Review
BibTex RIS Cite

Chaos in Physiological Control Systems: Health or Disease?

Year 2024, Volume: 6 Issue: 1, 1 - 12, 31.03.2024
https://doi.org/10.51537/chaos.1413955

Abstract

During the nineties, the Rössler’s have reported in their famous book “Chaos in Physiology,” that “physiology is the mother of Chaos.” Moreover, several researchers have proved that Chaos is a generic characteristic of systems in physiology. In the context of disease, like for example growth of cancer cell populations, Chaos often refers to irregular and unpredictable patterns. In such cases, Chaos signatures can be used to prove the existence of some pathologies. However, for other physiological behaviors, Chaos is a form of order disguised as disorder and can be a signature of healthy physiological functions. This is for example the case of human brain behavior. As the boundary between health and disease is not always clear-cut in chaotic systems in physiology, some conditions may involve transitions between ordered and chaotic states. Understanding these transitions and identifying critical points can be crucial for predicting Healthy vs. pathological Chaos. Using recent advances in physiological Chaos and disease dynamics, this survey paper tries to answer the crucial question: when Chaos be a sign of health or disease?

References

  • Alvarez-Arenas, A., K. E. Starkov, G. F. Calvo, and J. Belmonte- Beitia, 2019 Ultimate dynamics and optimal control of a multicompartment model of tumor resistance to chemotherapy. Discrete & Continuous Dynamical Systems-Series B 24.
  • Alves, L. G., P. B. Winter, L. N. Ferreira, R. M. Brielmann, R. I. Morimoto, et al., 2017 Long-range correlations and fractal dynamics in c. elegans: Changes with aging and stress. Physical Review E 96: 022417.
  • Ansarinasab, S., F. Parastesh, F. Ghassemi, K. Rajagopal, S. Jafari, et al., 2023 Synchronization in functional brain networks of children suffering from adhd based on hindmarsh-rose neuronal model. Computers in Biology and Medicine 152: 106461.
  • Bayani, A., S. Jafari, J. Sprott, and B. Hatef, 2018 A chaotic model of migraine headache considering the dynamical transitions of this cyclic disease. Europhysics Letters 123: 10006.
  • Borah, M., D. Das, A. Gayan, F. Fenton, and E. Cherry, 2021 Control and anticontrol of Chaos in fractional-order models of diabetes, hiv, dengue, migraine, parkinson’s and ebola virus diseases. Chaos, Solitons & Fractals 153: 111419.
  • Boubaker, O., 2020 Control theory in biomedical engineering: applications in physiology and medical robotics. Academic Press.
  • Boubaker, O., 2023 Medical and Healthcare Robotics: New Paradigms and Recent Advances. Elsevier.
  • Boudin, L., C. Grandmont, B. Grec, and S. Martin, 2023 A coupled model for the dynamics of gas exchanges in the human lung with haldane and bohr’s effects. Journal of Theoretical Biology 573: 111590.
  • Breakspear, M., 2017 Dynamic models of large-scale brain activity. Nature neuroscience 20: 340–352.
  • Cannon,W. B., 1929 Organization for physiological homeostasis. Physiological reviews 9: 399–431.
  • Cashin, A. and J. Yorke, 2016 Overly regulated thinking and autism revisited. Journal of Child and Adolescent Psychiatric Nursing 29: 148–153.
  • Chapelot, D. and K. Charlot, 2019 Physiology of energy homeostasis: Models, actors, challenges and the glucoadipostatic loop. Metabolism 92: 11–25.
  • Cheffer, A., M. A. Savi, T. L. Pereira, and A. S. de Paula, 2021 Heart rhythm analysis using a nonlinear dynamics perspective. Applied Mathematical Modelling 96: 152–176.
  • Choquet, D., M. Sainlos, and J.-B. Sibarita, 2021 Advanced imaging and labelling methods to decipher brain cell organization and function. Nature Reviews Neuroscience 22: 237–255.
  • Coffey, D. S., 1998 Self-organization, complexity and Chaos: the new biology for medicine. Nature medicine 4: 882–885.
  • Cross, S. S. and D. W. Cotton, 1994 Chaos and antichaos in pathology. Human pathology 25: 630–637.
  • da Silva, F. L., 1991 Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalography and clinical neurophysiology 79: 81–93.
  • Debbouche, N., A. Ouannas, G. Grassi, A.-B. A. Al-Hussein, F. R. Tahir, et al., 2022 Chaos in cancer tumor growth model with commensurate and incommensurate fractional-order derivatives. Computational and Mathematical Methods in Medicine 2022.
  • Devaney, R., 2018 An introduction to chaotic dynamical systems. CRC press.
  • Dritsas, E. and M. Trigka, 2023 Efficient data-driven machine learning models for cardiovascular diseases risk prediction. Sensors 23: 1161.
  • Duarte, J., C. Januário, N. Martins, C. C. Ramos, C. Rodrigues, et al., 2018 Optimal homotopy analysis of a chaotic hiv-1 model incorporating aids-related cancer cells. Numerical Algorithms 77: 261–288.
  • Dutta, S., T. Kushner, and S. Sankaranarayanan, 2018 Robust datadriven control of artificial pancreas systems using neural networks.
