Review
BibTex RIS Cite

Triticeae’da abiyotik stresle ilişkili miRNA’lar

Year 2020, Volume: 51 Issue: 2, 207 - 218, 19.05.2020
https://doi.org/10.17097/ataunizfd.655207

Abstract

Bitkiler çeşitli çevresel streslerin üstesinden gelebilmek için birçok farklı mekanizmalar geliştirmişlerdir. Besin stresi, kuraklık, soğuk, tuzluluk, ağır metal, oksidatif stres gibi abiyotik streslerin, bitkilerde transkripsiyonel ve posttranskripsiyonel düzeylerde yüzlerce genin ekspresyonunu düzenlediği ortaya çıkmıştır. Son yıllarda yapılan çalışmalarla miRNA’ların da bu mekanizmalarda rol aldıkları ortaya çıkmaktadır. Bitki mikroRNA'ları (miRNA'lar), abiyotik ve biyotik streslere cevap olarak, genom bütünlüğünün korunması gibi temel süreçlerde önemli rol oynamaktadır. Abiyotik ve biyotik stresler sırasında miRNA'lar tarafından düzenlenen karmaşık moleküler mekanizmanın anlaşılması, bitki verimliliğini artırmak için yeni yaklaşımlar sunabilir. Bu derlemede farklı abiyotik stres etkisi altındaki miRNA'ların, stres toleransında nasıl rol oynadıkları ve hedef genler üzerindeki etkileri açıklanmıştır. Ayrıca strese verilen yanıt mekanizmaları üzerinde çeşitli azaltıcı veya arttırıcı yönde düzenlenmiş bitki miRNA'larına odaklanılmıştır. Bu bilgiler ışığında, farklı çevresel streslere maruz kalan bitkilerin miRNA profili, ileriki çalışmalarda araştırmacıların yeni miRNA hedeflerinin tanımlamasında ve karakterize edilmesinde yardımcı olacaktır.

