Research Article
BibTex RIS Cite

Effects of Magnetic Field Application at Different Durations and Intensities on Germination in Pepper under Salt Stress

Year 2023, Volume: 2 Issue: 2, 85 - 94, 29.12.2023
https://doi.org/10.59128/bojans.1386927

Abstract

This study was conducted to investigate the effects of magnetic field applications of different durations and intensities on the germination of pepper seeds under salinity stress. The sweet pointed pepper variety “Arzuman” was used as plant material. The seeds were subjected to magnetic field applications at intensities of 0, 0.3, 0.5, 0.7, 0.9 and 1.1 Tesla (T) for 0, 3, 5 and 7 minutes and then exposed to salinity stress (150 mmol). Total germination percentage, mean germination time and germination uniformity were examined. It was observed that salt application decreased the germination percentage (80.29%-31.10%) and had very significant effects on the average germination time (5.81-7.28 days), while it had no significant effect on germination uniformity. Different durations of magnetic field application were found to significantly affect germination percentage and mean germination time. The highest germination rate was found in the control group with 59.33%, while the lowest was found in the 3 minute Tesla application with 53.03%.

References

  • Alshalwi, H. A. F. (2017). Manyetik alan uygulamasının bazı tıbbi ve aromatik bitkilerin tohum çimlenmesi üzerine etkisi (Doctoral dissertation, Kastamonu Üniversitesi).
  • Anand, A., Kumari, A., Thakur, M., & Koul, A. (2019). Hydrogen peroxide signaling integrates with phytohormones during the germination of magnetoprimed tomato seeds. Scientific reports, 9(1), 8814.
  • Baghel, L., Kataria, S., & Guruprasad, K. N. (2016). Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bioelectromagnetics, 37(7), 455-470.
  • Baghel, L., Kataria, S., Jain, M. (2019). Mitigation of adverse effects of salt stress on germination, growth photosynthetic efficiency and yield in maize (Zea mays L.) through magnetopriming. Acta Agrobot 72(1).
  • Bağatırlar, A. G. (2016). Manyetik alan kullanılarak ısı elde edilmesi (Yüksek Lisans Tezi). Hitit Üniversitesi Fen Bilimleri Enstitüsü. 102 s.
  • Bhardwaj, J., Anand, A., & Nagarajan, S. (2012). Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant Physiology and Biochemistry, 57, 67-73.
  • Cakmak, T., Dumlupinar, R., & Erdal, S. (2010). Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 31(2), 120-129.
  • Dhawi, F. (2014). Why magnetic fields are used to enhance a plant’s growth and productivity? Annual Research & Review in Biology, 886-896.
  • El Ghazali, G. E. (2020). Suaeda vermiculata Forssk. ex JF Gmel.: structural characteristics and adaptations to salinity and drought: a review. Int J Sci, 9(02), 28-33.
  • El-Hifny, I. M., & El-Sayed, M. A. M. (2011). Response of sweet pepper plant growth and productivity to application of ascorbic acid and biofertilizers under saline conditions. Australian Journal of Basic and Applied Sciences, 5(6), 1273-1283.
  • Farooq, M., Basra, S. M., Rehman, H., & Mehmood, T. (2006). Germination and early seedling growth as affected by pre-sowing ethanol seed treatments in fine rice. International Journal of Agriculture and Biology, 8, 19-22.
  • Hazell, P., & Wood, S. (2008). Drivers of change in global agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 495-515.
  • Hilal, M. H., Shata, S. M., Abdel-Dayem, A. A., & Hilal, M. M. (2002). Application of magnetic technologies in desert agriculture: III. Effect of magnetized water on yield and uptake of certain elements by citrus in relation to nutrients mobilization in soil. Egyptian Journal of Soil Science, 42(1), 43-56.
  • Kataria, S., Baghel, L., & Guruprasad, K. N. (2017). Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatalysis and agricultural biotechnology, 10, 83-90.
  • Kataria, S., Baghel, L., Jain, M., & Guruprasad, K. N. (2019). Magnetopriming regulates antioxidant defense system in soybean against salt stress. Biocatalysis and Agricultural Biotechnology, 18, 101090.
