Research Article
BibTex RIS Cite
Year 2020, Volume: 16 Issue: 2, 149 - 153, 24.06.2020

Abstract

References

  • [1]. Supothina, S, Seeharaj, P, Yoriya, S, Sriyudthsak, M. 2007. Synthesis of tungsten oxide nanoparticles by acid precipitation method. Ceramics International; 33(6): 931-936.
  • [2]. Anithaa, AC, Lavanya, N, Asokan, K, Sekar, C. 2015. WO3 nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid. Electrochimica Acta; 167: 294-302.
  • [3]. Yan, H, Zhang, X, Zhou, S, Xie, X, Luo, Y, Yu, Y. 2011. Synthesis of WO 3 nanoparticles for photocatalytic O 2 evolution by thermal decomposition of ammonium tungstate loading on gC 3 N 4. Journal of Alloys and Compounds; 509(24): L232-L235.
  • [4]. Bamwenda, GR, Arakawa, H. 2001. The visible light induced photocatalytic activity of tungsten trioxide powders. Applied Catalysis A: General; 210(1): 181-191.
  • [5]. Villa, K, Murcia-López, S, Morante, JR, Andreu, T. 2016. An insight on the role of La in mesoporous WO 3 for the photocatalytic conversion of methane into methanol. Applied Catalysis B: Environmental; 187: 30-36.
  • [6]. Gu, Z, Li, H, Zhai, T, Yang, W, Xia, Y, Ma, Y, Yao, J. 2007. Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals. Journal of Solid State Chemistry; 180(1): 98-105.
  • [7]. Wang, J, Khoo, E, Lee, PS, Ma, J. 2008. Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. The Journal of Physical Chemistry C; 112(37): 14306-14312.
  • [8]. Supothina, S, Seeharaj, P, Yoriya, S, Sriyudthsak, M. 2007. Synthesis of tungsten oxide nanoparticles by acid precipitation method. Ceramics International; 33(6): 931-936.
  • [9]. Li, Y, Bando, Y, Golberg, D. 2003. Quasi‐Aligned Single‐Crystalline W18O49 Nanotubes and Nanowires. Advanced Materials; 15(15): 1294-1296.
  • [10]. Bai, X, Ji, H, Gao, P, Zhang, Y, Sun, X. 2014. Morphology, phase structure and acetone sensitive properties of copper-doped tungsten oxide sensors. Sensors and Actuators B: Chemical; 193: 100-106.
  • [11]. Upadhyay, SB, Mishra, RK, Sahay, PP. 2014. Structural and alcohol response characteristics of Sn-doped WO 3 nanosheets. Sensors and Actuators B: Chemical; 193: 19-27.
  • [12]. Abhudhahir, MHS, Kandasamy, J. 2015. Photocatalytic effect of manganese doped WO3 and the effect of dopants on degradation of methylene blue. Journal of Materials Science: Materials in Electronics; 26(11): 8307-8314.
  • [13]. Li, J, Cheng, J, Wei, B, Zhang, M, Luo, L, Wu, Y. 2017. Microstructure and properties of La 2 O 3 doped W composites prepared by a wet chemical process. International Journal of Refractory Metals and Hard Materials; 66: 226-233.
  • [14]. Abbas, M, Takahashi, M, Kim, C. 2013. Facile sonochemical synthesis of high-moment magnetite (Fe3O4) nanocube. Journal of nanoparticle research; 15(1): 1354.
  • [15]. O’Kelly, C, Jung, SJ, Bell, AP, Boland, JJ. 2012. Single crystal iron nanocube synthesis via the surface energy driven growth method. Nanotechnology; 23(43): 435604.
  • [16]. Sibu, CP, Kumar, SR, Mukundan, P, Warrier, KGK. 2002. Structural modifications and associated properties of lanthanum oxide doped sol−gel nanosized titanium oxide. Chemistry of Materials; 14(7): 2876-2881.
  • [17]. Jin, Z, Nie, H, Yang, Z, Zhang, J, Liu, Z, Xu, X, Huang, S. 2012. Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction. Nanoscale; 4(20): 6455-6460.
  • [18]. Derk, AR, Li, B, Sharma, S, Moore, GM, McFarland, EW, Metiu, H. 2013. Methane oxidation by lanthanum oxide doped with Cu, Zn, Mg, Fe, Nb, Ti, Zr, or Ta: the connection between the activation energy and the energy of oxygen-vacancy formation. Catalysis letters; 143(5): 406-410.
  • [19]. Hong, SJ, Jun, H, Borse, PH, Lee, JS. 2009. Size effects of WO 3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. International Journal of Hydrogen Energy; 34(8): 3234-3242.
  • [20]. Gondal, MA, Dastageer, MA, Khalil, A. 2009. Synthesis of nano-WO 3 and its catalytic activity for enhanced antimicrobial process for water purification using laser induced photo-catalysis. Catalysis Communications; 11(3): 214-219.
  • [21]. Ospina, R, Castillo, HA, Benavides, V, Restrepo, E, Arango, YC, Arias, DF, Devia, A. 2006. Influence of the annealing temperature on a crystal phase of W/WC bilayers grown by pulsed arc discharge. Vacuum; 81(3): 373-377.
  • [22]. Eskizeybek, V, Avcı, A, Chhowalla, M. 2011. Structural and optical properties of CdO nanowires synthesized from Cd (OH) 2 precursors by calcination. Crystal Research and Technology; 46(10): 1093-1100.
  • [23]. Qiu, G, Dharmarathna, S, Zhang, Y, Opembe, N, Huang, H, Suib, SL. 2011. Facile microwave-assisted hydrothermal synthesis of CuO nanomaterials and their catalytic and electrochemical properties. The Journal of Physical Chemistry C; 116(1): 468-477.
  • [24]. Krätschmer, W, Lamb, LD, Fostiropoulos, K, Huffman, DR. 1990. Solid C60: a new form of carbon. Nature; 347(6291): 354-358.
  • [25]. Ashkarran, AA, Mahdavi, SM, Ahadian, MM. 2010. Photocatalytic activity of ZnO nanoparticles prepared via submerged arc discharge method. Applied Physics A; 100(4): 1097-1102.
  • [26]. Fang, F, Futter, J, Markwitz, A, Kennedy, J. 2009. UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method. Nanotechnology; 20(24): 245502.
  • [27]. Wang, L, Hu, H, Xu, J, Zhu, S, Ding, A, Deng, C. 2019. WO3 nanocubes: Hydrothermal synthesis, growth mechanism, and photocatalytic performance. Journal of Materials Research; 34(17): 2955-2963.
  • [28]. Guery, C, Choquet, C, Dujeancourt, F, Tarascon, JM, Lassegues, JC. 1997. Infrared and X-ray studies of hydrogen intercalation in different tungsten trioxides and tungsten trioxide hydrates. Journal of Solid State Electrochemistry; 1(3): 199-207.
  • [29]. Mao, L, Liu, C. 2008. A new route for synthesizing VO 2 (B) nanoribbons and 1D vanadium-based nanostructures. Materials Research Bulletin; 43(6): 1384-1392.