References

  • Addo Quaye C, Eshoo TW, Bartel DP, Axtell MJ, 2008. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Current Biology, 18(10): 758-762.
  • Akdogan G, Tufekci ED, Uranbey S, Unver T, 2016. miRNA-based drought regulation in wheat. Functional and İntegrative Genomics, 16(3): 221-233.
  • Akpinar BA, Budak H, 2016. Dissecting miRNAs in wheat D genome progenitor, Aegilops tauschii. Front Plant Sci 7: 1–17. doi:10.3389/fpls.2016.00606.
  • Akpinar BA, Lucas SJ, Budak H, 2013, Genomics approaches for crop improvement against abiotic stress. Sci World J. doi:10.1155/2013/361921.
  • Alptekin B, Langridge P, Budak H, 2017. Abiotic stress miRNomes in the Triticeae. Functional and Integrative Genomics, 17:145-170. Asseng S, Ewert F, Martre P, 2014. Rising temperatures reduce global wheat production. Nat Clim Chang 5: 143–147. doi:10.1038/nclimate2470.
  • Bita CE, Gerats T, 2013.Planttolerancetohightemperatureinachanging environment: scientific fundamentals and production of heat stresstolerant crops. Front Plant Sci 4: 273. doi:10.3389/fpls.2013.00273.
  • Budak H, Akpinar A, 2011. Dehydration stress-responsive miRNA in Brachypodium distachyon: evident by genome-wide screening of microRNAs expression. OMICS 15: 791–799. doi:10.1089 /omi.2011.0073.
  • Budak H, Kantar M, Bulut R, Akpinar BA, 2015b. Stress responsive miRNAs and isomiRs in cereals. Plant Sci 235: 1–13. doi:10.1016 /j.plantsci.2015.02.008.
  • Budak H, Akpinar BA, 2015. Plant miRNAs: biogenesis, organizationand origins. Funct Integr Genomics. doi:10.1007/s10142-015-0451-2.
  • Cech TR, Steitz JA, 2014. The noncoding RNA revolution—trashing old rules to forge new ones. Cell, 157:77-94. Covarrubias AA, Reyes JL, 2010. Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant Cell Environment, 33: 481-489.
  • Deinlein U, Stephan AB, Horie T, 2014. Plant salt-tolerance mechanisms. Trends Plant Sci 19: 371–379. Deng P, Wang L, Cui L, 2015. Global identification of microRNAs and their targets in barley under salinity stress. PLoS One 10: e0137990. doi:10.1371/journal.pone.0137990.
  • Feng H, Zhang Q, Wang Q, 2013. Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust. Plant Mol Biol 83: 433–443. doi:10.1007/s11103-013-0101-9. Ferdous J, Hussain SS, Shi BJ, 2015.Role of microRNAs in plant drought tolerance. Plant Biotechnol J 13: 293–305. doi:10.1111/pbi.12318.
  • German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ, 2008. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. National Biotechnology, 26(8): 941-946.
  • Gupta B, Huang B, 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:701596.
  • Gupta OP, Sharma P, Gupta RK, Sharma I, 2014. MicroRNA mediated regulation of metal toxicity in plants: present status and future perspectives Plant Mol Biol 84:1-18.
  • Hackenberg M, Gustafson P, Langridge P, Shi BJ , 2014. Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnol J. 2–13. doi: 10.1111/pbi.12220.
  • Hasanuzzaman M, Nahar K, Alam MM, 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14: 9643–9684. doi:10.3390 /ijms14059643.
  • Hatfield JL, Prueger JH, 2015. Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10: 4–10. doi:10.1016/j.wace.2015.08.001
  • Högy P, Poll C, Marhan S, 2013. Impacts of temperature increase and change in precipitation pattern on crop yield and yield quality of barley. Food Chem 136: 1470–1477. doi:10.1016/j.foodchem.2012.09.056
  • IPCC, 2014. Climate change synthesis report. Contrib Work Groups I, II III to Fifth Assess Rep Intergov Panel Clim Chang 1–151. Jeong DH, Green PJ, 2013. The role of rice microRNAs in abiotic stress responses. J Plant Biol 56: 187–197. doi:10.1007/s12374-013-0213-4.
  • Jiang S, Lu Y, Li K, 2014. Heat shock protein 70 is necessary for Rice stripe virus infection in plants. Mol Plant Pathol 15: 907–917. doi:10.1111/mpp.12153.
  • Jones Rhoades MJ, Bartel DP, 2004. Computational identification of plant microRNAs and their targets, including a stress induced miRNA. Molecular Cell, 14, 787-799.
  • Kantar M, Lucas SJ, Budak H, 2011a. miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233: 471–484. doi:10.1007/s00425-010-1309-4.
  • Kantar M, Unver T, Budak H, 2010. Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomics 10: 493–507. doi:10.1007/s10142-010-0181-4.
  • Kantar M, Lucas SJ, Budak H, 2011b. Drought stress. Molecular genetics and genomics approaches. Adv Bot Res 57:445–493. Kong WW, Yang ZM, 2010.Identificationofiron-deficiency responsive microRNA genes and cis-elements in Arabidopsis. Plant Physiol Biochem 48: 153–159. doi:10.1016/j.plaphy.2009.12.008
  • Kruszka K, Pacak A, Swida-Barteczka A, 2014. Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. J Exp Bot 65: 6123–6135. doi:10.1093/jxb/eru353.
  • Kumar D, Singh D, Kanodia P, 2014a. Discovery of novel leaf rust responsive microRNAs in wheat and prediction of their target genes. J Nucleic Acids. doi:10.1155/2014/570176.
  • Kumar RR, Pathak H, Sharma SK, 2014b. Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.).Funct Integr Genomics 15: 323–348. doi:10.1007/s10142-014-0421-0.
  • Kuzuoglu-Ozturk D, Yalcinkaya OC, Akpinar BA, 2012. Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response. Planta 236: 1081–1092. doi:10.1007/s00425-012-1657-3.
  • Lata C, Muthamilarasan M, Prasad M, 2015. Drought stress responses and signal transduction in plants. In: Elucidation of abiotic stress signaling in plants Springer, 195-225. Lee RC, Feinbaum RL, Ambros V, 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 Cell 75 843-854.