  • Maffei, M. E. (2014). Magnetic field effects on plant growth, development, and evolution. Frontiers in plant science, 5, 445.
  • Maheshwari, B. L., & Grewal, H. S. (2009). Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Agricultural water management, 96(8), 1229-1236.
  • Navada, S., Vadstein, O., Gaumet, F., Tveten, A. K., Spanu, C., Mikkelsen, Ø., & Kolarevic, J. (2020). Biofilms remember: Osmotic stress priming as a microbial management strategy for improving salinity acclimation in nitrifying biofilms. Water Research, 176, 115732.
  • Özkan, L, (2023). Farklı süre ve şiddetlerde manyetik alan uygulamalarının kurak koşullarda biberde tohum çimlenmesi ve fide çıkışı üzerine etkileri. Yüksek Lisans Tezi. Yozgat Bozok Üniversitesi, Bahçe Bitkileri Ana Bilim Dalı, 55 s.
  • Pan, T., Liu, M., Kreslavski, V. D., Zharmukhamedov, S. K., Nie, C., Yu, M., ... & Shabala, S. (2021). Non-stomatal limitation of photosynthesis by soil salinity. Critical Reviews in Environmental Science and Technology, 51(8), 791-825.
  • Park, H. J., Kim, W. Y., & Yun, D. J. (2016). A new insight of salt stress signaling in plant. Molecules and cells, 39(6), 447.
  • Radhakrishnan, R. & Kumari, D.B.R. (2012). Pulsed magnetic field: A contemporary approach offers to enhance plant growth and yield of soybean. Plant Physiology and Biochemistry, 51, 139-144.
  • Reina, F. G., & Pascual, L. A. (2001). Influence of a stationary magnetic field on water relations in lettuce seeds. Part I: Theoretical considerations. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 22(8), 589-595.
  • Sarı, M. E. (2019). Using Ultraviolet (UV, magnetic field (MF) and hydropriming (HP) treatments on enhancement of seed quality of pepper, cabbage, lettuce ve onion, Doktora tezi. Ankara University 2019.
  • Savary, S., Akter, S., Almekinders, C., Harris, J., Korsten, L., Rötter, R., ... & Watson, D. (2020). Mapping disruption and resilience mechanisms in food systems. Food Security, 12, 695-717.
  • Shine, M. B., Guruprasad, K. N., & Anand, A. (2011). Enhancement of germination, growth, and photosynthesis in soybean by pre‐treatment of seeds with magnetic field. Bioelectromagnetics, 32(6), 474-484.
  • Shine, M. B., Kataria, S., Guruprasad, K. N., & Anjali, A. (2017). Enhancement of maize seeds germination by magnetopriming in perspective with reactive oxygen species. J Agric Crop Res 5(4): 66-76.
  • Sunita, K., Lokesh, B., & Guruprasad, K. N. (2015). Acceleration of germination and early growth characteristics of soybean and maize after pre-treatment of seeds with static magnetic field. International Journal of Tropical Agriculture, 33(2 (Part II)), 985-992.
  • Thomas, S., Anand, A., Chinnusamy, V., Dahuja, A., & Basu, S. (2013). Magnetopriming circumvents the effect of salinity stress on germination in chickpea seeds. Acta physiologiae plantarum, 35, 3401-3411.
  • Vian, A., Davies, E., Gendraud, M., & Bonnet, P. (2016). Plant responses to high frequency electromagnetic fields. BioMed research international, 2016.
  • Vural, H., Eşiyok, D., Duman İ., (2000) Kültür Sebzeleri Kitabı Ege Üniversitesi Ziraat Fakültesi Bahçe Bitkileri Bölümü İzmir Bornova.
  • Zhang, Q., & Dai, W. (2019). Plant response to salinity stress. In Stress physiology of woody plants (pp. 155-173). CRC Press.
  • Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C., & Wang, P. (2021). Regulation of Plant Responses to Salt Stress. International Journal of Molecular Sciences. 22(9):4609. https://doi.org/10.3390/ijms22094609
  • Ziska, L. H., Bunce, J. A., Shimono, H., Gealy, D. R., Baker, J. T., Newton, P. C., ... & Wilson, L. T. (2012). Food security and climate change: on the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide. Proceedings of the Royal Society B: Biological Sciences, 279(1745), 4097-4105.

Biberde Tuz Stresine Karşı Farklı Süre ve Şiddetlerde Manyetik Alan Uygulamasının Çimlenme Üzerine Etkileri

Year 2023, Volume: 2 Issue: 2, 85 - 94, 29.12.2023
https://doi.org/10.59128/bojans.1386927