  • In Computational Methods in Systems Biology: 16th International Conference, CMSB 2018, Brno, Czech Republic, September 12-14, 2018, Proceedings 16, pp. 183–202, Springer.
  • Elbert, T., W. J. Ray, Z. J. Kowalik, J. E. Skinner, K. E. Graf, et al., 1994 Chaos and physiology: deterministic Chaos in excitable cell assemblies. Physiological reviews 74: 1–47.
  • Enderle, J. and J. Bronzino, 2012 Introduction to biomedical engineering. Academic press.
  • Fang, X. and L. Wang, 2021 Memristive hodgkin-huxley spiking neuron model for reproducing neuron behaviors. Frontiers in Neuroscience 15: 730566.
  • Faust, O. and M. G. Bairy, 2012 Nonlinear analysis of physiological signals: a review. Journal of Mechanics in Medicine and Biology 12: 1240015.
  • Fernández-Carreón, B., J. Munoz-Pacheco, E. Zambrano-Serrano, and O. Félix-Beltrán, 2022 Analysis of a fractional-order glucoseinsulin biological system with time delay. Chaos Theory and Applications 4: 10–18.
  • Flower, A., G. Kalamangalam, and G. Kember, 1993 A mathematical analysis of the grodins model of respiratory control.
  • Mathematical Medicine and Biology: A Journal of the IMA 10: 249–280.
  • Fong, L. E., A. R. Muñoz-Rojas, and K. Miller-Jensen, 2018 Advancing systems immunology through data-driven statistical analysis. Current opinion in biotechnology 52: 109–115.
  • Formaggia, L., A. Quarteroni, and A. Veneziani, 2010 Cardiovascular Mathematics: Modeling and simulation of the circulatory system, volume 1. Springer Science & Business Media.
  • Garfinkel, A., P.-S. Chen, D. O.Walter, H. S. Karagueuzian, B. Kogan, et al., 1997 Quasiperiodicity and Chaos in cardiac fibrillation. The Journal of clinical investigation 99: 305–314.
  • Garland, J., 2013 Energy management–a critical role in cancer induction? Critical reviews in oncology/hematology 88: 198– 217.
  • Giakoumi, M., P. S. Stephanou, K. Kapnisis, and A. Anayiotos, 2023 On the development of physiologically based toxicokinetic (pbtk) models for cardiovascular implants. Regulatory Toxicology and Pharmacology 144: 105489.
  • Ginoux, J.-M., H. Ruskeepää, M. Perc, R. Naeck, V. Di Costanzo, et al., 2018 Is type 1 diabetes a chaotic phenomenon? Chaos, Solitons & Fractals 111: 198–205.
  • Glass, L., A. Beuter, and D. Larocque, 1988 Time delays, oscillations, and Chaos in physiological control systems. Mathematical Biosciences 90: 111–125.
  • Gois, S. R. and M. A. Savi, 2009 An analysis of heart rhythm dynamics using a three-coupled oscillator model. Chaos, Solitons & Fractals 41: 2553–2565.
  • Golbin, A. and A. Umantsev, 2006 Adaptive Chaos: mild disorder may help contain major disease. Medical hypotheses 66: 182– 187.
  • Goldberger, A. L., L. A. Amaral, J. M. Hausdorff, P. C. Ivanov, C.-K. Peng, et al., 2002 Fractal dynamics in physiology: alterations with disease and aging. Proceedings of the national academy of sciences 99: 2466–2472.
  • Goldberger, A. L., D. R. Rigney, and B. J. West, 1990 Chaos and fractals in human physiology. Scientific American 262: 42–49.
  • Goldberger, A. L. and B. J. West, 1987 Chaos in physiology: health or disease? In Chaos in biological systems, pp. 1–4, Springer.
  • Grodins, F. S., 1959 Integrative cardiovascular physiology: a mathematical synthesis of cardiac and blood vessel hemodynamics. The Quarterly Review of Biology 34: 93–116.
  • Gupta, V., 2023 Application of Chaos theory for arrhythmia detection in pathological databases. International Journal of Medical Engineering and Informatics 15: 191–202.
  • Gupta, V., M. Mittal, and V. Mittal, 2020 Chaos theory: an emerging tool for arrhythmia detection. Sensing and Imaging 21: 10.
  • Gupta, V., M. Mittal, and V. Mittal, 2021 Chaos theory and artfa: emerging tools for interpreting ecg signals to diagnose cardiac arrhythmias. Wireless Personal Communications 118: 3615–3646.
  • Heltberg, M. L., S. Krishna, and M. H. Jensen, 2019 On chaotic dynamics in transcription factors and the associated effects in differential gene regulation. Nature communications 10: 71.
  • Hodgkin, A. L. and A. F. Huxley, 1952 A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology 117: 500.
  • Houk, J. C., 1988 Control strategies in physiological systems. The FASEB journal 2: 97–107.
  • Ismail, L. S., S. A. Zulkifl, and N. H. Hamid, 2018 Circuit modeling and analysis of cardiovascular system using analog circuit analogy. In 2018 International Conference on Intelligent and Advanced System (ICIAS), pp. 1–6, IEEE.
  • Itik, M. and S. P. Banks, 2010 Chaos in a three-dimensional cancer model. International Journal of Bifurcation and Chaos 20: 71–79.
  • Karaca, Y., 2023 Computational complexity-based fractional-order neural network models for the diagnostic treatments and predictive transdifferentiability of heterogeneous cancer cell propensity. Chaos Theory and Applications 5: 34–51.
  • Kavakci, M., 2021 Neurochaos: Analyzing the brain and its disorders from a physics perspective. In Chaos, Complexity and Leadership 2020: Application of Nonlinear Dynamics from Interdisciplinary Perspective, pp. 15–24, Springer.