  • Li J, Yang Z, Yu B, 2005. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 15: 1501–1507. doi:10.1016/j.cub.2005.07.029.
  • Li T, Li H, Zhang YX, Liu JY, 2010. Identification and analysis of seven HOresponsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Research, 39: 2821-2833.
  • Liu H, Able AJ, Able JA, 2016. Water-deficit stress-responsive microRNAs and their targets in four durum wheat genotypes. Funct Integr Genomics, 1–15. doi: 10.1007/s10142-016-0515-y.
  • Liu H, Searle IR, Watson-Haigh NS, 2015a. Genome-wide identification of microRNAs in leaves and the developing head of four durum genotypes during water deficit stress. PLoS One 10: e0142799. doi:10.1371/journal.pone.0142799.
  • Liu HH, Tian X, LiY-J, 2008. Microarray-based analysis of stressregulated microRNAs in Arabidopsis thaliana. RNA 14: 836–843. doi:10.1261/rna.895308.
  • Liu J, Feng L, Li J, He Z, 2015b. Genetic and epigenetic control of plant heat responses. Front Plant Sci, 06-267. doi:10.3389/fpls.2015.00267.
  • Lucas S, Durmaz E, Akpınar BA, Budak H, 2011b. The drought response displayed by a DRE-binding protein from Triticum dicoccoides. Plant Physiol Biochem, 49:346–351. doi:10.1016/j.plaphy.2011.01.016.
  • Lv S, Nie X, Wang L, 2012. Identification and characterization of microRNAs from barley (Hordeum vulgare L.) by high-throughput sequencing. Int J Mol Sci, 13: 2973–2984. doi:10.3390/ijms13032973.
  • Malik S, Hwang Z, 1999. Modified expression of a carrot small heat shock protein gene, hsp17. 7, results in increased or decreased thermotolerance double dagger. Plant J, 20: 89–99.
  • Manara A, 2012. Plants and heavy metals. Signal Transduct, 27–54. doi: 10.1007/978-94-007-4441-7.
  • Ma X, Xin Z, Wang Z, 2015. Identification and comparative analysis of differentially expressed miRNAs in leaves of two wheat (Triticum aestivum L.) genotypes during dehydration stress. BMC Plant Biol, 15:21. doi:10.1186/s12870-015-0413-9.
  • Morris KV, Mattick JS, 2014. The rise of regulatory RNA. Nature Reviews Genetics, 15:423-437.
  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, 2007.Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci, 104:16450-16455.
  • Noman A, Aqeel M, 2017. miRNA-based heavy metal homeostasis and plant growth.Environ Sci Pollut, 2: 10068-10082. Obidiegwu JE, 2015.Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Front PlantSci,6:1–23. doi:10.3389/fpls.2015.00542.
  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK, 2005. Arabidopsis CBF3/ DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth Plant physiol, 38:341-351.
  • Parihar P, Singh S, Singh R, 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res, 22: 4056–4075. doi:10.1007/s11356-014-3739-1
  • Phillips JR, Dalmay T, Bartels D, 2007. The Role of Small RNAs in Abiotic Stress. Febs Letters, 581: 3592-3597.
  • Qiu Z, Hai B, Yuan M, 2016. Characterization of wheat miRNAs and their target genes responsive to cadmium stress. Plant Physiol Biochem. doi:10.1016/j.plaphy.2016.01.020
  • Schlenker W, Roberts MJ, 2009. Nonlinear temperature effects indicate severe damages to U.S. crop yieldsunder climate change. ProcNatl Acad Sci, 106:15594–15598. doi:10.1073/pnas.0906865106
  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J, 31:279–292.
  • Shamimuzzaman M, Vodkin L, 2012. Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genomics, 13:310.
  • Sun X, Xu L, Wang Y, 2015. Identification of novel and saltresponsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.). BMC Genomics, 16: 1–16. doi:10.1186/s12864-015-1416-5.
  • Sunkar R, 2010. MicroRNAs with macro effects on plant stress responses Semin Cell Dev Biol, 21: 805-811.
  • Sunkar R, Li YF, Jagadeeswaran G, 2012. Functions of microRNAs in plant stress responses Trends Plant Sci, 17: 196-203.
  • Sunkar R, Zhu JK, 2004. Novel and stress-regulated micro-RNAs and other small RNAs from Arabidopsis. Plant Cell, 16: 2001-2019. Sunkar R, Girke T, Jain PK, Zhu JK, 2005. Cloning and characterization of microRNAs from rice. Plant Cell, 17: 1397-1411.
  • Sunkar, R.; Kapoor, A.; Zhu, J.K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 2006, 18, 2051–2065.
  • Tang Z, Zhang L, Xu C, 2012.Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic malesterile line by deep sequencing. Plant Physiol, 159:721–738. doi:10.1104/pp.112.196048.
  • Trindade I, Capitao C, Dalmay T, Fevereiro MP, Santos DM, 2010. miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula Planta, 231:705-716.
  • Walbot V, 2011. How plants cope with temperature stress. BMC Biol, 9: 79. doi:10.1186/1741-7007-9-79
  • Wang B, Sun YF, Song N, 2014. MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L. Plant Physiol Biochem, 80: 90–96. doi:10.1016/j.plaphy.2014.03.020
  • Wang W, Vinocur B, Altman A, 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218:1–14. doi:10.1007/s00425-003-1105-5.
  • Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y, 2010. DNA methylation mediated by a microRNA pathway. Mol. Cell, 38: 465–475.
  • Yan Y, Wang H, Hamera S, 2014. MiR444 a has multiple functions in the rice nitrate-signaling pathway. Plant J,78: 44–55. doi:10.1111/tpj.12446.
  • Younis A, Siddique MI, Kim CK, Lim KB, 2014. RNA interference (RNAi) induced gene silencing: a promising approach of hi-tech plant breeding. Int J Biol Sci, 10:1150-?????
  • Yu X, Wang H, Lu Y, 2012. Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa.J Exp Bot, 63: 1025–1038. doi:10.1093/jxb/err337.
  • Zhang B, Pan X, Cobb GP, Anderson TA, 2006.Plant microRNA: a small regulatory molecule with big impact. Dev Biol, 289:3–16. doi:10.1016/j.ydbio.2005.10.036.