Abstract

Bu çalışma, farklı süre ve şiddetlerde manyetik alan uygulamalarının biber tohumlarının tuz stresi altında çimlenmesi üzerine etkilerinin araştırılması amacıyla yürütülmüştür. Bitkisel materyal olarak “Arzuman” tatlı sivri kıl çeşidi biber kullanılmıştır. Tohumlara 0, 3, 5 ve 7 dakika süre ile 0, 0.3, 0.5, 0.7, 0.9 ve 1.1 Tesla (T) şiddetinde manyetik alan uygulaması yapılmıştır ve tohumlar tuz stresine (150 mmol) maruz bırakılarak toplam çimlenme oranı, ortalama çimlenme süresi ve çimlenme üniformitesi incelenmiştir. Tuz uygulamasının çimlenme oranını (%80.29-%31.10) düşürdüğü ve ortalama çimlenme süresi (5.81-7.28 gün) üzerine çok önemli etkilerinin olduğu, çimlenme üniformitesine ise önemli bir etkisi olmadığı görülmüştür. Farklı sürelerde uygulanan Manyetik alan (MA) uygulamasının çimlenme oranı ve ortalama çimlenme süresi üzerinde önemli etkileri olduğu belirlenmiştir. En iyi çimlenme oranı %59.33 ile kontrol grubunda; en düşük çimlenme oranı ise %53.03 ile 3 dk Tesla uygulamasında tespit edilmiştir.

