmann and Casella 2006; Arslan and Genç
2009; Çankaya 2018; Çankaya et al. 2019).

In figures 1-5 and 7, it should be noted that for the sake of
the fact that representation of the frequency and the smoothed

The determined values of shape parameter p
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Figure 7 Illustrative representation for the values of parameter p
computed by lmp function with the smallest estimated error, ε̂

form can be more feasible, the histogram and smooth form of
pdf are given separately at different scaling form of the cartesian
coordinates.
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Figure 8 Case 1: The last values and previous ones of the replicated synthetic data for the ordered form of data for 10000 replication
with σ̂ from values represented by figure 2a
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Figure 9 Case 2: The last values and previous ones of the replicated synthetic data for the ordered form of data for 10000 replication
with σ̂ from values represented by figure 3a
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CONCLUSION

The polynomial regression models providing a relationship among
observations have been proposed to help determining the distri-
bution of the observations as well. That is, the distribution of the
error term ε corresponds to the distribution of the variable y. Such
an approach is important; because, when the small number of
sample size is given, it is not an easy task to propose a parametric
model to analyse the dataset accurately. The correlation between
the observed y and the predicted y can be increased if the values of
p from exponential power distribution and the power parameters
p1, p2 and p3 in regression model can play same role in fitting data
well. Note that the parameters p, p1, p2 and p3 are conceptually in
same framework when the heteroscedasticity is taken into account.
Such an approach provides a novelty for the study.

For example, using a distribution for discrete data cannot be
an easy task to perform a precise modelling on the data set. The
determined parametric model based on the regression models has
been a special case of the exponential power distribution. Thus,
we can have an advantage to generate the artificial data set to
perform a prospective overview for modelling. If the peakedness
parameter is around 1.07, the function is called the heavy-tailed
form for the exponential power distribution. Since we have a
heavy-tailed distribution, it is observable to get the numerical
values which can come from tail parts of the function. For this
reason, the synthetically generated numerical values are around
700 and 800 at most. Thus, we have suggested that the probable
projection for the future prediction can provide numbers for the
tax complaints upto year 2100. Future studies are in progress
to suggest different materials, such as applying the heavy-tailed
distributions and estimation methods for future projections of tax
complaints in the Ombudsman (Çankaya 2021; De Gregorio et al.
2023).

APPENDIX

The main codes in the numerical evaluation for computation and
regression case
The smallest value of |y − ŷ| is used to determine the best value
for the peakedness parameter p, because the best prediction per-
formance can be gained, which means that the distribution of
observation y can be determined by means of the distribution of
error term which is equivalent to the observation y. The values of
p1, p2 and p3 are generated by using the following schema.

set1=50;set2=50;set3=50;pwl1=0.75;pwl2=1.75;pwl3=2.75;

indx=replicate(set1, numeric(set2));

ppval=replicate(set1, numeric(set2));

indx3ar<-array(c(indx, indx), dim = c(set1,set2,set3));

ppval3ar<-array(c(ppval, ppval), dim = c(set1,set2,set3));

pvariable=seq(0.95,1.35,0.001);

replication = length(pvariable);

for (i1 in 1:set1)

{

pwl1 = pwl1 + 0.01;

for (i2 in 1:set2)

{

pwl2 = pwl2 + 0.01/set1;

for (i3 in 1:set3)

{

pwl3 = pwl3 + 0.01/(set1*set2);

for (i in 1:replication)

{

regp<-lmp(y~x, p = pvariable[i]);

coefa <- regp$coefficients;

ypredict[i,] <- xx %*%

matrix(c(coefa[1],coefa[2],coefa[3],coefa[4]),4,1);

errory[i,] <- abs(y - ypredict[i,]);

meanerrory[i] <- sum(errory[i,])/n;

}

indx3ar[i1,i2,i3]=min(which(sumerrory == min(sumerrory)));

ppval3ar[i1,i2,i3]=pvariable[indx3ar[i1,i2,i3]];

}

}

}

Estimation of error term distributed as the exponential power
Let us provide the codes showing how the equations (5) and (6) are
adopted to the simulation in free open source statistical software
RStudio 2023.09.1+494.

for (i1 in 1:set1)

{

pwl1 = pwl1 + 0.01;

for (i2 in 1:set2)

{

pwl2 = pwl2 + 0.01/set1;

for (i3 in 1:set3)

{

pwl3 = pwl3 + 0.01/(set1*set2);

indx3ar[i1,i2,i3]=min(which(sumerrory == min(sumerrory)));

ppval3ar[i1,i2,i3]=pvariable[indx3ar[i1,i2,i3]];

regp <- lmp(y~x, p = ppval3ar[i1,i2,i3]);

coefp <- regp$coefficients;

y_last_predict <- xx %*%

matrix(c(coefp[1],coefp[2],coefp[3],coefp[4]),4,1);

cor_vals3ar[i1,i2,i3] <- cor(y,y_last_predict);

var_n_eps3ar[i1,i2,i3] <-

sum(abs(y - y_last_predict)^ppval3ar[i1,i2,i3]) / n;

sig_n_eps3ar[i1,i2,i3] <-

(sum(abs(y - y_last_predict)^ppval3ar[i1,i2,i3]) / n)^

(1/ppval3ar[i1,i2,i3]);

var_eps3ar[i1,i2,i3] <-

sum(abs(y - y_last_predict)^ppval3ar[i1,i2,i3]) /

(n - (dim(x)[2]+1));

sig_eps3ar[i1,i2,i3] <-

(sum(abs(y - y_last_predict)^ppval3ar[i1,i2,i3]) /

(n - (dim(x)[2]+1)))^(1/ppval3ar[i1,i2,i3]);

}

}

}

Random number generation for the design
The normalp package is used to generate random number. The
estimated values for location, scale and peakedness parameters
are plug into the function rnormp given by:

rnormp(n, mu, sigma, p , method = c("def", "chiodi"))

Note that mu, sigma and p are parameters which are estimated
by using the empirical distribution produced by the regressional
form.
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