  • Kernick, D., 2005 Migraine—new perspectives from chaos theory. Cephalalgia 25: 561–566.
  • Khan, A. F., Q. Adewale, T. R. Baumeister, F. Carbonell, K. Zilles, et al., 2022 Personalized brain models identify neurotransmitter receptor changes in alzheimer’s disease. Brain 145: 1785–1804.
  • Korn, H. and P. Faure, 2003 Is there chaos in the brain? ii. experimental evidence and related models. Comptes rendus biologies 326: 787–840.
  • Korolj, A., H.-T. Wu, and M. Radisic, 2019 A healthy dose of chaos: Using fractal frameworks for engineering higher-fidelity biomedical systems. Biomaterials 219: 119363.
  • Lassoued, A. and O. Boubaker, 2016 On new chaotic and hyperchaotic systems: a literature survey. Nonlinear Analysis: Modelling and Control 21: 770–789.
  • Lassoued, A. and O. Boubaker, 2020 Modeling and control in physiology. In Control Theory in Biomedical Engineering, pp. 3–42, Elsevier.
  • Leaning, M., H. Pullen, E. Carson, and L. Finkelstein, 1983 Modelling a complex biological system: the human cardiovascular system—1. methodology and model description. Transactions of the Institute of Measurement and Control 5: 71–86.
  • Lipsitz, L. A. and A. L. Goldberger, 1992 Loss of’complexity’and aging: potential applications of fractals and chaos theory to senescence. Jama 267: 1806–1809.
  • Liu, Y., C. Chen, X. Tian, E. Zuo, Z. Cheng, et al., 2024 A prospective study: Advances in chaotic characteristics of serum raman spectroscopy in the field of assisted diagnosis of disease. Expert Systems with Applications 238: 121787.
  • Lozi, R., 2023 Are chaotic attractors just a mathematical curiosity or do they contribute to the advancement of science? Chaos Theory and Applications 5: 133–140.
  • Mackey, M. C. and U. An Der Heiden, 1984 The dynamics of recurrent inhibition. Journal of Mathematical Biology 19: 211– 225.
  • Mansier, P., J. Clairambault, N. Charlotte, C. Médigue, C. Vermeiren, et al., 1996 Linear and non-linear analyses of heart rate variability: a minireview. Cardiovascular research 31: 371–379.
  • Mansour, M., T. B. Donmez, M. Ç. Kutlu, and C. Freeman, 2023 Respiratory diseases prediction from a novel chaotic system. Chaos Theory and Applications 5: 20–26.
  • Mari, A., A. Tura, and E. Grespan, 2020 Mathematical modeling for the physiological and clinical investigation of glucose homeostasis and diabetes. Frontiers in Physiology 11: 575789.
  • McKnight, L. L., S. Lopez, A. K. Shoveller, and J. France, 2013 Models for the study of whole-body glucose kinetics: a mathematical synthesis. International Scholarly Research Notices 2013.
  • Mohammadi, S. and S. R. Hejazi, 2023 Lie symmetry, Chaos optimal control in non-linear fractional-order diabetes mellitus, human immunodeficiency virus, migraine parkinson’s diseases models: using evolutionary algorithms. Computer Methods in Biomechanics and Biomedical Engineering pp. 1–29.
  • Mpitsos, G. J., R. M. Burton Jr, and H. C. Creech, 1988 Connectionist networks learn to transmit Chaos. Brain Research Bulletin 21: 539–546.
  • Müller, W., A. Jung, and H. Ahammer, 2017 Advantages and problems of nonlinear methods applied to analyze physiological time signals: human balance control as an example. Scientific reports 7: 2464.
  • Muni, S. S., Z. Njitacke, C. Feudjio, T. Fozin, and J. Awrejcewicz, 2022 Route to chaos and chimera states in a network of memristive hindmarsh-rose neurons model with external excitation. Chaos Theory and Applications 4: 119–127.
  • Munoz-Pacheco, J. M., C. Posadas-Castillo, and E. Zambrano- Serrano, 2020 The effect of a non-local fractional operator in an asymmetrical glucose-insulin regulatory system: Analysis, synchronization and electronic implementation. Symmetry 12: 1395.
  • Naik, P. A., K. M. Owolabi, M. Yavuz, and J. Zu, 2020 Chaotic dynamics of a fractional order hiv-1 model involving aids-related cancer cells. Chaos, Solitons & Fractals 140: 110272.
  • Noble, D., A. Garny, and P. J. Noble, 2012 How the hodgkin–huxley equations inspired the cardiac physiome project. The Journal of physiology 590: 2613–2628.
  • Panahi, S., Z. Aram, S. Jafari, J. Ma, and J. Sprott, 2017 Modeling of epilepsy based on chaotic artificial neural network. Chaos, Solitons & Fractals 105: 150–156.
  • Panahi, S., T. Shirzadian, M. Jalili, and S. Jafari, 2019 A new chaotic network model for epilepsy. Applied Mathematics and Computation 346: 395–407.
  • Paoletti, N., K. S. Liu, H. Chen, S. A. Smolka, and S. Lin, 2019 Data-driven robust control for a closed-loop artificial pancreas.
  • IEEE/ACM transactions on computational biology and bioinformatics 17: 1981–1993.
  • Peng, C.-K., S. V. Buldyrev, J. M. Hausdorff, S. Havlin, J. E. Mietus, et al., 1994 Non-equilibrium dynamics as an indispensable characteristic of a healthy biological system. Integrative Physiological and Behavioral Science 29: 283–293.