Selectively Nanocubes Formation of Tungsten Oxide (WO3)

Year 2020, Volume: 16 Issue: 2, 149 - 153, 24.06.2020

Abstract

In this study, tungsten oxide (WO3) nanoparticles were produced with a preferential nanocube morphology by using selenium (Se) and lanthanum (La) catalysts in de-ionized water by arc discharge method. Se-La catalysts were added to the tungsten (W) electrodes during the production of nanocubes and the structural and morphological features of these nanocubes were investigated. The nanocube structures were imaged with scanning electron microscopy (SEM) and permeable electron microscopy (TEM), and the dimensions of the nanocubes were between 10-50 nm. X-ray diffraction (XRD) results revealed that the synthesized nanostructures exhibited a monoclinic WO3 crystal structure. The arc discharge is a simple, inexpensive and low-cost method and the production of WO3 nanocubes at a high purity rate has been successfully achieved with this method.

References

  • [1]. Supothina, S, Seeharaj, P, Yoriya, S, Sriyudthsak, M. 2007. Synthesis of tungsten oxide nanoparticles by acid precipitation method. Ceramics International; 33(6): 931-936.
  • [2]. Anithaa, AC, Lavanya, N, Asokan, K, Sekar, C. 2015. WO3 nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid. Electrochimica Acta; 167: 294-302.
  • [3]. Yan, H, Zhang, X, Zhou, S, Xie, X, Luo, Y, Yu, Y. 2011. Synthesis of WO 3 nanoparticles for photocatalytic O 2 evolution by thermal decomposition of ammonium tungstate loading on gC 3 N 4. Journal of Alloys and Compounds; 509(24): L232-L235.
  • [4]. Bamwenda, GR, Arakawa, H. 2001. The visible light induced photocatalytic activity of tungsten trioxide powders. Applied Catalysis A: General; 210(1): 181-191.
  • [5]. Villa, K, Murcia-López, S, Morante, JR, Andreu, T. 2016. An insight on the role of La in mesoporous WO 3 for the photocatalytic conversion of methane into methanol. Applied Catalysis B: Environmental; 187: 30-36.
  • [6]. Gu, Z, Li, H, Zhai, T, Yang, W, Xia, Y, Ma, Y, Yao, J. 2007. Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals. Journal of Solid State Chemistry; 180(1): 98-105.
  • [7]. Wang, J, Khoo, E, Lee, PS, Ma, J. 2008. Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. The Journal of Physical Chemistry C; 112(37): 14306-14312.
  • [8]. Supothina, S, Seeharaj, P, Yoriya, S, Sriyudthsak, M. 2007. Synthesis of tungsten oxide nanoparticles by acid precipitation method. Ceramics International; 33(6): 931-936.
  • [9]. Li, Y, Bando, Y, Golberg, D. 2003. Quasi‐Aligned Single‐Crystalline W18O49 Nanotubes and Nanowires. Advanced Materials; 15(15): 1294-1296.
  • [10]. Bai, X, Ji, H, Gao, P, Zhang, Y, Sun, X. 2014. Morphology, phase structure and acetone sensitive properties of copper-doped tungsten oxide sensors. Sensors and Actuators B: Chemical; 193: 100-106.
  • [11]. Upadhyay, SB, Mishra, RK, Sahay, PP. 2014. Structural and alcohol response characteristics of Sn-doped WO 3 nanosheets. Sensors and Actuators B: Chemical; 193: 19-27.
  • [12]. Abhudhahir, MHS, Kandasamy, J. 2015. Photocatalytic effect of manganese doped WO3 and the effect of dopants on degradation of methylene blue. Journal of Materials Science: Materials in Electronics; 26(11): 8307-8314.
  • [13]. Li, J, Cheng, J, Wei, B, Zhang, M, Luo, L, Wu, Y. 2017. Microstructure and properties of La 2 O 3 doped W composites prepared by a wet chemical process. International Journal of Refractory Metals and Hard Materials; 66: 226-233.