Abiotic stress-related miRNAs in Triticeae

Year 2020, Volume: 51 Issue: 2, 207 - 218, 19.05.2020
https://doi.org/10.17097/ataunizfd.655207

Abstract

Plants have developed very complex mechanisms to overcome various environmental stresses. It has been found that abiotic stresses such as nutritional stress, drought, cold, salinity, heavy metal, oxidative stress regulate the expression of hundreds of genes in transcriptional and post-transcriptional levels in plants. Recent studies show that miRNAs also play a role in these mechanisms. Plant microRNAs (miRNAs) play an important role in basic processes such as the development and maintenance of genome integrity in response to abiotic and biotic stresses. Understanding the complex molecular mechanism regulated by miRNAs during abiotic and biotic stresses may offer new approaches to improve plant productivity. This review describes how miRNAs under different abiotic stresses play a role in stress tolerance and their effects on target genes. In addition, various down and up regulated plant miRNAs have been focused on the response mechanisms to stress. In light of this information, the miRNA profile of plants exposed to different environmental stresses will help researchers identify and characterize new miRNA targets in future studies.

References

  • Addo Quaye C, Eshoo TW, Bartel DP, Axtell MJ, 2008. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Current Biology, 18(10): 758-762.
  • Akdogan G, Tufekci ED, Uranbey S, Unver T, 2016. miRNA-based drought regulation in wheat. Functional and İntegrative Genomics, 16(3): 221-233.
  • Akpinar BA, Budak H, 2016. Dissecting miRNAs in wheat D genome progenitor, Aegilops tauschii. Front Plant Sci 7: 1–17. doi:10.3389/fpls.2016.00606.
  • Akpinar BA, Lucas SJ, Budak H, 2013, Genomics approaches for crop improvement against abiotic stress. Sci World J. doi:10.1155/2013/361921.
  • Alptekin B, Langridge P, Budak H, 2017. Abiotic stress miRNomes in the Triticeae. Functional and Integrative Genomics, 17:145-170. Asseng S, Ewert F, Martre P, 2014. Rising temperatures reduce global wheat production. Nat Clim Chang 5: 143–147. doi:10.1038/nclimate2470.
  • Bita CE, Gerats T, 2013.Planttolerancetohightemperatureinachanging environment: scientific fundamentals and production of heat stresstolerant crops. Front Plant Sci 4: 273. doi:10.3389/fpls.2013.00273.
  • Budak H, Akpinar A, 2011. Dehydration stress-responsive miRNA in Brachypodium distachyon: evident by genome-wide screening of microRNAs expression. OMICS 15: 791–799. doi:10.1089 /omi.2011.0073.
  • Budak H, Kantar M, Bulut R, Akpinar BA, 2015b. Stress responsive miRNAs and isomiRs in cereals. Plant Sci 235: 1–13. doi:10.1016 /j.plantsci.2015.02.008.
  • Budak H, Akpinar BA, 2015. Plant miRNAs: biogenesis, organizationand origins. Funct Integr Genomics. doi:10.1007/s10142-015-0451-2.
  • Cech TR, Steitz JA, 2014. The noncoding RNA revolution—trashing old rules to forge new ones. Cell, 157:77-94. Covarrubias AA, Reyes JL, 2010. Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant Cell Environment, 33: 481-489.
  • Deinlein U, Stephan AB, Horie T, 2014. Plant salt-tolerance mechanisms. Trends Plant Sci 19: 371–379. Deng P, Wang L, Cui L, 2015. Global identification of microRNAs and their targets in barley under salinity stress. PLoS One 10: e0137990. doi:10.1371/journal.pone.0137990.
  • Feng H, Zhang Q, Wang Q, 2013. Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust. Plant Mol Biol 83: 433–443. doi:10.1007/s11103-013-0101-9. Ferdous J, Hussain SS, Shi BJ, 2015.Role of microRNAs in plant drought tolerance. Plant Biotechnol J 13: 293–305. doi:10.1111/pbi.12318.
  • German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ, 2008. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. National Biotechnology, 26(8): 941-946.
  • Gupta B, Huang B, 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:701596.
  • Gupta OP, Sharma P, Gupta RK, Sharma I, 2014. MicroRNA mediated regulation of metal toxicity in plants: present status and future perspectives Plant Mol Biol 84:1-18.
  • Hackenberg M, Gustafson P, Langridge P, Shi BJ , 2014. Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnol J. 2–13. doi: 10.1111/pbi.12220.