  • Pereda, E., R. Q. Quiroga, and J. Bhattacharya, 2005 Nonlinear multivariate analysis of neurophysiological signals. Progress in neurobiology 77: 1–37.
  • Persson, P. B., 1996 Modulation of cardiovascular control mechanisms and their interaction. Physiological reviews 76: 193–244.
  • Pincus, S. M., 1991 Approximate entropy as a measure of system complexity. Proceedings of the national academy of sciences 88: 2297–2301.
  • Pincus, S. M. and A. L. Goldberger, 1994 Physiological time-series analysis: what does regularity quantify? American Journal of Physiology-Heart and Circulatory Physiology 266: H1643– H1656.
  • Poon, C.-S. and C. K. Merrill, 1997 Decrease of cardiac Chaos in congestive heart failure. Nature 389: 492–495.
  • Pritchard, W. S. and D. W. Duke, 1995 Measuring Chaos in the brain-a tutorial review of eeg dimension estimation. Brain and cognition 27: 353–397.
  • Rajagopal, K., A. Bayani, S. Jafari, A. Karthikeyan, and I. Hussain, 2020 Chaotic dynamics of a fractional order glucose-insulin regulatory system. Frontiers of Information Technology & Electronic Engineering 21: 1108–1118.
  • Rajeswari, S. and P. Vijayakumar, 2023 Mathematical approaches in the study of diabetes mellitus. In Computer Vision and Robotics: Proceedings of CVR 2022, pp. 229–248, Springer.
  • Rasool, N. and J. I. Bhat, 2023 Unveiling the complexity of medical imaging through deep learning approaches. Chaos Theory and Applications 5: 267–280.
  • Rossler, O. E. and R. Rossler, 1994 Chaos in physiology. Integrative Physiological and Behavioral Science 29: 328–333.
  • Russo, G., A. Tramontano, I. Iodice, L. Chiariotti, and A. Pezone, 2021 Epigenome Chaos: stochastic and deterministic dna methylation events drive cancer evolution. Cancers 13: 1800.
  • Sarbadhikari, S. N. and K. Chakrabarty, 2001 Chaos in the brain: a short review alluding to epilepsy, depression, exercise and lateralization. Medical engineering & physics 23: 447–457.
  • Sedivy, R. and R. M. Mader, 1997 Fractals, Chaos, and cancer: do they coincide? Cancer investigation 15: 601–607.
  • Shabestari, P. S., Z. Rostami, V.-T. Pham, F. E. Alsaadi, and T. Hayat, 2019 Modeling of neurodegenerative diseases using discrete chaotic systems. Communications in Theoretical Physics 71: 1241.
  • Shi, Y., P. Lawford, and R. Hose, 2011 Review of zero-d and 1-d models of blood flow in the cardiovascular system. Biomedical engineering online 10: 1–38.
  • Shirmohammadi, S., K. Barbe, D. Grimaldi, S. Rapuano, and S. Grassini, 2016 Instrumentation and measurement in medical, biomedical, and healthcare systems. IEEE Instrumentation & Measurement Magazine 19: 6–12.
  • Sprott, J. C., 2003 Chaos and time-series analysis. Oxford university press.
  • Stam, C. J., 2005 Nonlinear dynamical analysis of eeg and meg: review of an emerging field. Clinical neurophysiology 116: 2266– 2301.
  • Tsatsaris, A., S. Domenikos, C. Psychos, and D. Moutsiounas, 2016 Chaos theory and behavioural patterns: a theoretical approach to psychosis, bipolar disorders and depression. Journal of Advanced Biotechnology and Bioengineering 4.
  • Tsuda, I., 2015 Chaotic itinerancy and its roles in cognitive neurodynamics. Current opinion in neurobiology 31: 67–71.
  • Uthamacumaran, A., 2020 Cancer: A turbulence problem. Neoplasia 22: 759–769.
  • Uthamacumaran, A., 2021 A review of dynamical systems approaches for the detection of chaotic attractors in cancer networks. Patterns 2.
  • Wagner, C., B. Nafz, and P. Persson, 1996 Chaos in blood pressure control. Cardiovascular research 31: 380–387.
  • Xuan, L., S. Ahmad, A. Ullah, S. Saifullah, A. Akgül, et al., 2022 Bifurcations, stability analysis and complex dynamics of caputo fractal-fractional cancer model. Chaos, Solitons & Fractals 159: 112113.
  • Yadav, S. S. and S. M. Jadhav, 2021 Detection of common risk factors for diagnosis of cardiac arrhythmia using machine learning algorithm. Expert systems with applications 163: 113807.
  • Ye, H., Y. Ding, et al., 2009 Nonlinear dynamics and Chaos in a fractional-order hiv model. Mathematical Problems in Engineering 2009.
  • Yoo, J., Z. Sun, M. Greenacre, Q. Ma, D. Chung, et al., 2022 A guideline for the statistical analysis of compositional data in immunology. arXiv preprint arXiv:2201.07945 .
  • Yousefnezhad, M., C.-Y. Kao, and S. A. Mohammadi, 2021 Optimal chemotherapy for brain tumor growth in a reaction-diffusion model. SIAM Journal on Applied Mathematics 81: 1077–1097.
  • Yulmetyev, R. M., S. A. Demin, and P. Hänggi, 2006 Manifestation of Chaos in real complex systems: Case of parkinson’s disease. In The logistic map and the route to Chaos: From the beginnings to modern applications, pp. 175–196, Springer.
  • Zhang, X., Z. Wu, and L. Chua, 2020 Hearts are poised near the edge of Chaos. International Journal of Bifurcation and Chaos 30: 2030023.
Year 2024, Volume: 6 Issue: 1, 1 - 12, 31.03.2024
https://doi.org/10.51537/chaos.1413955