  • [14]. Abbas, M, Takahashi, M, Kim, C. 2013. Facile sonochemical synthesis of high-moment magnetite (Fe3O4) nanocube. Journal of nanoparticle research; 15(1): 1354.
  • [15]. O’Kelly, C, Jung, SJ, Bell, AP, Boland, JJ. 2012. Single crystal iron nanocube synthesis via the surface energy driven growth method. Nanotechnology; 23(43): 435604.
  • [16]. Sibu, CP, Kumar, SR, Mukundan, P, Warrier, KGK. 2002. Structural modifications and associated properties of lanthanum oxide doped sol−gel nanosized titanium oxide. Chemistry of Materials; 14(7): 2876-2881.
  • [17]. Jin, Z, Nie, H, Yang, Z, Zhang, J, Liu, Z, Xu, X, Huang, S. 2012. Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction. Nanoscale; 4(20): 6455-6460.
  • [18]. Derk, AR, Li, B, Sharma, S, Moore, GM, McFarland, EW, Metiu, H. 2013. Methane oxidation by lanthanum oxide doped with Cu, Zn, Mg, Fe, Nb, Ti, Zr, or Ta: the connection between the activation energy and the energy of oxygen-vacancy formation. Catalysis letters; 143(5): 406-410.
  • [19]. Hong, SJ, Jun, H, Borse, PH, Lee, JS. 2009. Size effects of WO 3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. International Journal of Hydrogen Energy; 34(8): 3234-3242.
  • [20]. Gondal, MA, Dastageer, MA, Khalil, A. 2009. Synthesis of nano-WO 3 and its catalytic activity for enhanced antimicrobial process for water purification using laser induced photo-catalysis. Catalysis Communications; 11(3): 214-219.
  • [21]. Ospina, R, Castillo, HA, Benavides, V, Restrepo, E, Arango, YC, Arias, DF, Devia, A. 2006. Influence of the annealing temperature on a crystal phase of W/WC bilayers grown by pulsed arc discharge. Vacuum; 81(3): 373-377.
  • [22]. Eskizeybek, V, Avcı, A, Chhowalla, M. 2011. Structural and optical properties of CdO nanowires synthesized from Cd (OH) 2 precursors by calcination. Crystal Research and Technology; 46(10): 1093-1100.
  • [23]. Qiu, G, Dharmarathna, S, Zhang, Y, Opembe, N, Huang, H, Suib, SL. 2011. Facile microwave-assisted hydrothermal synthesis of CuO nanomaterials and their catalytic and electrochemical properties. The Journal of Physical Chemistry C; 116(1): 468-477.
  • [24]. Krätschmer, W, Lamb, LD, Fostiropoulos, K, Huffman, DR. 1990. Solid C60: a new form of carbon. Nature; 347(6291): 354-358.
  • [25]. Ashkarran, AA, Mahdavi, SM, Ahadian, MM. 2010. Photocatalytic activity of ZnO nanoparticles prepared via submerged arc discharge method. Applied Physics A; 100(4): 1097-1102.
  • [26]. Fang, F, Futter, J, Markwitz, A, Kennedy, J. 2009. UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method. Nanotechnology; 20(24): 245502.
  • [27]. Wang, L, Hu, H, Xu, J, Zhu, S, Ding, A, Deng, C. 2019. WO3 nanocubes: Hydrothermal synthesis, growth mechanism, and photocatalytic performance. Journal of Materials Research; 34(17): 2955-2963.
  • [28]. Guery, C, Choquet, C, Dujeancourt, F, Tarascon, JM, Lassegues, JC. 1997. Infrared and X-ray studies of hydrogen intercalation in different tungsten trioxides and tungsten trioxide hydrates. Journal of Solid State Electrochemistry; 1(3): 199-207.
  • [29]. Mao, L, Liu, C. 2008. A new route for synthesizing VO 2 (B) nanoribbons and 1D vanadium-based nanostructures. Materials Research Bulletin; 43(6): 1384-1392.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Tugay Üstün 0000-0001-5365-3054