  • Hasanuzzaman M, Nahar K, Alam MM, 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14: 9643–9684. doi:10.3390 /ijms14059643.
  • Hatfield JL, Prueger JH, 2015. Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10: 4–10. doi:10.1016/j.wace.2015.08.001
  • Högy P, Poll C, Marhan S, 2013. Impacts of temperature increase and change in precipitation pattern on crop yield and yield quality of barley. Food Chem 136: 1470–1477. doi:10.1016/j.foodchem.2012.09.056
  • IPCC, 2014. Climate change synthesis report. Contrib Work Groups I, II III to Fifth Assess Rep Intergov Panel Clim Chang 1–151. Jeong DH, Green PJ, 2013. The role of rice microRNAs in abiotic stress responses. J Plant Biol 56: 187–197. doi:10.1007/s12374-013-0213-4.
  • Jiang S, Lu Y, Li K, 2014. Heat shock protein 70 is necessary for Rice stripe virus infection in plants. Mol Plant Pathol 15: 907–917. doi:10.1111/mpp.12153.
  • Jones Rhoades MJ, Bartel DP, 2004. Computational identification of plant microRNAs and their targets, including a stress induced miRNA. Molecular Cell, 14, 787-799.
  • Kantar M, Lucas SJ, Budak H, 2011a. miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233: 471–484. doi:10.1007/s00425-010-1309-4.
  • Kantar M, Unver T, Budak H, 2010. Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomics 10: 493–507. doi:10.1007/s10142-010-0181-4.
  • Kantar M, Lucas SJ, Budak H, 2011b. Drought stress. Molecular genetics and genomics approaches. Adv Bot Res 57:445–493. Kong WW, Yang ZM, 2010.Identificationofiron-deficiency responsive microRNA genes and cis-elements in Arabidopsis. Plant Physiol Biochem 48: 153–159. doi:10.1016/j.plaphy.2009.12.008
  • Kruszka K, Pacak A, Swida-Barteczka A, 2014. Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. J Exp Bot 65: 6123–6135. doi:10.1093/jxb/eru353.
  • Kumar D, Singh D, Kanodia P, 2014a. Discovery of novel leaf rust responsive microRNAs in wheat and prediction of their target genes. J Nucleic Acids. doi:10.1155/2014/570176.
  • Kumar RR, Pathak H, Sharma SK, 2014b. Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.).Funct Integr Genomics 15: 323–348. doi:10.1007/s10142-014-0421-0.
  • Kuzuoglu-Ozturk D, Yalcinkaya OC, Akpinar BA, 2012. Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response. Planta 236: 1081–1092. doi:10.1007/s00425-012-1657-3.
  • Lata C, Muthamilarasan M, Prasad M, 2015. Drought stress responses and signal transduction in plants. In: Elucidation of abiotic stress signaling in plants Springer, 195-225. Lee RC, Feinbaum RL, Ambros V, 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 Cell 75 843-854.
  • Li J, Yang Z, Yu B, 2005. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 15: 1501–1507. doi:10.1016/j.cub.2005.07.029.
  • Li T, Li H, Zhang YX, Liu JY, 2010. Identification and analysis of seven HOresponsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Research, 39: 2821-2833.
  • Liu H, Able AJ, Able JA, 2016. Water-deficit stress-responsive microRNAs and their targets in four durum wheat genotypes. Funct Integr Genomics, 1–15. doi: 10.1007/s10142-016-0515-y.
  • Liu H, Searle IR, Watson-Haigh NS, 2015a. Genome-wide identification of microRNAs in leaves and the developing head of four durum genotypes during water deficit stress. PLoS One 10: e0142799. doi:10.1371/journal.pone.0142799.
  • Liu HH, Tian X, LiY-J, 2008. Microarray-based analysis of stressregulated microRNAs in Arabidopsis thaliana. RNA 14: 836–843. doi:10.1261/rna.895308.
  • Liu J, Feng L, Li J, He Z, 2015b. Genetic and epigenetic control of plant heat responses. Front Plant Sci, 06-267. doi:10.3389/fpls.2015.00267.
  • Lucas S, Durmaz E, Akpınar BA, Budak H, 2011b. The drought response displayed by a DRE-binding protein from Triticum dicoccoides. Plant Physiol Biochem, 49:346–351. doi:10.1016/j.plaphy.2011.01.016.
  • Lv S, Nie X, Wang L, 2012. Identification and characterization of microRNAs from barley (Hordeum vulgare L.) by high-throughput sequencing. Int J Mol Sci, 13: 2973–2984. doi:10.3390/ijms13032973.