Abstract

References

  • Alvarez-Arenas, A., K. E. Starkov, G. F. Calvo, and J. Belmonte- Beitia, 2019 Ultimate dynamics and optimal control of a multicompartment model of tumor resistance to chemotherapy. Discrete & Continuous Dynamical Systems-Series B 24.
  • Alves, L. G., P. B. Winter, L. N. Ferreira, R. M. Brielmann, R. I. Morimoto, et al., 2017 Long-range correlations and fractal dynamics in c. elegans: Changes with aging and stress. Physical Review E 96: 022417.
  • Ansarinasab, S., F. Parastesh, F. Ghassemi, K. Rajagopal, S. Jafari, et al., 2023 Synchronization in functional brain networks of children suffering from adhd based on hindmarsh-rose neuronal model. Computers in Biology and Medicine 152: 106461.
  • Bayani, A., S. Jafari, J. Sprott, and B. Hatef, 2018 A chaotic model of migraine headache considering the dynamical transitions of this cyclic disease. Europhysics Letters 123: 10006.
  • Borah, M., D. Das, A. Gayan, F. Fenton, and E. Cherry, 2021 Control and anticontrol of Chaos in fractional-order models of diabetes, hiv, dengue, migraine, parkinson’s and ebola virus diseases. Chaos, Solitons & Fractals 153: 111419.
  • Boubaker, O., 2020 Control theory in biomedical engineering: applications in physiology and medical robotics. Academic Press.
  • Boubaker, O., 2023 Medical and Healthcare Robotics: New Paradigms and Recent Advances. Elsevier.
  • Boudin, L., C. Grandmont, B. Grec, and S. Martin, 2023 A coupled model for the dynamics of gas exchanges in the human lung with haldane and bohr’s effects. Journal of Theoretical Biology 573: 111590.
  • Breakspear, M., 2017 Dynamic models of large-scale brain activity. Nature neuroscience 20: 340–352.
  • Cannon,W. B., 1929 Organization for physiological homeostasis. Physiological reviews 9: 399–431.
  • Cashin, A. and J. Yorke, 2016 Overly regulated thinking and autism revisited. Journal of Child and Adolescent Psychiatric Nursing 29: 148–153.
  • Chapelot, D. and K. Charlot, 2019 Physiology of energy homeostasis: Models, actors, challenges and the glucoadipostatic loop. Metabolism 92: 11–25.
  • Cheffer, A., M. A. Savi, T. L. Pereira, and A. S. de Paula, 2021 Heart rhythm analysis using a nonlinear dynamics perspective. Applied Mathematical Modelling 96: 152–176.
  • Choquet, D., M. Sainlos, and J.-B. Sibarita, 2021 Advanced imaging and labelling methods to decipher brain cell organization and function. Nature Reviews Neuroscience 22: 237–255.
  • Coffey, D. S., 1998 Self-organization, complexity and Chaos: the new biology for medicine. Nature medicine 4: 882–885.
  • Cross, S. S. and D. W. Cotton, 1994 Chaos and antichaos in pathology. Human pathology 25: 630–637.
  • da Silva, F. L., 1991 Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalography and clinical neurophysiology 79: 81–93.
  • Debbouche, N., A. Ouannas, G. Grassi, A.-B. A. Al-Hussein, F. R. Tahir, et al., 2022 Chaos in cancer tumor growth model with commensurate and incommensurate fractional-order derivatives. Computational and Mathematical Methods in Medicine 2022.
  • Devaney, R., 2018 An introduction to chaotic dynamical systems. CRC press.
  • Dritsas, E. and M. Trigka, 2023 Efficient data-driven machine learning models for cardiovascular diseases risk prediction. Sensors 23: 1161.
  • Duarte, J., C. Januário, N. Martins, C. C. Ramos, C. Rodrigues, et al., 2018 Optimal homotopy analysis of a chaotic hiv-1 model incorporating aids-related cancer cells. Numerical Algorithms 77: 261–288.
  • Dutta, S., T. Kushner, and S. Sankaranarayanan, 2018 Robust datadriven control of artificial pancreas systems using neural networks.
  • In Computational Methods in Systems Biology: 16th International Conference, CMSB 2018, Brno, Czech Republic, September 12-14, 2018, Proceedings 16, pp. 183–202, Springer.
  • Elbert, T., W. J. Ray, Z. J. Kowalik, J. E. Skinner, K. E. Graf, et al., 1994 Chaos and physiology: deterministic Chaos in excitable cell assemblies. Physiological reviews 74: 1–47.
  • Enderle, J. and J. Bronzino, 2012 Introduction to biomedical engineering. Academic press.
  • Fang, X. and L. Wang, 2021 Memristive hodgkin-huxley spiking neuron model for reproducing neuron behaviors. Frontiers in Neuroscience 15: 730566.
  • Faust, O. and M. G. Bairy, 2012 Nonlinear analysis of physiological signals: a review. Journal of Mechanics in Medicine and Biology 12: 1240015.
  • Fernández-Carreón, B., J. Munoz-Pacheco, E. Zambrano-Serrano, and O. Félix-Beltrán, 2022 Analysis of a fractional-order glucoseinsulin biological system with time delay. Chaos Theory and Applications 4: 10–18.
  • Flower, A., G. Kalamangalam, and G. Kember, 1993 A mathematical analysis of the grodins model of respiratory control.
  • Mathematical Medicine and Biology: A Journal of the IMA 10: 249–280.