References

  • Alshalwi, H. A. F. (2017). Manyetik alan uygulamasının bazı tıbbi ve aromatik bitkilerin tohum çimlenmesi üzerine etkisi (Doctoral dissertation, Kastamonu Üniversitesi).
  • Anand, A., Kumari, A., Thakur, M., & Koul, A. (2019). Hydrogen peroxide signaling integrates with phytohormones during the germination of magnetoprimed tomato seeds. Scientific reports, 9(1), 8814.
  • Baghel, L., Kataria, S., & Guruprasad, K. N. (2016). Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bioelectromagnetics, 37(7), 455-470.
  • Baghel, L., Kataria, S., Jain, M. (2019). Mitigation of adverse effects of salt stress on germination, growth photosynthetic efficiency and yield in maize (Zea mays L.) through magnetopriming. Acta Agrobot 72(1).
  • Bağatırlar, A. G. (2016). Manyetik alan kullanılarak ısı elde edilmesi (Yüksek Lisans Tezi). Hitit Üniversitesi Fen Bilimleri Enstitüsü. 102 s.
  • Bhardwaj, J., Anand, A., & Nagarajan, S. (2012). Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant Physiology and Biochemistry, 57, 67-73.
  • Cakmak, T., Dumlupinar, R., & Erdal, S. (2010). Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 31(2), 120-129.
  • Dhawi, F. (2014). Why magnetic fields are used to enhance a plant’s growth and productivity? Annual Research & Review in Biology, 886-896.
  • El Ghazali, G. E. (2020). Suaeda vermiculata Forssk. ex JF Gmel.: structural characteristics and adaptations to salinity and drought: a review. Int J Sci, 9(02), 28-33.
  • El-Hifny, I. M., & El-Sayed, M. A. M. (2011). Response of sweet pepper plant growth and productivity to application of ascorbic acid and biofertilizers under saline conditions. Australian Journal of Basic and Applied Sciences, 5(6), 1273-1283.
  • Farooq, M., Basra, S. M., Rehman, H., & Mehmood, T. (2006). Germination and early seedling growth as affected by pre-sowing ethanol seed treatments in fine rice. International Journal of Agriculture and Biology, 8, 19-22.
  • Hazell, P., & Wood, S. (2008). Drivers of change in global agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 495-515.
  • Hilal, M. H., Shata, S. M., Abdel-Dayem, A. A., & Hilal, M. M. (2002). Application of magnetic technologies in desert agriculture: III. Effect of magnetized water on yield and uptake of certain elements by citrus in relation to nutrients mobilization in soil. Egyptian Journal of Soil Science, 42(1), 43-56.
  • Kataria, S., Baghel, L., & Guruprasad, K. N. (2017). Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatalysis and agricultural biotechnology, 10, 83-90.
  • Kataria, S., Baghel, L., Jain, M., & Guruprasad, K. N. (2019). Magnetopriming regulates antioxidant defense system in soybean against salt stress. Biocatalysis and Agricultural Biotechnology, 18, 101090.
  • Maffei, M. E. (2014). Magnetic field effects on plant growth, development, and evolution. Frontiers in plant science, 5, 445.
  • Maheshwari, B. L., & Grewal, H. S. (2009). Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Agricultural water management, 96(8), 1229-1236.
  • Navada, S., Vadstein, O., Gaumet, F., Tveten, A. K., Spanu, C., Mikkelsen, Ø., & Kolarevic, J. (2020). Biofilms remember: Osmotic stress priming as a microbial management strategy for improving salinity acclimation in nitrifying biofilms. Water Research, 176, 115732.
  • Özkan, L, (2023). Farklı süre ve şiddetlerde manyetik alan uygulamalarının kurak koşullarda biberde tohum çimlenmesi ve fide çıkışı üzerine etkileri. Yüksek Lisans Tezi. Yozgat Bozok Üniversitesi, Bahçe Bitkileri Ana Bilim Dalı, 55 s.
  • Pan, T., Liu, M., Kreslavski, V. D., Zharmukhamedov, S. K., Nie, C., Yu, M., ... & Shabala, S. (2021). Non-stomatal limitation of photosynthesis by soil salinity. Critical Reviews in Environmental Science and Technology, 51(8), 791-825.
  • Park, H. J., Kim, W. Y., & Yun, D. J. (2016). A new insight of salt stress signaling in plant. Molecules and cells, 39(6), 447.
  • Radhakrishnan, R. & Kumari, D.B.R. (2012). Pulsed magnetic field: A contemporary approach offers to enhance plant growth and yield of soybean. Plant Physiology and Biochemistry, 51, 139-144.
  • Reina, F. G., & Pascual, L. A. (2001). Influence of a stationary magnetic field on water relations in lettuce seeds. Part I: Theoretical considerations. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 22(8), 589-595.
  • Sarı, M. E. (2019). Using Ultraviolet (UV, magnetic field (MF) and hydropriming (HP) treatments on enhancement of seed quality of pepper, cabbage, lettuce ve onion, Doktora tezi. Ankara University 2019.
  • Savary, S., Akter, S., Almekinders, C., Harris, J., Korsten, L., Rötter, R., ... & Watson, D. (2020). Mapping disruption and resilience mechanisms in food systems. Food Security, 12, 695-717.
  • Shine, M. B., Guruprasad, K. N., & Anand, A. (2011). Enhancement of germination, growth, and photosynthesis in soybean by pre‐treatment of seeds with magnetic field. Bioelectromagnetics, 32(6), 474-484.
  • Shine, M. B., Kataria, S., Guruprasad, K. N., & Anjali, A. (2017). Enhancement of maize seeds germination by magnetopriming in perspective with reactive oxygen species. J Agric Crop Res 5(4): 66-76.
  • Sunita, K., Lokesh, B., & Guruprasad, K. N. (2015). Acceleration of germination and early growth characteristics of soybean and maize after pre-treatment of seeds with static magnetic field. International Journal of Tropical Agriculture, 33(2 (Part II)), 985-992.
  • Thomas, S., Anand, A., Chinnusamy, V., Dahuja, A., & Basu, S. (2013). Magnetopriming circumvents the effect of salinity stress on germination in chickpea seeds. Acta physiologiae plantarum, 35, 3401-3411.
  • Vian, A., Davies, E., Gendraud, M., & Bonnet, P. (2016). Plant responses to high frequency electromagnetic fields. BioMed research international, 2016.
  • Vural, H., Eşiyok, D., Duman İ., (2000) Kültür Sebzeleri Kitabı Ege Üniversitesi Ziraat Fakültesi Bahçe Bitkileri Bölümü İzmir Bornova.
  • Zhang, Q., & Dai, W. (2019). Plant response to salinity stress. In Stress physiology of woody plants (pp. 155-173). CRC Press.
  • Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C., & Wang, P. (2021). Regulation of Plant Responses to Salt Stress. International Journal of Molecular Sciences. 22(9):4609. https://doi.org/10.3390/ijms22094609
  • Ziska, L. H., Bunce, J. A., Shimono, H., Gealy, D. R., Baker, J. T., Newton, P. C., ... & Wilson, L. T. (2012). Food security and climate change: on the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide. Proceedings of the Royal Society B: Biological Sciences, 279(1745), 4097-4105.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Vegetable Growing and Treatment
Journal Section Research Articles
Authors

Gökçen Yakupoğlu 0000-0003-4921-0925

Gökçe Aydöner Çoban 0000-0002-0851-8803

Lale Özkan 0000-0002-9694-9055

Publication Date December 29, 2023
Submission Date November 7, 2023
Acceptance Date December 12, 2023
Published in Issue Year 2023 Volume: 2 Issue: 2

Cite

APA Yakupoğlu, G., Aydöner Çoban, G., & Özkan, L. (2023). Biberde Tuz Stresine Karşı Farklı Süre ve Şiddetlerde Manyetik Alan Uygulamasının Çimlenme Üzerine Etkileri. Bozok Tarım Ve Doğa Bilimleri Dergisi, 2(2), 85-94. https://doi.org/10.59128/bojans.1386927