  • Malik S, Hwang Z, 1999. Modified expression of a carrot small heat shock protein gene, hsp17. 7, results in increased or decreased thermotolerance double dagger. Plant J, 20: 89–99.
  • Manara A, 2012. Plants and heavy metals. Signal Transduct, 27–54. doi: 10.1007/978-94-007-4441-7.
  • Ma X, Xin Z, Wang Z, 2015. Identification and comparative analysis of differentially expressed miRNAs in leaves of two wheat (Triticum aestivum L.) genotypes during dehydration stress. BMC Plant Biol, 15:21. doi:10.1186/s12870-015-0413-9.
  • Morris KV, Mattick JS, 2014. The rise of regulatory RNA. Nature Reviews Genetics, 15:423-437.
  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, 2007.Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci, 104:16450-16455.
  • Noman A, Aqeel M, 2017. miRNA-based heavy metal homeostasis and plant growth.Environ Sci Pollut, 2: 10068-10082. Obidiegwu JE, 2015.Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Front PlantSci,6:1–23. doi:10.3389/fpls.2015.00542.
  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK, 2005. Arabidopsis CBF3/ DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth Plant physiol, 38:341-351.
  • Parihar P, Singh S, Singh R, 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res, 22: 4056–4075. doi:10.1007/s11356-014-3739-1
  • Phillips JR, Dalmay T, Bartels D, 2007. The Role of Small RNAs in Abiotic Stress. Febs Letters, 581: 3592-3597.
  • Qiu Z, Hai B, Yuan M, 2016. Characterization of wheat miRNAs and their target genes responsive to cadmium stress. Plant Physiol Biochem. doi:10.1016/j.plaphy.2016.01.020
  • Schlenker W, Roberts MJ, 2009. Nonlinear temperature effects indicate severe damages to U.S. crop yieldsunder climate change. ProcNatl Acad Sci, 106:15594–15598. doi:10.1073/pnas.0906865106
  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J, 31:279–292.
  • Shamimuzzaman M, Vodkin L, 2012. Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genomics, 13:310.
  • Sun X, Xu L, Wang Y, 2015. Identification of novel and saltresponsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.). BMC Genomics, 16: 1–16. doi:10.1186/s12864-015-1416-5.
  • Sunkar R, 2010. MicroRNAs with macro effects on plant stress responses Semin Cell Dev Biol, 21: 805-811.
  • Sunkar R, Li YF, Jagadeeswaran G, 2012. Functions of microRNAs in plant stress responses Trends Plant Sci, 17: 196-203.
  • Sunkar R, Zhu JK, 2004. Novel and stress-regulated micro-RNAs and other small RNAs from Arabidopsis. Plant Cell, 16: 2001-2019. Sunkar R, Girke T, Jain PK, Zhu JK, 2005. Cloning and characterization of microRNAs from rice. Plant Cell, 17: 1397-1411.
  • Sunkar, R.; Kapoor, A.; Zhu, J.K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 2006, 18, 2051–2065.
  • Tang Z, Zhang L, Xu C, 2012.Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic malesterile line by deep sequencing. Plant Physiol, 159:721–738. doi:10.1104/pp.112.196048.
  • Trindade I, Capitao C, Dalmay T, Fevereiro MP, Santos DM, 2010. miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula Planta, 231:705-716.
  • Walbot V, 2011. How plants cope with temperature stress. BMC Biol, 9: 79. doi:10.1186/1741-7007-9-79
  • Wang B, Sun YF, Song N, 2014. MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L. Plant Physiol Biochem, 80: 90–96. doi:10.1016/j.plaphy.2014.03.020
  • Wang W, Vinocur B, Altman A, 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218:1–14. doi:10.1007/s00425-003-1105-5.
  • Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y, 2010. DNA methylation mediated by a microRNA pathway. Mol. Cell, 38: 465–475.
  • Yan Y, Wang H, Hamera S, 2014. MiR444 a has multiple functions in the rice nitrate-signaling pathway. Plant J,78: 44–55. doi:10.1111/tpj.12446.
  • Younis A, Siddique MI, Kim CK, Lim KB, 2014. RNA interference (RNAi) induced gene silencing: a promising approach of hi-tech plant breeding. Int J Biol Sci, 10:1150-?????
  • Yu X, Wang H, Lu Y, 2012. Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa.J Exp Bot, 63: 1025–1038. doi:10.1093/jxb/err337.
  • Zhang B, Pan X, Cobb GP, Anderson TA, 2006.Plant microRNA: a small regulatory molecule with big impact. Dev Biol, 289:3–16. doi:10.1016/j.ydbio.2005.10.036.
There are 66 citations in total.