  • Fong, L. E., A. R. Muñoz-Rojas, and K. Miller-Jensen, 2018 Advancing systems immunology through data-driven statistical analysis. Current opinion in biotechnology 52: 109–115.
  • Formaggia, L., A. Quarteroni, and A. Veneziani, 2010 Cardiovascular Mathematics: Modeling and simulation of the circulatory system, volume 1. Springer Science & Business Media.
  • Garfinkel, A., P.-S. Chen, D. O.Walter, H. S. Karagueuzian, B. Kogan, et al., 1997 Quasiperiodicity and Chaos in cardiac fibrillation. The Journal of clinical investigation 99: 305–314.
  • Garland, J., 2013 Energy management–a critical role in cancer induction? Critical reviews in oncology/hematology 88: 198– 217.
  • Giakoumi, M., P. S. Stephanou, K. Kapnisis, and A. Anayiotos, 2023 On the development of physiologically based toxicokinetic (pbtk) models for cardiovascular implants. Regulatory Toxicology and Pharmacology 144: 105489.
  • Ginoux, J.-M., H. Ruskeepää, M. Perc, R. Naeck, V. Di Costanzo, et al., 2018 Is type 1 diabetes a chaotic phenomenon? Chaos, Solitons & Fractals 111: 198–205.
  • Glass, L., A. Beuter, and D. Larocque, 1988 Time delays, oscillations, and Chaos in physiological control systems. Mathematical Biosciences 90: 111–125.
  • Gois, S. R. and M. A. Savi, 2009 An analysis of heart rhythm dynamics using a three-coupled oscillator model. Chaos, Solitons & Fractals 41: 2553–2565.
  • Golbin, A. and A. Umantsev, 2006 Adaptive Chaos: mild disorder may help contain major disease. Medical hypotheses 66: 182– 187.
  • Goldberger, A. L., L. A. Amaral, J. M. Hausdorff, P. C. Ivanov, C.-K. Peng, et al., 2002 Fractal dynamics in physiology: alterations with disease and aging. Proceedings of the national academy of sciences 99: 2466–2472.
  • Goldberger, A. L., D. R. Rigney, and B. J. West, 1990 Chaos and fractals in human physiology. Scientific American 262: 42–49.
  • Goldberger, A. L. and B. J. West, 1987 Chaos in physiology: health or disease? In Chaos in biological systems, pp. 1–4, Springer.
  • Grodins, F. S., 1959 Integrative cardiovascular physiology: a mathematical synthesis of cardiac and blood vessel hemodynamics. The Quarterly Review of Biology 34: 93–116.
  • Gupta, V., 2023 Application of Chaos theory for arrhythmia detection in pathological databases. International Journal of Medical Engineering and Informatics 15: 191–202.
  • Gupta, V., M. Mittal, and V. Mittal, 2020 Chaos theory: an emerging tool for arrhythmia detection. Sensing and Imaging 21: 10.
  • Gupta, V., M. Mittal, and V. Mittal, 2021 Chaos theory and artfa: emerging tools for interpreting ecg signals to diagnose cardiac arrhythmias. Wireless Personal Communications 118: 3615–3646.
  • Heltberg, M. L., S. Krishna, and M. H. Jensen, 2019 On chaotic dynamics in transcription factors and the associated effects in differential gene regulation. Nature communications 10: 71.
  • Hodgkin, A. L. and A. F. Huxley, 1952 A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology 117: 500.
  • Houk, J. C., 1988 Control strategies in physiological systems. The FASEB journal 2: 97–107.
  • Ismail, L. S., S. A. Zulkifl, and N. H. Hamid, 2018 Circuit modeling and analysis of cardiovascular system using analog circuit analogy. In 2018 International Conference on Intelligent and Advanced System (ICIAS), pp. 1–6, IEEE.
  • Itik, M. and S. P. Banks, 2010 Chaos in a three-dimensional cancer model. International Journal of Bifurcation and Chaos 20: 71–79.
  • Karaca, Y., 2023 Computational complexity-based fractional-order neural network models for the diagnostic treatments and predictive transdifferentiability of heterogeneous cancer cell propensity. Chaos Theory and Applications 5: 34–51.
  • Kavakci, M., 2021 Neurochaos: Analyzing the brain and its disorders from a physics perspective. In Chaos, Complexity and Leadership 2020: Application of Nonlinear Dynamics from Interdisciplinary Perspective, pp. 15–24, Springer.
  • Kernick, D., 2005 Migraine—new perspectives from chaos theory. Cephalalgia 25: 561–566.
  • Khan, A. F., Q. Adewale, T. R. Baumeister, F. Carbonell, K. Zilles, et al., 2022 Personalized brain models identify neurotransmitter receptor changes in alzheimer’s disease. Brain 145: 1785–1804.
  • Korn, H. and P. Faure, 2003 Is there chaos in the brain? ii. experimental evidence and related models. Comptes rendus biologies 326: 787–840.
  • Korolj, A., H.-T. Wu, and M. Radisic, 2019 A healthy dose of chaos: Using fractal frameworks for engineering higher-fidelity biomedical systems. Biomaterials 219: 119363.
  • Lassoued, A. and O. Boubaker, 2016 On new chaotic and hyperchaotic systems: a literature survey. Nonlinear Analysis: Modelling and Control 21: 770–789.
  • Lassoued, A. and O. Boubaker, 2020 Modeling and control in physiology. In Control Theory in Biomedical Engineering, pp. 3–42, Elsevier.