Volkan Eskizeybek 0000-0002-5373-0379

Ahmet Avcı 0000-0003-3434-1711

Publication Date June 24, 2020
Published in Issue Year 2020 Volume: 16 Issue: 2

Cite

APA Üstün, T., Eskizeybek, V., & Avcı, A. (2020). Selectively Nanocubes Formation of Tungsten Oxide (WO3). Celal Bayar University Journal of Science, 16(2), 149-153.
AMA Üstün T, Eskizeybek V, Avcı A. Selectively Nanocubes Formation of Tungsten Oxide (WO3). CBUJOS. June 2020;16(2):149-153.
Chicago Üstün, Tugay, Volkan Eskizeybek, and Ahmet Avcı. “Selectively Nanocubes Formation of Tungsten Oxide (WO3)”. Celal Bayar University Journal of Science 16, no. 2 (June 2020): 149-53.
EndNote Üstün T, Eskizeybek V, Avcı A (June 1, 2020) Selectively Nanocubes Formation of Tungsten Oxide (WO3). Celal Bayar University Journal of Science 16 2 149–153.
IEEE T. Üstün, V. Eskizeybek, and A. Avcı, “Selectively Nanocubes Formation of Tungsten Oxide (WO3)”, CBUJOS, vol. 16, no. 2, pp. 149–153, 2020.
ISNAD Üstün, Tugay et al. “Selectively Nanocubes Formation of Tungsten Oxide (WO3)”. Celal Bayar University Journal of Science 16/2 (June 2020), 149-153.
JAMA Üstün T, Eskizeybek V, Avcı A. Selectively Nanocubes Formation of Tungsten Oxide (WO3). CBUJOS. 2020;16:149–153.
MLA Üstün, Tugay et al. “Selectively Nanocubes Formation of Tungsten Oxide (WO3)”. Celal Bayar University Journal of Science, vol. 16, no. 2, 2020, pp. 149-53.
Vancouver Üstün T, Eskizeybek V, Avcı A. Selectively Nanocubes Formation of Tungsten Oxide (WO3). CBUJOS. 2020;16(2):149-53.