Details

Primary Language Turkish
Journal Section DERLEMELER
Authors

Özlem Bakır 0000-0002-1964-3271

Publication Date May 19, 2020
Published in Issue Year 2020 Volume: 51 Issue: 2

Cite

APA Bakır, Ö. (2020). Triticeae’da abiyotik stresle ilişkili miRNA’lar. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 51(2), 207-218. https://doi.org/10.17097/ataunizfd.655207
AMA Bakır Ö. Triticeae’da abiyotik stresle ilişkili miRNA’lar. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. May 2020;51(2):207-218. doi:10.17097/ataunizfd.655207
Chicago Bakır, Özlem. “Triticeae’da Abiyotik Stresle ilişkili miRNA’lar”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 51, no. 2 (May 2020): 207-18. https://doi.org/10.17097/ataunizfd.655207.
EndNote Bakır Ö (May 1, 2020) Triticeae’da abiyotik stresle ilişkili miRNA’lar. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 51 2 207–218.
IEEE Ö. Bakır, “Triticeae’da abiyotik stresle ilişkili miRNA’lar”, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, vol. 51, no. 2, pp. 207–218, 2020, doi: 10.17097/ataunizfd.655207.
ISNAD Bakır, Özlem. “Triticeae’da Abiyotik Stresle ilişkili miRNA’lar”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 51/2 (May 2020), 207-218. https://doi.org/10.17097/ataunizfd.655207.
JAMA Bakır Ö. Triticeae’da abiyotik stresle ilişkili miRNA’lar. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2020;51:207–218.
MLA Bakır, Özlem. “Triticeae’da Abiyotik Stresle ilişkili miRNA’lar”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, vol. 51, no. 2, 2020, pp. 207-18, doi:10.17097/ataunizfd.655207.
Vancouver Bakır Ö. Triticeae’da abiyotik stresle ilişkili miRNA’lar. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2020;51(2):207-18.

Articles published in this journal are published under the Creative Commons International License (https://creativecommons.org/licenses/by-nc/4.0/). This allows the work to be copied and distributed in any medium or format provided that the original article is appropriately cited. However, the articles work cannot be used for commercial purposes.

https://creativecommons.org/licenses/by-nc/4.0/