  • Leaning, M., H. Pullen, E. Carson, and L. Finkelstein, 1983 Modelling a complex biological system: the human cardiovascular system—1. methodology and model description. Transactions of the Institute of Measurement and Control 5: 71–86.
  • Lipsitz, L. A. and A. L. Goldberger, 1992 Loss of’complexity’and aging: potential applications of fractals and chaos theory to senescence. Jama 267: 1806–1809.
  • Liu, Y., C. Chen, X. Tian, E. Zuo, Z. Cheng, et al., 2024 A prospective study: Advances in chaotic characteristics of serum raman spectroscopy in the field of assisted diagnosis of disease. Expert Systems with Applications 238: 121787.
  • Lozi, R., 2023 Are chaotic attractors just a mathematical curiosity or do they contribute to the advancement of science? Chaos Theory and Applications 5: 133–140.
  • Mackey, M. C. and U. An Der Heiden, 1984 The dynamics of recurrent inhibition. Journal of Mathematical Biology 19: 211– 225.
  • Mansier, P., J. Clairambault, N. Charlotte, C. Médigue, C. Vermeiren, et al., 1996 Linear and non-linear analyses of heart rate variability: a minireview. Cardiovascular research 31: 371–379.
  • Mansour, M., T. B. Donmez, M. Ç. Kutlu, and C. Freeman, 2023 Respiratory diseases prediction from a novel chaotic system. Chaos Theory and Applications 5: 20–26.
  • Mari, A., A. Tura, and E. Grespan, 2020 Mathematical modeling for the physiological and clinical investigation of glucose homeostasis and diabetes. Frontiers in Physiology 11: 575789.
  • McKnight, L. L., S. Lopez, A. K. Shoveller, and J. France, 2013 Models for the study of whole-body glucose kinetics: a mathematical synthesis. International Scholarly Research Notices 2013.
  • Mohammadi, S. and S. R. Hejazi, 2023 Lie symmetry, Chaos optimal control in non-linear fractional-order diabetes mellitus, human immunodeficiency virus, migraine parkinson’s diseases models: using evolutionary algorithms. Computer Methods in Biomechanics and Biomedical Engineering pp. 1–29.
  • Mpitsos, G. J., R. M. Burton Jr, and H. C. Creech, 1988 Connectionist networks learn to transmit Chaos. Brain Research Bulletin 21: 539–546.
  • Müller, W., A. Jung, and H. Ahammer, 2017 Advantages and problems of nonlinear methods applied to analyze physiological time signals: human balance control as an example. Scientific reports 7: 2464.
  • Muni, S. S., Z. Njitacke, C. Feudjio, T. Fozin, and J. Awrejcewicz, 2022 Route to chaos and chimera states in a network of memristive hindmarsh-rose neurons model with external excitation. Chaos Theory and Applications 4: 119–127.
  • Munoz-Pacheco, J. M., C. Posadas-Castillo, and E. Zambrano- Serrano, 2020 The effect of a non-local fractional operator in an asymmetrical glucose-insulin regulatory system: Analysis, synchronization and electronic implementation. Symmetry 12: 1395.
  • Naik, P. A., K. M. Owolabi, M. Yavuz, and J. Zu, 2020 Chaotic dynamics of a fractional order hiv-1 model involving aids-related cancer cells. Chaos, Solitons & Fractals 140: 110272.
  • Noble, D., A. Garny, and P. J. Noble, 2012 How the hodgkin–huxley equations inspired the cardiac physiome project. The Journal of physiology 590: 2613–2628.
  • Panahi, S., Z. Aram, S. Jafari, J. Ma, and J. Sprott, 2017 Modeling of epilepsy based on chaotic artificial neural network. Chaos, Solitons & Fractals 105: 150–156.
  • Panahi, S., T. Shirzadian, M. Jalili, and S. Jafari, 2019 A new chaotic network model for epilepsy. Applied Mathematics and Computation 346: 395–407.
  • Paoletti, N., K. S. Liu, H. Chen, S. A. Smolka, and S. Lin, 2019 Data-driven robust control for a closed-loop artificial pancreas.
  • IEEE/ACM transactions on computational biology and bioinformatics 17: 1981–1993.
  • Peng, C.-K., S. V. Buldyrev, J. M. Hausdorff, S. Havlin, J. E. Mietus, et al., 1994 Non-equilibrium dynamics as an indispensable characteristic of a healthy biological system. Integrative Physiological and Behavioral Science 29: 283–293.
  • Pereda, E., R. Q. Quiroga, and J. Bhattacharya, 2005 Nonlinear multivariate analysis of neurophysiological signals. Progress in neurobiology 77: 1–37.
  • Persson, P. B., 1996 Modulation of cardiovascular control mechanisms and their interaction. Physiological reviews 76: 193–244.
  • Pincus, S. M., 1991 Approximate entropy as a measure of system complexity. Proceedings of the national academy of sciences 88: 2297–2301.
  • Pincus, S. M. and A. L. Goldberger, 1994 Physiological time-series analysis: what does regularity quantify? American Journal of Physiology-Heart and Circulatory Physiology 266: H1643– H1656.
  • Poon, C.-S. and C. K. Merrill, 1997 Decrease of cardiac Chaos in congestive heart failure. Nature 389: 492–495.
  • Pritchard, W. S. and D. W. Duke, 1995 Measuring Chaos in the brain-a tutorial review of eeg dimension estimation. Brain and cognition 27: 353–397.
  • Rajagopal, K., A. Bayani, S. Jafari, A. Karthikeyan, and I. Hussain, 2020 Chaotic dynamics of a fractional order glucose-insulin regulatory system. Frontiers of Information Technology & Electronic Engineering 21: 1108–1118.
  • Rajeswari, S. and P. Vijayakumar, 2023 Mathematical approaches in the study of diabetes mellitus. In Computer Vision and Robotics: Proceedings of CVR 2022, pp. 229–248, Springer.
  • Rasool, N. and J. I. Bhat, 2023 Unveiling the complexity of medical imaging through deep learning approaches. Chaos Theory and Applications 5: 267–280.
  • Rossler, O. E. and R. Rossler, 1994 Chaos in physiology. Integrative Physiological and Behavioral Science 29: 328–333.
  • Russo, G., A. Tramontano, I. Iodice, L. Chiariotti, and A. Pezone, 2021 Epigenome Chaos: stochastic and deterministic dna methylation events drive cancer evolution. Cancers 13: 1800.
  • Sarbadhikari, S. N. and K. Chakrabarty, 2001 Chaos in the brain: a short review alluding to epilepsy, depression, exercise and lateralization. Medical engineering & physics 23: 447–457.
  • Sedivy, R. and R. M. Mader, 1997 Fractals, Chaos, and cancer: do they coincide? Cancer investigation 15: 601–607.
  • Shabestari, P. S., Z. Rostami, V.-T. Pham, F. E. Alsaadi, and T. Hayat, 2019 Modeling of neurodegenerative diseases using discrete chaotic systems. Communications in Theoretical Physics 71: 1241.
  • Shi, Y., P. Lawford, and R. Hose, 2011 Review of zero-d and 1-d models of blood flow in the cardiovascular system. Biomedical engineering online 10: 1–38.
  • Shirmohammadi, S., K. Barbe, D. Grimaldi, S. Rapuano, and S. Grassini, 2016 Instrumentation and measurement in medical, biomedical, and healthcare systems. IEEE Instrumentation & Measurement Magazine 19: 6–12.
  • Sprott, J. C., 2003 Chaos and time-series analysis. Oxford university press.
  • Stam, C. J., 2005 Nonlinear dynamical analysis of eeg and meg: review of an emerging field. Clinical neurophysiology 116: 2266– 2301.
  • Tsatsaris, A., S. Domenikos, C. Psychos, and D. Moutsiounas, 2016 Chaos theory and behavioural patterns: a theoretical approach to psychosis, bipolar disorders and depression. Journal of Advanced Biotechnology and Bioengineering 4.
  • Tsuda, I., 2015 Chaotic itinerancy and its roles in cognitive neurodynamics. Current opinion in neurobiology 31: 67–71.
  • Uthamacumaran, A., 2020 Cancer: A turbulence problem. Neoplasia 22: 759–769.
  • Uthamacumaran, A., 2021 A review of dynamical systems approaches for the detection of chaotic attractors in cancer networks. Patterns 2.
  • Wagner, C., B. Nafz, and P. Persson, 1996 Chaos in blood pressure control. Cardiovascular research 31: 380–387.
  • Xuan, L., S. Ahmad, A. Ullah, S. Saifullah, A. Akgül, et al., 2022 Bifurcations, stability analysis and complex dynamics of caputo fractal-fractional cancer model. Chaos, Solitons & Fractals 159: 112113.
  • Yadav, S. S. and S. M. Jadhav, 2021 Detection of common risk factors for diagnosis of cardiac arrhythmia using machine learning algorithm. Expert systems with applications 163: 113807.
  • Ye, H., Y. Ding, et al., 2009 Nonlinear dynamics and Chaos in a fractional-order hiv model. Mathematical Problems in Engineering 2009.
  • Yoo, J., Z. Sun, M. Greenacre, Q. Ma, D. Chung, et al., 2022 A guideline for the statistical analysis of compositional data in immunology. arXiv preprint arXiv:2201.07945 .
  • Yousefnezhad, M., C.-Y. Kao, and S. A. Mohammadi, 2021 Optimal chemotherapy for brain tumor growth in a reaction-diffusion model. SIAM Journal on Applied Mathematics 81: 1077–1097.
  • Yulmetyev, R. M., S. A. Demin, and P. Hänggi, 2006 Manifestation of Chaos in real complex systems: Case of parkinson’s disease. In The logistic map and the route to Chaos: From the beginnings to modern applications, pp. 175–196, Springer.
  • Zhang, X., Z. Wu, and L. Chua, 2020 Hearts are poised near the edge of Chaos. International Journal of Bifurcation and Chaos 30: 2030023.
There are 110 citations in total.

Details

Primary Language English
Subjects Biological Mathematics, Complex Systems in Mathematics, Dynamical Systems in Applications, Biomedical Engineering (Other)
Journal Section Review Article
Authors

Olfa Boubaker 0000-0001-8656-4090

Publication Date March 31, 2024
Submission Date January 3, 2024
Acceptance Date February 21, 2024
Published in Issue Year 2024 Volume: 6 Issue: 1

Cite

APA Boubaker, O. (2024). Chaos in Physiological Control Systems: Health or Disease?. Chaos Theory and Applications, 6(1), 1-12. https://doi.org/10.51537/chaos.1413955

Chaos Theory and Applications in Applied Sciences and Engineering: An interdisciplinary journal of nonlinear science 23830 28903   

The published articles in CHTA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Cc_by-nc_icon.svg